SlideShare una empresa de Scribd logo
Capítulo 13 - Elasticidad
Presentación PowerPoint de
Paul E. Tippens, Profesor de Física
Southern Polytechnic State University
©

2007
Capítulo 13. Elasticidad

Photo © Vol. 10
PhotoDisk/Getty

El salto BUNGEE
utiliza una larga cuerda
elástica que se estira
hasta que llega a una
longitud máxima que
es proporcional al peso
del saltador. La
elasticidad de la
cuerda determina la
amplitud de las
vibraciones
resultantes. Si se
excede el límite
elástico de la cuerda,
ésta se romperá.
Objetivos: Después de completar
este módulo, deberá:
• Demostrar su comprensión de elasticidad,
límite elástico, esfuerzo, deformación y
resistencia a la rotura.
• Escribir y aplicar fórmulas para calcular
módulo de Young, módulo de corte y módulo
volumétrico.
• Resolver problemas que involucren cada uno
de los parámetros en los objetivos anteriores.
Propiedades elásticas de la materia
Un cuerpo elástico es aquel que regresa a su
Un cuerpo elástico es aquel que regresa a su
forma original después de una deformación.
forma original después de una deformación.

Bola de
golf

Banda de
goma

Balón de
soccer
Propiedades elásticas de la
materia
Un cuerpo inelástico es aquel que no regresa a su
Un cuerpo inelástico es aquel que no regresa a su
forma original después de una deformación.
forma original después de una deformación.

Masa o pan

Barro

Bola inelástica
¿Elástico o inelástico?

Una colisión elástica no
pierde energía. La
deformación en la
colisión se restaura por
completo.

En una colisión inelástica
se pierde energía y la
deformación puede ser
permanente. (Clic aquí.)
Un resorte elástico
Un resorte es un ejemplo de un cuerpo elástico
que se puede deformar al estirarse.

x

F

Una fuerza restauradora,
Una fuerza restauradora,
F, actúa en la dirección
F, actúa en la dirección
opuesta al desplazamiento
opuesta al desplazamiento
del cuerpo en oscilación.
del cuerpo en oscilación.

F = -kx
F = -kx
Ley de Hooke

Cuando un resorte se estira, hay una fuerza
restauradora que es proporcional al
desplazamiento.

F = -kx
F = -kx

x
m

La constante de
resorte k es una
F
propiedad del resorte
dada por:

∆F
k=
∆x

La constante de resorte k es una
La constante de resorte k es una
medida de la elasticidad del resorte.
medida de la elasticidad del resorte.
Esfuerzo y deformación
Esfuerzo se refiere a la causa de una deformación, y
deformación se refiere al efecto de la deformación.
La fuerza descendente F
causa el desplazamiento x.
x

F

Por tanto, el esfuerzo es la
fuerza; la deformación es la
elongación.
Tipos de
esfuerzo ocurre
Un esfuerzo de tensión

F

cuando fuerzas iguales y
opuestas se dirigen alejándose
mutuamente.
Un esfuerzo de compresión
ocurre cuando fuerzas
iguales y opuestas se dirigen
una hacia la otra.

W
Tensión

W
F
Compresión
Resumen de definiciones
Esfuerzo es la razón de una fuerza aplicada F
al área A sobre la que actúa:
Esfuerzo =

F
A

N
Unidades : Pa = 2
m

lb
o
in 2

Deformación es el cambio relativo en las dimensiones o
forma de un cuerpo como resultado de un esfuerzo aplicado:

Ejemplos: Cambio en longitud por unidad de
Ejemplos: Cambio en longitud por unidad de
longitud; cambio en volumen por unidad de
longitud; cambio en volumen por unidad de
volumen.
volumen.
Esfuerzo y deformación longitudinales

L

A
A

∆
L

F
Esfuerzo =
A

F

Para alambres, varillas y
barras, existe un esfuerzo
longitudinal F/A que
produce un cambio en
longitud por unidad de
longitud. En tales casos:

Deformación =

∆ L
L
Ejemplo 1. Un alambre de acero de 10 m
de largo y 2 mm de diámetro se une al
techo y a su extremo se une un peso de
200 N. ¿Cuál es el esfuerzo aplicado?
Primero encuentre el área del
alambre:

π D π (0.002 m)
A=
=
4
4
2

L
∆
L

A
A

F

A = 3.14 x 10-6 m2

F
200 N
Esfuerzo =
=
A 3.14 x 10 − 6 m 2

Esfuerzo
6.37 x 107 Pa

2
Ejemplo 1 (Cont.) Un alambre de acero
de 10 m se estira 3.08 mm debido a la
carga de 200 N. ¿Cuál es la
deformación longitudinal?
Dado: L = 10 m; ∆L = 3.08 mm
L
∆
L

∆L 0.00308 m
Deformación =
=
L
10 m
Deformación longitudinal
3.08 x 10-4
El límite elástico
El límite elástico es el esfuerzo máximo que un cuerpo puede
experimentar sin quedar deformado permanentemente.
2m

F
Esfuerzo =
A

2m

F

W

Bien

W
W

Más allá del
límite

Si el esfuerzo supera el límite elástico, la
longitud final será mayor que los 2 m originales.
Resistencia a la rotura
La resistencia a la rotura es el esfuerzo máximo que un
cuerpo puede experimentar sin romperse.
2m

F
Esfuerzo =
A

F

W

W
W

Si el esfuerzo supera la resistencia a la
rotura, ¡la cuerda se rompe!

W
W
Ejemplo 2. El límite elástico para el
acero es 2.48 x 108 Pa. ¿Cuál es el
peso máximo que puede soportar sin
superar el límite elástico?
Recuerde: A = 3.14 x 10-6 m2
L
∆
L

A
A

F

F
Esfuerzo =
= 2.48 x 108 Pa
A
F = (2.48 x 108 Pa) A

F = (2.48 x 108 Pa)(3.14 x 10-6 m2)

F = 779 N
F = 779 N
Ejemplo 2 (Cont.) La resistencia a la
rotura para el acero es 4089 x 108 Pa.
¿Cuál es el peso máximo que puede
soportar sin romper el alambre?
Recuerde: A = 3.14 x 10-6 m2
L
∆
L

A
A

F

F
Esfuerzo =
= 4.89 ×108 Pa
A

F = (4.89 x 108 Pa) A

F = (4.89 x 108 Pa)(3.14 x 10-6 m2)

F = 1536 N
F = 1536 N
El módulo de elasticidad
Siempre que el límite elástico no se supere,
una deformación elástica (deformación) es
directamente proporcional a la magnitud de la
fuerza aplicada por unidad de área (esfuerzo).
esfuerzo
Módulo de elasticidad =
deformación
Ejemplo 3. En el ejemplo anterior, el
esfuerzo aplicado al alambre de acero fue
6.37 x 107 Pa y la deformación fue 3.08 x 10-4.
Encuentre el módulo de elasticidad para el
acero.

L
∆
L

esfuerzo
6.37 × 10 7 Pa
Módulo =
=
deformación
3.08 × 10 − 4

Módulo = 207 x 1099 Pa
Módulo = 207 x 10 Pa

Este módulo de elasticidad longitudinal se llama
Este módulo de elasticidad longitudinal se llama
módulo de Young y se denota con el símbolo Y.
módulo de Young y se denota con el símbolo Y.
Módulo de Young
Para materiales cuya longitud es mucho mayor que el
ancho o espesor, se tiene preocupación por el módulo
longitudinal de elasticidad, o módulo de Young (Y).

esfuerzo longitudinal
Módulo de Young =
deformación longitudinal

F/A
FL
Unidades: Pa o lb
Y=
=
2
∆L / L A ∆L
in.
Ejemplo 4: El módulo de
Young para el latón es 8.96 x
1011 Pa. Un peso de 120 N se
une a un alambre de latón de 8 8 m
m de largo; encuentre el
aumento en longitud. El
∆L
diámetro es 1.5 mm.
Primero encuentre el área del alambre:

π D π (0.0015 m)
A=
=
4
4
2

120 N

2

A = 1.77 x 10-6 m2

FL
FL
Y=
or ∆L =
A∆L
AY
Ejemplo 4: (continuación)
Y = 8.96 x 1011 Pa; F = 120 N;
L = 8 m; A = 1.77 x 10-6 m2
F = 120 N; ∆L = ?

8m
∆L

FL
FL
120 N
Y=
or ∆L =
A∆L
AY
FL
(120 N)(8.00 m)
∆L =
=
-6 2
11
AY (1.77 x 10 m )(8.96 x 10 Pa)
Aumento en longitud:

∆L = 0.605 mm
∆L = 0.605 mm
Módulo de corte

Un esfuerzo cortante altera sólo la forma del
cuerpo y deja el volumen invariable. Por ejemplo,
considere las fuerzas cortantes iguales y opuestas
F que actúan sobre el cubo siguiente:
A
d
l φ
F

F

La fuerza cortante F produce un ángulo
cortante φ. El ángulo φ es la deformación y el
esfuerzo está dado por F/A como antes.
Cálculo del módulo de corte
d

l φ
F

A

El esfuerzo es
F fuerza por
unidad de
área:

F
Esfuerzo =
A

La deformación es el ángulo Deformación =
expresado en radianes:

d
φ =
l

El módulo de corte S se define como la razón del
esfuerzo cortante F/A a la deformación de corte φ:
Módulo de corte:
Módulo de corte:
unidades en pascales.
unidades en pascales.

F A
S=
φ
Ejemplo 5. Un perno de acero (S = 8.27 x 1010 Pa)
de 1 cm de diámetro se proyecta 4 cm desde la
pared. Al extremo se aplica una fuerza cortante de
36,000 N. ¿Cuál es la desviación d del perno?

π D π (0.01 m)
A=
=
4
4
2

l
d
F

2

Área: A = 7.85 x 10-5 m2

F A F A Fl
S=
=
=
;
φ
d l
Ad
(36, 000 N)(0.04 m)
d=
(7.85 x 10-5 m 2 )(8.27 x 1010 Pa)

Fl
d=
AS
d = 0.222 mm
d = 0.222 mm
Elasticidad volumétrica
No todas las deformaciones son lineales. A veces un
esfuerzo aplicado F/A resulta en una disminución del
volumen. En tales casos, existe un módulo
volumétrico B de elasticidad.
B=

esfuerzo volumétrico
−F A
=
deformación volumétrica
∆V V

El módulo volumétrico es negativo
El módulo volumétrico es negativo
debido a la disminución en V.
debido a la disminución en V.
El módulo volumétrico
esfuerzo volumétrico
−F A
B=
=
deformación volumétrica
∆V V

Dado que F/A por lo general es la presión P, se
puede escribir:

−P
− PV
B=
=
∆V / V
∆V
Las unidades siguen siendo pascales
(Pa) pues la deformación es
adimensional.
Ejemplo 7. Una prensa hidrostática contiene 5
litros de aceite. Encuentre la disminución en
volumen del aceite si se sujeta a una presión
de 3000 kPa. (Suponga que B = 1700 MPa.)

−P
− PV
B=
=
∆V / V
∆V
− PV −(3 x 10 Pa)(5 L)
∆V =
=
9
B
(1.70 x 10 Pa)
6

Disminución en V;
mililitros (mL):

∆V = -8.82 mL
∆V = -8.82 mL
Resumen: Elástico e
inelástico
Un cuerpo elástico es aquel que regresa a su
Un cuerpo elástico es aquel que regresa a su
forma original después de una deformación.
forma original después de una deformación.
Una colisión elástica no pierde energía. La
deformación en la colisión se restaura
completamente.
Un cuerpo inelástico es aquel que no regresa a su
Un cuerpo inelástico es aquel que no regresa a su
forma original después de una deformación.
forma original después de una deformación.
En una colisión inelástica, se pierde energía y
la deformación puede ser permanente.
Resumen
Tipos de esfuerzo

F

Un esfuerzo de tensión ocurre
cuando fuerzas iguales y
opuestas se dirigen alejándose
mutuamente.
Un esfuerzo de compresión
ocurre cuando fuerzas iguales
y opuestas se dirigen una
hacia la otra.

W
Tensión

W
F

Compresión
Resumen de definiciones
El esfuerzo es la razón de una fuerza aplicada
F al área A sobre la que actúa:
F
Esfuerzo =
A

N
Unidades = Pa = 2
m

lb
o
in 2

La deformación es el cambio relativo en dimensiones o
forma de un cuerpo como resultado de un esfuerzo aplicado:

Ejemplos: Cambio en longitud por unidad de
Ejemplos: Cambio en longitud por unidad de
longitud; cambio en volumen por unidad de volumen.
longitud; cambio en volumen por unidad de volumen.
Esfuerzo y deformación
longitudinales
L

A
A

∆
L

F
Esfuerzo =
A

F

Para alambres, varillas y
barras, hay un esfuerzo
longitudinal F/A que
produce un cambio en
longitud por unidad de
longitud. En tales casos:

Deformación =

∆ L
L
El límite elástico
El límite elástico es el esfuerzo máximo que un
cuerpo puede experimentar sin quedar
permanentemente deformado.

La resistencia a la rotura
La resistencia a la rotura es el mayor estrés que
un cuerpo puede experimentar sin romperse.
Módulo de Young

Para materiales cuya longitud es mucho mayor que el
ancho o el espesor, se tiene preocupación por el
módulo longitudinal de elasticidad, o módulo de
Young Y.
esfuerzo longitudinal
Módulo de Young =
deformación longitudinal

F/A
FL
Y=
=
∆L / L A ∆L

Unidades = Pa =

N
lb
o
m2
in 2
d

l φ
F

El módulo de corte
A

F

La deformación es el
ángulo expresado en
radianes:

Esfuerzo es
fuerza por
unidad de
área:

F
Esfuerzo =
A

Deformación =

d
φ=
l

El módulo de corte S se define como la razón del
esfuerzo cortante F/A a la deformación de corte φ:

El módulo de corte: sus
El módulo de corte: sus
unidades son pascales.
unidades son pascales.

F A
S=
φ
El módulo volumétrico
esfuerzo volumétrico
−F A
B =
=
deformación volumétrica
∆V V

Puesto que F/A por lo general es presión P, se
puede escribir:

−P
− PV
B=
=
∆V / V
∆V
Las unidades siguen siendo pascales (Pa)
pues la deformación es adimensional.
CONCLUSIÓN:
Capítulo 13 - Elasticidad

Más contenido relacionado

La actualidad más candente

239983359 ejercicios-resueltos-de-bio
239983359 ejercicios-resueltos-de-bio239983359 ejercicios-resueltos-de-bio
239983359 ejercicios-resueltos-de-bioguizelly ol za
 
Elasticidad ley de hooke
Elasticidad ley de hookeElasticidad ley de hooke
Elasticidad ley de hookeVero Kris
 
Clase 11 ecuaciones de maxwell parte a
Clase 11 ecuaciones de maxwell parte aClase 11 ecuaciones de maxwell parte a
Clase 11 ecuaciones de maxwell parte aTensor
 
Diapositivas de trabajo, potencia y energía.
Diapositivas de trabajo, potencia y energía.Diapositivas de trabajo, potencia y energía.
Diapositivas de trabajo, potencia y energía.Liz Castro
 
Trabajo realizado por la Fuerza que ejerce un resorte
Trabajo realizado por la Fuerza que ejerce un resorteTrabajo realizado por la Fuerza que ejerce un resorte
Trabajo realizado por la Fuerza que ejerce un resorteESPE
 
Practica 4 "Friccion Cinetica" Laboratorio de Cinematica Y Dinamica FI UNAM
Practica 4 "Friccion Cinetica" Laboratorio de Cinematica Y Dinamica FI UNAMPractica 4 "Friccion Cinetica" Laboratorio de Cinematica Y Dinamica FI UNAM
Practica 4 "Friccion Cinetica" Laboratorio de Cinematica Y Dinamica FI UNAMFernando Reyes
 
Sistema Masa - Resorte
Sistema Masa - ResorteSistema Masa - Resorte
Sistema Masa - Resorteblogdepelo
 
Dinámica Rotacional
Dinámica RotacionalDinámica Rotacional
Dinámica Rotacionalicano7
 
Tippens fisica 7e_diapositivas_05a
Tippens fisica 7e_diapositivas_05aTippens fisica 7e_diapositivas_05a
Tippens fisica 7e_diapositivas_05aMonteza Monteza
 
Ejercicios resueltos de Mecánica de materiales OMAR ROMERO
Ejercicios resueltos de Mecánica de materiales OMAR ROMEROEjercicios resueltos de Mecánica de materiales OMAR ROMERO
Ejercicios resueltos de Mecánica de materiales OMAR ROMEROOmAr R. LeÓn
 
10. ed capítulo x cinemática de la partícula_trabajo y energía
10. ed capítulo x cinemática de la partícula_trabajo y energía10. ed capítulo x cinemática de la partícula_trabajo y energía
10. ed capítulo x cinemática de la partícula_trabajo y energíajulio sanchez
 
Factores de inercia 4
Factores de inercia 4Factores de inercia 4
Factores de inercia 4wendyfari12
 
Teoria Electromagnetica - Electrostática (27 nov)
Teoria Electromagnetica - Electrostática (27 nov)Teoria Electromagnetica - Electrostática (27 nov)
Teoria Electromagnetica - Electrostática (27 nov)Universidad Nacional de Loja
 
Cap3 movimiento armonico simple
Cap3 movimiento armonico simpleCap3 movimiento armonico simple
Cap3 movimiento armonico simpleAbel JaguaR Acua
 

La actualidad más candente (20)

Pendulo de torsion
Pendulo de torsionPendulo de torsion
Pendulo de torsion
 
239983359 ejercicios-resueltos-de-bio
239983359 ejercicios-resueltos-de-bio239983359 ejercicios-resueltos-de-bio
239983359 ejercicios-resueltos-de-bio
 
fisica 1
fisica 1fisica 1
fisica 1
 
Elasticidad ley de hooke
Elasticidad ley de hookeElasticidad ley de hooke
Elasticidad ley de hooke
 
Medina fisica1 cap6
Medina fisica1 cap6Medina fisica1 cap6
Medina fisica1 cap6
 
Clase 11 ecuaciones de maxwell parte a
Clase 11 ecuaciones de maxwell parte aClase 11 ecuaciones de maxwell parte a
Clase 11 ecuaciones de maxwell parte a
 
Diapositivas de trabajo, potencia y energía.
Diapositivas de trabajo, potencia y energía.Diapositivas de trabajo, potencia y energía.
Diapositivas de trabajo, potencia y energía.
 
Trabajo realizado por la Fuerza que ejerce un resorte
Trabajo realizado por la Fuerza que ejerce un resorteTrabajo realizado por la Fuerza que ejerce un resorte
Trabajo realizado por la Fuerza que ejerce un resorte
 
ELECTROESTATICA 2.pptx
ELECTROESTATICA 2.pptxELECTROESTATICA 2.pptx
ELECTROESTATICA 2.pptx
 
Practica 4 "Friccion Cinetica" Laboratorio de Cinematica Y Dinamica FI UNAM
Practica 4 "Friccion Cinetica" Laboratorio de Cinematica Y Dinamica FI UNAMPractica 4 "Friccion Cinetica" Laboratorio de Cinematica Y Dinamica FI UNAM
Practica 4 "Friccion Cinetica" Laboratorio de Cinematica Y Dinamica FI UNAM
 
Pendulo de torsion_fhg
Pendulo de torsion_fhgPendulo de torsion_fhg
Pendulo de torsion_fhg
 
Sistema Masa - Resorte
Sistema Masa - ResorteSistema Masa - Resorte
Sistema Masa - Resorte
 
Practica 4 lab cine
Practica  4 lab cinePractica  4 lab cine
Practica 4 lab cine
 
Dinámica Rotacional
Dinámica RotacionalDinámica Rotacional
Dinámica Rotacional
 
Tippens fisica 7e_diapositivas_05a
Tippens fisica 7e_diapositivas_05aTippens fisica 7e_diapositivas_05a
Tippens fisica 7e_diapositivas_05a
 
Ejercicios resueltos de Mecánica de materiales OMAR ROMERO
Ejercicios resueltos de Mecánica de materiales OMAR ROMEROEjercicios resueltos de Mecánica de materiales OMAR ROMERO
Ejercicios resueltos de Mecánica de materiales OMAR ROMERO
 
10. ed capítulo x cinemática de la partícula_trabajo y energía
10. ed capítulo x cinemática de la partícula_trabajo y energía10. ed capítulo x cinemática de la partícula_trabajo y energía
10. ed capítulo x cinemática de la partícula_trabajo y energía
 
Factores de inercia 4
Factores de inercia 4Factores de inercia 4
Factores de inercia 4
 
Teoria Electromagnetica - Electrostática (27 nov)
Teoria Electromagnetica - Electrostática (27 nov)Teoria Electromagnetica - Electrostática (27 nov)
Teoria Electromagnetica - Electrostática (27 nov)
 
Cap3 movimiento armonico simple
Cap3 movimiento armonico simpleCap3 movimiento armonico simple
Cap3 movimiento armonico simple
 

Destacado

Propiedades mecanicas
Propiedades mecanicasPropiedades mecanicas
Propiedades mecanicaslucerograjeda
 
Presentación de kpi de mantenimientos
Presentación de kpi de mantenimientosPresentación de kpi de mantenimientos
Presentación de kpi de mantenimientosCarlos Rincon Eizaga
 
Propiedades fisicas y mecanicas de los materiales
Propiedades fisicas y mecanicas de los materialesPropiedades fisicas y mecanicas de los materiales
Propiedades fisicas y mecanicas de los materialesLourdes Licona Maldonado
 
determinacion-de-costos-del-mantenimiento-y-reparacion
 determinacion-de-costos-del-mantenimiento-y-reparacion determinacion-de-costos-del-mantenimiento-y-reparacion
determinacion-de-costos-del-mantenimiento-y-reparacionITD
 
Modulo de elasticidad
Modulo de elasticidadModulo de elasticidad
Modulo de elasticidadPablo Lázaro
 
Estructuras 1º ESO: Tipos de esfuerzos
Estructuras 1º ESO: Tipos de esfuerzosEstructuras 1º ESO: Tipos de esfuerzos
Estructuras 1º ESO: Tipos de esfuerzostictecnologia
 

Destacado (9)

Ch13 e
Ch13 eCh13 e
Ch13 e
 
Semana 6mod
Semana  6modSemana  6mod
Semana 6mod
 
Propiedades mecanicas
Propiedades mecanicasPropiedades mecanicas
Propiedades mecanicas
 
Presentación de kpi de mantenimientos
Presentación de kpi de mantenimientosPresentación de kpi de mantenimientos
Presentación de kpi de mantenimientos
 
Propiedades fisicas y mecanicas de los materiales
Propiedades fisicas y mecanicas de los materialesPropiedades fisicas y mecanicas de los materiales
Propiedades fisicas y mecanicas de los materiales
 
11.2 torsion angulo de torsión
11.2 torsion   angulo de torsión11.2 torsion   angulo de torsión
11.2 torsion angulo de torsión
 
determinacion-de-costos-del-mantenimiento-y-reparacion
 determinacion-de-costos-del-mantenimiento-y-reparacion determinacion-de-costos-del-mantenimiento-y-reparacion
determinacion-de-costos-del-mantenimiento-y-reparacion
 
Modulo de elasticidad
Modulo de elasticidadModulo de elasticidad
Modulo de elasticidad
 
Estructuras 1º ESO: Tipos de esfuerzos
Estructuras 1º ESO: Tipos de esfuerzosEstructuras 1º ESO: Tipos de esfuerzos
Estructuras 1º ESO: Tipos de esfuerzos
 

Similar a Tippens fisica (20)

Modulo de Young
Modulo de YoungModulo de Young
Modulo de Young
 
Presentación Elasticidad-Teorico-practico
Presentación Elasticidad-Teorico-practicoPresentación Elasticidad-Teorico-practico
Presentación Elasticidad-Teorico-practico
 
LEY DE HOOKE.ppt
LEY DE HOOKE.pptLEY DE HOOKE.ppt
LEY DE HOOKE.ppt
 
Presentacion Elasticidad
Presentacion ElasticidadPresentacion Elasticidad
Presentacion Elasticidad
 
Elasticidad ppt
Elasticidad pptElasticidad ppt
Elasticidad ppt
 
Clase N°1 LEY DE HOOKE - ESFUERZO, DEFORMACION.ppt
Clase N°1 LEY DE HOOKE - ESFUERZO, DEFORMACION.pptClase N°1 LEY DE HOOKE - ESFUERZO, DEFORMACION.ppt
Clase N°1 LEY DE HOOKE - ESFUERZO, DEFORMACION.ppt
 
Elasticidad
Elasticidad Elasticidad
Elasticidad
 
Elasticidad 1 (1)
Elasticidad 1 (1)Elasticidad 1 (1)
Elasticidad 1 (1)
 
Elasticidad.pptx
Elasticidad.pptxElasticidad.pptx
Elasticidad.pptx
 
Elasticidad
ElasticidadElasticidad
Elasticidad
 
Elasticidad.pdf
Elasticidad.pdfElasticidad.pdf
Elasticidad.pdf
 
Elasticidad
ElasticidadElasticidad
Elasticidad
 
Elasticidad
ElasticidadElasticidad
Elasticidad
 
Elasticidad1 150910130314-lva1-app6892 (1)
Elasticidad1 150910130314-lva1-app6892 (1)Elasticidad1 150910130314-lva1-app6892 (1)
Elasticidad1 150910130314-lva1-app6892 (1)
 
Semana 1 elasticidad
Semana 1 elasticidadSemana 1 elasticidad
Semana 1 elasticidad
 
Elasticidad
Elasticidad  Elasticidad
Elasticidad
 
DEFORMACIÓN Y ELASTICIDAD
DEFORMACIÓN Y ELASTICIDADDEFORMACIÓN Y ELASTICIDAD
DEFORMACIÓN Y ELASTICIDAD
 
1 elasticidad _16159__
1 elasticidad _16159__1 elasticidad _16159__
1 elasticidad _16159__
 
Elasticidad
ElasticidadElasticidad
Elasticidad
 
Esfuerzo y deformación
Esfuerzo y deformaciónEsfuerzo y deformación
Esfuerzo y deformación
 

Último

Creación WEB. Ideas clave para crear un sitio web
Creación WEB. Ideas clave para crear un sitio webCreación WEB. Ideas clave para crear un sitio web
Creación WEB. Ideas clave para crear un sitio webinformatica4
 
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...crcamora123
 
Semana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptxSemana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptxLorenaCovarrubias12
 
PLAN DE TRABAJO CONCURSO NACIONAL CREA Y EMPRENDE.docx
PLAN DE TRABAJO CONCURSO NACIONAL CREA Y EMPRENDE.docxPLAN DE TRABAJO CONCURSO NACIONAL CREA Y EMPRENDE.docx
PLAN DE TRABAJO CONCURSO NACIONAL CREA Y EMPRENDE.docxDavidAlvarez758073
 
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24auxsoporte
 
Proyecto integrador Vereda Cujacal Centro.pptx
Proyecto integrador Vereda Cujacal Centro.pptxProyecto integrador Vereda Cujacal Centro.pptx
Proyecto integrador Vereda Cujacal Centro.pptxvanessaavasquez212
 
Poemas de Beatriz Giménez de Ory_trabajos de 6º
Poemas de Beatriz Giménez de Ory_trabajos de 6ºPoemas de Beatriz Giménez de Ory_trabajos de 6º
Poemas de Beatriz Giménez de Ory_trabajos de 6ºCEIP TIERRA DE PINARES
 
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptxMódulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptxPabloPazmio14
 
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNETPRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNETCESAR MIJAEL ESPINOZA SALAZAR
 
Material-de-Apoyo-Escuela-Sabatica-02-2-2024.pptx.ppt
Material-de-Apoyo-Escuela-Sabatica-02-2-2024.pptx.pptMaterial-de-Apoyo-Escuela-Sabatica-02-2-2024.pptx.ppt
Material-de-Apoyo-Escuela-Sabatica-02-2-2024.pptx.pptAntonioaraujo810405
 
Escrito-Contestacion-Demanda-Filiacion.pdf
Escrito-Contestacion-Demanda-Filiacion.pdfEscrito-Contestacion-Demanda-Filiacion.pdf
Escrito-Contestacion-Demanda-Filiacion.pdfAlejandroPachecoRome
 
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdfnataliavera27
 
Tarrajeo, tipos de tarrajeos, empastados, solaqueos y otros revestimientos.
Tarrajeo, tipos de tarrajeos, empastados, solaqueos y otros revestimientos.Tarrajeo, tipos de tarrajeos, empastados, solaqueos y otros revestimientos.
Tarrajeo, tipos de tarrajeos, empastados, solaqueos y otros revestimientos.DeinerSuclupeMori
 
ensayo literario rios profundos jose maria ARGUEDAS
ensayo literario rios profundos jose maria ARGUEDASensayo literario rios profundos jose maria ARGUEDAS
ensayo literario rios profundos jose maria ARGUEDASAntoineMoltisanti
 
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdfAsistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdfDemetrio Ccesa Rayme
 
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de MadridHorarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de Madrid20minutos
 

Último (20)

Creación WEB. Ideas clave para crear un sitio web
Creación WEB. Ideas clave para crear un sitio webCreación WEB. Ideas clave para crear un sitio web
Creación WEB. Ideas clave para crear un sitio web
 
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...
 
6.Deícticos Dos_Enfermería_EspanolAcademico
6.Deícticos Dos_Enfermería_EspanolAcademico6.Deícticos Dos_Enfermería_EspanolAcademico
6.Deícticos Dos_Enfermería_EspanolAcademico
 
Semana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptxSemana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptx
 
3.Conectores uno_Enfermería_EspAcademico
3.Conectores uno_Enfermería_EspAcademico3.Conectores uno_Enfermería_EspAcademico
3.Conectores uno_Enfermería_EspAcademico
 
PLAN DE TRABAJO CONCURSO NACIONAL CREA Y EMPRENDE.docx
PLAN DE TRABAJO CONCURSO NACIONAL CREA Y EMPRENDE.docxPLAN DE TRABAJO CONCURSO NACIONAL CREA Y EMPRENDE.docx
PLAN DE TRABAJO CONCURSO NACIONAL CREA Y EMPRENDE.docx
 
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
 
Proyecto integrador Vereda Cujacal Centro.pptx
Proyecto integrador Vereda Cujacal Centro.pptxProyecto integrador Vereda Cujacal Centro.pptx
Proyecto integrador Vereda Cujacal Centro.pptx
 
Poemas de Beatriz Giménez de Ory_trabajos de 6º
Poemas de Beatriz Giménez de Ory_trabajos de 6ºPoemas de Beatriz Giménez de Ory_trabajos de 6º
Poemas de Beatriz Giménez de Ory_trabajos de 6º
 
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptxMódulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
 
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNETPRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
 
Material-de-Apoyo-Escuela-Sabatica-02-2-2024.pptx.ppt
Material-de-Apoyo-Escuela-Sabatica-02-2-2024.pptx.pptMaterial-de-Apoyo-Escuela-Sabatica-02-2-2024.pptx.ppt
Material-de-Apoyo-Escuela-Sabatica-02-2-2024.pptx.ppt
 
Escrito-Contestacion-Demanda-Filiacion.pdf
Escrito-Contestacion-Demanda-Filiacion.pdfEscrito-Contestacion-Demanda-Filiacion.pdf
Escrito-Contestacion-Demanda-Filiacion.pdf
 
PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.
 
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
 
Sesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdfSesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdf
 
Tarrajeo, tipos de tarrajeos, empastados, solaqueos y otros revestimientos.
Tarrajeo, tipos de tarrajeos, empastados, solaqueos y otros revestimientos.Tarrajeo, tipos de tarrajeos, empastados, solaqueos y otros revestimientos.
Tarrajeo, tipos de tarrajeos, empastados, solaqueos y otros revestimientos.
 
ensayo literario rios profundos jose maria ARGUEDAS
ensayo literario rios profundos jose maria ARGUEDASensayo literario rios profundos jose maria ARGUEDAS
ensayo literario rios profundos jose maria ARGUEDAS
 
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdfAsistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
 
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de MadridHorarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
 

Tippens fisica

  • 1. Capítulo 13 - Elasticidad Presentación PowerPoint de Paul E. Tippens, Profesor de Física Southern Polytechnic State University © 2007
  • 2. Capítulo 13. Elasticidad Photo © Vol. 10 PhotoDisk/Getty El salto BUNGEE utiliza una larga cuerda elástica que se estira hasta que llega a una longitud máxima que es proporcional al peso del saltador. La elasticidad de la cuerda determina la amplitud de las vibraciones resultantes. Si se excede el límite elástico de la cuerda, ésta se romperá.
  • 3. Objetivos: Después de completar este módulo, deberá: • Demostrar su comprensión de elasticidad, límite elástico, esfuerzo, deformación y resistencia a la rotura. • Escribir y aplicar fórmulas para calcular módulo de Young, módulo de corte y módulo volumétrico. • Resolver problemas que involucren cada uno de los parámetros en los objetivos anteriores.
  • 4. Propiedades elásticas de la materia Un cuerpo elástico es aquel que regresa a su Un cuerpo elástico es aquel que regresa a su forma original después de una deformación. forma original después de una deformación. Bola de golf Banda de goma Balón de soccer
  • 5. Propiedades elásticas de la materia Un cuerpo inelástico es aquel que no regresa a su Un cuerpo inelástico es aquel que no regresa a su forma original después de una deformación. forma original después de una deformación. Masa o pan Barro Bola inelástica
  • 6. ¿Elástico o inelástico? Una colisión elástica no pierde energía. La deformación en la colisión se restaura por completo. En una colisión inelástica se pierde energía y la deformación puede ser permanente. (Clic aquí.)
  • 7. Un resorte elástico Un resorte es un ejemplo de un cuerpo elástico que se puede deformar al estirarse. x F Una fuerza restauradora, Una fuerza restauradora, F, actúa en la dirección F, actúa en la dirección opuesta al desplazamiento opuesta al desplazamiento del cuerpo en oscilación. del cuerpo en oscilación. F = -kx F = -kx
  • 8. Ley de Hooke Cuando un resorte se estira, hay una fuerza restauradora que es proporcional al desplazamiento. F = -kx F = -kx x m La constante de resorte k es una F propiedad del resorte dada por: ∆F k= ∆x La constante de resorte k es una La constante de resorte k es una medida de la elasticidad del resorte. medida de la elasticidad del resorte.
  • 9. Esfuerzo y deformación Esfuerzo se refiere a la causa de una deformación, y deformación se refiere al efecto de la deformación. La fuerza descendente F causa el desplazamiento x. x F Por tanto, el esfuerzo es la fuerza; la deformación es la elongación.
  • 10. Tipos de esfuerzo ocurre Un esfuerzo de tensión F cuando fuerzas iguales y opuestas se dirigen alejándose mutuamente. Un esfuerzo de compresión ocurre cuando fuerzas iguales y opuestas se dirigen una hacia la otra. W Tensión W F Compresión
  • 11. Resumen de definiciones Esfuerzo es la razón de una fuerza aplicada F al área A sobre la que actúa: Esfuerzo = F A N Unidades : Pa = 2 m lb o in 2 Deformación es el cambio relativo en las dimensiones o forma de un cuerpo como resultado de un esfuerzo aplicado: Ejemplos: Cambio en longitud por unidad de Ejemplos: Cambio en longitud por unidad de longitud; cambio en volumen por unidad de longitud; cambio en volumen por unidad de volumen. volumen.
  • 12. Esfuerzo y deformación longitudinales L A A ∆ L F Esfuerzo = A F Para alambres, varillas y barras, existe un esfuerzo longitudinal F/A que produce un cambio en longitud por unidad de longitud. En tales casos: Deformación = ∆ L L
  • 13. Ejemplo 1. Un alambre de acero de 10 m de largo y 2 mm de diámetro se une al techo y a su extremo se une un peso de 200 N. ¿Cuál es el esfuerzo aplicado? Primero encuentre el área del alambre: π D π (0.002 m) A= = 4 4 2 L ∆ L A A F A = 3.14 x 10-6 m2 F 200 N Esfuerzo = = A 3.14 x 10 − 6 m 2 Esfuerzo 6.37 x 107 Pa 2
  • 14. Ejemplo 1 (Cont.) Un alambre de acero de 10 m se estira 3.08 mm debido a la carga de 200 N. ¿Cuál es la deformación longitudinal? Dado: L = 10 m; ∆L = 3.08 mm L ∆ L ∆L 0.00308 m Deformación = = L 10 m Deformación longitudinal 3.08 x 10-4
  • 15. El límite elástico El límite elástico es el esfuerzo máximo que un cuerpo puede experimentar sin quedar deformado permanentemente. 2m F Esfuerzo = A 2m F W Bien W W Más allá del límite Si el esfuerzo supera el límite elástico, la longitud final será mayor que los 2 m originales.
  • 16. Resistencia a la rotura La resistencia a la rotura es el esfuerzo máximo que un cuerpo puede experimentar sin romperse. 2m F Esfuerzo = A F W W W Si el esfuerzo supera la resistencia a la rotura, ¡la cuerda se rompe! W W
  • 17. Ejemplo 2. El límite elástico para el acero es 2.48 x 108 Pa. ¿Cuál es el peso máximo que puede soportar sin superar el límite elástico? Recuerde: A = 3.14 x 10-6 m2 L ∆ L A A F F Esfuerzo = = 2.48 x 108 Pa A F = (2.48 x 108 Pa) A F = (2.48 x 108 Pa)(3.14 x 10-6 m2) F = 779 N F = 779 N
  • 18. Ejemplo 2 (Cont.) La resistencia a la rotura para el acero es 4089 x 108 Pa. ¿Cuál es el peso máximo que puede soportar sin romper el alambre? Recuerde: A = 3.14 x 10-6 m2 L ∆ L A A F F Esfuerzo = = 4.89 ×108 Pa A F = (4.89 x 108 Pa) A F = (4.89 x 108 Pa)(3.14 x 10-6 m2) F = 1536 N F = 1536 N
  • 19. El módulo de elasticidad Siempre que el límite elástico no se supere, una deformación elástica (deformación) es directamente proporcional a la magnitud de la fuerza aplicada por unidad de área (esfuerzo). esfuerzo Módulo de elasticidad = deformación
  • 20. Ejemplo 3. En el ejemplo anterior, el esfuerzo aplicado al alambre de acero fue 6.37 x 107 Pa y la deformación fue 3.08 x 10-4. Encuentre el módulo de elasticidad para el acero. L ∆ L esfuerzo 6.37 × 10 7 Pa Módulo = = deformación 3.08 × 10 − 4 Módulo = 207 x 1099 Pa Módulo = 207 x 10 Pa Este módulo de elasticidad longitudinal se llama Este módulo de elasticidad longitudinal se llama módulo de Young y se denota con el símbolo Y. módulo de Young y se denota con el símbolo Y.
  • 21. Módulo de Young Para materiales cuya longitud es mucho mayor que el ancho o espesor, se tiene preocupación por el módulo longitudinal de elasticidad, o módulo de Young (Y). esfuerzo longitudinal Módulo de Young = deformación longitudinal F/A FL Unidades: Pa o lb Y= = 2 ∆L / L A ∆L in.
  • 22. Ejemplo 4: El módulo de Young para el latón es 8.96 x 1011 Pa. Un peso de 120 N se une a un alambre de latón de 8 8 m m de largo; encuentre el aumento en longitud. El ∆L diámetro es 1.5 mm. Primero encuentre el área del alambre: π D π (0.0015 m) A= = 4 4 2 120 N 2 A = 1.77 x 10-6 m2 FL FL Y= or ∆L = A∆L AY
  • 23. Ejemplo 4: (continuación) Y = 8.96 x 1011 Pa; F = 120 N; L = 8 m; A = 1.77 x 10-6 m2 F = 120 N; ∆L = ? 8m ∆L FL FL 120 N Y= or ∆L = A∆L AY FL (120 N)(8.00 m) ∆L = = -6 2 11 AY (1.77 x 10 m )(8.96 x 10 Pa) Aumento en longitud: ∆L = 0.605 mm ∆L = 0.605 mm
  • 24. Módulo de corte Un esfuerzo cortante altera sólo la forma del cuerpo y deja el volumen invariable. Por ejemplo, considere las fuerzas cortantes iguales y opuestas F que actúan sobre el cubo siguiente: A d l φ F F La fuerza cortante F produce un ángulo cortante φ. El ángulo φ es la deformación y el esfuerzo está dado por F/A como antes.
  • 25. Cálculo del módulo de corte d l φ F A El esfuerzo es F fuerza por unidad de área: F Esfuerzo = A La deformación es el ángulo Deformación = expresado en radianes: d φ = l El módulo de corte S se define como la razón del esfuerzo cortante F/A a la deformación de corte φ: Módulo de corte: Módulo de corte: unidades en pascales. unidades en pascales. F A S= φ
  • 26. Ejemplo 5. Un perno de acero (S = 8.27 x 1010 Pa) de 1 cm de diámetro se proyecta 4 cm desde la pared. Al extremo se aplica una fuerza cortante de 36,000 N. ¿Cuál es la desviación d del perno? π D π (0.01 m) A= = 4 4 2 l d F 2 Área: A = 7.85 x 10-5 m2 F A F A Fl S= = = ; φ d l Ad (36, 000 N)(0.04 m) d= (7.85 x 10-5 m 2 )(8.27 x 1010 Pa) Fl d= AS d = 0.222 mm d = 0.222 mm
  • 27. Elasticidad volumétrica No todas las deformaciones son lineales. A veces un esfuerzo aplicado F/A resulta en una disminución del volumen. En tales casos, existe un módulo volumétrico B de elasticidad. B= esfuerzo volumétrico −F A = deformación volumétrica ∆V V El módulo volumétrico es negativo El módulo volumétrico es negativo debido a la disminución en V. debido a la disminución en V.
  • 28. El módulo volumétrico esfuerzo volumétrico −F A B= = deformación volumétrica ∆V V Dado que F/A por lo general es la presión P, se puede escribir: −P − PV B= = ∆V / V ∆V Las unidades siguen siendo pascales (Pa) pues la deformación es adimensional.
  • 29. Ejemplo 7. Una prensa hidrostática contiene 5 litros de aceite. Encuentre la disminución en volumen del aceite si se sujeta a una presión de 3000 kPa. (Suponga que B = 1700 MPa.) −P − PV B= = ∆V / V ∆V − PV −(3 x 10 Pa)(5 L) ∆V = = 9 B (1.70 x 10 Pa) 6 Disminución en V; mililitros (mL): ∆V = -8.82 mL ∆V = -8.82 mL
  • 30. Resumen: Elástico e inelástico Un cuerpo elástico es aquel que regresa a su Un cuerpo elástico es aquel que regresa a su forma original después de una deformación. forma original después de una deformación. Una colisión elástica no pierde energía. La deformación en la colisión se restaura completamente. Un cuerpo inelástico es aquel que no regresa a su Un cuerpo inelástico es aquel que no regresa a su forma original después de una deformación. forma original después de una deformación. En una colisión inelástica, se pierde energía y la deformación puede ser permanente.
  • 31. Resumen Tipos de esfuerzo F Un esfuerzo de tensión ocurre cuando fuerzas iguales y opuestas se dirigen alejándose mutuamente. Un esfuerzo de compresión ocurre cuando fuerzas iguales y opuestas se dirigen una hacia la otra. W Tensión W F Compresión
  • 32. Resumen de definiciones El esfuerzo es la razón de una fuerza aplicada F al área A sobre la que actúa: F Esfuerzo = A N Unidades = Pa = 2 m lb o in 2 La deformación es el cambio relativo en dimensiones o forma de un cuerpo como resultado de un esfuerzo aplicado: Ejemplos: Cambio en longitud por unidad de Ejemplos: Cambio en longitud por unidad de longitud; cambio en volumen por unidad de volumen. longitud; cambio en volumen por unidad de volumen.
  • 33. Esfuerzo y deformación longitudinales L A A ∆ L F Esfuerzo = A F Para alambres, varillas y barras, hay un esfuerzo longitudinal F/A que produce un cambio en longitud por unidad de longitud. En tales casos: Deformación = ∆ L L
  • 34. El límite elástico El límite elástico es el esfuerzo máximo que un cuerpo puede experimentar sin quedar permanentemente deformado. La resistencia a la rotura La resistencia a la rotura es el mayor estrés que un cuerpo puede experimentar sin romperse.
  • 35. Módulo de Young Para materiales cuya longitud es mucho mayor que el ancho o el espesor, se tiene preocupación por el módulo longitudinal de elasticidad, o módulo de Young Y. esfuerzo longitudinal Módulo de Young = deformación longitudinal F/A FL Y= = ∆L / L A ∆L Unidades = Pa = N lb o m2 in 2
  • 36. d l φ F El módulo de corte A F La deformación es el ángulo expresado en radianes: Esfuerzo es fuerza por unidad de área: F Esfuerzo = A Deformación = d φ= l El módulo de corte S se define como la razón del esfuerzo cortante F/A a la deformación de corte φ: El módulo de corte: sus El módulo de corte: sus unidades son pascales. unidades son pascales. F A S= φ
  • 37. El módulo volumétrico esfuerzo volumétrico −F A B = = deformación volumétrica ∆V V Puesto que F/A por lo general es presión P, se puede escribir: −P − PV B= = ∆V / V ∆V Las unidades siguen siendo pascales (Pa) pues la deformación es adimensional.