SlideShare una empresa de Scribd logo
1 de 44
Descargar para leer sin conexión
MEXICO
TECNOLOGÍA FPGA PARA EL
MONITOREO Y DIAGNÓSTICO DE
FALLAS EN MAQUINARIA INDUSTRIAL
ESPECIALIDAD: MECATRÓNICA
René de Jesús Romero Troncoso
Doctor en Ingeníería
26 de Marzo de 2015
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
CONTENIDO
Página
Resumen ejecutivo 3
1 Introducción 4
2 Procesamiento de señales para el diagnóstico 7
3 Tecnología FPGA para monitoreo y diagnóstico 21
4 Ejemplos de desarrollo 23
5 Conclusiones 37
Referencias 37
Agradecimientos 44
Currículum vitae 44
Especialidad: Mecatrónica 2
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
RESUMEN EJECUTIVO
Con el objeto de reducir los paros e interrupciones en los procesos
industriales de manufactura, cada vez se hace más necesario el contar
con sistemas automáticos que realicen el monitoreo y diagnóstico del
estado operativo de la maquinaria industrial. Es deseable que el
monitoreo y diagnóstico sea realizado in situ, de manera continua sin
afectar al proceso y que se emita en un tiempo lo suficientemente corto
para tomar acción preventiva, antes que correctiva, a la maquinaria en
cuestión. Lograr realizar la tarea de monitoreo y diagnóstico implica el
desarrollo de algoritmos, algunos de ellos muy sofisticados, que sean
capaces de ser implementados en tecnologías electrónicas de muy alta
velocidad, pero que mantengan bajos los costos del equipo adicional.
Para atender estas necesidades, el grupo de investigación liderado por el
autor con la participación de investigadores y estudiantes de posgrado
de diversas Universidades nacionales y extranjeras, se ha dado a la
tarea de desarrollar líneas de investigación tendientes a la propuesta de
metodologías de procesamiento de señales para el monitoreo y
diagnóstico de maquinaria industrial teniendo en mente la realización en
tiempo real de los algoritmos, utilizando tecnología de arreglos de
compuertas programables en campo o FPGA (Field Programmable Gate
Array, por sus siglas en inglés) que tienen la característica de una alta
velocidad de operación y mantienen costos moderados. El presente
trabajo muestra una revisión de los trabajos desarrollados por este
grupo de investigación en monitoreo y diagnóstico de maquinaria
industrial utilizando tecnología FPGA.
Palabras clave: FPGA, lógica programable, monitoreo y diagnóstico,
fallas en maquinaria industrial
Especialidad: Mecatrónica 3
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
1. INTRODUCCIÓN.
Durante los últimos años, la investigación y el desarrollo tecnológico de
maquinaria industrial se han orientado a la producción de máquinas,
denominadas de nueva generación, que deben tener las características
descritas por (Mekind , 2009):
• Contar con un centro de maquinado inteligente donde se realicen
los diseños mediante herramientas CAD/CAM.
• Realizar investigación y desarrollo de máquinas reconfigurables
que fácilmente y de manera rápida incorporen procesos de
manufactura híbridos y que estén preparadas para aceptar
diferentes plataformas de nuevos herramentales.
• Investigar y desarrollar técnicas de inspección in situ para
compensar errores durante la operación de la maquinaria.
• Desarrollar nuevas metodologías tendientes a la manufactura
autónoma mediante supervisión, monitoreo, diagnóstico y
reparación automáticas.
• Desarrollar e integrar controladores de procesos en tiempo real
mediante arquitecturas abiertas CNC (Control Numérico por
Computadora) utilizando técnicas adaptivas de control por
retroalimentación de múltiples entradas.
• Desarrollar técnicas CAM que sean inteligentes y adaptivas, con
capacidades de auto-aprendizaje.
Para poder contar con sistemas de monitoreo y diagnóstico autónomos,
in situ, de maquinaria industrial que sean capaces de detectar fallos en
alguna parte de la cadena cinemática durante las etapas iniciales del
fallo, antes de que éste resulte catastrófico; es necesario desarrollar una
metodología de procesamiento de señales que permita detectar la falla y
también contar con una tecnología electrónica que realice el monitoreo y
diagnóstico en tiempo real. La metodología de procesamiento de señales
es el algoritmo o procedimiento analítico que mediante la información
recolectada de uno o varios sensores que supervisan la operación de la
maquinaria es capaz de inferir de una manera simple la condición
operativa del sistema indicando cuándo se encuentra en condiciones
sanas o sin fallo y cuándo se encuentra presente un fallo en el sistema.
Por otro lado, la tecnología electrónica que esté dedicada a realizar esta
tarea de supervisión, monitoreo y diagnóstico, debe ser capaz de
Especialidad: Mecatrónica 4
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
realizarlo de manera continua, en tiempo real y cuando el sistema se
encuentra operando normalmente y no solo cuando se realice un
mantenimiento preventivo. Esta condición implica que el sistema
electrónico debe operar continuamente en conjunto con la maquinaria,
por lo tanto debe ser viable económicamente; debe ser lo
suficientemente rápido como para ejecutar el procesamiento de señales
en tiempo real, y debe ser flexible para incorporar mejoras en los
algoritmos de monitoreo y diagnóstico, manteniendo la capacidad de
desempeño. En resumen, se necesita atender por un lado el desarrollo
de la metodología de diagnóstico mediante los algoritmos de
procesamiento de señales que se aplican a la información recolectada
por los sensores conectados a la maquinaria industrial; y por otro lado,
contar con una tecnología electrónica que sea capaz de ejecutar la
metodología de procesamiento de señales en tiempo real para
proporcionar el diagnóstico, tal como se ilustra en el diagrama de
bloques de la figura 1.
Diagnóstico:
Algoffirnos
Sistema de monitoreo Sano
y diagnóstic Fallo incipiente
Fallo avanzado
Maquinaria Industrial
Figura 1. Diagrama de bloques de un sistema automático de monitoreo
y diagnóstico en maquinaria industrial.
Con respecto a los algoritmos de procesamiento de señales para el
monitoreo y diagnóstico de fallos en máquinas industriales, estos
tienden a ser complejos puesto que se debe considerar la problemática
general del diagnóstico que no es un problema de simple solución. La
primera dificultad surge con la necesidad de contar con diversos
sensores que deben ser monitoreados constantemente y de forma
simultánea para poder contar con la información necesaria para realizar
el diagnóstico. El segundo problema lo constituye el ruido que se
encuentra inmerso en las señales que entregan los sensores y que
requiere de técnicas especializadas para poder minimizarlo y así lograr
extraer la información útil. El siguiente obstáculo a vencer es la
selección del algoritmo o conjunto de algoritmos de procesamiento de
señales que sean adecuados para lograr el diagnóstico deseado,
Especialidad: Mecatrónica 5
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
tomando en cuenta que dada la naturaleza no estacionaria de las
señales de falla en la maquinaria, es necesario contar con algoritmos
que puedan procesar información de esta naturaleza, lo cual no es
simple. Finalmente se debe considerar que la metodología de
diagnóstico debe ser capaz de implementarse en una tecnología
electrónica que pueda realizar el procesamiento en tiempo real;
entendiendo como tiempo real el periodo de tiempo tolerado desde que
ocurre el fallo hasta que se detecta y se tome acción al respecto. Cabe
hacer notar que existen metodologías de diagnóstico que son muy
sofisticadas, pero tienen la desventaja de requerir un poder de cómputo
muy alto, haciéndolas inadecuadas para su implementación en tiempo
real en las tecnologías disponibles actualmente.
Para la implementación tecnológica de los algoritmos de procesamiento
de señales se cuenta con tres opciones posibles: las computadoras
personales denominadas genéricamente como PC (Personal Computer),
los microprocesadores especializados conocidos como DSP (DIgital
Signal Processor, procesador digital de señales) y los arreglos de
compuertas programables en campo o FPGA (Field Programmable Gate
Array) por sus siglas en inglés. Las PC son los sistemas más simples
para utilizar y se pueden realizar desarrollos rápidos debido a la gran
cantidad de paquetes de software de procesamiento de señales que se
encuentran disponibles como Matlab-Simulink y National Instruments-
LabView; asimismo, diversas compañías ofrecen sistemas de adquisición
de datos que se enlazan directamente entre el software y los sensores
físicos. No obstante estas facilidades que presentan las PC, se debe
tomar en cuenta que las soluciones desarrolladas con estas plataformas
resultan muy costosas y puede ser que la aplicación requerida no
justifique el gasto realizado. Por otro lado, estas plataformas son de fácil
desarrollo y aplicación, pero de ninguna manera son óptimas en cuanto
al desempeño en velocidad de procesamiento, por lo que algunos
algoritmos de diagnóstico no pueden ser implementados para su
ejecución en tiempo real en estos sistemas, además se debe recordar
que la propiedad intelectual de los desarrollos realizados en estas
plataformas pertenece a la empresa proveedora de la plataforma, no al
usuario. La segunda alternativa de implementación tecnológica son los
procesadores especializados o DSP; los cuales pueden ejecutar un
algoritmo de procesamiento de señales hasta 10 veces más rápido que
una PC y su costo es inferior comparado con las plataformas tipo
Simulink y LabView; sin embargo, no son tan fáciles de programar y
existe una cierta dependencia tecnológica hacia los proveedores de los
dispositivos, aunque la propiedad intelectual de la implementación
pertenece al desarrollador. La tercera alternativa de implementación son
los FPGA que pueden ejecutar los algoritmos de procesamiento de
Especialidad: Mecatrónica 6
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
señales hasta 10 veces más rápido que un DSP, y por ende hasta 100
veces más rápido que una PC, con costos realmente atractivos para su
uso en aplicaciones industriales. La principal desventaja los dispositivos
FPGA es que se requiere un mayor esfuerzo para el desarrollo de las
aplicaciones, tanto la parte hardware como la parte software, ya que el
diseño se realiza a nivel de compuertas básicas y bloques funcionales.
Para que un diseño sea efectivo con estos dispositivos, es necesario
contar con personal altamente entrenado en diseño de circuitos
integrados digitales, generalmente de nivel de posgrado. A pesar de las
desventajas que tienen las tecnologías, nótese que todas ellas pueden
ser conjuntadas en plataformas híbridas que exploten las ventajas
particulares de cada tecnología y así proporcionar la solución deseada.
El principal objetivo del presente trabajo es mostrar un análisis del
estado del arte de los métodos de procesamiento de señales y las
tecnologías FPGA en la aplicación y desarrollo de sistemas automáticos
de monitoreo y diagnóstico de fallos en maquinaria industrial. Asimismo,
se presentan de forma resumida los principales retos teóricos y prácticos
que se tienen para el desarrollo del área, al igual que los retos en la
formación de recursos humanos que tiene nuestro país para contar con
personal calificado para el diseño de sistemas de monitoreo y
diagnóstico de fallos en maquinaria industrial que cumplan con las
especificaciones de los sistemas de nueva generación.
El resto del trabajo está organizado como sigue: la sección 2 hace un
análisis de las técnicas de procesamiento de señales que se utilizan para
el monitoreo y diagnóstico de maquinaria industrial, la sección 3
proporciona un panorama general de la tecnología FPGA y sus
herramientas de desarrollo, así como sus usos en el monitoreo y
diagnóstico de maquinaria industrial. En la sección 4 se presentan
algunos ejemplos de desarrollo de sistemas y equipo para el monitoreo
y diagnóstico de fallos en maquinaria industrial, realizados por el grupo
de investigación cuyo líder es el autor del presente trabajo, con la
finalidad de resolver problemas particulares de la industria y de la
academia, así como para contribuir en la formación de recursos
humanos especializados a nivel posgrado en el diseño de sistemas
basados en tecnología FPGA. Finalmente, la sección 5 presenta las
conclusiones del trabajo.
2. PROCESAMIENTO DE SEÑALES PARA EL DIAGNÓSTICO.
Para poder determinar la condición operativa de una máquina es
necesario realizar los siguientes pasos:
Especialidad: Mecatrónica 7
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
• Instrumentación
• Monitoreo
• Diagnóstico
El proceso de instrumentación consiste en medir el valor de una o varias
variables físicas que contienen la información necesaria para describir el
modo operativo de la máquina bajo análisis. Para llevar a cabo esta
tarea es necesario establecer una cadena de instrumentación como se
describe en el diagrama de bloques de la figura 2.
Variable física Serisor primario Transductor Pre-amplificador
Filtro
I-I Acondicionador Ll
anti-traslape de señal Amplificador
Muestreador Convertidor
y retenedor Hanalógico a digitalF lnterfaz Valor digital
Figure 2. Sistema general de instrumentación.
La variable física a medir es sensada mediante un elemento sensor
primario que en conjunto con el transductor entregan una señal eléctrica
que es proporcional a la variable física. Esta señal contiene muy poca
energía y es necesario incrementar esta energía mediante una etapa de
pre-amplificación cuya finalidad es lograr un acoplamiento de
impedancias y posteriormente un amplificador que proporciona los
niveles adecuados de corriente y tensión para procesar la señal. A
continuación se requiere un acondicionador de señal que se encarga de
realizar tareas como la reducción del ruido, limitación en banda y
ecualización espectral. Con el objeto de obtener el valor digital de la
señal es necesario colocar un filtro de anti-traslape espectral que limite
en frecuencia a la señal, de acuerdo con el teorema de Nyquist. El
proceso de conversión requiere en sí tres bloques funcionales que son el
muestreador y retenedor quien discretiza la señal en tiempo, el
convertidor de analógico a digital quien discretiza la señal en amplitud y
la interfaz que se encarga de enviar los datos para su posterior análisis.
La cadena de instrumentación debe realizarse para cada uno de los
diferentes sensores que se tienen en el sistema.
Una vez que se cuenta con el valor digital de la señal mediante el
proceso de instrumentación, el siguiente paso es el monitoreo de la
Especialidad: Mecatrónica 8
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
variable o variables físicas bajo análisis que consiste en tomar conjuntos
determinados de muestras para extraer las características principales
que permitan inferir la condición operativa de la máquina. Es en esta
etapa donde se realiza mayormente el procesamiento de señales,
encaminado a la extracción de estas características principales de la
variable física medida. El procesamiento empleado en esta etapa puede
ser realizado en el dominio del tiempo, de la frecuencia o del espacio
tiempo-frecuencia. Los procesamientos correspondientes al dominio del
tiempo analizan la señal tomando como referencia su evolución en el
tiempo e incluyen al filtrado digital (reducción de ruido, selección de
banda espectral, etc.) y al análisis estadístico (media, varianza, valor
pico, etc.). El procesamiento en el dominio de la frecuencia consiste en
realizar el análisis desde el punto de vista del contenido espectral de la
señal y típicamente involucra transformadas de espacio como la
transformada discreta de Fourier y los métodos de estimación espectral
tanto paramétricos como no paramétricos. El procesamiento en el
espacio tiempo-frecuencia trata de conjuntar las características de
análisis de las técnicas del domino del tiempo y del dominio de la
frecuencia para obtener el espectro de la señal conforme evoluciona en
el tiempo. Las técnicas de análisis tiempo-frecuencia incluyen a las
transformadas de ondoletas, la descomposición de modo empírico, la
transformada corta de Fourier, entre otras.
El objetivo final de la instrumentación y el monitoreo es obtener un
diagnóstico del estado de la máquina bajo análisis. El proceso de
diagnóstico se puede definir como el procedimiento para inferir el estado
o condición operativa de la maquinaria en cuestión en función de los
parámetros estimados por el proceso de monitoreo de la señal. Un
sistema de diagnóstico, en forma general, consiste en un procedimiento
de toma de decisiones para dar un resultado sobre las condiciones
operativas. Las técnicas de diagnóstico más utilizadas incluyen a los
sistemas expertos, árboles binarios, lógica difusa, redes neuronales,
máquinas de soporte vectorial, algoritmos genéticos, entre otros.
Como ejemplo de este proceso, considere la operación del motor de un
automóvil desde el punto de vista del usuario. Primeramente es
necesario que el motor cuente con la instrumentación adecuada que
puede incluir sensores para medir la temperatura del motor, la presión
de aceite y el nivel de inyección de combustible. Esta instrumentación se
concentra en un sistema de monitoreo que toma las lecturas de estas
variables y las procesa para determinar si se está operando en la región
recomendada. Finalmente, mediante un sistema experto, la
computadora da un diagnóstico al usuario sobre la condición del motor
en base a los parámetros estimados y le informa de manera simple si el
Especialidad: Mecatrónica 9
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
motor opera correctamente, si hay necesidad de darle mantenimiento
en un corto plazo o de si hay una falla que requiere atención inmediata.
Para poder generar este simple mensaje se necesita de la
instrumentación adecuada para medir las variables físicas de interés al
proceso, el monitoreo y procesamiento de las señales para extraer las
características o parámetros operativos que sean indicativos de la
operación del sistema y finalmente el análisis mediante un sistema
experto que interprete los valores de estos parámetros y emita el
diag nóstico.
2.1 Procesamiento de señales para el monitoreo.
Con el objeto de ejemplificar los efectos del procesamiento de señales
para el monitoreo, considere la forma de onda hipotética que se muestra
en la figura 3.
20W JUUU 40W 5wQ 8000 7800 8000 9000 10000
Figura 3. Forma de onda hipotética de un proceso.
A simple vista se puede notar que se trata de una señal periódica con
cierto contenido armónico y un promedio diferente de cero. La señal
contiene ruido y la periodicidad se ve afectada por dos eventos
transitorios que ocurren en diferentes tiempos. El reto del monitoreo es
procesar la señal de tal manera que se logren extraer las características
o parámetros que son indicadores del estado del proceso en análisis.
Si la característica que se busca de la señal es la periodicidad de la
componente espectral principal para eliminar armónicos y reducir el
ruido, un simple filtro de paso bajo puede cumplir con el objetivo, tal
como se muestra en la gráfica procesada de la figura 4. En este caso, el
procesamiento da como resultado la extracción de una señal sinusoidal
con menor contenido armónico, ruido disminuido y que mantiene el nivel
promedio original; mientras que la información de los eventos
transitorios y de los armónicos se pierde. Si por otro lado no se desea
preservar la forma de onda, sino solamente conocer los valores medio,
Especialidad: Mecatrónica 10
Tabla 1. Parámetros estadísticos básicos de la señal bajo análisis.
Parámetro Valor
Media 0.7503
RMS 0.7619
Valor pico máximo 9.9703
Valor pico mínimo -3.0015
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
raíz media cuadrática o RMS (root mean square) y valores pico, basta
con realizar un procesamiento estadístico de una la muestra completa
de la señal y entregar los valores numéricos, que para este ejemplo se
muestran en la tabla 1. El filtrado digital y el procesamiento estadístico
se realizan en el dominio del tiempo.
..: T.
T T ....
UU 4UUU 5UJU bWU /LBJU so 9000 00000
Figura 4. Resultado de la señal filtrada.
Cuando los parámetros de interés se encuentran en los diferentes
componentes espectrales de la señal, es decir, en el dominio de la
frecuencia; la técnica de procesamiento más utilizada es la transformada
de Fourier que cuando se aplica a la señal de ejemplo se obtiene el
espectro de la figura 5, donde se puede ver el componente principal y
dos armónicos, además de cierto nivel de ruido.
09
08
07
0.6
0.5
04
0.3
0.2
CI
O 50 100 150 200 250
Figura S. Espectro de la señal de prueba mediante la transformada de
Fourier.
Especialidad: Mecatróriica 11
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
Las técnicas de procesamiento de señales antes descritas son
consideradas como técnicas clásicas de procesamiento y tienen en
común que consideran a la señal bajo análisis como una señal
estacionaria, es decir, una señal que conserva un patrón definido
durante todo el tiempo y no contiene eventos transitorios. Si las
características principales que definen la condición operativa del sistema
bajo monitoreo es de naturaleza estacionaria, entonces estas técnicas
clásicas son suficientes para realizar el procesamiento, pero cuando las
características de interés son de naturaleza no estacionaria o transitoria,
las técnicas clásicas de procesamiento no entregan resultados
satisfactorios y es necesario utilizar otras técnicas que permitan
descomponer la señal original para separar los eventos estacionarios de
los no estacionarios.
Para apreciar el efecto del análisis clásico sobre una señal no
estacionaria, considere la forma de onda en el dominio del tiempo que
se muestra en la figura 6a y que consiste de una componente principal
de frecuencia cuyo valor permanece invariante por un tiempo y durante
un periodo definido, el valor de la frecuencia aumenta para retornar a su
valor original. La señal contiene armónicos, cierto nivel de ruido y un
evento transitorio de tipo impulsivo. El espectro de la señal se muestra
en la figura 6b, donde se puede apreciar la componente directa, la
frecuencia principal, los armónicos y la frecuencia transitoria; sin
embargo, la frecuencia principal y en particular la frecuencia transitoria
no se encuentran bien definidos en la gráfica del espectro, debido a la
naturaleza no estacionaria de la señal. Además, el espectro por sí solo
nos proporciona información de las frecuencias presentes en la señal,
pero no nos da información del tiempo en que ocurren estas frecuencias.
Se debe tener en cuenta que la mayoría de las señales que se pueden
medir en los sistemas reales son de naturaleza no estacionaria y
algunos de los parámetros de interés se pueden encontrar en la parte
estacionaria, pero otros parámetros se encuentran en los componentes
transitorios. Así que en términos generales, se puede inferir que las
técnicas clásicas de procesamiento de señales pueden no ser adecuadas
para extraer la información relevante en procesos de monitoreo en
máquinas industriales. La solución que se le ha dado al problema del
monitoreo de señales no estacionarias consiste en la aplicación de
técnicas de análisis denominadas tiempo-frecuencia que permiten por
un lado realizar el análisis de los componentes espectrales que
constituyen a la señal bajo estudio, pero conservando la información del
tiempo en que estos componentes estuvieron presentes en la señal.
Especialidad: Mecatrónica 12
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
Figura 6. Señal no estacionaria, a) dominio del tiempo, b) espectro de
frecuencia.
Son varias las técnicas de descomposición tiempo-frecuencia que se han
utilizado para el análisis de señales, entre las que se encuentra la
transformada corta de Fourier, las transformadas de ondoletas y la
descomposición de modo empírico.
La transformada corta de Fourier consiste en segmentar en periodos de
tiempo definidos la señal original en el dominio del tiempo y aplicar la
transformada de Fourier a estos segmentos para representar la señal
como un conjunto de espectros de frecuencia que evolucionan en el
tiempo. La representación gráfica de la transformada corta de Fourier
puede realizarse como una gráfica tridimensional como se muestra en la
figura 7a donde se aplica la técnica a la señal de la figura 6a y un eje
representa la amplitud de la componente espectral, el segundo eje
representa la frecuencia y el tercer eje corresponde al tiempo. Otra
forma de representación es mediante una gráfica de dos dimensiones,
pseudocoloreada, donde el eje vertical representa al tiempo, el eje
horizontal representa la frecuencia y el color denota la amplitud de los
componentes espectrales, tal como se muestra en la figura 7b. La
ventaja de esta transformada sobre el procesamiento clásico es que
puede ubicar las frecuencias no solamente como componentes de la
señal sino también el tiempo en que ocurren. Un problema persistente
Especialidad: Mecatrónica 13
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
con esta transformada siguen siendo los eventos transitorios que aún no
es capaz de detectarlos.
Amplitud
• Componentes estacionarios -
IM
u : -
jjj
uenciatransitoria : ola
u ' 1
u'
-•
dr es
recuenc.a
Figura 7. Transformada corta de Fourier, a) vista tridimensional, b) vista
bidimensional con pseudocolor para indicar la amplitud.
Otras técnicas como las transformadas de ondoletas han sido
propuestas para identificar la ocurrencia de eventos transitorios en las
señales bajo análisis. El proceso de la transformada de ondoletas
consiste en descomponer la señal original en un conjunto de varias
señales conteniendo cada una de ellas una banda de frecuencias
específica, conservando la información del tiempo en que ocurren.
Básicamente la transformada de ondoletas es un banco de filtros, donde
cada filtro selecciona una banda de frecuencias específica de la señal. En
Especialidad: Mecatrónica 14
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
la figura 8 se muestra una descomposición por medio de las
transformadas de ondoletas para la señal de la figura 6a.
b)
Figura 8. Transformadas de ondeletas, a) Componentes de baja
frecuencia, b) componente de frecuencia media, c) frecuencia
transitoria, d) evento transitorio.
Especialidad: Mecatrónica 15
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
Las transformadas de ondoletas logran obtener una buena
descomposición de la señal original, aislando los armónicos principales,
las frecuencias transitorias y los eventos transitorios, todos ellos en
diferentes niveles de descomposición, lo que facilita el análisis posterior
de la señal. Una cuestión que debe ser considerada cuando se realiza la
descomposición por ondoletas es el hecho de que los niveles de
descomposición no reconstruyen de manera perfecta la señal e
introducen distorsiones y no linealidades.
Otro método de separación de componentes de una señal es la
descomposición de modo empírico o EMD por sus siglas en inglés
(empirical mode decomposition). La EMD es una técnica no lineal,
contraria a las transformadas corta de Fourier y de ondoletas, y se basa
en encontrar evolventes intrínsecas de la señal original para poder
separar sus componentes en los diferentes modos, preservando sus
características de tiempo y frecuencia. La figura 9 muestra la forma en
que se descompone la señal de la figura 6a en sus diferentes modos
¡ ntrín secos.
lO 10
• a) b)
5- 8
6 6
4 4
2 2
0 0-
2° 10 2000 30100 4000 50100 0000 7000 0000 9001) 10000
2
1000 -- 4500 5520 50 7000 a50o--------- 000 ioóoo
10 10
c) d)
8 8
6r 8
4- 4
- - :i_1000 2000 3000 4000 5 0 7200 8 9000 10090 0 1900 2000 3990 4000 5 0 70 8000 0 10000
1:
O
-2° 1030 2000 3000 4000 5020 8000 7000 8502 9000 18000
Figura 9. Descomposición de modo empírico, a) Frecuencia principal y
señal directa, b) frecuencia media, c) frecuencia superior, d) frecuencia
transitoria, e) evento transitorio y ruido.
Como se puede apreciar en la figura 9, la técnica EMD logra una mejor
separación de los componentes constitutivos de la señal original; sin
embargo, esta técnica requiere un alto poder computacional para
ejecutarse y algunas aplicaciones que tengan restricción en el tiempo de
Especialidad: Mecatrónica 16
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
respuesta puede ser que no sea factible su implementación para realizar
el procesamiento en tiempo real. A este respecto, la tabla 2 resume el
poder de cómputo relativo que se requiere para ejecutar las técnicas de
procesamiento de señales discutidas en este apartado.
Tabla 2. Necesidades de cómputo en las técnicas de procesamiento de
señales nara el mnnitnrn
Técnica Cómputo Observaciones
Filtrado digital Muy Dominio del tiempo
simple Pocos recursos tecnológicos
Estadística básica Muy Dominio del tiempo
simple Pocos recursos tecnológicos
Transformada de Fourier Simple Dominio de la frecuencia
Moderados recursos tecnológicos
Transformada de Complejo Dominio del tiempo-frecuencia
ondoletas Moderados recursos tecnológicos
Puede requerir mucho tiempo de
cómputo
Descomposición de Muy Dominio del tiempo-frecuencia
modo empírico complejo Altos recursos tecnológicos
La operación en tiempo real
puede no ser factible
2.2 Procesamiento de señales para el diagnóstico.
Una vez que mediante el proceso de monitoreo se lograron extraer los
parámetros y características relevantes de la operación de la máquina
bajo prueba, el siguiente paso es utilizar esta información para poder
emitir un diagnóstico simple y directo sobre la condición de la máquina.
Esta tarea requiere una segunda etapa de procesamiento que implica la
elaboración de un sistema clasificador de condiciones mediante alguna
técnica particular.
El método más simple para generar un sistema experto de diagnóstico
consiste en un árbol de decisiones. Un árbol de decisiones consiste en
conectar de manera jerárquica un conjunto de evaluadores booleanos
(Sí o No) que analiza los parámetros o características extraídas de la
señal original por medio del proceso de monitoreo y dar un diagnóstico
operativo. La figura 10 muestra un árbol binario para realizar un
diagnóstico sobre un proceso hipotético con tres parámetros de análisis
Al B y C, y con las siguientes reglas:
• Si A sobrepasa un umbral Amax, el sistema tiene un fallo severo y
requiere detener el proceso, o:
Especialidad: Mecatrónica 17
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
• Si cualquiera de B o C sobrepasan un umbral Tmax, el sistema
requiere programar un mantenimiento preventivo y sino:
• El sistema opera en condiciones adecuadas.
Figura 10. Árbol binario para el problema de diagnóstico.
No siempre es posible poder establecer las reglas de inferencia en un
sistema experto como simples decisiones binarias y por esta razón se
debe contar con otras técnicas de clasificación como por ejemplo la
lógica difusa. Un sistema clasificador difuso, en lugar de establecer
umbrales para responder sí o no, pondera en diferentes grados el valor
de un parámetro bajo análisis, por ejemplo en: bajo, incipiente, medio,
alto y severo. La respuesta del sistema pondera de forma conjunta
todos los parámetros involucrados y entrega un resultado. La figura 11
muestra un diagrama de bloques general de un sistema clasificador
difuso.
Cuando las reglas de inferencia en un sistema difuso no se pueden
especificar de una manera precisa o cuando los sistemas son muy
complejos, ya sea por contener una gran cantidad de parámetros o
cuando la interrelación entre parámetros no puede ser modelada
fácilmente, otras técnicas como las redes neuronales son más
adecuadas como clasificadores. Las redes neuronales son arreglos de
operadores matemáticos adaptivos que pueden tener diversas
Especialidad: Mecatrónica 18
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
configuraciones, inspiradas en la interconectividad que tienen las
neuronas en los organismos vivos y contienen dos partes: la red
neuronal en sí y la parte del entrenamiento de la misma. El bloque de
entrenamiento consiste en un modelo matemático que ajusta los valores
de los coeficientes de la red neuronal de tal forma que se minimice el
error de la salida ante un conjunto de estímulos o entradas cuyo
resultado se conoce a priori. Una estructura de red neuronal muy
utilizada es el denominado perceptrón que se muestra en la figura 12a
que consiste de una capa de entrada, una capa oculta y otra capa de
salida. El número de neuronas en cada capa se determina de forma
experimental, seleccionando aquella configuración que proporcione
mejores resultados. La operación matemática que realiza una neurona
es la suma ponderada de las entradas que sirve como variable de una
función de activación para proporcionar la salida, como se muestra en la
figura 12b. El entrenamiento de la red neuronal se lleva a cabo
mediante la estructura mostrada en la figura 12c, utilizando como
entradas un conjunto de datos cuya respuesta se conoce de antemano,
ajustando los pesos ponderados mediante una función de minimización
del error.
Procesador difuso 1
M-Procesador
Parámetro 1
Modelo difuso Ponderación
dor difuso 2
Reglas de inferencia
Parám
Clasificador Diagnóstico
difuso
Procesador difuso n 1
metro n
odeIo difuso
Reglas de inferencia
Pará
1
Inferencia difusa
Ponderación
Figura 11. Clasificador difuso general.
Existen otros clasificadores basados en máquinas de soporte vectorial y
en algoritmos bio-inspirados como algoritmos genéticos, enjambre de
partículas, colonia de hormigas, entre otros. Todos ellos tienen como
característica que requieren entrenamiento como las redes neuronales,
pero el modelo del sistema es diferente.
Especialidad: Mecatrónica 19
c)
Entrada
s = w x 1
Y=t(S)
Capa de Capa Capa de
entrada oculta salida
a)
x
das
x
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
Respuesta Respuesta
conocida lError de la red
Función de minimización
del error
IIwiExcitaciones
conocidas Perceptrón
Figura 12. Red neuronal, a) perceptrón, b) neurona, c) entrenamiento.
Al igual que los modelos de procesamiento de señales para el
monitoreo, los diferentes modelos de sistemas clasificadores para el
diagnóstico tienen características de complejidad diferente, requiriendo
una mayor o menor cantidad de recursos y consumiendo más o menos
tiempo de cómputo, que combinados estos factores hacen viable o no su
implementación tecnológica para ejecutarse en tiempo real. La tabla 3
muestra un resumen de las características generales de los modelos de
clasificadores para diagnóstico.
Tabla 3. Características neneraIs t1p. lnç cIaçificrInrp n;;rA r1ini-ic
Clasificador Recursos Características
necesarios Principales
Arbol binario Bajo Fácil implementación
No requiere entrenamiento
Lógica difusa Bajo Necesario definir las reglas de
inferencia
Red neuronal Medio Requiere entrenamiento
Produce respuestas rápidas
Máquina de soporte Alto Requiere entrenamiento
vectorial Procesamiento complejo
Modelo matemático determinístico
Algoritmos bio- Medio - Alto Requiere entrenamiento
inspirados Adecuado para sistemas complejos
Especialidad: Mecatrónica 20
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
3. TECNOLOGÍA FPGA PARA MONITOREO Y DIAGNÓSTICO.
Toda vez que se ha desarrollado un algoritmo que realiza el monitoreo y
diagnóstico de la condición operativa de una máquina industrial, el
siguiente paso consiste en realizar la implementación tecnológico del
algoritmo para su ejecución en tiempo real y a un coste adecuado. Esta
tarea no es trivial ya que requiere manejar adecuadamente el
compromiso entre la velocidad de ejecución y el costo de la plataforma
tecnológica. Una tecnología que ha tomado auge para el desarrollo de
soluciones algorítmicas que sean rápidas y a un costo atractivo para
aplicaciones de monitoreo y diagnóstico en maquinaria industrial son los
circuitos FPGA.
Un circuito integrado FPGA es un circuito que contiene millones de
elementos lógicos básicos (compuertas lógicas y otros elementos) cuya
conectividad no está fijada previamente y el usuario tiene la capacidad
de poder definir la conectividad de los elementos para lograr la
realización de los algoritmos deseados, siempre con una libertad total en
cuanto a la arquitectura de procesamiento interna que puede tener un
alto paralelismo. La característica de paralelismo en un FPGA es la que
le otorga la alta velocidad de procesamiento, comparado con las
tecnologías DSP y PC, donde la arquitectura de procesamiento siempre
es secuencial y con un nivel de paralelismo limitado.
Un circuito FPGA moderno contiene como elementos básicos a los
bloques lógicos BL, terminales configurables de entrada/salida JO,
terminales de manejo de reloj CLK, sumadores ADD, multiplicadores
MUL, memoria de acceso aleatorio RAM y unidades de procesamiento
central CPU, tal como se muestra de forma simplificada en la figura 13,
tomando en cuenta que un FPGA contiene de miles a millones de estos
elementos básicos en una sola pastilla. Los bloques lógicos están
formados de algunas decenas de compuertas lógicas (AND, OR, XOR,
etc.) y memorias biestables síncronas, tipo flip-flop. Las terminales JO
de un FPGA pueden ser configuradas por el diseñador para operar como
entradas, salidas, terminales bidireccionales y también seleccionar los
niveles de tensión e impedancia de la terminal. Las terminales dedicadas
de reloj contienen la circuitería necesaria para distribuir de manera
eficiente y con retardo mínimo la señal maestra de reloj de referencia.
Los bloques sumador y multiplicador son los elementos básicos para
realizar el procesamiento algorítmico en forma paralela ya que permiten
al diseñador utilizar un sumador y un multiplicador en una estructura
digital denominada multiplicador-acumulador que es la estructura básica
de un DSP y al contener cientos o miles de estas unidades en un FPGA,
se logra un alto grado de paralelismo. Los FPGA también contienen
Especialidad: Mecatrónica 21
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
memoria interna de acceso rápido para realizar procesamiento a la
máxima velocidad posible. Finalmente, algunos modelos de FPGA ya
integran microprocesadores de propósito general, prediseñados para ser
utilizados de forma inmediata en aplicaciones tales como el desarrollo de
interfaces específicas tipo USB, TCP/IP, 1 2C, SPI, etc.
nVO E _ E HDD] K K _ M FBLI BL lIO
I/O E E K nMU K BL FB IL MUL F1 EL F
1 [110
I/O BL FBL]FBLI FRAMI [BL]BL BL AM FBLIFBL] FBLI I
I/O BL nBL B CPU [
BL] FB~LBL CPU FBLIFBLI FBIL v01
I/O FBLI FBL]FBL]HD7D FBLI FBLIFBLI H°_ BL
BL1
BL BL BL MUL BL BL BL LMUL BL F
EBL]
BL] FBLI _nVO
CLK ML [BLI [BLI RAM [BLI [BLI [BLI RAM SL EL [~LI l~
Figura 13. Estructura general de un FPGA.
El reto del diseñador consiste en el planteamiento de una estructura
digital que realice de manera eficiente el algoritmo deseado. De esta
forma el diseñador construye los procesos algorítmicos básicos como
interfaces, filtrado digital, transformadas de espacio, redes neuronales y
sistemas difusos a partir de los elementos básicos del FPGA y une estos
bloques algorítmicos en la estructura digital que realiza el
procesamiento de la señal en forma completa, como se ilustra en la
figura 14.
El proceso de diseño con tecnología FPGA requiere conocimientos
profundos de sistemas digitales y también el manejo de lenguajes
descriptivos como el VHDL o Verilog. Además de la libertad que tiene el
diseñador para definir la arquitectura de la realización tecnológica con
FPGA y de la alta velocidad de procesamiento por el paralelismo
intrínseco de los dispositivos, existe otra característica importante que
hace a los dispositivos FPGA ideales para aplicaciones de monitoreo y
diagnóstico en máquinas industriales y es la reconfigurabilidad. Esta
característica permite al diseñador modificar la conectividad interna del
sistema sin tener que realizar modificaciones al hardware por lo que las
Especialidad: Mecatrónica 22
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
soluciones funcionales puedan ser mejoradas sin necesidad de realizar
cambios en los circuitos.
Procesos algorítmicos Adquisición
/ de datos
Filtro digital
Bloques básicos
Solución completa
Q TO VGA
T
FD TF RN
ADQ TO
 Sistema difuso
/
USIB
Transformada
de Fourier
1/
Interfaz tJS5
Interfaz VGA
Figura 14. Proceso de diseño algorítmico en un FPGA.
4. EJEMPLOS DE DESARROLLO.
Desde 2004, el autor dirige un grupo de investigación en el área del
control, monitoreo y diagnóstico de sistemas dinámicos, utilizando
tecnología FPGA. El grupo inició con la participación de investigadores y
estudiantes de posgrado de la Universidad de Guanajuato y la
Universidad Autónoma de Querétaro y en los últimos años se ha
extendido con colaboraciones de la Universidad Autónoma de Sinaloa, la
Universidad de Valladolid (España) y la Universidad Politécnica de
Cataluña (España). Los desarrollos del grupo han sido encaminados a
cuatro áreas principales:
• Máquinas-herramienta, incluyendo los motores de inducción.
• Robótica industrial.
• Monitoreo de la calidad de la energía eléctrica.
• Aplicaciones en biotecnología.
Especialidad: Mecatrónica 23
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
4.1 Aplicaciones en máquinas-herramienta.
Se han manejado tres líneas principales de aplicación de los FPGA para
el monitoreo y diagnóstico de máquinas herramienta que abarcan a las
plataformas de monitoreo de propósito general, las aplicaciones en
maquinaria industrial y los desarrollos particulares al monitoreo y
diagnóstico de motores de inducción.
4.1.1 Plataformas de propósito general.
La característica de reconfigurabilidad de los dispositivos FPGA los hace
ideales para el desarrollo de plataformas de arquitectura abierta para
aplicaciones en control, instrumentación, monitoreo y diagnóstico de
máquinas-herramienta como es el caso de (Morales-Velazquez, 2010a)
donde se presenta el desarrollo de una plataforma reconfigurable para
aplicaciones en maquinaria CNC. Esta plataforma de arquitectura abierta
tiene como finalidad el poder integrar las funciones de control,
instrumentación, monitoreo y diagnóstico en una plataforma
reconfigurable que permita al usuario realizar cambios y expansiones del
sistema según sean las necesidades del mismo y que permita fácilmente
la incorporación de nuevos algoritmos de análisis de señales sin tener
que modificar el hardware y mantener el mismo desempeño en
velocidad, tal como lo muestra la figura 15 donde la plataforma de
arquitectura abierta incorpora tres módulos con dispositivos FPGA; uno
conteniendo un controlador lógico programable para la reconversión a
CNC del torno, el segundo para el control del movimiento de los ejes y
el tercero para realizar el monitoreo de las vibraciones durante el
maquinado. Los tres módulos FPGA se interconectan a una unidad
central, también basada en tecnología FPGA, que contiene un
procesador propietario, descrito en (Morales-Velazquez, 2012) como un
bloque funcional que puede ser embebido en este tipo de plataformas.
Otra aplicación de propósito general de las plataformas FPGA en
máquinas CNC es el desarrollo de sistemas de comunicación inalámbrica
entre diversos módulos de control y monitoreo a lo largo de una línea de
producción que contiene varias máquinas CNC, con diferentes módulos
de control y monitoreo, tal como se desarrolla en (Moreno-Tapia, 2010).
En esta aplicación se desarrolla un sistema concentrador quien coordina
el funcionamiento de un conjunto de sensores inteligentes remotos,
conectados al concentrador en forma inalámbrica y donde cada módulo
sensor contiene un dispositivo FPGA para realizar procesamiento de
señales sobre la variable física que se encuentre midiendo el sistema de
instrumentación del sensor.
Especialidad: Mecatrónica 24
Procesamiento
central
"11` 1
Torno reconvertido
aCNC
Controlador lógico
programable
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
Control de movimiento
de! torno
Monitoreo
de vibraciones
Figura 15. Ejemplo de aplicación de la tecnología FPGA en control y
monitoreo de maquinaria CNC.
4.1.2 Monitoreo y diagnóstico en maquinaria industrial.
Aplicaciones específicas de monitoreo y diagnóstico en maquinaria
industrial incluyen diferentes técnicas para obtener diferentes
resultados. De las técnicas desarrolladas para el monitoreo en el
dominio del tiempo se puede mencionar el sistema de filtrado
reconfigurable, presentado en (Franco-Gasca, 2008), donde utilizando
tecnología FPGA se logra el diseño de una plataforma para filtrado digital
de señales de instrumentación en maquinaria CNC que permite
modificar las características del filtro sin necesidad de modificar el
hardware. Otro ejemplo de procesamiento en el dominio del tiempo son
los trabajos de (de Santiago-Perez, 2008), (Rangel-Magdaleno, 2009a)
y (Morales-Velazquez, 2009) donde se utilizan diferentes técnicas de
filtrado digital para realizar el monitoreo de la dinámica de movimiento
de los ejes de una máquina CNC con el objeto de conocer la velocidad,
aceleración y jaloneo en el eje en cuestión, a partir de la información
proporcionada por el codificador óptico acoplado a los servomotores o
por un acelerómetro colocado en el eje de interés. En la figura 16 se
muestra el caso del sistema de monitoreo utilizando un acelerómetro
como sensor primario y una tarjeta FPGA para la realización del
procesamiento de la señal.
Especialidad: Mecatrónica 25
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
Li PGA b)'
rArometro
Del
4aceIerómetro
Figura 16. Monitoreo de la dinámica de movimiento en un eje utilizando
acelerómetro y FPGA, a) Sensor, b) FPGA.
El monitoreo de la dinámica de movimiento en los ejes de una máquina
CNC, y su subsecuente parametrización, pueden ser utilizados para
mejorar los procesos de manufactura mediante la optimización de
trayectorias que minimicen el error y mejoren los acabados de las piezas
maquinadas. Ejemplos de estas mejoras se tienen en (de Santiago-
Perez, 2010) donde se optimiza la velocidad de avance en tornos y
fresadoras mediante trayectorias polinomiales. Por otro lado, en (Rivera-
Guillen, 2010) se logra la reducción del error de seguimiento en ejes de
máquinas CNC y en (Rivera-Guillen, 2011) se obtiene una reducción del
jaloneo mediante el uso de trayectorias polinomiales de movimiento. Un
procesador general de diferentes tipos de aproximación polinomial
basado en FPGA se desarrolla en (de Santiago-Perez, 2013). La versión
que contiene múltiples ejes coordinados se realiza en (Jaen-Cuellar,
2012) como se muestra en la figura 17. El software de diseño contiene
los algoritmos para generar las trayectorias optimizadas para la
reducción de las vibraciones y limitación del jaloneo durante el proceso
de maquinado de la pieza deseada y el controlador basado en FPGA se
encarga de coordinar los movimientos de los tres ejes en el caso de la
fresadora mostrada, de acuerdo con las trayectorias calculadas.
Las técnicas de procesamiento en el dominio de la frecuencia y en el
espacio tiempo-frecuencia han sido utilizadas ampliamente en tiempos
recientes para realizar diagnóstico de la condición operativa en
máquinas-herramienta. En (Romero-Troncoso, 2004) se desarrolla un
sistema de detección de ruptura de la herramienta de corte en un
proceso de fresado por medio de la transformada de ondoletas, aplicada
a la señal de corriente de los servomotores que mueven la bancada. Más
adelante, (Franco-Gasca, 2009) extiende los resultados al proceso de
taladrado y ( Trejo-Hernandez, 2010) lleva más allá los resultados para
llegar a estimar el grado de desgaste de la herramienta de corte
Especialidad: Mecatrónica 26
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
mediante el proceso algorítmico descrito en la figura 18, utilizando
fusión de sensores tanto de vibraciones en la bancada como de corriente
de los servomotores.
Software de diseño
de trayectorias
USB
SL1'
FPGA
Ala maquina
MIL CNC
Fresadora reconvertida a CNC
Controlador central basado en FPGA
Figura 17. Sistema de generación de trayectorias para reducir el jaloneo
y las vibraciones en ejes múltiples de máquinas CNC.
Señales de aceleracón II,, .1, and ,1 1
A. .4, A
j
Señal con ventana Ventana temporal Resultante de la aceleración
Parámetros , .1
drpe':O ," J Estimación del área de desgaste de la herramienta
1 Señal con ventana Ventana temporal Señal filtrada
It
JL _
Seltaide corriente ib
FIltro pasa bajas
Figura 18. Proceso algorítmico para estimar el grado de desgaste de una
herramienta de corte en un proceso de maquinado.
Especialidad: Mecatrónica 27
r)
b)
c
/1
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
Sistemas reconfigurables para el monitoreo y diagnóstico que operan en
el dominio de la frecuencia y del espacio tiempo-frecuencia han sido
desarrollados por (Rangel-Magdaleno, 2010) quienes hacen uso de la
transformada de Fourier y la transformada de ondoletas a señales de
vibraciones. Más adelante (Romero-Troncoso, 2012) diseñan un sensor
inteligente reconfigurable utilizando la transformada de ondoletas en
paquete como se muestra en la figura 19 en dos configuraciones
posibles del instrumento.
- Pantalla VGA FPdA
FPGA ________
rma ro
Figura 19. Sensor inteligente con procesamiento de paquete de
ondoletas, a) desplegado en monitor VGA, b) desplegado en LCD.
Los sistemas FPGA también han sido utilizados para mejorar otros
procesos industriales. Por ejemplo, una aplicación al control y monitoreo
de una máquina inyectora de plástico de la tecnología FPGA mediante un
procesador de aplicación específica se muestra en (Munoz-Barron,
2012). En (Granados-Lieberman, 2014) se analizan los efectos en la
reducción del torque del husillo ante caídas de voltaje en la alimentación
y en (Granados-Lieberman, 2013a) se estudian los efectos de
interacción entre diversas máquinas que se encuentran alimentadas por
la misma línea y cómo se afectan los procesos de maquinado con los
transitorios que ocurren en estas máquinas. Otra aplicación de los FPGA
es en el desarrollo de sistemas de compresión de datos para almacenar
señales ultrasónicas en el monitoreo de grietas en tuberías como se
muestra en (Soto-Cajiga, 2012).
Sistemas expertos para la clasificación de fallos en maquinaria industrial
han sido desarrollados en (Carino-Corrales, 2014) donde se hace uso de
dos tipos de clasificadores, máquinas de soporte vectorial y análisis de
componentes principales, para lograr mejorar la eficiencia en la
clasificación de fallas en maquinaria cuando se presentan zonas
conflictivas de decisión. Por otro lado, (Saucedo-Gallaga, 2014)
desarrollan un sistema experto para determinar el grado de desgaste en
Especialidad: Mecatrónica 28
Tecnología FPGA para el monítoreo y diagnóstico de fallas en maquinaria industrial
cajas de engranes, utilizando señales de vibraciones, donde en la figura
20 aparece el esquema general de las pruebas experimentales.
Figura 20. Pruebas experimentales para determinar el grado de
desgaste en una caja de engranes.
4.1.3 Monitoreo y diagnóstico en motores de inducción.
Especial atención requieren los motores de inducción en el monitoreo y
diagnóstico de fallos, debido a su importancia en la maquinaria
industrial al ser los principales proveedores de la potencia mecánica al
sistema. Las últimas tres décadas se han caracterizado por una gran
cantidad de investigaciones internacionales encaminadas a mejorar las
técnicas de monitoreo y diagnóstico de los motores de inducción.
Investigaciones realizadas en el dominio del tiempo para el monitoreo y
diagnóstico de fallos en motores de inducción incluyen a (Rangel-
Magdaleno, 2009b) para detectar barras parcialmente rotas en el rotor y
(Garcia-Ramirez, 2013) donde se muestra el desarrollo de un sensor
inteligente para la detección automática de fallas. Con respecto al
procesamiento en el dominio de la frecuencia, en (Contreras-Medina,
2010) se presenta el desarrollo de un sistema analizador de vibraciones
para tres ejes, utilizando la transformada de Fourier como técnica de
procesamiento digital para el análisis y diagnóstico de motores de
inducción. Por otro lado, la técnica de análisis espectral de alta
resolución por clasificación de señales múltiples se reporta en (Garcia-
Perez, 2011) para señales eléctricas y en (Garcia-Perez, 2012) para
señales acústicas, encaminadas a la detección de fallas en motores de
inducción. Por su parte, en (Valtierra-Rodriguez, 2013a) se utiliza la
Especialidad: Mecatrónica 29
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
transformada de Hilbert como técnica de análisis en frecuencia para la
detección de fallas. Técnicas combinadas de análisis espectral de alta
resolución se emplean en (Romero-Troncoso, 2013) y en (Romero-
Troncoso, 2014) para la detección temprana de fallas en motores de
inducción, cuando la alimentación es proporcionada por un inversor, el
cual introduce armónicos indeseables a la señal de corriente eléctrica y
hace más difícil el proceso de detección de fallas tal como se muestra en
los espectrogramas de la figura 21. En esta figura se muestran los casos
de un motor sano en comparación con un motor que tiene una barra
rota en el rotor y cómo ésta afecta el patrón del espectro; también se
aprecian los armónicos que introduce el inversor.
N
1
o
o
o
2
u-
Indicadores de
la presenc -
de barras rc
N
1
o
a.)
=o
2
u-
Tiempo (s) Armónicos /
indeseables
Tiempo (s)
Componente
principal
Figura 21. Espectrograma de un motor de inducción alimentado por
inversor, a) sano, b) con una barra rota.
Técnicas de descomposición tiempo-frecuencia también han sido
utilizadas para el monitoreo y diagnóstico de fallas en motores de
inducción, siendo pionero el trabajo de (Ordaz-Moreno, 2008) donde se
utiliza la transformada de ondolotas para señales de corriente eléctrica,
mientras que en (Rodriguez-Donate, 2011a) la transformada de
ondoletas se aplica a señales de vibraciones, mientras que en (Mi/lan-
Almaraz, 2011) se aplica el análisis bajo condiciones de alimentación por
inversor. Por otro lado, en (Camarena-Martinez, 2014) se realiza el
monitoreo y diagnóstico de la condición del motor de inducción mediante
la descomposición en modo empírico. En la figura 22 se muestra la
descomposición de la señal de corriente eléctrica para los casos de un
motor sano y de un motor con una barra rota y se observa la presencia
Especialidad: Mecatrónica 30
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
de un patrón diferenciado entre los diferentes niveles de
descomposición, marcados como IMF, para el motor con falla.
a) IMF i
. b) IMFI
LIIMHiT': . !
21)0 100 60)) 40)) ioo
200 400 0(8) 800 11)00
11IF, (II
1ME2
'H 11 0.1
0 200 400 (0(I 1(00 1001)
1 0 1,00 * 14(j1) 000
Evolución de la taPia
0.1
-
0.1
-0.1
0 200 lOO (00 (40)) 1000 Ci 2(4) 400 ((00 400 00))
- 1II
0.1 • < 41.1
() II ,---.--•----_------._-.-, --
4) 201)0 .11)11 1,00 1(0() 1000 CI 2(0 40)) 600 8(1(1 II(0))
Muestras Muestras
Figura 22. Descomposición de modo empírico de la señal de corriente
eléctrica de un motor de inducción bajo la condición, a) sano, b) con una
barra rota.
Los sistemas expertos de clasificación han sido muy utilizados en la
investigación del diagnóstico de fallas en motores de inducción. En
(Romero-Troncoso, 2011a) se desarrolla un sistema clasificador de fallas
múltiples utilizando lógica difusa. Por otro lado, (Garcia-Ramirez, 2012)
presentan el desarrollo de un sensor inteligente basado en FPGA,
utilizando técnicas mixtas y redes neuronales para la clasificación de
fallas en motores de inducción. Finalmente, la investigación se ha
extendido a la identificación no solamente de fallas en el motor de
inducción, sino en los diferentes componentes que conforman la cadena
cinemática completa, como el sistema de diagnóstico por termografía
diseñado por (Garcia-Ramirez, 2014), tal como se muestra en la figura
23, donde aparecen diversos termogramas que indican patrones
diferenciados para diversas fallas presentes en los motores de inducción
y la cadena cinemática asociada. En estos termogramas se han
segmentado diferentes regiones donde se produce la diferencial térmica
más pronunciada entre el estado sano y la condición de falla.
Especialidad: Mecatrónica 31
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
a)
1:1 11.(e)(b) (d)
73 .0
u :uIt
(f) h)
Figura 23. Termogramas de la condición del motor y la cadena
cinemática asociada, a) Motor sano, b) barra parcialmente rota, c) una
barra rota, d) dos barras rotas, e) balero dañado, f) polea
desbalanceada, g) carga desalineada, h) desbalance de voltaje, 1) otra
perspectiva de la carga desalineada mostrando la cadena cinemática.
4.2 Aplicaciones en robótica industrial.
En el campo de la robótica industrial, el grupo de investigación ha
estudiado el problema de sintonía e identificación de parámetros de los
servosistemas para el control de los ejes del robot. En (Milosawlewitsch-
Aliaga, 2010) se hace un análisis de técnicas de control de
servosistemas con aplicación a los servomotores. En (Morales-
Velazquez, 2010b) se diseña en forma completa un microprocesador de
aplicación específica para la identificación de parámetros en sistemas de
control con implementación en FPGA. Este microprocesador es
modificado y expandido en (Jaen-Cuellar, 2013) para incluir funciones
orientadas a realizar algoritmos genéticos para la identificación, sintonía
y control de servomotores con aplicaciones en robótica. Por otro lado, la
optimización de trayectorias para reducir las vibraciones y el jaloneo en
robots manipuladores es tratada en (Osornio-Rios, 2007) y en (Osornio-
Rios, 2009).
Especialidad: Mecatrónica 32
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
Sistemas de sensores colaborativos para monitorear las vibraciones y
mejorar las trayectorias de robots manipuladores son desarrollados en
(Rodriguez-Donate, 2010) y (Rodriguez-Donate, 2011b). La figura 24
muestra la instrumentación mediante acelerómetros (Ai) y codificadores
ópticos (E1) de un robot industrial tipo PUMA de seis grados de libertad
para obtener la cinemática directa y monitorear las vibraciones y la
dinámica de movimiento.
a)
11
4
Figura 24. Instrumentación de un robot industrial tipo PUMA, a)
localización de los acelerómetros (A1) y codificadores ópticos (E1), b)
interconectividad del sistema.
Especialidad: Mecatrónica 33
ba
Motor de
inducción
!i:L±
para carga
__ JI -
Sensor inteIige PC opcional
1 Pantalla
táctil
I 1 Tarjeta con
FPGA
Adquisición
Acondiciona-
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
4.3 Aplicaciones en la calidad de la energía eléctrica.
El monitoreo de la línea de alimentación eléctrica en los diferentes
procesos industriales ha cobrado gran importancia en los últimos años,
debido a la creciente demanda en el suministro y a la interconexión de
diversas fuentes generadoras a la red común. Un análisis del estado del
arte de las técnicas utilizadas para el monitoreo de disturbios eléctricos
y calidad de la energía se presenta en (Granados-Líeberman, 2011). La
investigación alrededor del monitoreo de la calidad de la energía ha
tomado diversas vertientes, siendo una de ellas el monitoreo preciso de
la frecuencia de la línea, como el sensor inteligente desarrollado en
(Granados-Lieberman, 2009) y las técnicas de alta resolución
presentadas en (Romero-Troncoso, 201 ib).
Otra de las vertientes de investigación y desarrollo tecnológico sobre el
monitoreo de la calidad de la energía se tiene en el diseño y
construcción de equipos especializados para el monitoreo y análisis de
disturbios eléctricos contenidos en la línea de suministro. Una técnica
que permite distinguir y clasificar los diferentes disturbios eléctricos que
aparecen en la línea, definidos por las normas internacionales, ha sido
desarrollado en (Va/tierra-Rodríguez, 2014). Instrumentos específicos
para el monitoreo de la calidad de la energía eléctrica y la detección y
clasificación de disturbios han sido diseñados en (Granados-Líeberman,
2013b) donde se utiliza la transforma Hilbert y redes neuronales para
desarrollar un sensor inteligente que permite monitorear la calidad de la
energía y detectar, cuantificar y clasificar diversos disturbios eléctricos
en tiempo real como se muestra en la figura 25..
b)distijrhins pIirtrir.n
Figura 25. Sensor inteligente para el monitoreo de la calidad de la
energía y clasificación de disturbios eléctricos, a) aspecto general de las
pruebas, b) componentes del sensor inteligente.
Especialidad: Mecatróriica 34
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
Por otra parte, un sistema de monitoreo en tiempo real de armónicos de
la línea se presenta en (Valtierra-Rodriguez, 2013b) donde se han
utilizado técnicas de redes neuronales como se puede ver en la figura
26, donde el sistema presenta el monitoreo del contenido armónico en
el espacio tiempo-frecuencia. En esta figura se muestra la variación del
contenido armónico para tres condiciones de operación de un sistema
eléctrico. Finalmente, en (Valtierra-Rodriguez, 2013c) se muestra el
desarrollo de un instrumento de monitoreo de la calidad de la energía,
considerando los disturbios eléctricos definidos en las normas
internacionales, extendiendo el análisis a sistemas trifásicos.
a) Componente principal
/3er armónico
Arnónico40
E
Frecuencia (Hz) 3000 0
TIempo (s)
c)
Incremento instantáneo
del armónico
ca.1
E
<0
b) Componente principal
er armónico
.;1
1000 2000
0.8
ónic 40
Frecuencia (Hz) 3000 0 02
Tiempo (s)
Componente principal
/3er armónico
40
1000 2000
Frecuencia (Hz) o 02
Tiempo (s)
Figura 26. Monitoreo en tiempo real de armónicos de la señal de
corriente, a) arranque suave de un motor, b) operación de cargas con
inversor, c) incremento instantáneo en el contenido armónico por
interacción de varias cargas.
4.4 Aplicaciones en biotecnología.
Otra de las áreas industriales que se han visto beneficiadas con el
desarrollo de instrumentos de medición basados en tecnología FPGA es
el área biotecnológica. Ejemplos del desarrollo de instrumentos para
aplicaciones biotecnológicas se encuentra en (MilIan-Alamaraz, 2010)
donde se desarrolla un sensor inteligente que estima de manera
dinámica la actividad de transpiración en plantas bajo condiciones de
invernadero. Por otro lado, en (Contreras-Medina, 2012) se presenta un
instrumento que utiliza procesamiento de imágenes basado en
tecnología FPGA para cuantificar diversos síntomas que presentan las
Especialidad: Mecatrónica 35
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
hojas de las plantas, como se muestra en el diagrama de bloques de la
figura 27. Otro instrumento, en este caso para la estimación cuantitativa
in situ de la actividad fotosintética de una planta se desarrolla en
(MilIan-Almaraz, 2013). Como ejemplo final se muestra el sensor
inteligente para cuantificar el estrés hídrico al que está sometida una
planta en condiciones de invernadero, presentado en (Duarte-Galvan,
2014) y que se ilustra en la figura 28.
Monitor LCD Sensar inteligente 1
Periféricos
A una PC
ojas infectadasopcIonal
H por alguna
LLPueo 1
1 1 RS-232 LEO
patologia
1qGA
LED
Puerto2 j 1Unidad de
/ 1 •procesamiento,' .
11
/ .
/
/
IAlgontmos: l-
-
- Deformación
Puntos blanco
- Clorosis
1 L-Necrosis Panel Panel Panel de
Itraslúcido transparente iluminación
ii °------
Cámarafotografica
Figura 27. Diagrama de bloques del instrumento para la cuantificación
de síntomas comunes en hojas de plantas.
Servomotor
IIJ l Sensor de luz
Entrada de la
-
muestra de aire
humedad
amaba^ Entrada de
ref&ena
Planta de
tomate
Figura 28. Sensor inteligente para estimar el estrés hídrico de una
planta.
Especialidad: Mecatrónica 36
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
S. CONCLUSIONES.
El monitoreo y diagnóstico en maquinaria industrial es un problema
importante para atender en la industria moderna y es necesario contar
con recursos humanos especializados en el desarrollo y aplicación de
técnicas avanzadas para realizar esta tarea. Es responsabilidad de los
profesionales dedicados a la educación superior e investigación el formar
las nuevas generaciones de ingenieros que sean capaces de
incorporarse a la industria nacional para atender los problemas de
productividad mediante la correcta aplicación de las metodologías de
monitoreo y diagnóstico, utilizando las herramientas tecnológicas más
adecuadas, como por ejemplo los dispositivos FPGA.
Las aplicaciones de la tecnología FPGA no se restringe al desarrollo de
sistemas de monitoreo y diagnóstico, sino que es una tecnología que
puede ser aplicada a diversos campos industriales como el control y la
instrumentación. Las Universidades mexicanas deberán incorporar el
estudio de esta tecnología en su currículum para las carreras de
ingeniería en mecatrónica, electrónica, electromecánica y afines, para
poder contar con recursos humanos que resuelvan problemas
industriales con las tecnologías de punta.
Asimismo es importante contar con grupos de investigación que
contribuyan con la generación del conocimiento en el área del monitoreo
y diagnóstico industrial mediante el desarrollo de nuevas metodologías
de procesamiento de señales, sistemas expertos y diseño de equipo
especializado. A la par, estos grupos de investigación deberán
comprometerse en la formación de recursos humanos que conformarán
las generaciones de reemplazo dentro de la especialidad.
REFERENCIAS.
Camarena-Martinez, D., et al., "Empirical mode decomposition and
neural networks on FPGA for fault diagnosis in induction motors",
Hindawi, The Scientific World Journal, Vol. 2014, Article ID 908140.
Estados Unidos. 2014.
Carino, J. A., et al., "Hierarchical classification scheme based on
identification, isolation and analysis of conflictive regions", IEEE,
Proceedings of the 19th Conference on Emerging Technology and Factory
Automation ETFA, pp 1-8. Barcelona, Spain. 2014.
Especialidad: Mecatrónica 37
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
Contreras-Medina, L. M., et al., "FPGA based multiple-channel vibration
analyzer for industrial applications in induction motor failure detection",
IEEE, Transactions on Instrumentation and Measurement, Vol. 59, No.
1, pp 63-72. Estados Unidos. 2010.
Contreras-Medina, L. M., et al., "Smart sensor for real-time
quantification of common symptoms present in unhealthy plants", MDPI,
Sensors, Vol. 12, pp 784-805. Suiza. 2012.
de Santiago-Perez, J. J., et al., "DSP algorithm for the extraction of
dynamics parameters in CNC machine tool servomechanisms from an
optical incremental encoder", Elsevier, International Journal of Machine
Tools & Manufacture, Vol. 48, No. 12-13, pp 1318-1334. Holanda. 2008.
de Santiago-Perez, J. J., et al., "Feedrate optimization by polynomial
interpolation for CNC machines based on a reconfigurable FPGA
controller", NISCAIR, Journal of Scientific and Industrial Research, Vol.
69, No. 5, pp 342-349. India. 2010.
de Santiago-Perez, 3. J., et al., "FPGA-based hardware CNC interpolator
of Bezier, Splines, B-Splines and NURBS curves for industrial
applications", Elsevier, Computers & Industrial Engineering, Vol. 66, No.
4, pp 925-932. Holanda. 2013.
Duarte-Galvan, C., et al., "FPGA-based smart sensor for drought stress
detection in tomato plants using novel physiological variables and
discrete wavelet transform", MDPI, Sensors, Vol. 14, pp 18650-18669.
Suiza. 2014.
Franco-Gasca, L. A., et al., "Reconfigurable filtering system for
sensorless signal acquisition in machining processes", Springer, The
International Journal of Advanced Manufacturing Technology, Vol. 38,
No. 1-2, pp 102-109. Alemania. 2008.
Franco-Gasca, L. A., et al., "FPGA based failure monitoring system for
machining processes", Springer, The International Journal of Advanced
Manufacturing Technology, Vol 40, No. 7-8, pp 676-686. Alemania.
2009.
Garcia-Perez, A., et al., "The application of high-resolution spectral-
analysis for identifying multiple combined faults in induction motors",
IEEE, Transactions on Industria 1 Electronics, Vol. 58, No. 5, pp 2002-
2010. Estados Unidos. 2011
Especialidad: Mecatrónica 38
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
Garcia-Perez, A., et al., "Application of high-resolution spectral-analysis
for identifying faults in induction motors by means of sound", SAGE,
Journal of Vibration and Control, Vol. 18, No. 11, pp 1585-1592. Estados
Unidos. 2012
Garcia-Ramirez, A. G., et al., "Smart sensor for online detection of
multiple-combined faults in VSD-fed induction motors", MDPI, Sensors,
Vol. 12, pp 11989-12005. Suiza. 2012.
Garcia-Ramirez, A., et al., "FPGA-based smart-sensor for fault detection
in VSD-fed induction motors", IEEE, Proceedings of the gth
IEEE
International Simposium on Diagnostics of Electrical Machines, Power
Electronics & Drives SDEMPED, pp 313-320. Valencia, España. 2013.
Garcia-Ramirez, A. G., et al., "Fault detection in induction motors and
the impact on the kinematic chain through thermographic analysis",
Elsevier, Electric Power Systems Research, Vol. 114, pp 1-9. Holanda.
2014.
Granados-Lieberman, D., et al., "A real-time smart sensor for high-
resolution frequency estimation in power systems", MDPI, Sensors, Vol.
9, No. 9, pp 7412-7429. Suiza. 2009.
Granados-Lieberman, D., et al., "Techniques and methodologies for
power quality analysis and disturbances classification in power systems:
a review", JET, Generation, Transmission and Distribution, Vol. 5, No. 4,
pp 519-529. Reino Unido. 2011.
Granados-Lieberman, D., et al., "Voltage drop repercussions in torque
spindle for turning processes due to the interaction of several industrial
machines in a manufacturing celI", NISCAIR, Journal of Scientific and
Industrial Research, Vol. 72, No. 12, pp 746-753. India. 2013a.
Granados-Lieberman, D., et al., "A Hilbert transform-based smart
sensor for detection, classification, and quantification of power quality
disturbances", MDPI, Sensors, Vol. 13, pp 5507-5527. Suiza. 2013b.
Granados-Lieberman, D., et al., "Torque reduction and workpiece
finishing effects due to voltage sags in turning processes", SAGE,
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of
Engineering Manufacture, Vol. 228, No. 1, pp 140-148. Estados Unidos.
2014.
Especialidad: Mecatrónica 39
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
Jaen-Cuellar, A. Y., et al., "A hardware-software system for coordinated
multi-axis control based on a non uniform rational B-splines interpolator
applied to industrial computer numerically controlled machines", SAGE,
Proceedings of the Institution of Mechanical Engineers, Part 1, Journal of
Systems and Control Engineering, Vol. 226, No. 6, pp 831-840. Estados
Unidos. 2012.
Jaen-Cuellar, A. Y., et al., "PID-controller tuning optimization with
genetic algorithms in servo systems", InTech, International Journal of
Advanced Robotics Systems, Vol. 10, No. 324, pp 1-14. Croacia. 2013.
Mekid, 5., et al., "Beyond intelligent manufacturing: A new generation of
flexible intelligent NC machines", Elsevier, Mechanism and Machine
Theory, Vol. 44, pp. 466-476. Holanda. 2009.
Millan-Almaraz, 3. R., et al., "FPGA-based fused smart sensor for real-
time plant-transpiration dynamic estimation", MDPI, Sensors, Vol. 10,
No. 9, pp 8316-8331. Suiza. 2010.
Millan-Almaraz, J. R., et al., "Wavelet based methodology for broken bar
detection in induction motors with variable speed drive", Taylor and
Francis, Electric Power Components and Systems, Vol. 39, No. 3, pp
271-287. Estados Unidos. 2011.
Millan-Almaraz, J. R., et al., "FPGA-based wireless smart sensor for real-
time photosynthesis monitoring", Elsevier, Computers and Electronics in
Agriculture, Vol. 95, pp 58-69. Holanda. 2013.
Milosawlewitsch-Aliaga, M., et al., "Model-based iterative feedback
tuning for industrial PID controllers", NISCAIR, Journal of Scientific and
Industrial Research, Vol. 69, No. 12, pp 930-936. India. 2010
Morales-Velazquez, L., et al., Sensorless jerk monitoring using an
adaptive antisymmetric high-order FIR filter, Elsevier, Mechanical
Systems and Signal Processing, Vol. 23, No. 7, pp 2383-2394. Holanda.
2009.
Morales-Velazquez, L., et al., "Open-architecture system based on a
reconfigurable hardware-software multi-agent platform for CNC
machines", Elsevier, Journal of Systems Architecture, Vol. 56, No. 9, pp
407-418. Holanda. 2010a.
Morales-Velazquez, L., et al., "Special purpose processor for parameter
identification of CNC second order servo systems on a low-cost FPGA
Especialidad: Mecatrónica 40
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
platform", Elsevier, Mechatronics, Vol. 20, No. 2, pp 265-272. Holanda.
2010b.
Morales-Velazquez, et al., "FPGA embedded single-cycle 16-bit
microprocessor and tools", IEEE, Proceedings of the International
Conference on Reconfigurable Computing and FPGAs RECONFIG, pp 1-6,
Cancún, México. 2012.
Moreno-Tapia, S. y., et al., "A field programmable gate array-based
reconfigurable smart-sensor network for wireless monitoring of new
generation computer numerically controlled machines", MDPI, Sensors,
Vol. 10, No. 8, pp 7263-7286. Suiza. 2010.
Munoz-Barron, B., et al., "FPGA-based multiprocessor system for
injection molding control", MDPI, Sensors, Vol. 12, No. 10, pp 14068-
14083. Suiza. 2012.
Ordaz-Moreno, A., et al., "Automatic online diagnosis algorithm for
broken-bar detection on induction motors based on discrete wavelet
transform for FPGA implementation", IEEE, Transactions on Industrial
Electronics, Vol. 55, No. 5, pp 2193-2201. Estados Unidos. 2008.
Osornio-Rios, R. A., et al., "Computationally efficient parametric analysis
of discrete-time polynomial based acceleration-deceleration profile
generation for industrial robotics and CNC machinery", Elsevier,
Mechatronics, Vol. 17, No. 9, pp 511-523. Holanda. 2007.
Osornio-Rios, R. A., et al., "FPGA implementation of higher degree
polynomial acceleration profiles for peak jerk reduction in servomotors",
Elsevier, Robotics and Computer-Integrated Manufacturing, Vol. 25, No.
2, pp 379-392. Holanda. 2009.
Rangel-Magdaleno, J. J., et al., "Novel oversampling technique for
improving signal-to-quantization noise ratio on accelerometer-based
smart jerk sensor in CNC applications", MDPI, Sensors, Vol. 9, No. 5, pp
3767-3789. Suiza. 2009a.
Rangel-Magdaleno, 3. 3., et al., "Novel methodology for online haif-
broken-bar detection on induction motors", IEEE, Transactions on
Instrumentation and Measurement, Vol. 58, No. 5, pp 1690-1698.
Estados Unidos. 2009b.
Rangel-Magdaleno, et al., "FPGA-based vibration analyzer for continuous
CNC machinery monitoring with fused FFT-DWT signal processing",
Especialidad: Mecatrónica 41
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
IEEE, Transactions on Instrumentation and Measurement, Vol. 59, No.
12, pp 3184-3194. Estados Unidos. 2010.
Rivera-Guillen, 3. R., et al., "Design methodology for fully dynamic-
controlled polynomial profiles and, reduced tracking error in CNC
machines", Springer, The International Journal of Advanced
Manufacturing Technology, Vol. 51, No. 5-8, pp 723-737. Alemania.
2010.
Rivera-Guillen, J. R., et al., "Methodology for obtaining C3 continuity on
tool trajectory featuring acceleration and jerk constraint on computer
numerical control machine", SAGE, Proceedings of the Institution of
Mechanical Engineers, Part C, Journal of Mechanical Engineering
Science, Vol. 225, pp 2206-2215. Estados Unidos. 2011.
Rodriguez-Donate, C., et al., "FPGA-based fused smart sensor for
dynamic and vibration parameter extraction in industrial robot links",
MDPI, Sensors, Vol. 10, No. 4, pp 4114-4129. Suiza. 2010.
Rodriguez-Donate, C., et al., "Wavelet-based general methodology for
multiple fault detection on induction motors at the startup vibration
transient", SAGE, Journal of Vibration and Control, Vol. 17, No. 9, pp
1299-1309. Estados Unidos. 2011a.
Rodriguez-Donate, C., et al., "Fused smart sensor network for multi-axis
forward kinematics estimation in industrial robots", MDPI, Sensors, Vol.
11, No. 4, pp 4335-4357. Suiza. 2011b.
Romero-Troncoso, R. J., et al., "FPGA based on-line tool breakage
detection system for CNC milling machines", Elsevier, Mechatronics, Vol.
14, No. 4, pp 439-454. Holanda. 2004.
Romero-Troncoso, R. 3., et al., "FPGA-based online detection of multiple
combined faults in induction motors through information entropy and
fuzzy inference", IEEE, Transactions on Industrial Electronics, Vol. 58,
No. 11, pp 5263-5270. Estados Unidos. 2011a.
Romero-Troncoso, R. J., et al., "Real-time high-resolution frequency
estimation of electric signals in industrial applications", NISCAIR, Journal
of Scientific and Industrial Research, Vol. 70, No. 5, pp 327-33 1. India.
20 lib.
Romero-Troncoso, R. J., et al., "Reconfigurable S0C-based smart sensor
for wavelet and wavelet packet analysis", IEEE, Transactions on
Especialidad: Mecatrónica 42
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
Instrumentation and Measurement, Vol. 61, No. 9, pp 2458-2468.
Estados Unidos. 2012.
Romero-Troncoso, R. J., et al., "Early broken rotor bar detection
techniques in VSD-fed induction motors at steady-state", IEEE,
Proceedings of the gth
International Simposium on Diagnostics of
Electrical Machines, Power Electronics & Drives SDEMPED, pp 173-181.
Valencia, España. 2013.
Romero-Troncoso, R. J., et al., "Broken rotor bar detection in VSD-fed
induction motors at startup by high-resolution spectral analysis", IEEE,
Proceedings of the XXI International Conference on Electrical Machines
ICEM, pp 1848-1854. Berlin, Alemania. 2014.
Saucedo-Dorantes, J. J., et al., "Reliable methodology for gearbox wear
monitoring based on vibration analysis", IEEE, Proceedings of the 40th
Annual Conference of the IEEE Industrial Electronics Society IECON, pp
3381-3385. Dallas, Estados Unidos. 2014.
Soto-Cajiga, J. A., et al., "FPGA-based architecture for real-time data
reduction of ultrasound signals", Elsevier, Ultrasonics, Vol. 52, No. 2, pp
230-237. Holanda. 2012.
Trejo-Hernandez, M., et al., "FPGA-based fused smart-sensor for tool-
wear area quantitative estimation in CNC machine inserts", MDPI,
Sensors, Vol. 10, No. 4, pp 3373-3388. Suiza. 2010.
Valtierra-Rodriguez, M., et al., "FPGA-based instantaneous estimation of
unbalance/symmetrical components through the Hilbert transform",
IEEE, Proceedings of the 39th
Annual Conference of the IEEE Industrial
Electronics Society IECON, pp 2277-2282. Viena, Austria. 2013a.
Valtierra-Rodriguez, M., et al., "FPGA-based neural network harmonic
estimation for continuous monitoring of the power line in industrial
applications", Elsevier, Electric Power Systems Research, Vol. 98, pp 51-
57. Holanda. 2013b.
Valtierra-Rodriguez, M., et al., "Reconfigurable instrument for neural-
network-based power-quality monitoring in 3-phase power systems",
JET, Generation, Transmission & Distribution, Vol. 7, No. 12, pp 1498-
1507. Reino Unido. 2013c.
Valtierra-Rodriguez, M., et al., "Detection and classification of single and
combined power quality disturbances using neural networks", IEEE,
Especialidad: Mecatrónica 43
Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial
Transactions on Industrial Electronics, Vol. 61, No. 5, pp 2473-2482.
Estados Unidos. 2014.
AGRADECIMIENTOS.
Agradezco a todos mis colaboradores y estudiantes, con una particular
mención al Dr. Roque Alfredo Osornio Ríos y al Dr. Arturo García Pérez,
con quienes conformamos el grupo de investigación HSPdigital con
presencia en la Universidad de Guanajuato, la Universidad Autónoma de
Querétaro, la Universidad Autónoma de Sinaloa, en México; y las
Universidades de Valladolid y Politécnica de Cataluña, en España. Un
agradecimiento personal al Dr. Gilberto Herrera Ruiz, quien me enseñó y
orientó en el camino de la investigación. También agradezco al Dr. Juan
Carlos Juregui Correa y al Dr. Irineo Torres Pacheco por sus atinados
consejos durante mi desarrollo y consolidación como investigador.
CURRÍCULUM VITAE.
El Dr. Romero Troncoso obtuvo el título de Ingeniero en Comunicaciones
y Electrónica en 1987 por parte de la Universidad de Guanajuato; el
grado de Maestro en Ingeniería Eléctrica (Instrumentación y Sistemas
Digitales) por parte de la misma Universidad en 1991 y el grado de
Doctor en Ingeniería por parte de la Universidad Autónoma de
Querétaro en 2004. Ha realizado estancias de investigación en la
Universidad Politécnica de Cataluña, España, en 2013 y en la
Universidad de Valladolid, España, en 2014.
El Dr. Romero Troncoso recibió el premio ADIAT de innovación
tecnológica 2004. Es miembro del Sistema Nacional de Investigadores
desde 2005, actualmente Nivel II. Es Senior Member del IEEE (Institute
of Electrical and Electronícs Engineers), Estados Unidos, desde 2012.
Desde 1987, el Dr. Romero Troncoso ingresó como profesor adscrito al
Departamento de Ingeniería Electrónica de la Universidad de
Guanajuato, donde actualmente es profesor titular. Desde 2004 es
profesor investigador invitado de la Facultad de Ingeniería de la
Universidad Autónoma de Querétaro.
Especialidad: Mecatrónica 44

Más contenido relacionado

La actualidad más candente

Aplicaciones del diodo
Aplicaciones del diodo Aplicaciones del diodo
Aplicaciones del diodo BenjaminSoria
 
Ciclo De Trabajo De Un Plc
Ciclo De Trabajo De Un PlcCiclo De Trabajo De Un Plc
Ciclo De Trabajo De Un PlcOmar Gonzalez S
 
Cuadro Comparativo de los tipos de mantenimiento
Cuadro Comparativo de los tipos de mantenimientoCuadro Comparativo de los tipos de mantenimiento
Cuadro Comparativo de los tipos de mantenimientoOswaldoalexander
 
Transformadores (Conexiones y Pruebas)
Transformadores  (Conexiones y Pruebas)Transformadores  (Conexiones y Pruebas)
Transformadores (Conexiones y Pruebas)juanclp14
 
Amplificador lm741 d.a pd
Amplificador lm741 d.a pdAmplificador lm741 d.a pd
Amplificador lm741 d.a pdFranklin J.
 
calculo de un tornillo sin fin corona
calculo de un tornillo sin fin corona calculo de un tornillo sin fin corona
calculo de un tornillo sin fin corona Salomon Vinces
 
Amplificador diferencial
Amplificador diferencialAmplificador diferencial
Amplificador diferencialLucia Meza
 
Trabajo preparatorio 3
Trabajo preparatorio 3Trabajo preparatorio 3
Trabajo preparatorio 3Sara Emilia
 
La productividad en el mantenimiento industrial
La productividad en el mantenimiento industrialLa productividad en el mantenimiento industrial
La productividad en el mantenimiento industrialLalo Hdz
 
Amplificador de instrumentación
Amplificador de instrumentaciónAmplificador de instrumentación
Amplificador de instrumentaciónSaul Perez
 
Mantenimiento unidad vi
Mantenimiento unidad viMantenimiento unidad vi
Mantenimiento unidad viHBTECH
 
Caracteristicas en el devanado de motores electricos trifasicos
Caracteristicas en el devanado de motores electricos trifasicosCaracteristicas en el devanado de motores electricos trifasicos
Caracteristicas en el devanado de motores electricos trifasicosJUANCITOTRUCUPEI
 

La actualidad más candente (20)

Aplicaciones del diodo
Aplicaciones del diodo Aplicaciones del diodo
Aplicaciones del diodo
 
Ciclo De Trabajo De Un Plc
Ciclo De Trabajo De Un PlcCiclo De Trabajo De Un Plc
Ciclo De Trabajo De Un Plc
 
Mantenimiento AutóNomo
Mantenimiento AutóNomoMantenimiento AutóNomo
Mantenimiento AutóNomo
 
Programación CNC
Programación CNCProgramación CNC
Programación CNC
 
FLIP - FLOPS
FLIP - FLOPSFLIP - FLOPS
FLIP - FLOPS
 
Cuadro Comparativo de los tipos de mantenimiento
Cuadro Comparativo de los tipos de mantenimientoCuadro Comparativo de los tipos de mantenimiento
Cuadro Comparativo de los tipos de mantenimiento
 
Clasificacion del mantenimiento industrial
Clasificacion del mantenimiento industrialClasificacion del mantenimiento industrial
Clasificacion del mantenimiento industrial
 
Transformadores (Conexiones y Pruebas)
Transformadores  (Conexiones y Pruebas)Transformadores  (Conexiones y Pruebas)
Transformadores (Conexiones y Pruebas)
 
Amplificador lm741 d.a pd
Amplificador lm741 d.a pdAmplificador lm741 d.a pd
Amplificador lm741 d.a pd
 
calculo de un tornillo sin fin corona
calculo de un tornillo sin fin corona calculo de un tornillo sin fin corona
calculo de un tornillo sin fin corona
 
Amplificador diferencial
Amplificador diferencialAmplificador diferencial
Amplificador diferencial
 
Pld
PldPld
Pld
 
Trabajo preparatorio 3
Trabajo preparatorio 3Trabajo preparatorio 3
Trabajo preparatorio 3
 
Norma covenin 2500 93 rogelio
Norma covenin 2500 93 rogelioNorma covenin 2500 93 rogelio
Norma covenin 2500 93 rogelio
 
Arranque estrella delta jam
Arranque estrella delta jamArranque estrella delta jam
Arranque estrella delta jam
 
La productividad en el mantenimiento industrial
La productividad en el mantenimiento industrialLa productividad en el mantenimiento industrial
La productividad en el mantenimiento industrial
 
Amplificador de instrumentación
Amplificador de instrumentaciónAmplificador de instrumentación
Amplificador de instrumentación
 
Mantenimiento unidad vi
Mantenimiento unidad viMantenimiento unidad vi
Mantenimiento unidad vi
 
Filtro en pi
Filtro en piFiltro en pi
Filtro en pi
 
Caracteristicas en el devanado de motores electricos trifasicos
Caracteristicas en el devanado de motores electricos trifasicosCaracteristicas en el devanado de motores electricos trifasicos
Caracteristicas en el devanado de motores electricos trifasicos
 

Destacado

ANÁLISIS Y CONTROL DE EROSIÓN POR PARTÍCULAS SÓLIDAS EN LOS ELEMENTOS DEL SIS...
ANÁLISIS Y CONTROL DE EROSIÓN POR PARTÍCULAS SÓLIDAS EN LOS ELEMENTOS DEL SIS...ANÁLISIS Y CONTROL DE EROSIÓN POR PARTÍCULAS SÓLIDAS EN LOS ELEMENTOS DEL SIS...
ANÁLISIS Y CONTROL DE EROSIÓN POR PARTÍCULAS SÓLIDAS EN LOS ELEMENTOS DEL SIS...Academia de Ingeniería de México
 
Ingeniería biomimética y bioinspirada: hidrodinámica bacteriana, mezclado y r...
Ingeniería biomimética y bioinspirada: hidrodinámica bacteriana, mezclado y r...Ingeniería biomimética y bioinspirada: hidrodinámica bacteriana, mezclado y r...
Ingeniería biomimética y bioinspirada: hidrodinámica bacteriana, mezclado y r...Academia de Ingeniería de México
 
Tratamiento superficial con láser para mejorar la integridad de componentes m...
Tratamiento superficial con láser para mejorar la integridad de componentes m...Tratamiento superficial con láser para mejorar la integridad de componentes m...
Tratamiento superficial con láser para mejorar la integridad de componentes m...Academia de Ingeniería de México
 
Erp unidad v - tema 1
Erp   unidad v - tema 1Erp   unidad v - tema 1
Erp unidad v - tema 1UDO Monagas
 
Unidad iv tema 4 detección de fallas (2) - cad
Unidad iv   tema 4 detección de fallas (2) - cadUnidad iv   tema 4 detección de fallas (2) - cad
Unidad iv tema 4 detección de fallas (2) - cadUDO Monagas
 
Proyecto de mantenimiento industrial, norma Covenin
Proyecto de mantenimiento industrial, norma CoveninProyecto de mantenimiento industrial, norma Covenin
Proyecto de mantenimiento industrial, norma CoveninDiego Castañeda
 
LA DETECCION DE FALLAS EN LOS PROCESOS INDUSTRIALES
LA DETECCION DE FALLAS EN LOS PROCESOS INDUSTRIALESLA DETECCION DE FALLAS EN LOS PROCESOS INDUSTRIALES
LA DETECCION DE FALLAS EN LOS PROCESOS INDUSTRIALESUDO Monagas
 
Tipos de mantenimiento
Tipos de mantenimientoTipos de mantenimiento
Tipos de mantenimientoJoel Mtz
 
2.3 Conceptos y Aplicación de Mantenimiento Preventivo, Predictivo y Correctivo
2.3 Conceptos y Aplicación de Mantenimiento Preventivo, Predictivo y Correctivo2.3 Conceptos y Aplicación de Mantenimiento Preventivo, Predictivo y Correctivo
2.3 Conceptos y Aplicación de Mantenimiento Preventivo, Predictivo y CorrectivoRafael Vera
 
El ruido impulsivo, un problema en las telecomunicaciones con base en las lín...
El ruido impulsivo, un problema en las telecomunicaciones con base en las lín...El ruido impulsivo, un problema en las telecomunicaciones con base en las lín...
El ruido impulsivo, un problema en las telecomunicaciones con base en las lín...Academia de Ingeniería de México
 

Destacado (17)

FLUJO PERISTÁLTICO A TRAVÉS DEL CONDUCTO FARÍNGEO
FLUJO PERISTÁLTICO A TRAVÉS DEL CONDUCTO FARÍNGEOFLUJO PERISTÁLTICO A TRAVÉS DEL CONDUCTO FARÍNGEO
FLUJO PERISTÁLTICO A TRAVÉS DEL CONDUCTO FARÍNGEO
 
ANÁLISIS Y CONTROL DE EROSIÓN POR PARTÍCULAS SÓLIDAS EN LOS ELEMENTOS DEL SIS...
ANÁLISIS Y CONTROL DE EROSIÓN POR PARTÍCULAS SÓLIDAS EN LOS ELEMENTOS DEL SIS...ANÁLISIS Y CONTROL DE EROSIÓN POR PARTÍCULAS SÓLIDAS EN LOS ELEMENTOS DEL SIS...
ANÁLISIS Y CONTROL DE EROSIÓN POR PARTÍCULAS SÓLIDAS EN LOS ELEMENTOS DEL SIS...
 
Ingeniería biomimética y bioinspirada: hidrodinámica bacteriana, mezclado y r...
Ingeniería biomimética y bioinspirada: hidrodinámica bacteriana, mezclado y r...Ingeniería biomimética y bioinspirada: hidrodinámica bacteriana, mezclado y r...
Ingeniería biomimética y bioinspirada: hidrodinámica bacteriana, mezclado y r...
 
VULNERABILIDAD Y REFUERZO DE PUENTES EN ZONAS SÍSMICAS
VULNERABILIDAD Y REFUERZO DE PUENTES EN ZONAS SÍSMICASVULNERABILIDAD Y REFUERZO DE PUENTES EN ZONAS SÍSMICAS
VULNERABILIDAD Y REFUERZO DE PUENTES EN ZONAS SÍSMICAS
 
Tratamiento superficial con láser para mejorar la integridad de componentes m...
Tratamiento superficial con láser para mejorar la integridad de componentes m...Tratamiento superficial con láser para mejorar la integridad de componentes m...
Tratamiento superficial con láser para mejorar la integridad de componentes m...
 
Erp unidad v - tema 1
Erp   unidad v - tema 1Erp   unidad v - tema 1
Erp unidad v - tema 1
 
DESTILADORES SOLARES DE GRANDES DIMENSIONES PARA AGUA DE MAR
DESTILADORES SOLARES DE GRANDES DIMENSIONES PARA AGUA DE MARDESTILADORES SOLARES DE GRANDES DIMENSIONES PARA AGUA DE MAR
DESTILADORES SOLARES DE GRANDES DIMENSIONES PARA AGUA DE MAR
 
Modelo de Creación de Valor en el Sector Eléctrico
Modelo de Creación de Valor en el Sector EléctricoModelo de Creación de Valor en el Sector Eléctrico
Modelo de Creación de Valor en el Sector Eléctrico
 
Unidad iv tema 4 detección de fallas (2) - cad
Unidad iv   tema 4 detección de fallas (2) - cadUnidad iv   tema 4 detección de fallas (2) - cad
Unidad iv tema 4 detección de fallas (2) - cad
 
Aislamiento acustico
Aislamiento acusticoAislamiento acustico
Aislamiento acustico
 
Proyecto de mantenimiento industrial, norma Covenin
Proyecto de mantenimiento industrial, norma CoveninProyecto de mantenimiento industrial, norma Covenin
Proyecto de mantenimiento industrial, norma Covenin
 
LA DETECCION DE FALLAS EN LOS PROCESOS INDUSTRIALES
LA DETECCION DE FALLAS EN LOS PROCESOS INDUSTRIALESLA DETECCION DE FALLAS EN LOS PROCESOS INDUSTRIALES
LA DETECCION DE FALLAS EN LOS PROCESOS INDUSTRIALES
 
Tipos de mantenimiento
Tipos de mantenimientoTipos de mantenimiento
Tipos de mantenimiento
 
2.3 Conceptos y Aplicación de Mantenimiento Preventivo, Predictivo y Correctivo
2.3 Conceptos y Aplicación de Mantenimiento Preventivo, Predictivo y Correctivo2.3 Conceptos y Aplicación de Mantenimiento Preventivo, Predictivo y Correctivo
2.3 Conceptos y Aplicación de Mantenimiento Preventivo, Predictivo y Correctivo
 
Ruido Salud
Ruido SaludRuido Salud
Ruido Salud
 
El ruido impulsivo, un problema en las telecomunicaciones con base en las lín...
El ruido impulsivo, un problema en las telecomunicaciones con base en las lín...El ruido impulsivo, un problema en las telecomunicaciones con base en las lín...
El ruido impulsivo, un problema en las telecomunicaciones con base en las lín...
 
TTL-CMOS
TTL-CMOSTTL-CMOS
TTL-CMOS
 

Similar a TECNOLOGÍA FPGA PARA EL MONITOREO Y DIAGNÓSTICO DE FALLAS EN MAQUINARIA INDUSTRIAL

Manual061 controladorlgicoprogramableplc
Manual061 controladorlgicoprogramableplcManual061 controladorlgicoprogramableplc
Manual061 controladorlgicoprogramableplcALEJANDROJSG
 
Manual061 controladorlgicoprogramableplc
Manual061 controladorlgicoprogramableplcManual061 controladorlgicoprogramableplc
Manual061 controladorlgicoprogramableplcEdgar Olaf Bedolla
 
Manual 061 controlador logico programable plc
Manual 061 controlador logico programable plcManual 061 controlador logico programable plc
Manual 061 controlador logico programable plcJuan Antón Cano
 
PLC: controlador lógico programable (PLC)
PLC: controlador lógico programable (PLC)PLC: controlador lógico programable (PLC)
PLC: controlador lógico programable (PLC)SANTIAGO PABLO ALBERTO
 
Implementación sistema scada en eurocerámica
Implementación sistema scada en eurocerámicaImplementación sistema scada en eurocerámica
Implementación sistema scada en eurocerámicaXavier Espinoza
 
Unidad iv tema 2 - rtu
Unidad iv   tema 2 - rtuUnidad iv   tema 2 - rtu
Unidad iv tema 2 - rtuUDO Monagas
 
Las tic en la automatización de la producción
Las tic en la automatización de la producciónLas tic en la automatización de la producción
Las tic en la automatización de la producciónMarcelo Escuela
 
Automatizacion de-un-torno-paralelo-con-control-basado-en-pc
Automatizacion de-un-torno-paralelo-con-control-basado-en-pcAutomatizacion de-un-torno-paralelo-con-control-basado-en-pc
Automatizacion de-un-torno-paralelo-con-control-basado-en-pcRobertoH1234
 
Trabajo seminario de automatización - Sistemas Scada (1).docx
Trabajo seminario de automatización - Sistemas Scada (1).docxTrabajo seminario de automatización - Sistemas Scada (1).docx
Trabajo seminario de automatización - Sistemas Scada (1).docxnatalia366477
 
Artículo sistema scada
Artículo sistema scadaArtículo sistema scada
Artículo sistema scadasistemascada20
 
Sy ti 2015-a_trabajo_ (1)
Sy ti 2015-a_trabajo_ (1)Sy ti 2015-a_trabajo_ (1)
Sy ti 2015-a_trabajo_ (1)Andresrz
 
Técnico especialista PLC
Técnico especialista PLCTécnico especialista PLC
Técnico especialista PLCGHP
 

Similar a TECNOLOGÍA FPGA PARA EL MONITOREO Y DIAGNÓSTICO DE FALLAS EN MAQUINARIA INDUSTRIAL (20)

Automatización Industrial 4.0 IEEE
Automatización Industrial 4.0 IEEE Automatización Industrial 4.0 IEEE
Automatización Industrial 4.0 IEEE
 
Tema3-u4-eai_equipo_cad
Tema3-u4-eai_equipo_cadTema3-u4-eai_equipo_cad
Tema3-u4-eai_equipo_cad
 
Manual061 controladorlgicoprogramableplc
Manual061 controladorlgicoprogramableplcManual061 controladorlgicoprogramableplc
Manual061 controladorlgicoprogramableplc
 
Manual061 controladorlgicoprogramableplc
Manual061 controladorlgicoprogramableplcManual061 controladorlgicoprogramableplc
Manual061 controladorlgicoprogramableplc
 
Manual 061 controlador logico programable plc
Manual 061 controlador logico programable plcManual 061 controlador logico programable plc
Manual 061 controlador logico programable plc
 
SCADAS COMERCIALES
SCADAS COMERCIALESSCADAS COMERCIALES
SCADAS COMERCIALES
 
PLC: controlador lógico programable (PLC)
PLC: controlador lógico programable (PLC)PLC: controlador lógico programable (PLC)
PLC: controlador lógico programable (PLC)
 
Implementación sistema scada en eurocerámica
Implementación sistema scada en eurocerámicaImplementación sistema scada en eurocerámica
Implementación sistema scada en eurocerámica
 
Idbox industria_4 0-3
Idbox industria_4 0-3Idbox industria_4 0-3
Idbox industria_4 0-3
 
Censores instrumentacion virtual
Censores  instrumentacion virtualCensores  instrumentacion virtual
Censores instrumentacion virtual
 
Unidad iv tema 2 - rtu
Unidad iv   tema 2 - rtuUnidad iv   tema 2 - rtu
Unidad iv tema 2 - rtu
 
Las tic en la automatización de la producción
Las tic en la automatización de la producciónLas tic en la automatización de la producción
Las tic en la automatización de la producción
 
2023CastroJohan.pdf
2023CastroJohan.pdf2023CastroJohan.pdf
2023CastroJohan.pdf
 
Automatizacion de-un-torno-paralelo-con-control-basado-en-pc
Automatizacion de-un-torno-paralelo-con-control-basado-en-pcAutomatizacion de-un-torno-paralelo-con-control-basado-en-pc
Automatizacion de-un-torno-paralelo-con-control-basado-en-pc
 
plc
 plc plc
plc
 
Trabajo seminario de automatización - Sistemas Scada (1).docx
Trabajo seminario de automatización - Sistemas Scada (1).docxTrabajo seminario de automatización - Sistemas Scada (1).docx
Trabajo seminario de automatización - Sistemas Scada (1).docx
 
Artículo sistema scada
Artículo sistema scadaArtículo sistema scada
Artículo sistema scada
 
Sy ti 2015-a_trabajo_ (1)
Sy ti 2015-a_trabajo_ (1)Sy ti 2015-a_trabajo_ (1)
Sy ti 2015-a_trabajo_ (1)
 
Que es el plc
Que es el plcQue es el plc
Que es el plc
 
Técnico especialista PLC
Técnico especialista PLCTécnico especialista PLC
Técnico especialista PLC
 

Más de Academia de Ingeniería de México

Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...
Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...
Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...Academia de Ingeniería de México
 
Ground deformation effects on subsurface pipelines and infrastructure
Ground deformation effects on subsurface pipelines and infrastructureGround deformation effects on subsurface pipelines and infrastructure
Ground deformation effects on subsurface pipelines and infrastructureAcademia de Ingeniería de México
 
From force-based to displacement-based seismic design. What comes next?
From force-based to displacement-based seismic design. What comes next?From force-based to displacement-based seismic design. What comes next?
From force-based to displacement-based seismic design. What comes next?Academia de Ingeniería de México
 
New Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, Recyclable
New Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, RecyclableNew Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, Recyclable
New Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, RecyclableAcademia de Ingeniería de México
 
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...Academia de Ingeniería de México
 
Economic Assessment and Value Maximizations of a Mining Operation based on an...
Economic Assessment and Value Maximizations of a Mining Operation based on an...Economic Assessment and Value Maximizations of a Mining Operation based on an...
Economic Assessment and Value Maximizations of a Mining Operation based on an...Academia de Ingeniería de México
 
Desarrollo de la Ingeniería de Proyecto como un cambio de paradigma en México
Desarrollo de la Ingeniería de Proyecto como un cambio de paradigma en MéxicoDesarrollo de la Ingeniería de Proyecto como un cambio de paradigma en México
Desarrollo de la Ingeniería de Proyecto como un cambio de paradigma en MéxicoAcademia de Ingeniería de México
 
Desarrollo de Indicadores de Desempeño para Centrales Nucleares
Desarrollo de Indicadores de Desempeño para Centrales NuclearesDesarrollo de Indicadores de Desempeño para Centrales Nucleares
Desarrollo de Indicadores de Desempeño para Centrales NuclearesAcademia de Ingeniería de México
 
Administración de activos físicos: Nuevos paradigmas para la conservación de ...
Administración de activos físicos: Nuevos paradigmas para la conservación de ...Administración de activos físicos: Nuevos paradigmas para la conservación de ...
Administración de activos físicos: Nuevos paradigmas para la conservación de ...Academia de Ingeniería de México
 
Creación de capacidades de Innovación en México desde la perspectiva de la em...
Creación de capacidades de Innovación en México desde la perspectiva de la em...Creación de capacidades de Innovación en México desde la perspectiva de la em...
Creación de capacidades de Innovación en México desde la perspectiva de la em...Academia de Ingeniería de México
 
Proceso de optimización de reservas minables de un depósito de oro orogénico
Proceso de optimización de reservas minables de un depósito de oro orogénicoProceso de optimización de reservas minables de un depósito de oro orogénico
Proceso de optimización de reservas minables de un depósito de oro orogénicoAcademia de Ingeniería de México
 
Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...
Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...
Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...Academia de Ingeniería de México
 
Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...
Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...
Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...Academia de Ingeniería de México
 

Más de Academia de Ingeniería de México (20)

Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...
Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...
Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...
 
Nanoscale Properties of Biocompatible materials
Nanoscale Properties of Biocompatible materialsNanoscale Properties of Biocompatible materials
Nanoscale Properties of Biocompatible materials
 
Ground deformation effects on subsurface pipelines and infrastructure
Ground deformation effects on subsurface pipelines and infrastructureGround deformation effects on subsurface pipelines and infrastructure
Ground deformation effects on subsurface pipelines and infrastructure
 
Engineering the Future
Engineering the FutureEngineering the Future
Engineering the Future
 
From force-based to displacement-based seismic design. What comes next?
From force-based to displacement-based seismic design. What comes next?From force-based to displacement-based seismic design. What comes next?
From force-based to displacement-based seismic design. What comes next?
 
Impact of Earthquaker Duration on Bridge Performance
Impact of Earthquaker Duration on Bridge PerformanceImpact of Earthquaker Duration on Bridge Performance
Impact of Earthquaker Duration on Bridge Performance
 
New Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, Recyclable
New Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, RecyclableNew Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, Recyclable
New Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, Recyclable
 
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...
 
Economic Assessment and Value Maximizations of a Mining Operation based on an...
Economic Assessment and Value Maximizations of a Mining Operation based on an...Economic Assessment and Value Maximizations of a Mining Operation based on an...
Economic Assessment and Value Maximizations of a Mining Operation based on an...
 
Desarrollo de la Ingeniería de Proyecto como un cambio de paradigma en México
Desarrollo de la Ingeniería de Proyecto como un cambio de paradigma en MéxicoDesarrollo de la Ingeniería de Proyecto como un cambio de paradigma en México
Desarrollo de la Ingeniería de Proyecto como un cambio de paradigma en México
 
El mundo real y la interdisciplina
El mundo real y la interdisciplinaEl mundo real y la interdisciplina
El mundo real y la interdisciplina
 
Desarrollo de Indicadores de Desempeño para Centrales Nucleares
Desarrollo de Indicadores de Desempeño para Centrales NuclearesDesarrollo de Indicadores de Desempeño para Centrales Nucleares
Desarrollo de Indicadores de Desempeño para Centrales Nucleares
 
Administración de activos físicos: Nuevos paradigmas para la conservación de ...
Administración de activos físicos: Nuevos paradigmas para la conservación de ...Administración de activos físicos: Nuevos paradigmas para la conservación de ...
Administración de activos físicos: Nuevos paradigmas para la conservación de ...
 
Creación de capacidades de Innovación en México desde la perspectiva de la em...
Creación de capacidades de Innovación en México desde la perspectiva de la em...Creación de capacidades de Innovación en México desde la perspectiva de la em...
Creación de capacidades de Innovación en México desde la perspectiva de la em...
 
Modelo educativo para la industria 4.0
Modelo educativo para la industria 4.0Modelo educativo para la industria 4.0
Modelo educativo para la industria 4.0
 
Proceso de optimización de reservas minables de un depósito de oro orogénico
Proceso de optimización de reservas minables de un depósito de oro orogénicoProceso de optimización de reservas minables de un depósito de oro orogénico
Proceso de optimización de reservas minables de un depósito de oro orogénico
 
El camino real de la plata
El camino real de la plataEl camino real de la plata
El camino real de la plata
 
Importancia de la Geomecánica petrolera profunda
Importancia de la Geomecánica petrolera profundaImportancia de la Geomecánica petrolera profunda
Importancia de la Geomecánica petrolera profunda
 
Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...
Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...
Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...
 
Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...
Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...
Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...
 

Último

UNIDAD 3 ELECTRODOS.pptx para biopotenciales
UNIDAD 3 ELECTRODOS.pptx para biopotencialesUNIDAD 3 ELECTRODOS.pptx para biopotenciales
UNIDAD 3 ELECTRODOS.pptx para biopotencialesElianaCceresTorrico
 
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfReporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfMikkaelNicolae
 
desarrollodeproyectoss inge. industrial
desarrollodeproyectoss  inge. industrialdesarrollodeproyectoss  inge. industrial
desarrollodeproyectoss inge. industrialGibranDiaz7
 
Ejemplos de cadenas de Markov - Ejercicios
Ejemplos de cadenas de Markov - EjerciciosEjemplos de cadenas de Markov - Ejercicios
Ejemplos de cadenas de Markov - EjerciciosMARGARITAMARIAFERNAN1
 
nomenclatura de equipo electrico en subestaciones
nomenclatura de equipo electrico en subestacionesnomenclatura de equipo electrico en subestaciones
nomenclatura de equipo electrico en subestacionesCarlosMeraz16
 
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICAINTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICAJOSLUISCALLATAENRIQU
 
Principales aportes de la carrera de William Edwards Deming
Principales aportes de la carrera de William Edwards DemingPrincipales aportes de la carrera de William Edwards Deming
Principales aportes de la carrera de William Edwards DemingKevinCabrera96
 
Procesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptx
Procesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptxProcesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptx
Procesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptxJuanPablo452634
 
Controladores Lógicos Programables Usos y Ventajas
Controladores Lógicos Programables Usos y VentajasControladores Lógicos Programables Usos y Ventajas
Controladores Lógicos Programables Usos y Ventajasjuanprv
 
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERAS
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERASDOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERAS
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERASPersonalJesusGranPod
 
TEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdf
TEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdfTEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdf
TEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdfXimenaFallaLecca1
 
hitos del desarrollo psicomotor en niños.docx
hitos del desarrollo psicomotor en niños.docxhitos del desarrollo psicomotor en niños.docx
hitos del desarrollo psicomotor en niños.docxMarcelaArancibiaRojo
 
Obras paralizadas en el sector construcción
Obras paralizadas en el sector construcciónObras paralizadas en el sector construcción
Obras paralizadas en el sector construcciónXimenaFallaLecca1
 
01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt
01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt
01 MATERIALES AERONAUTICOS VARIOS clase 1.pptoscarvielma45
 
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdfCristhianZetaNima
 
Mapas y cartas topográficas y de suelos.pptx
Mapas y cartas topográficas y de suelos.pptxMapas y cartas topográficas y de suelos.pptx
Mapas y cartas topográficas y de suelos.pptxMONICADELROCIOMUNZON1
 
Quimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdfQuimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdfs7yl3dr4g0n01
 
PERFORACIÓN Y VOLADURA EN MINERÍA APLICADO
PERFORACIÓN Y VOLADURA EN MINERÍA APLICADOPERFORACIÓN Y VOLADURA EN MINERÍA APLICADO
PERFORACIÓN Y VOLADURA EN MINERÍA APLICADOFritz Rebaza Latoche
 
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023RonaldoPaucarMontes
 
MODIFICADO - CAPITULO II DISEÑO SISMORRESISTENTE DE VIGAS Y COLUMNAS.pdf
MODIFICADO - CAPITULO II DISEÑO SISMORRESISTENTE DE VIGAS Y COLUMNAS.pdfMODIFICADO - CAPITULO II DISEÑO SISMORRESISTENTE DE VIGAS Y COLUMNAS.pdf
MODIFICADO - CAPITULO II DISEÑO SISMORRESISTENTE DE VIGAS Y COLUMNAS.pdfvladimirpaucarmontes
 

Último (20)

UNIDAD 3 ELECTRODOS.pptx para biopotenciales
UNIDAD 3 ELECTRODOS.pptx para biopotencialesUNIDAD 3 ELECTRODOS.pptx para biopotenciales
UNIDAD 3 ELECTRODOS.pptx para biopotenciales
 
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfReporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
 
desarrollodeproyectoss inge. industrial
desarrollodeproyectoss  inge. industrialdesarrollodeproyectoss  inge. industrial
desarrollodeproyectoss inge. industrial
 
Ejemplos de cadenas de Markov - Ejercicios
Ejemplos de cadenas de Markov - EjerciciosEjemplos de cadenas de Markov - Ejercicios
Ejemplos de cadenas de Markov - Ejercicios
 
nomenclatura de equipo electrico en subestaciones
nomenclatura de equipo electrico en subestacionesnomenclatura de equipo electrico en subestaciones
nomenclatura de equipo electrico en subestaciones
 
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICAINTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
 
Principales aportes de la carrera de William Edwards Deming
Principales aportes de la carrera de William Edwards DemingPrincipales aportes de la carrera de William Edwards Deming
Principales aportes de la carrera de William Edwards Deming
 
Procesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptx
Procesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptxProcesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptx
Procesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptx
 
Controladores Lógicos Programables Usos y Ventajas
Controladores Lógicos Programables Usos y VentajasControladores Lógicos Programables Usos y Ventajas
Controladores Lógicos Programables Usos y Ventajas
 
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERAS
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERASDOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERAS
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERAS
 
TEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdf
TEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdfTEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdf
TEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdf
 
hitos del desarrollo psicomotor en niños.docx
hitos del desarrollo psicomotor en niños.docxhitos del desarrollo psicomotor en niños.docx
hitos del desarrollo psicomotor en niños.docx
 
Obras paralizadas en el sector construcción
Obras paralizadas en el sector construcciónObras paralizadas en el sector construcción
Obras paralizadas en el sector construcción
 
01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt
01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt
01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt
 
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
 
Mapas y cartas topográficas y de suelos.pptx
Mapas y cartas topográficas y de suelos.pptxMapas y cartas topográficas y de suelos.pptx
Mapas y cartas topográficas y de suelos.pptx
 
Quimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdfQuimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdf
 
PERFORACIÓN Y VOLADURA EN MINERÍA APLICADO
PERFORACIÓN Y VOLADURA EN MINERÍA APLICADOPERFORACIÓN Y VOLADURA EN MINERÍA APLICADO
PERFORACIÓN Y VOLADURA EN MINERÍA APLICADO
 
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
 
MODIFICADO - CAPITULO II DISEÑO SISMORRESISTENTE DE VIGAS Y COLUMNAS.pdf
MODIFICADO - CAPITULO II DISEÑO SISMORRESISTENTE DE VIGAS Y COLUMNAS.pdfMODIFICADO - CAPITULO II DISEÑO SISMORRESISTENTE DE VIGAS Y COLUMNAS.pdf
MODIFICADO - CAPITULO II DISEÑO SISMORRESISTENTE DE VIGAS Y COLUMNAS.pdf
 

TECNOLOGÍA FPGA PARA EL MONITOREO Y DIAGNÓSTICO DE FALLAS EN MAQUINARIA INDUSTRIAL

  • 1. MEXICO TECNOLOGÍA FPGA PARA EL MONITOREO Y DIAGNÓSTICO DE FALLAS EN MAQUINARIA INDUSTRIAL ESPECIALIDAD: MECATRÓNICA René de Jesús Romero Troncoso Doctor en Ingeníería 26 de Marzo de 2015
  • 2. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial CONTENIDO Página Resumen ejecutivo 3 1 Introducción 4 2 Procesamiento de señales para el diagnóstico 7 3 Tecnología FPGA para monitoreo y diagnóstico 21 4 Ejemplos de desarrollo 23 5 Conclusiones 37 Referencias 37 Agradecimientos 44 Currículum vitae 44 Especialidad: Mecatrónica 2
  • 3. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial RESUMEN EJECUTIVO Con el objeto de reducir los paros e interrupciones en los procesos industriales de manufactura, cada vez se hace más necesario el contar con sistemas automáticos que realicen el monitoreo y diagnóstico del estado operativo de la maquinaria industrial. Es deseable que el monitoreo y diagnóstico sea realizado in situ, de manera continua sin afectar al proceso y que se emita en un tiempo lo suficientemente corto para tomar acción preventiva, antes que correctiva, a la maquinaria en cuestión. Lograr realizar la tarea de monitoreo y diagnóstico implica el desarrollo de algoritmos, algunos de ellos muy sofisticados, que sean capaces de ser implementados en tecnologías electrónicas de muy alta velocidad, pero que mantengan bajos los costos del equipo adicional. Para atender estas necesidades, el grupo de investigación liderado por el autor con la participación de investigadores y estudiantes de posgrado de diversas Universidades nacionales y extranjeras, se ha dado a la tarea de desarrollar líneas de investigación tendientes a la propuesta de metodologías de procesamiento de señales para el monitoreo y diagnóstico de maquinaria industrial teniendo en mente la realización en tiempo real de los algoritmos, utilizando tecnología de arreglos de compuertas programables en campo o FPGA (Field Programmable Gate Array, por sus siglas en inglés) que tienen la característica de una alta velocidad de operación y mantienen costos moderados. El presente trabajo muestra una revisión de los trabajos desarrollados por este grupo de investigación en monitoreo y diagnóstico de maquinaria industrial utilizando tecnología FPGA. Palabras clave: FPGA, lógica programable, monitoreo y diagnóstico, fallas en maquinaria industrial Especialidad: Mecatrónica 3
  • 4. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial 1. INTRODUCCIÓN. Durante los últimos años, la investigación y el desarrollo tecnológico de maquinaria industrial se han orientado a la producción de máquinas, denominadas de nueva generación, que deben tener las características descritas por (Mekind , 2009): • Contar con un centro de maquinado inteligente donde se realicen los diseños mediante herramientas CAD/CAM. • Realizar investigación y desarrollo de máquinas reconfigurables que fácilmente y de manera rápida incorporen procesos de manufactura híbridos y que estén preparadas para aceptar diferentes plataformas de nuevos herramentales. • Investigar y desarrollar técnicas de inspección in situ para compensar errores durante la operación de la maquinaria. • Desarrollar nuevas metodologías tendientes a la manufactura autónoma mediante supervisión, monitoreo, diagnóstico y reparación automáticas. • Desarrollar e integrar controladores de procesos en tiempo real mediante arquitecturas abiertas CNC (Control Numérico por Computadora) utilizando técnicas adaptivas de control por retroalimentación de múltiples entradas. • Desarrollar técnicas CAM que sean inteligentes y adaptivas, con capacidades de auto-aprendizaje. Para poder contar con sistemas de monitoreo y diagnóstico autónomos, in situ, de maquinaria industrial que sean capaces de detectar fallos en alguna parte de la cadena cinemática durante las etapas iniciales del fallo, antes de que éste resulte catastrófico; es necesario desarrollar una metodología de procesamiento de señales que permita detectar la falla y también contar con una tecnología electrónica que realice el monitoreo y diagnóstico en tiempo real. La metodología de procesamiento de señales es el algoritmo o procedimiento analítico que mediante la información recolectada de uno o varios sensores que supervisan la operación de la maquinaria es capaz de inferir de una manera simple la condición operativa del sistema indicando cuándo se encuentra en condiciones sanas o sin fallo y cuándo se encuentra presente un fallo en el sistema. Por otro lado, la tecnología electrónica que esté dedicada a realizar esta tarea de supervisión, monitoreo y diagnóstico, debe ser capaz de Especialidad: Mecatrónica 4
  • 5. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial realizarlo de manera continua, en tiempo real y cuando el sistema se encuentra operando normalmente y no solo cuando se realice un mantenimiento preventivo. Esta condición implica que el sistema electrónico debe operar continuamente en conjunto con la maquinaria, por lo tanto debe ser viable económicamente; debe ser lo suficientemente rápido como para ejecutar el procesamiento de señales en tiempo real, y debe ser flexible para incorporar mejoras en los algoritmos de monitoreo y diagnóstico, manteniendo la capacidad de desempeño. En resumen, se necesita atender por un lado el desarrollo de la metodología de diagnóstico mediante los algoritmos de procesamiento de señales que se aplican a la información recolectada por los sensores conectados a la maquinaria industrial; y por otro lado, contar con una tecnología electrónica que sea capaz de ejecutar la metodología de procesamiento de señales en tiempo real para proporcionar el diagnóstico, tal como se ilustra en el diagrama de bloques de la figura 1. Diagnóstico: Algoffirnos Sistema de monitoreo Sano y diagnóstic Fallo incipiente Fallo avanzado Maquinaria Industrial Figura 1. Diagrama de bloques de un sistema automático de monitoreo y diagnóstico en maquinaria industrial. Con respecto a los algoritmos de procesamiento de señales para el monitoreo y diagnóstico de fallos en máquinas industriales, estos tienden a ser complejos puesto que se debe considerar la problemática general del diagnóstico que no es un problema de simple solución. La primera dificultad surge con la necesidad de contar con diversos sensores que deben ser monitoreados constantemente y de forma simultánea para poder contar con la información necesaria para realizar el diagnóstico. El segundo problema lo constituye el ruido que se encuentra inmerso en las señales que entregan los sensores y que requiere de técnicas especializadas para poder minimizarlo y así lograr extraer la información útil. El siguiente obstáculo a vencer es la selección del algoritmo o conjunto de algoritmos de procesamiento de señales que sean adecuados para lograr el diagnóstico deseado, Especialidad: Mecatrónica 5
  • 6. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial tomando en cuenta que dada la naturaleza no estacionaria de las señales de falla en la maquinaria, es necesario contar con algoritmos que puedan procesar información de esta naturaleza, lo cual no es simple. Finalmente se debe considerar que la metodología de diagnóstico debe ser capaz de implementarse en una tecnología electrónica que pueda realizar el procesamiento en tiempo real; entendiendo como tiempo real el periodo de tiempo tolerado desde que ocurre el fallo hasta que se detecta y se tome acción al respecto. Cabe hacer notar que existen metodologías de diagnóstico que son muy sofisticadas, pero tienen la desventaja de requerir un poder de cómputo muy alto, haciéndolas inadecuadas para su implementación en tiempo real en las tecnologías disponibles actualmente. Para la implementación tecnológica de los algoritmos de procesamiento de señales se cuenta con tres opciones posibles: las computadoras personales denominadas genéricamente como PC (Personal Computer), los microprocesadores especializados conocidos como DSP (DIgital Signal Processor, procesador digital de señales) y los arreglos de compuertas programables en campo o FPGA (Field Programmable Gate Array) por sus siglas en inglés. Las PC son los sistemas más simples para utilizar y se pueden realizar desarrollos rápidos debido a la gran cantidad de paquetes de software de procesamiento de señales que se encuentran disponibles como Matlab-Simulink y National Instruments- LabView; asimismo, diversas compañías ofrecen sistemas de adquisición de datos que se enlazan directamente entre el software y los sensores físicos. No obstante estas facilidades que presentan las PC, se debe tomar en cuenta que las soluciones desarrolladas con estas plataformas resultan muy costosas y puede ser que la aplicación requerida no justifique el gasto realizado. Por otro lado, estas plataformas son de fácil desarrollo y aplicación, pero de ninguna manera son óptimas en cuanto al desempeño en velocidad de procesamiento, por lo que algunos algoritmos de diagnóstico no pueden ser implementados para su ejecución en tiempo real en estos sistemas, además se debe recordar que la propiedad intelectual de los desarrollos realizados en estas plataformas pertenece a la empresa proveedora de la plataforma, no al usuario. La segunda alternativa de implementación tecnológica son los procesadores especializados o DSP; los cuales pueden ejecutar un algoritmo de procesamiento de señales hasta 10 veces más rápido que una PC y su costo es inferior comparado con las plataformas tipo Simulink y LabView; sin embargo, no son tan fáciles de programar y existe una cierta dependencia tecnológica hacia los proveedores de los dispositivos, aunque la propiedad intelectual de la implementación pertenece al desarrollador. La tercera alternativa de implementación son los FPGA que pueden ejecutar los algoritmos de procesamiento de Especialidad: Mecatrónica 6
  • 7. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial señales hasta 10 veces más rápido que un DSP, y por ende hasta 100 veces más rápido que una PC, con costos realmente atractivos para su uso en aplicaciones industriales. La principal desventaja los dispositivos FPGA es que se requiere un mayor esfuerzo para el desarrollo de las aplicaciones, tanto la parte hardware como la parte software, ya que el diseño se realiza a nivel de compuertas básicas y bloques funcionales. Para que un diseño sea efectivo con estos dispositivos, es necesario contar con personal altamente entrenado en diseño de circuitos integrados digitales, generalmente de nivel de posgrado. A pesar de las desventajas que tienen las tecnologías, nótese que todas ellas pueden ser conjuntadas en plataformas híbridas que exploten las ventajas particulares de cada tecnología y así proporcionar la solución deseada. El principal objetivo del presente trabajo es mostrar un análisis del estado del arte de los métodos de procesamiento de señales y las tecnologías FPGA en la aplicación y desarrollo de sistemas automáticos de monitoreo y diagnóstico de fallos en maquinaria industrial. Asimismo, se presentan de forma resumida los principales retos teóricos y prácticos que se tienen para el desarrollo del área, al igual que los retos en la formación de recursos humanos que tiene nuestro país para contar con personal calificado para el diseño de sistemas de monitoreo y diagnóstico de fallos en maquinaria industrial que cumplan con las especificaciones de los sistemas de nueva generación. El resto del trabajo está organizado como sigue: la sección 2 hace un análisis de las técnicas de procesamiento de señales que se utilizan para el monitoreo y diagnóstico de maquinaria industrial, la sección 3 proporciona un panorama general de la tecnología FPGA y sus herramientas de desarrollo, así como sus usos en el monitoreo y diagnóstico de maquinaria industrial. En la sección 4 se presentan algunos ejemplos de desarrollo de sistemas y equipo para el monitoreo y diagnóstico de fallos en maquinaria industrial, realizados por el grupo de investigación cuyo líder es el autor del presente trabajo, con la finalidad de resolver problemas particulares de la industria y de la academia, así como para contribuir en la formación de recursos humanos especializados a nivel posgrado en el diseño de sistemas basados en tecnología FPGA. Finalmente, la sección 5 presenta las conclusiones del trabajo. 2. PROCESAMIENTO DE SEÑALES PARA EL DIAGNÓSTICO. Para poder determinar la condición operativa de una máquina es necesario realizar los siguientes pasos: Especialidad: Mecatrónica 7
  • 8. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial • Instrumentación • Monitoreo • Diagnóstico El proceso de instrumentación consiste en medir el valor de una o varias variables físicas que contienen la información necesaria para describir el modo operativo de la máquina bajo análisis. Para llevar a cabo esta tarea es necesario establecer una cadena de instrumentación como se describe en el diagrama de bloques de la figura 2. Variable física Serisor primario Transductor Pre-amplificador Filtro I-I Acondicionador Ll anti-traslape de señal Amplificador Muestreador Convertidor y retenedor Hanalógico a digitalF lnterfaz Valor digital Figure 2. Sistema general de instrumentación. La variable física a medir es sensada mediante un elemento sensor primario que en conjunto con el transductor entregan una señal eléctrica que es proporcional a la variable física. Esta señal contiene muy poca energía y es necesario incrementar esta energía mediante una etapa de pre-amplificación cuya finalidad es lograr un acoplamiento de impedancias y posteriormente un amplificador que proporciona los niveles adecuados de corriente y tensión para procesar la señal. A continuación se requiere un acondicionador de señal que se encarga de realizar tareas como la reducción del ruido, limitación en banda y ecualización espectral. Con el objeto de obtener el valor digital de la señal es necesario colocar un filtro de anti-traslape espectral que limite en frecuencia a la señal, de acuerdo con el teorema de Nyquist. El proceso de conversión requiere en sí tres bloques funcionales que son el muestreador y retenedor quien discretiza la señal en tiempo, el convertidor de analógico a digital quien discretiza la señal en amplitud y la interfaz que se encarga de enviar los datos para su posterior análisis. La cadena de instrumentación debe realizarse para cada uno de los diferentes sensores que se tienen en el sistema. Una vez que se cuenta con el valor digital de la señal mediante el proceso de instrumentación, el siguiente paso es el monitoreo de la Especialidad: Mecatrónica 8
  • 9. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial variable o variables físicas bajo análisis que consiste en tomar conjuntos determinados de muestras para extraer las características principales que permitan inferir la condición operativa de la máquina. Es en esta etapa donde se realiza mayormente el procesamiento de señales, encaminado a la extracción de estas características principales de la variable física medida. El procesamiento empleado en esta etapa puede ser realizado en el dominio del tiempo, de la frecuencia o del espacio tiempo-frecuencia. Los procesamientos correspondientes al dominio del tiempo analizan la señal tomando como referencia su evolución en el tiempo e incluyen al filtrado digital (reducción de ruido, selección de banda espectral, etc.) y al análisis estadístico (media, varianza, valor pico, etc.). El procesamiento en el dominio de la frecuencia consiste en realizar el análisis desde el punto de vista del contenido espectral de la señal y típicamente involucra transformadas de espacio como la transformada discreta de Fourier y los métodos de estimación espectral tanto paramétricos como no paramétricos. El procesamiento en el espacio tiempo-frecuencia trata de conjuntar las características de análisis de las técnicas del domino del tiempo y del dominio de la frecuencia para obtener el espectro de la señal conforme evoluciona en el tiempo. Las técnicas de análisis tiempo-frecuencia incluyen a las transformadas de ondoletas, la descomposición de modo empírico, la transformada corta de Fourier, entre otras. El objetivo final de la instrumentación y el monitoreo es obtener un diagnóstico del estado de la máquina bajo análisis. El proceso de diagnóstico se puede definir como el procedimiento para inferir el estado o condición operativa de la maquinaria en cuestión en función de los parámetros estimados por el proceso de monitoreo de la señal. Un sistema de diagnóstico, en forma general, consiste en un procedimiento de toma de decisiones para dar un resultado sobre las condiciones operativas. Las técnicas de diagnóstico más utilizadas incluyen a los sistemas expertos, árboles binarios, lógica difusa, redes neuronales, máquinas de soporte vectorial, algoritmos genéticos, entre otros. Como ejemplo de este proceso, considere la operación del motor de un automóvil desde el punto de vista del usuario. Primeramente es necesario que el motor cuente con la instrumentación adecuada que puede incluir sensores para medir la temperatura del motor, la presión de aceite y el nivel de inyección de combustible. Esta instrumentación se concentra en un sistema de monitoreo que toma las lecturas de estas variables y las procesa para determinar si se está operando en la región recomendada. Finalmente, mediante un sistema experto, la computadora da un diagnóstico al usuario sobre la condición del motor en base a los parámetros estimados y le informa de manera simple si el Especialidad: Mecatrónica 9
  • 10. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial motor opera correctamente, si hay necesidad de darle mantenimiento en un corto plazo o de si hay una falla que requiere atención inmediata. Para poder generar este simple mensaje se necesita de la instrumentación adecuada para medir las variables físicas de interés al proceso, el monitoreo y procesamiento de las señales para extraer las características o parámetros operativos que sean indicativos de la operación del sistema y finalmente el análisis mediante un sistema experto que interprete los valores de estos parámetros y emita el diag nóstico. 2.1 Procesamiento de señales para el monitoreo. Con el objeto de ejemplificar los efectos del procesamiento de señales para el monitoreo, considere la forma de onda hipotética que se muestra en la figura 3. 20W JUUU 40W 5wQ 8000 7800 8000 9000 10000 Figura 3. Forma de onda hipotética de un proceso. A simple vista se puede notar que se trata de una señal periódica con cierto contenido armónico y un promedio diferente de cero. La señal contiene ruido y la periodicidad se ve afectada por dos eventos transitorios que ocurren en diferentes tiempos. El reto del monitoreo es procesar la señal de tal manera que se logren extraer las características o parámetros que son indicadores del estado del proceso en análisis. Si la característica que se busca de la señal es la periodicidad de la componente espectral principal para eliminar armónicos y reducir el ruido, un simple filtro de paso bajo puede cumplir con el objetivo, tal como se muestra en la gráfica procesada de la figura 4. En este caso, el procesamiento da como resultado la extracción de una señal sinusoidal con menor contenido armónico, ruido disminuido y que mantiene el nivel promedio original; mientras que la información de los eventos transitorios y de los armónicos se pierde. Si por otro lado no se desea preservar la forma de onda, sino solamente conocer los valores medio, Especialidad: Mecatrónica 10
  • 11. Tabla 1. Parámetros estadísticos básicos de la señal bajo análisis. Parámetro Valor Media 0.7503 RMS 0.7619 Valor pico máximo 9.9703 Valor pico mínimo -3.0015 Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial raíz media cuadrática o RMS (root mean square) y valores pico, basta con realizar un procesamiento estadístico de una la muestra completa de la señal y entregar los valores numéricos, que para este ejemplo se muestran en la tabla 1. El filtrado digital y el procesamiento estadístico se realizan en el dominio del tiempo. ..: T. T T .... UU 4UUU 5UJU bWU /LBJU so 9000 00000 Figura 4. Resultado de la señal filtrada. Cuando los parámetros de interés se encuentran en los diferentes componentes espectrales de la señal, es decir, en el dominio de la frecuencia; la técnica de procesamiento más utilizada es la transformada de Fourier que cuando se aplica a la señal de ejemplo se obtiene el espectro de la figura 5, donde se puede ver el componente principal y dos armónicos, además de cierto nivel de ruido. 09 08 07 0.6 0.5 04 0.3 0.2 CI O 50 100 150 200 250 Figura S. Espectro de la señal de prueba mediante la transformada de Fourier. Especialidad: Mecatróriica 11
  • 12. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial Las técnicas de procesamiento de señales antes descritas son consideradas como técnicas clásicas de procesamiento y tienen en común que consideran a la señal bajo análisis como una señal estacionaria, es decir, una señal que conserva un patrón definido durante todo el tiempo y no contiene eventos transitorios. Si las características principales que definen la condición operativa del sistema bajo monitoreo es de naturaleza estacionaria, entonces estas técnicas clásicas son suficientes para realizar el procesamiento, pero cuando las características de interés son de naturaleza no estacionaria o transitoria, las técnicas clásicas de procesamiento no entregan resultados satisfactorios y es necesario utilizar otras técnicas que permitan descomponer la señal original para separar los eventos estacionarios de los no estacionarios. Para apreciar el efecto del análisis clásico sobre una señal no estacionaria, considere la forma de onda en el dominio del tiempo que se muestra en la figura 6a y que consiste de una componente principal de frecuencia cuyo valor permanece invariante por un tiempo y durante un periodo definido, el valor de la frecuencia aumenta para retornar a su valor original. La señal contiene armónicos, cierto nivel de ruido y un evento transitorio de tipo impulsivo. El espectro de la señal se muestra en la figura 6b, donde se puede apreciar la componente directa, la frecuencia principal, los armónicos y la frecuencia transitoria; sin embargo, la frecuencia principal y en particular la frecuencia transitoria no se encuentran bien definidos en la gráfica del espectro, debido a la naturaleza no estacionaria de la señal. Además, el espectro por sí solo nos proporciona información de las frecuencias presentes en la señal, pero no nos da información del tiempo en que ocurren estas frecuencias. Se debe tener en cuenta que la mayoría de las señales que se pueden medir en los sistemas reales son de naturaleza no estacionaria y algunos de los parámetros de interés se pueden encontrar en la parte estacionaria, pero otros parámetros se encuentran en los componentes transitorios. Así que en términos generales, se puede inferir que las técnicas clásicas de procesamiento de señales pueden no ser adecuadas para extraer la información relevante en procesos de monitoreo en máquinas industriales. La solución que se le ha dado al problema del monitoreo de señales no estacionarias consiste en la aplicación de técnicas de análisis denominadas tiempo-frecuencia que permiten por un lado realizar el análisis de los componentes espectrales que constituyen a la señal bajo estudio, pero conservando la información del tiempo en que estos componentes estuvieron presentes en la señal. Especialidad: Mecatrónica 12
  • 13. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial Figura 6. Señal no estacionaria, a) dominio del tiempo, b) espectro de frecuencia. Son varias las técnicas de descomposición tiempo-frecuencia que se han utilizado para el análisis de señales, entre las que se encuentra la transformada corta de Fourier, las transformadas de ondoletas y la descomposición de modo empírico. La transformada corta de Fourier consiste en segmentar en periodos de tiempo definidos la señal original en el dominio del tiempo y aplicar la transformada de Fourier a estos segmentos para representar la señal como un conjunto de espectros de frecuencia que evolucionan en el tiempo. La representación gráfica de la transformada corta de Fourier puede realizarse como una gráfica tridimensional como se muestra en la figura 7a donde se aplica la técnica a la señal de la figura 6a y un eje representa la amplitud de la componente espectral, el segundo eje representa la frecuencia y el tercer eje corresponde al tiempo. Otra forma de representación es mediante una gráfica de dos dimensiones, pseudocoloreada, donde el eje vertical representa al tiempo, el eje horizontal representa la frecuencia y el color denota la amplitud de los componentes espectrales, tal como se muestra en la figura 7b. La ventaja de esta transformada sobre el procesamiento clásico es que puede ubicar las frecuencias no solamente como componentes de la señal sino también el tiempo en que ocurren. Un problema persistente Especialidad: Mecatrónica 13
  • 14. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial con esta transformada siguen siendo los eventos transitorios que aún no es capaz de detectarlos. Amplitud • Componentes estacionarios - IM u : - jjj uenciatransitoria : ola u ' 1 u' -• dr es recuenc.a Figura 7. Transformada corta de Fourier, a) vista tridimensional, b) vista bidimensional con pseudocolor para indicar la amplitud. Otras técnicas como las transformadas de ondoletas han sido propuestas para identificar la ocurrencia de eventos transitorios en las señales bajo análisis. El proceso de la transformada de ondoletas consiste en descomponer la señal original en un conjunto de varias señales conteniendo cada una de ellas una banda de frecuencias específica, conservando la información del tiempo en que ocurren. Básicamente la transformada de ondoletas es un banco de filtros, donde cada filtro selecciona una banda de frecuencias específica de la señal. En Especialidad: Mecatrónica 14
  • 15. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial la figura 8 se muestra una descomposición por medio de las transformadas de ondoletas para la señal de la figura 6a. b) Figura 8. Transformadas de ondeletas, a) Componentes de baja frecuencia, b) componente de frecuencia media, c) frecuencia transitoria, d) evento transitorio. Especialidad: Mecatrónica 15
  • 16. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial Las transformadas de ondoletas logran obtener una buena descomposición de la señal original, aislando los armónicos principales, las frecuencias transitorias y los eventos transitorios, todos ellos en diferentes niveles de descomposición, lo que facilita el análisis posterior de la señal. Una cuestión que debe ser considerada cuando se realiza la descomposición por ondoletas es el hecho de que los niveles de descomposición no reconstruyen de manera perfecta la señal e introducen distorsiones y no linealidades. Otro método de separación de componentes de una señal es la descomposición de modo empírico o EMD por sus siglas en inglés (empirical mode decomposition). La EMD es una técnica no lineal, contraria a las transformadas corta de Fourier y de ondoletas, y se basa en encontrar evolventes intrínsecas de la señal original para poder separar sus componentes en los diferentes modos, preservando sus características de tiempo y frecuencia. La figura 9 muestra la forma en que se descompone la señal de la figura 6a en sus diferentes modos ¡ ntrín secos. lO 10 • a) b) 5- 8 6 6 4 4 2 2 0 0- 2° 10 2000 30100 4000 50100 0000 7000 0000 9001) 10000 2 1000 -- 4500 5520 50 7000 a50o--------- 000 ioóoo 10 10 c) d) 8 8 6r 8 4- 4 - - :i_1000 2000 3000 4000 5 0 7200 8 9000 10090 0 1900 2000 3990 4000 5 0 70 8000 0 10000 1: O -2° 1030 2000 3000 4000 5020 8000 7000 8502 9000 18000 Figura 9. Descomposición de modo empírico, a) Frecuencia principal y señal directa, b) frecuencia media, c) frecuencia superior, d) frecuencia transitoria, e) evento transitorio y ruido. Como se puede apreciar en la figura 9, la técnica EMD logra una mejor separación de los componentes constitutivos de la señal original; sin embargo, esta técnica requiere un alto poder computacional para ejecutarse y algunas aplicaciones que tengan restricción en el tiempo de Especialidad: Mecatrónica 16
  • 17. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial respuesta puede ser que no sea factible su implementación para realizar el procesamiento en tiempo real. A este respecto, la tabla 2 resume el poder de cómputo relativo que se requiere para ejecutar las técnicas de procesamiento de señales discutidas en este apartado. Tabla 2. Necesidades de cómputo en las técnicas de procesamiento de señales nara el mnnitnrn Técnica Cómputo Observaciones Filtrado digital Muy Dominio del tiempo simple Pocos recursos tecnológicos Estadística básica Muy Dominio del tiempo simple Pocos recursos tecnológicos Transformada de Fourier Simple Dominio de la frecuencia Moderados recursos tecnológicos Transformada de Complejo Dominio del tiempo-frecuencia ondoletas Moderados recursos tecnológicos Puede requerir mucho tiempo de cómputo Descomposición de Muy Dominio del tiempo-frecuencia modo empírico complejo Altos recursos tecnológicos La operación en tiempo real puede no ser factible 2.2 Procesamiento de señales para el diagnóstico. Una vez que mediante el proceso de monitoreo se lograron extraer los parámetros y características relevantes de la operación de la máquina bajo prueba, el siguiente paso es utilizar esta información para poder emitir un diagnóstico simple y directo sobre la condición de la máquina. Esta tarea requiere una segunda etapa de procesamiento que implica la elaboración de un sistema clasificador de condiciones mediante alguna técnica particular. El método más simple para generar un sistema experto de diagnóstico consiste en un árbol de decisiones. Un árbol de decisiones consiste en conectar de manera jerárquica un conjunto de evaluadores booleanos (Sí o No) que analiza los parámetros o características extraídas de la señal original por medio del proceso de monitoreo y dar un diagnóstico operativo. La figura 10 muestra un árbol binario para realizar un diagnóstico sobre un proceso hipotético con tres parámetros de análisis Al B y C, y con las siguientes reglas: • Si A sobrepasa un umbral Amax, el sistema tiene un fallo severo y requiere detener el proceso, o: Especialidad: Mecatrónica 17
  • 18. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial • Si cualquiera de B o C sobrepasan un umbral Tmax, el sistema requiere programar un mantenimiento preventivo y sino: • El sistema opera en condiciones adecuadas. Figura 10. Árbol binario para el problema de diagnóstico. No siempre es posible poder establecer las reglas de inferencia en un sistema experto como simples decisiones binarias y por esta razón se debe contar con otras técnicas de clasificación como por ejemplo la lógica difusa. Un sistema clasificador difuso, en lugar de establecer umbrales para responder sí o no, pondera en diferentes grados el valor de un parámetro bajo análisis, por ejemplo en: bajo, incipiente, medio, alto y severo. La respuesta del sistema pondera de forma conjunta todos los parámetros involucrados y entrega un resultado. La figura 11 muestra un diagrama de bloques general de un sistema clasificador difuso. Cuando las reglas de inferencia en un sistema difuso no se pueden especificar de una manera precisa o cuando los sistemas son muy complejos, ya sea por contener una gran cantidad de parámetros o cuando la interrelación entre parámetros no puede ser modelada fácilmente, otras técnicas como las redes neuronales son más adecuadas como clasificadores. Las redes neuronales son arreglos de operadores matemáticos adaptivos que pueden tener diversas Especialidad: Mecatrónica 18
  • 19. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial configuraciones, inspiradas en la interconectividad que tienen las neuronas en los organismos vivos y contienen dos partes: la red neuronal en sí y la parte del entrenamiento de la misma. El bloque de entrenamiento consiste en un modelo matemático que ajusta los valores de los coeficientes de la red neuronal de tal forma que se minimice el error de la salida ante un conjunto de estímulos o entradas cuyo resultado se conoce a priori. Una estructura de red neuronal muy utilizada es el denominado perceptrón que se muestra en la figura 12a que consiste de una capa de entrada, una capa oculta y otra capa de salida. El número de neuronas en cada capa se determina de forma experimental, seleccionando aquella configuración que proporcione mejores resultados. La operación matemática que realiza una neurona es la suma ponderada de las entradas que sirve como variable de una función de activación para proporcionar la salida, como se muestra en la figura 12b. El entrenamiento de la red neuronal se lleva a cabo mediante la estructura mostrada en la figura 12c, utilizando como entradas un conjunto de datos cuya respuesta se conoce de antemano, ajustando los pesos ponderados mediante una función de minimización del error. Procesador difuso 1 M-Procesador Parámetro 1 Modelo difuso Ponderación dor difuso 2 Reglas de inferencia Parám Clasificador Diagnóstico difuso Procesador difuso n 1 metro n odeIo difuso Reglas de inferencia Pará 1 Inferencia difusa Ponderación Figura 11. Clasificador difuso general. Existen otros clasificadores basados en máquinas de soporte vectorial y en algoritmos bio-inspirados como algoritmos genéticos, enjambre de partículas, colonia de hormigas, entre otros. Todos ellos tienen como característica que requieren entrenamiento como las redes neuronales, pero el modelo del sistema es diferente. Especialidad: Mecatrónica 19
  • 20. c) Entrada s = w x 1 Y=t(S) Capa de Capa Capa de entrada oculta salida a) x das x Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial Respuesta Respuesta conocida lError de la red Función de minimización del error IIwiExcitaciones conocidas Perceptrón Figura 12. Red neuronal, a) perceptrón, b) neurona, c) entrenamiento. Al igual que los modelos de procesamiento de señales para el monitoreo, los diferentes modelos de sistemas clasificadores para el diagnóstico tienen características de complejidad diferente, requiriendo una mayor o menor cantidad de recursos y consumiendo más o menos tiempo de cómputo, que combinados estos factores hacen viable o no su implementación tecnológica para ejecutarse en tiempo real. La tabla 3 muestra un resumen de las características generales de los modelos de clasificadores para diagnóstico. Tabla 3. Características neneraIs t1p. lnç cIaçificrInrp n;;rA r1ini-ic Clasificador Recursos Características necesarios Principales Arbol binario Bajo Fácil implementación No requiere entrenamiento Lógica difusa Bajo Necesario definir las reglas de inferencia Red neuronal Medio Requiere entrenamiento Produce respuestas rápidas Máquina de soporte Alto Requiere entrenamiento vectorial Procesamiento complejo Modelo matemático determinístico Algoritmos bio- Medio - Alto Requiere entrenamiento inspirados Adecuado para sistemas complejos Especialidad: Mecatrónica 20
  • 21. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial 3. TECNOLOGÍA FPGA PARA MONITOREO Y DIAGNÓSTICO. Toda vez que se ha desarrollado un algoritmo que realiza el monitoreo y diagnóstico de la condición operativa de una máquina industrial, el siguiente paso consiste en realizar la implementación tecnológico del algoritmo para su ejecución en tiempo real y a un coste adecuado. Esta tarea no es trivial ya que requiere manejar adecuadamente el compromiso entre la velocidad de ejecución y el costo de la plataforma tecnológica. Una tecnología que ha tomado auge para el desarrollo de soluciones algorítmicas que sean rápidas y a un costo atractivo para aplicaciones de monitoreo y diagnóstico en maquinaria industrial son los circuitos FPGA. Un circuito integrado FPGA es un circuito que contiene millones de elementos lógicos básicos (compuertas lógicas y otros elementos) cuya conectividad no está fijada previamente y el usuario tiene la capacidad de poder definir la conectividad de los elementos para lograr la realización de los algoritmos deseados, siempre con una libertad total en cuanto a la arquitectura de procesamiento interna que puede tener un alto paralelismo. La característica de paralelismo en un FPGA es la que le otorga la alta velocidad de procesamiento, comparado con las tecnologías DSP y PC, donde la arquitectura de procesamiento siempre es secuencial y con un nivel de paralelismo limitado. Un circuito FPGA moderno contiene como elementos básicos a los bloques lógicos BL, terminales configurables de entrada/salida JO, terminales de manejo de reloj CLK, sumadores ADD, multiplicadores MUL, memoria de acceso aleatorio RAM y unidades de procesamiento central CPU, tal como se muestra de forma simplificada en la figura 13, tomando en cuenta que un FPGA contiene de miles a millones de estos elementos básicos en una sola pastilla. Los bloques lógicos están formados de algunas decenas de compuertas lógicas (AND, OR, XOR, etc.) y memorias biestables síncronas, tipo flip-flop. Las terminales JO de un FPGA pueden ser configuradas por el diseñador para operar como entradas, salidas, terminales bidireccionales y también seleccionar los niveles de tensión e impedancia de la terminal. Las terminales dedicadas de reloj contienen la circuitería necesaria para distribuir de manera eficiente y con retardo mínimo la señal maestra de reloj de referencia. Los bloques sumador y multiplicador son los elementos básicos para realizar el procesamiento algorítmico en forma paralela ya que permiten al diseñador utilizar un sumador y un multiplicador en una estructura digital denominada multiplicador-acumulador que es la estructura básica de un DSP y al contener cientos o miles de estas unidades en un FPGA, se logra un alto grado de paralelismo. Los FPGA también contienen Especialidad: Mecatrónica 21
  • 22. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial memoria interna de acceso rápido para realizar procesamiento a la máxima velocidad posible. Finalmente, algunos modelos de FPGA ya integran microprocesadores de propósito general, prediseñados para ser utilizados de forma inmediata en aplicaciones tales como el desarrollo de interfaces específicas tipo USB, TCP/IP, 1 2C, SPI, etc. nVO E _ E HDD] K K _ M FBLI BL lIO I/O E E K nMU K BL FB IL MUL F1 EL F 1 [110 I/O BL FBL]FBLI FRAMI [BL]BL BL AM FBLIFBL] FBLI I I/O BL nBL B CPU [ BL] FB~LBL CPU FBLIFBLI FBIL v01 I/O FBLI FBL]FBL]HD7D FBLI FBLIFBLI H°_ BL BL1 BL BL BL MUL BL BL BL LMUL BL F EBL] BL] FBLI _nVO CLK ML [BLI [BLI RAM [BLI [BLI [BLI RAM SL EL [~LI l~ Figura 13. Estructura general de un FPGA. El reto del diseñador consiste en el planteamiento de una estructura digital que realice de manera eficiente el algoritmo deseado. De esta forma el diseñador construye los procesos algorítmicos básicos como interfaces, filtrado digital, transformadas de espacio, redes neuronales y sistemas difusos a partir de los elementos básicos del FPGA y une estos bloques algorítmicos en la estructura digital que realiza el procesamiento de la señal en forma completa, como se ilustra en la figura 14. El proceso de diseño con tecnología FPGA requiere conocimientos profundos de sistemas digitales y también el manejo de lenguajes descriptivos como el VHDL o Verilog. Además de la libertad que tiene el diseñador para definir la arquitectura de la realización tecnológica con FPGA y de la alta velocidad de procesamiento por el paralelismo intrínseco de los dispositivos, existe otra característica importante que hace a los dispositivos FPGA ideales para aplicaciones de monitoreo y diagnóstico en máquinas industriales y es la reconfigurabilidad. Esta característica permite al diseñador modificar la conectividad interna del sistema sin tener que realizar modificaciones al hardware por lo que las Especialidad: Mecatrónica 22
  • 23. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial soluciones funcionales puedan ser mejoradas sin necesidad de realizar cambios en los circuitos. Procesos algorítmicos Adquisición / de datos Filtro digital Bloques básicos Solución completa Q TO VGA T FD TF RN ADQ TO Sistema difuso / USIB Transformada de Fourier 1/ Interfaz tJS5 Interfaz VGA Figura 14. Proceso de diseño algorítmico en un FPGA. 4. EJEMPLOS DE DESARROLLO. Desde 2004, el autor dirige un grupo de investigación en el área del control, monitoreo y diagnóstico de sistemas dinámicos, utilizando tecnología FPGA. El grupo inició con la participación de investigadores y estudiantes de posgrado de la Universidad de Guanajuato y la Universidad Autónoma de Querétaro y en los últimos años se ha extendido con colaboraciones de la Universidad Autónoma de Sinaloa, la Universidad de Valladolid (España) y la Universidad Politécnica de Cataluña (España). Los desarrollos del grupo han sido encaminados a cuatro áreas principales: • Máquinas-herramienta, incluyendo los motores de inducción. • Robótica industrial. • Monitoreo de la calidad de la energía eléctrica. • Aplicaciones en biotecnología. Especialidad: Mecatrónica 23
  • 24. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial 4.1 Aplicaciones en máquinas-herramienta. Se han manejado tres líneas principales de aplicación de los FPGA para el monitoreo y diagnóstico de máquinas herramienta que abarcan a las plataformas de monitoreo de propósito general, las aplicaciones en maquinaria industrial y los desarrollos particulares al monitoreo y diagnóstico de motores de inducción. 4.1.1 Plataformas de propósito general. La característica de reconfigurabilidad de los dispositivos FPGA los hace ideales para el desarrollo de plataformas de arquitectura abierta para aplicaciones en control, instrumentación, monitoreo y diagnóstico de máquinas-herramienta como es el caso de (Morales-Velazquez, 2010a) donde se presenta el desarrollo de una plataforma reconfigurable para aplicaciones en maquinaria CNC. Esta plataforma de arquitectura abierta tiene como finalidad el poder integrar las funciones de control, instrumentación, monitoreo y diagnóstico en una plataforma reconfigurable que permita al usuario realizar cambios y expansiones del sistema según sean las necesidades del mismo y que permita fácilmente la incorporación de nuevos algoritmos de análisis de señales sin tener que modificar el hardware y mantener el mismo desempeño en velocidad, tal como lo muestra la figura 15 donde la plataforma de arquitectura abierta incorpora tres módulos con dispositivos FPGA; uno conteniendo un controlador lógico programable para la reconversión a CNC del torno, el segundo para el control del movimiento de los ejes y el tercero para realizar el monitoreo de las vibraciones durante el maquinado. Los tres módulos FPGA se interconectan a una unidad central, también basada en tecnología FPGA, que contiene un procesador propietario, descrito en (Morales-Velazquez, 2012) como un bloque funcional que puede ser embebido en este tipo de plataformas. Otra aplicación de propósito general de las plataformas FPGA en máquinas CNC es el desarrollo de sistemas de comunicación inalámbrica entre diversos módulos de control y monitoreo a lo largo de una línea de producción que contiene varias máquinas CNC, con diferentes módulos de control y monitoreo, tal como se desarrolla en (Moreno-Tapia, 2010). En esta aplicación se desarrolla un sistema concentrador quien coordina el funcionamiento de un conjunto de sensores inteligentes remotos, conectados al concentrador en forma inalámbrica y donde cada módulo sensor contiene un dispositivo FPGA para realizar procesamiento de señales sobre la variable física que se encuentre midiendo el sistema de instrumentación del sensor. Especialidad: Mecatrónica 24
  • 25. Procesamiento central "11` 1 Torno reconvertido aCNC Controlador lógico programable Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial Control de movimiento de! torno Monitoreo de vibraciones Figura 15. Ejemplo de aplicación de la tecnología FPGA en control y monitoreo de maquinaria CNC. 4.1.2 Monitoreo y diagnóstico en maquinaria industrial. Aplicaciones específicas de monitoreo y diagnóstico en maquinaria industrial incluyen diferentes técnicas para obtener diferentes resultados. De las técnicas desarrolladas para el monitoreo en el dominio del tiempo se puede mencionar el sistema de filtrado reconfigurable, presentado en (Franco-Gasca, 2008), donde utilizando tecnología FPGA se logra el diseño de una plataforma para filtrado digital de señales de instrumentación en maquinaria CNC que permite modificar las características del filtro sin necesidad de modificar el hardware. Otro ejemplo de procesamiento en el dominio del tiempo son los trabajos de (de Santiago-Perez, 2008), (Rangel-Magdaleno, 2009a) y (Morales-Velazquez, 2009) donde se utilizan diferentes técnicas de filtrado digital para realizar el monitoreo de la dinámica de movimiento de los ejes de una máquina CNC con el objeto de conocer la velocidad, aceleración y jaloneo en el eje en cuestión, a partir de la información proporcionada por el codificador óptico acoplado a los servomotores o por un acelerómetro colocado en el eje de interés. En la figura 16 se muestra el caso del sistema de monitoreo utilizando un acelerómetro como sensor primario y una tarjeta FPGA para la realización del procesamiento de la señal. Especialidad: Mecatrónica 25
  • 26. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial Li PGA b)' rArometro Del 4aceIerómetro Figura 16. Monitoreo de la dinámica de movimiento en un eje utilizando acelerómetro y FPGA, a) Sensor, b) FPGA. El monitoreo de la dinámica de movimiento en los ejes de una máquina CNC, y su subsecuente parametrización, pueden ser utilizados para mejorar los procesos de manufactura mediante la optimización de trayectorias que minimicen el error y mejoren los acabados de las piezas maquinadas. Ejemplos de estas mejoras se tienen en (de Santiago- Perez, 2010) donde se optimiza la velocidad de avance en tornos y fresadoras mediante trayectorias polinomiales. Por otro lado, en (Rivera- Guillen, 2010) se logra la reducción del error de seguimiento en ejes de máquinas CNC y en (Rivera-Guillen, 2011) se obtiene una reducción del jaloneo mediante el uso de trayectorias polinomiales de movimiento. Un procesador general de diferentes tipos de aproximación polinomial basado en FPGA se desarrolla en (de Santiago-Perez, 2013). La versión que contiene múltiples ejes coordinados se realiza en (Jaen-Cuellar, 2012) como se muestra en la figura 17. El software de diseño contiene los algoritmos para generar las trayectorias optimizadas para la reducción de las vibraciones y limitación del jaloneo durante el proceso de maquinado de la pieza deseada y el controlador basado en FPGA se encarga de coordinar los movimientos de los tres ejes en el caso de la fresadora mostrada, de acuerdo con las trayectorias calculadas. Las técnicas de procesamiento en el dominio de la frecuencia y en el espacio tiempo-frecuencia han sido utilizadas ampliamente en tiempos recientes para realizar diagnóstico de la condición operativa en máquinas-herramienta. En (Romero-Troncoso, 2004) se desarrolla un sistema de detección de ruptura de la herramienta de corte en un proceso de fresado por medio de la transformada de ondoletas, aplicada a la señal de corriente de los servomotores que mueven la bancada. Más adelante, (Franco-Gasca, 2009) extiende los resultados al proceso de taladrado y ( Trejo-Hernandez, 2010) lleva más allá los resultados para llegar a estimar el grado de desgaste de la herramienta de corte Especialidad: Mecatrónica 26
  • 27. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial mediante el proceso algorítmico descrito en la figura 18, utilizando fusión de sensores tanto de vibraciones en la bancada como de corriente de los servomotores. Software de diseño de trayectorias USB SL1' FPGA Ala maquina MIL CNC Fresadora reconvertida a CNC Controlador central basado en FPGA Figura 17. Sistema de generación de trayectorias para reducir el jaloneo y las vibraciones en ejes múltiples de máquinas CNC. Señales de aceleracón II,, .1, and ,1 1 A. .4, A j Señal con ventana Ventana temporal Resultante de la aceleración Parámetros , .1 drpe':O ," J Estimación del área de desgaste de la herramienta 1 Señal con ventana Ventana temporal Señal filtrada It JL _ Seltaide corriente ib FIltro pasa bajas Figura 18. Proceso algorítmico para estimar el grado de desgaste de una herramienta de corte en un proceso de maquinado. Especialidad: Mecatrónica 27
  • 28. r) b) c /1 Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial Sistemas reconfigurables para el monitoreo y diagnóstico que operan en el dominio de la frecuencia y del espacio tiempo-frecuencia han sido desarrollados por (Rangel-Magdaleno, 2010) quienes hacen uso de la transformada de Fourier y la transformada de ondoletas a señales de vibraciones. Más adelante (Romero-Troncoso, 2012) diseñan un sensor inteligente reconfigurable utilizando la transformada de ondoletas en paquete como se muestra en la figura 19 en dos configuraciones posibles del instrumento. - Pantalla VGA FPdA FPGA ________ rma ro Figura 19. Sensor inteligente con procesamiento de paquete de ondoletas, a) desplegado en monitor VGA, b) desplegado en LCD. Los sistemas FPGA también han sido utilizados para mejorar otros procesos industriales. Por ejemplo, una aplicación al control y monitoreo de una máquina inyectora de plástico de la tecnología FPGA mediante un procesador de aplicación específica se muestra en (Munoz-Barron, 2012). En (Granados-Lieberman, 2014) se analizan los efectos en la reducción del torque del husillo ante caídas de voltaje en la alimentación y en (Granados-Lieberman, 2013a) se estudian los efectos de interacción entre diversas máquinas que se encuentran alimentadas por la misma línea y cómo se afectan los procesos de maquinado con los transitorios que ocurren en estas máquinas. Otra aplicación de los FPGA es en el desarrollo de sistemas de compresión de datos para almacenar señales ultrasónicas en el monitoreo de grietas en tuberías como se muestra en (Soto-Cajiga, 2012). Sistemas expertos para la clasificación de fallos en maquinaria industrial han sido desarrollados en (Carino-Corrales, 2014) donde se hace uso de dos tipos de clasificadores, máquinas de soporte vectorial y análisis de componentes principales, para lograr mejorar la eficiencia en la clasificación de fallas en maquinaria cuando se presentan zonas conflictivas de decisión. Por otro lado, (Saucedo-Gallaga, 2014) desarrollan un sistema experto para determinar el grado de desgaste en Especialidad: Mecatrónica 28
  • 29. Tecnología FPGA para el monítoreo y diagnóstico de fallas en maquinaria industrial cajas de engranes, utilizando señales de vibraciones, donde en la figura 20 aparece el esquema general de las pruebas experimentales. Figura 20. Pruebas experimentales para determinar el grado de desgaste en una caja de engranes. 4.1.3 Monitoreo y diagnóstico en motores de inducción. Especial atención requieren los motores de inducción en el monitoreo y diagnóstico de fallos, debido a su importancia en la maquinaria industrial al ser los principales proveedores de la potencia mecánica al sistema. Las últimas tres décadas se han caracterizado por una gran cantidad de investigaciones internacionales encaminadas a mejorar las técnicas de monitoreo y diagnóstico de los motores de inducción. Investigaciones realizadas en el dominio del tiempo para el monitoreo y diagnóstico de fallos en motores de inducción incluyen a (Rangel- Magdaleno, 2009b) para detectar barras parcialmente rotas en el rotor y (Garcia-Ramirez, 2013) donde se muestra el desarrollo de un sensor inteligente para la detección automática de fallas. Con respecto al procesamiento en el dominio de la frecuencia, en (Contreras-Medina, 2010) se presenta el desarrollo de un sistema analizador de vibraciones para tres ejes, utilizando la transformada de Fourier como técnica de procesamiento digital para el análisis y diagnóstico de motores de inducción. Por otro lado, la técnica de análisis espectral de alta resolución por clasificación de señales múltiples se reporta en (Garcia- Perez, 2011) para señales eléctricas y en (Garcia-Perez, 2012) para señales acústicas, encaminadas a la detección de fallas en motores de inducción. Por su parte, en (Valtierra-Rodriguez, 2013a) se utiliza la Especialidad: Mecatrónica 29
  • 30. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial transformada de Hilbert como técnica de análisis en frecuencia para la detección de fallas. Técnicas combinadas de análisis espectral de alta resolución se emplean en (Romero-Troncoso, 2013) y en (Romero- Troncoso, 2014) para la detección temprana de fallas en motores de inducción, cuando la alimentación es proporcionada por un inversor, el cual introduce armónicos indeseables a la señal de corriente eléctrica y hace más difícil el proceso de detección de fallas tal como se muestra en los espectrogramas de la figura 21. En esta figura se muestran los casos de un motor sano en comparación con un motor que tiene una barra rota en el rotor y cómo ésta afecta el patrón del espectro; también se aprecian los armónicos que introduce el inversor. N 1 o o o 2 u- Indicadores de la presenc - de barras rc N 1 o a.) =o 2 u- Tiempo (s) Armónicos / indeseables Tiempo (s) Componente principal Figura 21. Espectrograma de un motor de inducción alimentado por inversor, a) sano, b) con una barra rota. Técnicas de descomposición tiempo-frecuencia también han sido utilizadas para el monitoreo y diagnóstico de fallas en motores de inducción, siendo pionero el trabajo de (Ordaz-Moreno, 2008) donde se utiliza la transformada de ondolotas para señales de corriente eléctrica, mientras que en (Rodriguez-Donate, 2011a) la transformada de ondoletas se aplica a señales de vibraciones, mientras que en (Mi/lan- Almaraz, 2011) se aplica el análisis bajo condiciones de alimentación por inversor. Por otro lado, en (Camarena-Martinez, 2014) se realiza el monitoreo y diagnóstico de la condición del motor de inducción mediante la descomposición en modo empírico. En la figura 22 se muestra la descomposición de la señal de corriente eléctrica para los casos de un motor sano y de un motor con una barra rota y se observa la presencia Especialidad: Mecatrónica 30
  • 31. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial de un patrón diferenciado entre los diferentes niveles de descomposición, marcados como IMF, para el motor con falla. a) IMF i . b) IMFI LIIMHiT': . ! 21)0 100 60)) 40)) ioo 200 400 0(8) 800 11)00 11IF, (II 1ME2 'H 11 0.1 0 200 400 (0(I 1(00 1001) 1 0 1,00 * 14(j1) 000 Evolución de la taPia 0.1 - 0.1 -0.1 0 200 lOO (00 (40)) 1000 Ci 2(4) 400 ((00 400 00)) - 1II 0.1 • < 41.1 () II ,---.--•----_------._-.-, -- 4) 201)0 .11)11 1,00 1(0() 1000 CI 2(0 40)) 600 8(1(1 II(0)) Muestras Muestras Figura 22. Descomposición de modo empírico de la señal de corriente eléctrica de un motor de inducción bajo la condición, a) sano, b) con una barra rota. Los sistemas expertos de clasificación han sido muy utilizados en la investigación del diagnóstico de fallas en motores de inducción. En (Romero-Troncoso, 2011a) se desarrolla un sistema clasificador de fallas múltiples utilizando lógica difusa. Por otro lado, (Garcia-Ramirez, 2012) presentan el desarrollo de un sensor inteligente basado en FPGA, utilizando técnicas mixtas y redes neuronales para la clasificación de fallas en motores de inducción. Finalmente, la investigación se ha extendido a la identificación no solamente de fallas en el motor de inducción, sino en los diferentes componentes que conforman la cadena cinemática completa, como el sistema de diagnóstico por termografía diseñado por (Garcia-Ramirez, 2014), tal como se muestra en la figura 23, donde aparecen diversos termogramas que indican patrones diferenciados para diversas fallas presentes en los motores de inducción y la cadena cinemática asociada. En estos termogramas se han segmentado diferentes regiones donde se produce la diferencial térmica más pronunciada entre el estado sano y la condición de falla. Especialidad: Mecatrónica 31
  • 32. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial a) 1:1 11.(e)(b) (d) 73 .0 u :uIt (f) h) Figura 23. Termogramas de la condición del motor y la cadena cinemática asociada, a) Motor sano, b) barra parcialmente rota, c) una barra rota, d) dos barras rotas, e) balero dañado, f) polea desbalanceada, g) carga desalineada, h) desbalance de voltaje, 1) otra perspectiva de la carga desalineada mostrando la cadena cinemática. 4.2 Aplicaciones en robótica industrial. En el campo de la robótica industrial, el grupo de investigación ha estudiado el problema de sintonía e identificación de parámetros de los servosistemas para el control de los ejes del robot. En (Milosawlewitsch- Aliaga, 2010) se hace un análisis de técnicas de control de servosistemas con aplicación a los servomotores. En (Morales- Velazquez, 2010b) se diseña en forma completa un microprocesador de aplicación específica para la identificación de parámetros en sistemas de control con implementación en FPGA. Este microprocesador es modificado y expandido en (Jaen-Cuellar, 2013) para incluir funciones orientadas a realizar algoritmos genéticos para la identificación, sintonía y control de servomotores con aplicaciones en robótica. Por otro lado, la optimización de trayectorias para reducir las vibraciones y el jaloneo en robots manipuladores es tratada en (Osornio-Rios, 2007) y en (Osornio- Rios, 2009). Especialidad: Mecatrónica 32
  • 33. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial Sistemas de sensores colaborativos para monitorear las vibraciones y mejorar las trayectorias de robots manipuladores son desarrollados en (Rodriguez-Donate, 2010) y (Rodriguez-Donate, 2011b). La figura 24 muestra la instrumentación mediante acelerómetros (Ai) y codificadores ópticos (E1) de un robot industrial tipo PUMA de seis grados de libertad para obtener la cinemática directa y monitorear las vibraciones y la dinámica de movimiento. a) 11 4 Figura 24. Instrumentación de un robot industrial tipo PUMA, a) localización de los acelerómetros (A1) y codificadores ópticos (E1), b) interconectividad del sistema. Especialidad: Mecatrónica 33
  • 34. ba Motor de inducción !i:L± para carga __ JI - Sensor inteIige PC opcional 1 Pantalla táctil I 1 Tarjeta con FPGA Adquisición Acondiciona- Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial 4.3 Aplicaciones en la calidad de la energía eléctrica. El monitoreo de la línea de alimentación eléctrica en los diferentes procesos industriales ha cobrado gran importancia en los últimos años, debido a la creciente demanda en el suministro y a la interconexión de diversas fuentes generadoras a la red común. Un análisis del estado del arte de las técnicas utilizadas para el monitoreo de disturbios eléctricos y calidad de la energía se presenta en (Granados-Líeberman, 2011). La investigación alrededor del monitoreo de la calidad de la energía ha tomado diversas vertientes, siendo una de ellas el monitoreo preciso de la frecuencia de la línea, como el sensor inteligente desarrollado en (Granados-Lieberman, 2009) y las técnicas de alta resolución presentadas en (Romero-Troncoso, 201 ib). Otra de las vertientes de investigación y desarrollo tecnológico sobre el monitoreo de la calidad de la energía se tiene en el diseño y construcción de equipos especializados para el monitoreo y análisis de disturbios eléctricos contenidos en la línea de suministro. Una técnica que permite distinguir y clasificar los diferentes disturbios eléctricos que aparecen en la línea, definidos por las normas internacionales, ha sido desarrollado en (Va/tierra-Rodríguez, 2014). Instrumentos específicos para el monitoreo de la calidad de la energía eléctrica y la detección y clasificación de disturbios han sido diseñados en (Granados-Líeberman, 2013b) donde se utiliza la transforma Hilbert y redes neuronales para desarrollar un sensor inteligente que permite monitorear la calidad de la energía y detectar, cuantificar y clasificar diversos disturbios eléctricos en tiempo real como se muestra en la figura 25.. b)distijrhins pIirtrir.n Figura 25. Sensor inteligente para el monitoreo de la calidad de la energía y clasificación de disturbios eléctricos, a) aspecto general de las pruebas, b) componentes del sensor inteligente. Especialidad: Mecatróriica 34
  • 35. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial Por otra parte, un sistema de monitoreo en tiempo real de armónicos de la línea se presenta en (Valtierra-Rodriguez, 2013b) donde se han utilizado técnicas de redes neuronales como se puede ver en la figura 26, donde el sistema presenta el monitoreo del contenido armónico en el espacio tiempo-frecuencia. En esta figura se muestra la variación del contenido armónico para tres condiciones de operación de un sistema eléctrico. Finalmente, en (Valtierra-Rodriguez, 2013c) se muestra el desarrollo de un instrumento de monitoreo de la calidad de la energía, considerando los disturbios eléctricos definidos en las normas internacionales, extendiendo el análisis a sistemas trifásicos. a) Componente principal /3er armónico Arnónico40 E Frecuencia (Hz) 3000 0 TIempo (s) c) Incremento instantáneo del armónico ca.1 E <0 b) Componente principal er armónico .;1 1000 2000 0.8 ónic 40 Frecuencia (Hz) 3000 0 02 Tiempo (s) Componente principal /3er armónico 40 1000 2000 Frecuencia (Hz) o 02 Tiempo (s) Figura 26. Monitoreo en tiempo real de armónicos de la señal de corriente, a) arranque suave de un motor, b) operación de cargas con inversor, c) incremento instantáneo en el contenido armónico por interacción de varias cargas. 4.4 Aplicaciones en biotecnología. Otra de las áreas industriales que se han visto beneficiadas con el desarrollo de instrumentos de medición basados en tecnología FPGA es el área biotecnológica. Ejemplos del desarrollo de instrumentos para aplicaciones biotecnológicas se encuentra en (MilIan-Alamaraz, 2010) donde se desarrolla un sensor inteligente que estima de manera dinámica la actividad de transpiración en plantas bajo condiciones de invernadero. Por otro lado, en (Contreras-Medina, 2012) se presenta un instrumento que utiliza procesamiento de imágenes basado en tecnología FPGA para cuantificar diversos síntomas que presentan las Especialidad: Mecatrónica 35
  • 36. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial hojas de las plantas, como se muestra en el diagrama de bloques de la figura 27. Otro instrumento, en este caso para la estimación cuantitativa in situ de la actividad fotosintética de una planta se desarrolla en (MilIan-Almaraz, 2013). Como ejemplo final se muestra el sensor inteligente para cuantificar el estrés hídrico al que está sometida una planta en condiciones de invernadero, presentado en (Duarte-Galvan, 2014) y que se ilustra en la figura 28. Monitor LCD Sensar inteligente 1 Periféricos A una PC ojas infectadasopcIonal H por alguna LLPueo 1 1 1 RS-232 LEO patologia 1qGA LED Puerto2 j 1Unidad de / 1 •procesamiento,' . 11 / . / / IAlgontmos: l- - - Deformación Puntos blanco - Clorosis 1 L-Necrosis Panel Panel Panel de Itraslúcido transparente iluminación ii °------ Cámarafotografica Figura 27. Diagrama de bloques del instrumento para la cuantificación de síntomas comunes en hojas de plantas. Servomotor IIJ l Sensor de luz Entrada de la - muestra de aire humedad amaba^ Entrada de ref&ena Planta de tomate Figura 28. Sensor inteligente para estimar el estrés hídrico de una planta. Especialidad: Mecatrónica 36
  • 37. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial S. CONCLUSIONES. El monitoreo y diagnóstico en maquinaria industrial es un problema importante para atender en la industria moderna y es necesario contar con recursos humanos especializados en el desarrollo y aplicación de técnicas avanzadas para realizar esta tarea. Es responsabilidad de los profesionales dedicados a la educación superior e investigación el formar las nuevas generaciones de ingenieros que sean capaces de incorporarse a la industria nacional para atender los problemas de productividad mediante la correcta aplicación de las metodologías de monitoreo y diagnóstico, utilizando las herramientas tecnológicas más adecuadas, como por ejemplo los dispositivos FPGA. Las aplicaciones de la tecnología FPGA no se restringe al desarrollo de sistemas de monitoreo y diagnóstico, sino que es una tecnología que puede ser aplicada a diversos campos industriales como el control y la instrumentación. Las Universidades mexicanas deberán incorporar el estudio de esta tecnología en su currículum para las carreras de ingeniería en mecatrónica, electrónica, electromecánica y afines, para poder contar con recursos humanos que resuelvan problemas industriales con las tecnologías de punta. Asimismo es importante contar con grupos de investigación que contribuyan con la generación del conocimiento en el área del monitoreo y diagnóstico industrial mediante el desarrollo de nuevas metodologías de procesamiento de señales, sistemas expertos y diseño de equipo especializado. A la par, estos grupos de investigación deberán comprometerse en la formación de recursos humanos que conformarán las generaciones de reemplazo dentro de la especialidad. REFERENCIAS. Camarena-Martinez, D., et al., "Empirical mode decomposition and neural networks on FPGA for fault diagnosis in induction motors", Hindawi, The Scientific World Journal, Vol. 2014, Article ID 908140. Estados Unidos. 2014. Carino, J. A., et al., "Hierarchical classification scheme based on identification, isolation and analysis of conflictive regions", IEEE, Proceedings of the 19th Conference on Emerging Technology and Factory Automation ETFA, pp 1-8. Barcelona, Spain. 2014. Especialidad: Mecatrónica 37
  • 38. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial Contreras-Medina, L. M., et al., "FPGA based multiple-channel vibration analyzer for industrial applications in induction motor failure detection", IEEE, Transactions on Instrumentation and Measurement, Vol. 59, No. 1, pp 63-72. Estados Unidos. 2010. Contreras-Medina, L. M., et al., "Smart sensor for real-time quantification of common symptoms present in unhealthy plants", MDPI, Sensors, Vol. 12, pp 784-805. Suiza. 2012. de Santiago-Perez, J. J., et al., "DSP algorithm for the extraction of dynamics parameters in CNC machine tool servomechanisms from an optical incremental encoder", Elsevier, International Journal of Machine Tools & Manufacture, Vol. 48, No. 12-13, pp 1318-1334. Holanda. 2008. de Santiago-Perez, J. J., et al., "Feedrate optimization by polynomial interpolation for CNC machines based on a reconfigurable FPGA controller", NISCAIR, Journal of Scientific and Industrial Research, Vol. 69, No. 5, pp 342-349. India. 2010. de Santiago-Perez, 3. J., et al., "FPGA-based hardware CNC interpolator of Bezier, Splines, B-Splines and NURBS curves for industrial applications", Elsevier, Computers & Industrial Engineering, Vol. 66, No. 4, pp 925-932. Holanda. 2013. Duarte-Galvan, C., et al., "FPGA-based smart sensor for drought stress detection in tomato plants using novel physiological variables and discrete wavelet transform", MDPI, Sensors, Vol. 14, pp 18650-18669. Suiza. 2014. Franco-Gasca, L. A., et al., "Reconfigurable filtering system for sensorless signal acquisition in machining processes", Springer, The International Journal of Advanced Manufacturing Technology, Vol. 38, No. 1-2, pp 102-109. Alemania. 2008. Franco-Gasca, L. A., et al., "FPGA based failure monitoring system for machining processes", Springer, The International Journal of Advanced Manufacturing Technology, Vol 40, No. 7-8, pp 676-686. Alemania. 2009. Garcia-Perez, A., et al., "The application of high-resolution spectral- analysis for identifying multiple combined faults in induction motors", IEEE, Transactions on Industria 1 Electronics, Vol. 58, No. 5, pp 2002- 2010. Estados Unidos. 2011 Especialidad: Mecatrónica 38
  • 39. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial Garcia-Perez, A., et al., "Application of high-resolution spectral-analysis for identifying faults in induction motors by means of sound", SAGE, Journal of Vibration and Control, Vol. 18, No. 11, pp 1585-1592. Estados Unidos. 2012 Garcia-Ramirez, A. G., et al., "Smart sensor for online detection of multiple-combined faults in VSD-fed induction motors", MDPI, Sensors, Vol. 12, pp 11989-12005. Suiza. 2012. Garcia-Ramirez, A., et al., "FPGA-based smart-sensor for fault detection in VSD-fed induction motors", IEEE, Proceedings of the gth IEEE International Simposium on Diagnostics of Electrical Machines, Power Electronics & Drives SDEMPED, pp 313-320. Valencia, España. 2013. Garcia-Ramirez, A. G., et al., "Fault detection in induction motors and the impact on the kinematic chain through thermographic analysis", Elsevier, Electric Power Systems Research, Vol. 114, pp 1-9. Holanda. 2014. Granados-Lieberman, D., et al., "A real-time smart sensor for high- resolution frequency estimation in power systems", MDPI, Sensors, Vol. 9, No. 9, pp 7412-7429. Suiza. 2009. Granados-Lieberman, D., et al., "Techniques and methodologies for power quality analysis and disturbances classification in power systems: a review", JET, Generation, Transmission and Distribution, Vol. 5, No. 4, pp 519-529. Reino Unido. 2011. Granados-Lieberman, D., et al., "Voltage drop repercussions in torque spindle for turning processes due to the interaction of several industrial machines in a manufacturing celI", NISCAIR, Journal of Scientific and Industrial Research, Vol. 72, No. 12, pp 746-753. India. 2013a. Granados-Lieberman, D., et al., "A Hilbert transform-based smart sensor for detection, classification, and quantification of power quality disturbances", MDPI, Sensors, Vol. 13, pp 5507-5527. Suiza. 2013b. Granados-Lieberman, D., et al., "Torque reduction and workpiece finishing effects due to voltage sags in turning processes", SAGE, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 228, No. 1, pp 140-148. Estados Unidos. 2014. Especialidad: Mecatrónica 39
  • 40. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial Jaen-Cuellar, A. Y., et al., "A hardware-software system for coordinated multi-axis control based on a non uniform rational B-splines interpolator applied to industrial computer numerically controlled machines", SAGE, Proceedings of the Institution of Mechanical Engineers, Part 1, Journal of Systems and Control Engineering, Vol. 226, No. 6, pp 831-840. Estados Unidos. 2012. Jaen-Cuellar, A. Y., et al., "PID-controller tuning optimization with genetic algorithms in servo systems", InTech, International Journal of Advanced Robotics Systems, Vol. 10, No. 324, pp 1-14. Croacia. 2013. Mekid, 5., et al., "Beyond intelligent manufacturing: A new generation of flexible intelligent NC machines", Elsevier, Mechanism and Machine Theory, Vol. 44, pp. 466-476. Holanda. 2009. Millan-Almaraz, 3. R., et al., "FPGA-based fused smart sensor for real- time plant-transpiration dynamic estimation", MDPI, Sensors, Vol. 10, No. 9, pp 8316-8331. Suiza. 2010. Millan-Almaraz, J. R., et al., "Wavelet based methodology for broken bar detection in induction motors with variable speed drive", Taylor and Francis, Electric Power Components and Systems, Vol. 39, No. 3, pp 271-287. Estados Unidos. 2011. Millan-Almaraz, J. R., et al., "FPGA-based wireless smart sensor for real- time photosynthesis monitoring", Elsevier, Computers and Electronics in Agriculture, Vol. 95, pp 58-69. Holanda. 2013. Milosawlewitsch-Aliaga, M., et al., "Model-based iterative feedback tuning for industrial PID controllers", NISCAIR, Journal of Scientific and Industrial Research, Vol. 69, No. 12, pp 930-936. India. 2010 Morales-Velazquez, L., et al., Sensorless jerk monitoring using an adaptive antisymmetric high-order FIR filter, Elsevier, Mechanical Systems and Signal Processing, Vol. 23, No. 7, pp 2383-2394. Holanda. 2009. Morales-Velazquez, L., et al., "Open-architecture system based on a reconfigurable hardware-software multi-agent platform for CNC machines", Elsevier, Journal of Systems Architecture, Vol. 56, No. 9, pp 407-418. Holanda. 2010a. Morales-Velazquez, L., et al., "Special purpose processor for parameter identification of CNC second order servo systems on a low-cost FPGA Especialidad: Mecatrónica 40
  • 41. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial platform", Elsevier, Mechatronics, Vol. 20, No. 2, pp 265-272. Holanda. 2010b. Morales-Velazquez, et al., "FPGA embedded single-cycle 16-bit microprocessor and tools", IEEE, Proceedings of the International Conference on Reconfigurable Computing and FPGAs RECONFIG, pp 1-6, Cancún, México. 2012. Moreno-Tapia, S. y., et al., "A field programmable gate array-based reconfigurable smart-sensor network for wireless monitoring of new generation computer numerically controlled machines", MDPI, Sensors, Vol. 10, No. 8, pp 7263-7286. Suiza. 2010. Munoz-Barron, B., et al., "FPGA-based multiprocessor system for injection molding control", MDPI, Sensors, Vol. 12, No. 10, pp 14068- 14083. Suiza. 2012. Ordaz-Moreno, A., et al., "Automatic online diagnosis algorithm for broken-bar detection on induction motors based on discrete wavelet transform for FPGA implementation", IEEE, Transactions on Industrial Electronics, Vol. 55, No. 5, pp 2193-2201. Estados Unidos. 2008. Osornio-Rios, R. A., et al., "Computationally efficient parametric analysis of discrete-time polynomial based acceleration-deceleration profile generation for industrial robotics and CNC machinery", Elsevier, Mechatronics, Vol. 17, No. 9, pp 511-523. Holanda. 2007. Osornio-Rios, R. A., et al., "FPGA implementation of higher degree polynomial acceleration profiles for peak jerk reduction in servomotors", Elsevier, Robotics and Computer-Integrated Manufacturing, Vol. 25, No. 2, pp 379-392. Holanda. 2009. Rangel-Magdaleno, J. J., et al., "Novel oversampling technique for improving signal-to-quantization noise ratio on accelerometer-based smart jerk sensor in CNC applications", MDPI, Sensors, Vol. 9, No. 5, pp 3767-3789. Suiza. 2009a. Rangel-Magdaleno, 3. 3., et al., "Novel methodology for online haif- broken-bar detection on induction motors", IEEE, Transactions on Instrumentation and Measurement, Vol. 58, No. 5, pp 1690-1698. Estados Unidos. 2009b. Rangel-Magdaleno, et al., "FPGA-based vibration analyzer for continuous CNC machinery monitoring with fused FFT-DWT signal processing", Especialidad: Mecatrónica 41
  • 42. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial IEEE, Transactions on Instrumentation and Measurement, Vol. 59, No. 12, pp 3184-3194. Estados Unidos. 2010. Rivera-Guillen, 3. R., et al., "Design methodology for fully dynamic- controlled polynomial profiles and, reduced tracking error in CNC machines", Springer, The International Journal of Advanced Manufacturing Technology, Vol. 51, No. 5-8, pp 723-737. Alemania. 2010. Rivera-Guillen, J. R., et al., "Methodology for obtaining C3 continuity on tool trajectory featuring acceleration and jerk constraint on computer numerical control machine", SAGE, Proceedings of the Institution of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science, Vol. 225, pp 2206-2215. Estados Unidos. 2011. Rodriguez-Donate, C., et al., "FPGA-based fused smart sensor for dynamic and vibration parameter extraction in industrial robot links", MDPI, Sensors, Vol. 10, No. 4, pp 4114-4129. Suiza. 2010. Rodriguez-Donate, C., et al., "Wavelet-based general methodology for multiple fault detection on induction motors at the startup vibration transient", SAGE, Journal of Vibration and Control, Vol. 17, No. 9, pp 1299-1309. Estados Unidos. 2011a. Rodriguez-Donate, C., et al., "Fused smart sensor network for multi-axis forward kinematics estimation in industrial robots", MDPI, Sensors, Vol. 11, No. 4, pp 4335-4357. Suiza. 2011b. Romero-Troncoso, R. J., et al., "FPGA based on-line tool breakage detection system for CNC milling machines", Elsevier, Mechatronics, Vol. 14, No. 4, pp 439-454. Holanda. 2004. Romero-Troncoso, R. 3., et al., "FPGA-based online detection of multiple combined faults in induction motors through information entropy and fuzzy inference", IEEE, Transactions on Industrial Electronics, Vol. 58, No. 11, pp 5263-5270. Estados Unidos. 2011a. Romero-Troncoso, R. J., et al., "Real-time high-resolution frequency estimation of electric signals in industrial applications", NISCAIR, Journal of Scientific and Industrial Research, Vol. 70, No. 5, pp 327-33 1. India. 20 lib. Romero-Troncoso, R. J., et al., "Reconfigurable S0C-based smart sensor for wavelet and wavelet packet analysis", IEEE, Transactions on Especialidad: Mecatrónica 42
  • 43. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial Instrumentation and Measurement, Vol. 61, No. 9, pp 2458-2468. Estados Unidos. 2012. Romero-Troncoso, R. J., et al., "Early broken rotor bar detection techniques in VSD-fed induction motors at steady-state", IEEE, Proceedings of the gth International Simposium on Diagnostics of Electrical Machines, Power Electronics & Drives SDEMPED, pp 173-181. Valencia, España. 2013. Romero-Troncoso, R. J., et al., "Broken rotor bar detection in VSD-fed induction motors at startup by high-resolution spectral analysis", IEEE, Proceedings of the XXI International Conference on Electrical Machines ICEM, pp 1848-1854. Berlin, Alemania. 2014. Saucedo-Dorantes, J. J., et al., "Reliable methodology for gearbox wear monitoring based on vibration analysis", IEEE, Proceedings of the 40th Annual Conference of the IEEE Industrial Electronics Society IECON, pp 3381-3385. Dallas, Estados Unidos. 2014. Soto-Cajiga, J. A., et al., "FPGA-based architecture for real-time data reduction of ultrasound signals", Elsevier, Ultrasonics, Vol. 52, No. 2, pp 230-237. Holanda. 2012. Trejo-Hernandez, M., et al., "FPGA-based fused smart-sensor for tool- wear area quantitative estimation in CNC machine inserts", MDPI, Sensors, Vol. 10, No. 4, pp 3373-3388. Suiza. 2010. Valtierra-Rodriguez, M., et al., "FPGA-based instantaneous estimation of unbalance/symmetrical components through the Hilbert transform", IEEE, Proceedings of the 39th Annual Conference of the IEEE Industrial Electronics Society IECON, pp 2277-2282. Viena, Austria. 2013a. Valtierra-Rodriguez, M., et al., "FPGA-based neural network harmonic estimation for continuous monitoring of the power line in industrial applications", Elsevier, Electric Power Systems Research, Vol. 98, pp 51- 57. Holanda. 2013b. Valtierra-Rodriguez, M., et al., "Reconfigurable instrument for neural- network-based power-quality monitoring in 3-phase power systems", JET, Generation, Transmission & Distribution, Vol. 7, No. 12, pp 1498- 1507. Reino Unido. 2013c. Valtierra-Rodriguez, M., et al., "Detection and classification of single and combined power quality disturbances using neural networks", IEEE, Especialidad: Mecatrónica 43
  • 44. Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial Transactions on Industrial Electronics, Vol. 61, No. 5, pp 2473-2482. Estados Unidos. 2014. AGRADECIMIENTOS. Agradezco a todos mis colaboradores y estudiantes, con una particular mención al Dr. Roque Alfredo Osornio Ríos y al Dr. Arturo García Pérez, con quienes conformamos el grupo de investigación HSPdigital con presencia en la Universidad de Guanajuato, la Universidad Autónoma de Querétaro, la Universidad Autónoma de Sinaloa, en México; y las Universidades de Valladolid y Politécnica de Cataluña, en España. Un agradecimiento personal al Dr. Gilberto Herrera Ruiz, quien me enseñó y orientó en el camino de la investigación. También agradezco al Dr. Juan Carlos Juregui Correa y al Dr. Irineo Torres Pacheco por sus atinados consejos durante mi desarrollo y consolidación como investigador. CURRÍCULUM VITAE. El Dr. Romero Troncoso obtuvo el título de Ingeniero en Comunicaciones y Electrónica en 1987 por parte de la Universidad de Guanajuato; el grado de Maestro en Ingeniería Eléctrica (Instrumentación y Sistemas Digitales) por parte de la misma Universidad en 1991 y el grado de Doctor en Ingeniería por parte de la Universidad Autónoma de Querétaro en 2004. Ha realizado estancias de investigación en la Universidad Politécnica de Cataluña, España, en 2013 y en la Universidad de Valladolid, España, en 2014. El Dr. Romero Troncoso recibió el premio ADIAT de innovación tecnológica 2004. Es miembro del Sistema Nacional de Investigadores desde 2005, actualmente Nivel II. Es Senior Member del IEEE (Institute of Electrical and Electronícs Engineers), Estados Unidos, desde 2012. Desde 1987, el Dr. Romero Troncoso ingresó como profesor adscrito al Departamento de Ingeniería Electrónica de la Universidad de Guanajuato, donde actualmente es profesor titular. Desde 2004 es profesor investigador invitado de la Facultad de Ingeniería de la Universidad Autónoma de Querétaro. Especialidad: Mecatrónica 44