SlideShare una empresa de Scribd logo
A partir de conocer la ubicación de dos puntos en el plano cartesiano, es posible determinar la
distancia que hay entre éstos. Cuando algún punto se encuentra en el eje de las x o de las abscisas o en
una recta paralela a éste eje, la distancia entre los puntos corresponde al valor absoluto de las
diferencia de sus abscisas. (x 2 – x 1 ).
Ejemplo:
La distancia entre los puntos (–4, 0) y (5, 0).
Donde (-4) = x 1 ; 5 = x 2. Aplicando la fórmula es 5 – (–4) = 5 +4 = 9 unidades.
El punto medio, es el punto que se encuentra a la misma distancia de otros dos puntos cualquiera o
extremos de un segmento. Si es un segmento, el punto medio es el que lo divide en dos partes
iguales.
Ejemplo:
Sean A(x_1, y_1, z_1) y B(x_2, y_2, z_2) los extremos de un
segmento, el punto medio del segmento viene dado por:
En las ecuaciones se sustituyen ciertos valores, para definir los puntos que seguirá la gráfica. Es
importante destacar, que las funciones pueden variar mucho una de otra, por lo tanto, es
necesario identificar con cual tipo de ecuación se está trabajando. Recuerda que existen
ecuaciones para funciones lineales, parábolas, hipérbolas, circunferencias, elipses, entre otras.
Lo primero que debes tener en cuenta para representan las ecuaciones en el plano cartesiano
Es que todo se fundamente en el par ordenado. Este se define sustituyendo un valor
independiente en la ecuación y consiguiendo así la variable dependiente. Seguidamente, se
organizan y se representan en el plano cartesiano.
Una vez que se hayan representados todos los pares ordenados en el plano cartesiano, es
necesarios empezar a unirlos. Para ello, es importante que sigas el orden que seguiste para
calcular los pares ordenados. Como resultado, conseguirás la gráfica correspondiente a la
ecuación de la función desarrollada
La circunferencia es el lugar geométrico de los puntos del plano cartesiano que equidistan de un
punto fijo llamado centro. Una circunferencia queda determinada cuando conocemos: Tres
puntos de la misma, equidistantes del centro, El centro y el radio, El centro y un punto en ella, El
centro y una recta tangente a la circunferencia.
También podemos decir que la circunferencia es la línea formada por todos los puntos que están
a la misma distancia de otro punto, llamado centro .Esta propiedad es la clave para hallar la
expresión analítica de una circunferencia. Entonces, entrando en el terreno de la Geometría
Analítica , (dentro del Plano Cartesiano ) diremos que para cualquier punto, P (x, y) , de una
circunferencia cuyo centro es el punto C (a, b) y con radio r ─, la ecuación ordinaria es(x ─ a) 2 +
(y ─ b) 2 = r 2
Ejemplo:
En el Plano Cartesiano una parábola puede tener su vértice en cualquier par de coordenadas y
puede estar orientada hacia arriba, hacia abajo o hacia la izquierda o la derecha.
Ecuaciones de la parábola con vértice en el origen
Primeramente, estudiaremos la ecuación de la parábola para los casos en que su vértice esté en
el origen, y según esto, tenemos cuatro posibilidades de ecuación y cada una es característica.
Para iniciar nuestra explicación empezaremos con la parábola cuyo vértice está en el origen, su
eje focal o de simetría coincide con el eje de las X (abscisas) y que está orientada (se abre) hacia
la derecha. Por definición, sabemos que, en una parábola la distancia entre un punto “P” (no
confundir con el “parámetro p”), cualquiera de coordenadas (x, y), y el foco “F” será igual a la
distancia entre la directriz (D) y dicho punto, como vemos en la figura:
Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es
constante.
Elementos de la elipse:
1. Focos: Son los puntos fijos F y F'.
2. Eje focal: Es la recta que pasa por los focos.
3. Eje secundario: Es la mediatriz del segmento FF'.
4. Centro: Es el punto de intersección de los ejes.
5. Radios vectores: Son los segmentos que van desde un punto de la elipse a los focos: PF y PF'.
6. Distancia focal: Es el segmento segmento de longitud 2c, c es el valor de la semidistancia focal.
7. Vértices: Son los puntos de intersección de la elipse con los ejes: A, A', B y B'.
8. Eje mayor: Es el segmento segmento de longitud 2a, a es el valor del semieje mayor.
9. Eje menor: Es el segmento segmento de longitud 2b, b es el valor del semieje menor.
10. Ejes de simetría: Son las rectas que contienen al eje mayor o al eje menor.
11. Centro de simetría: Coincide con el centro de la elipse, que es el punto de intersección de los ejes de
simetría.
La hipérbola es una curva plana, abierta, con dos ramas; se define como el lugar geométrico de los
puntos cuya diferencia de distancias a otros dos fijos, llamados focos, es constante e igual a 2a = AB, la
longitud del eje real. Tiene dos ejes perpendiculares que se cortan en el punto medio O, centro de la
curva. El eje mayor AB se llama eje real y se representa por 2a; el eje menor se representa por 2b y se
llama imaginario porque no tiene puntos comunes con la curva. Los focos están en el eje real. La
distancia focal se representa por 2c.
Entre a, b y c existe la relación c2 = a2 + b2.
La hipérbola es simétrica respecto de los dos ejes y, por lo tanto respecto del centro O. Las rectas que
unen un punto M de la curva con dos focos, se llaman radios vectores r y r' y por definición se verifica: r -
r' = 2a.
La circunferencia principal de la hipérbola es la que tiene por centro O y radio 2a. Se define como el lugar
geométrico de los pies de las perpendiculares trazadas por los focos a cada una de las tangentes. Las
circunferencias focales tienen por centro los focos y radio a.
Se denomina CONICA a todas las curvas intersección entre un cono y un plano; si dicho plano no pasa
por el vértice, se obtienen las cónicas propiamente dichas. Se clasifican en tres tipos: elipse, parábola e
hipérbola. Un cono circular recto.
En función de la relación existente entre el ángulo de conicidad (α) y la inclinación del plano respecto del
eje del cono (β), pueden obtenerse diferentes secciones cónicas

Más contenido relacionado

Similar a trabajodematematicas33.pptx

TRABAJO PLANO NUMÉRICO
TRABAJO PLANO NUMÉRICOTRABAJO PLANO NUMÉRICO
TRABAJO PLANO NUMÉRICO
EmilyGonzalez64
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
yorgelisalvarado1
 
Plano Numerico-presentacion de matematica-.pdf
Plano Numerico-presentacion de matematica-.pdfPlano Numerico-presentacion de matematica-.pdf
Plano Numerico-presentacion de matematica-.pdf
KarelbysDanielaTeran
 
PLANO CARTESIANO GABRIEL .pdf
PLANO CARTESIANO GABRIEL .pdfPLANO CARTESIANO GABRIEL .pdf
PLANO CARTESIANO GABRIEL .pdf
Gabriel Peña
 
Plano Numérico Michell Urra IN0114.pptx
Plano Numérico Michell Urra IN0114.pptxPlano Numérico Michell Urra IN0114.pptx
Plano Numérico Michell Urra IN0114.pptx
Michell Urra Juarez
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
ErikNava9
 
PUNTO.pptx
PUNTO.pptxPUNTO.pptx
Plano Numerico
Plano NumericoPlano Numerico
Plano Numerico
SabrinaQuerales
 
Plano numérico o plano cartesiano.pptx
Plano numérico o plano  cartesiano.pptxPlano numérico o plano  cartesiano.pptx
Plano numérico o plano cartesiano.pptx
AndersonMarchan
 
matematica presentacion #2
matematica presentacion #2matematica presentacion #2
matematica presentacion #2
JesusTorres750983
 
Plano Numerico
Plano NumericoPlano Numerico
Plano Numerico
Yeismerperez
 
PLANO NUMERICO KARLA GARCIA.pptx
PLANO NUMERICO KARLA GARCIA.pptxPLANO NUMERICO KARLA GARCIA.pptx
PLANO NUMERICO KARLA GARCIA.pptx
KarlaGarcia571339
 
Plano Numérico - Pedro Briceño.pdf
Plano Numérico - Pedro Briceño.pdfPlano Numérico - Pedro Briceño.pdf
Plano Numérico - Pedro Briceño.pdf
pedrobriceooliva
 
plano numerico.pdf
plano numerico.pdfplano numerico.pdf
plano numerico.pdf
SolBarrios13
 
Plano numerico (dennisse_perez)
Plano numerico (dennisse_perez)Plano numerico (dennisse_perez)
Plano numerico (dennisse_perez)
Dennisse Pérez
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
JoseMauricioChavezAl
 
Plano Numérico o Plano Cartesiano.pdf
Plano Numérico o Plano Cartesiano.pdfPlano Numérico o Plano Cartesiano.pdf
Plano Numérico o Plano Cartesiano.pdf
AngelDavidMendoza2
 
presentacion plano numerico emmanuel suarez IN0114.pptx
presentacion plano numerico emmanuel suarez IN0114.pptxpresentacion plano numerico emmanuel suarez IN0114.pptx
presentacion plano numerico emmanuel suarez IN0114.pptx
EmmanuelSurez6
 
plano numerico.pdf
plano numerico.pdfplano numerico.pdf
plano numerico.pdf
angelyeerum
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
AlejandroRamirz
 

Similar a trabajodematematicas33.pptx (20)

TRABAJO PLANO NUMÉRICO
TRABAJO PLANO NUMÉRICOTRABAJO PLANO NUMÉRICO
TRABAJO PLANO NUMÉRICO
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Plano Numerico-presentacion de matematica-.pdf
Plano Numerico-presentacion de matematica-.pdfPlano Numerico-presentacion de matematica-.pdf
Plano Numerico-presentacion de matematica-.pdf
 
PLANO CARTESIANO GABRIEL .pdf
PLANO CARTESIANO GABRIEL .pdfPLANO CARTESIANO GABRIEL .pdf
PLANO CARTESIANO GABRIEL .pdf
 
Plano Numérico Michell Urra IN0114.pptx
Plano Numérico Michell Urra IN0114.pptxPlano Numérico Michell Urra IN0114.pptx
Plano Numérico Michell Urra IN0114.pptx
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
PUNTO.pptx
PUNTO.pptxPUNTO.pptx
PUNTO.pptx
 
Plano Numerico
Plano NumericoPlano Numerico
Plano Numerico
 
Plano numérico o plano cartesiano.pptx
Plano numérico o plano  cartesiano.pptxPlano numérico o plano  cartesiano.pptx
Plano numérico o plano cartesiano.pptx
 
matematica presentacion #2
matematica presentacion #2matematica presentacion #2
matematica presentacion #2
 
Plano Numerico
Plano NumericoPlano Numerico
Plano Numerico
 
PLANO NUMERICO KARLA GARCIA.pptx
PLANO NUMERICO KARLA GARCIA.pptxPLANO NUMERICO KARLA GARCIA.pptx
PLANO NUMERICO KARLA GARCIA.pptx
 
Plano Numérico - Pedro Briceño.pdf
Plano Numérico - Pedro Briceño.pdfPlano Numérico - Pedro Briceño.pdf
Plano Numérico - Pedro Briceño.pdf
 
plano numerico.pdf
plano numerico.pdfplano numerico.pdf
plano numerico.pdf
 
Plano numerico (dennisse_perez)
Plano numerico (dennisse_perez)Plano numerico (dennisse_perez)
Plano numerico (dennisse_perez)
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Plano Numérico o Plano Cartesiano.pdf
Plano Numérico o Plano Cartesiano.pdfPlano Numérico o Plano Cartesiano.pdf
Plano Numérico o Plano Cartesiano.pdf
 
presentacion plano numerico emmanuel suarez IN0114.pptx
presentacion plano numerico emmanuel suarez IN0114.pptxpresentacion plano numerico emmanuel suarez IN0114.pptx
presentacion plano numerico emmanuel suarez IN0114.pptx
 
plano numerico.pdf
plano numerico.pdfplano numerico.pdf
plano numerico.pdf
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 

Más de gissell_03112005

trabajodematematicas3.pptx
trabajodematematicas3.pptxtrabajodematematicas3.pptx
trabajodematematicas3.pptx
gissell_03112005
 
trabajo de matematicas.pptx
trabajo de matematicas.pptxtrabajo de matematicas.pptx
trabajo de matematicas.pptx
gissell_03112005
 
Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion
gissell_03112005
 
Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y FactorizacionExpresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion
gissell_03112005
 
Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion
gissell_03112005
 
Gissell leal 4to "A"
Gissell leal 4to "A"Gissell leal 4to "A"
Gissell leal 4to "A"
gissell_03112005
 
Arbol genealogico gissel
Arbol genealogico gisselArbol genealogico gissel
Arbol genealogico gissel
gissell_03112005
 

Más de gissell_03112005 (7)

trabajodematematicas3.pptx
trabajodematematicas3.pptxtrabajodematematicas3.pptx
trabajodematematicas3.pptx
 
trabajo de matematicas.pptx
trabajo de matematicas.pptxtrabajo de matematicas.pptx
trabajo de matematicas.pptx
 
Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion
 
Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y FactorizacionExpresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion
 
Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion
 
Gissell leal 4to "A"
Gissell leal 4to "A"Gissell leal 4to "A"
Gissell leal 4to "A"
 
Arbol genealogico gissel
Arbol genealogico gisselArbol genealogico gissel
Arbol genealogico gissel
 

Último

Apoplejia_UNIVERSIDAD CENTRAL DEL ECUADOR
Apoplejia_UNIVERSIDAD CENTRAL DEL ECUADORApoplejia_UNIVERSIDAD CENTRAL DEL ECUADOR
Apoplejia_UNIVERSIDAD CENTRAL DEL ECUADOR
NicoleEnriquez19
 
DIPLOMA Teachers For Future junio2024.pdf
DIPLOMA Teachers For Future junio2024.pdfDIPLOMA Teachers For Future junio2024.pdf
DIPLOMA Teachers For Future junio2024.pdf
Alfaresbilingual
 
La filosofía presocrática y los filosofos más relvantes del periodo.
La filosofía presocrática y los filosofos más relvantes del periodo.La filosofía presocrática y los filosofos más relvantes del periodo.
La filosofía presocrática y los filosofos más relvantes del periodo.
DobbieElfo
 
PRINCIPALES INNOVACIONES CURRICULARES 2024.pdf
PRINCIPALES INNOVACIONES CURRICULARES 2024.pdfPRINCIPALES INNOVACIONES CURRICULARES 2024.pdf
PRINCIPALES INNOVACIONES CURRICULARES 2024.pdf
christianMuoz756105
 
Ensayo sobre José María Arguedas Peruanodocx
Ensayo sobre José María Arguedas PeruanodocxEnsayo sobre José María Arguedas Peruanodocx
Ensayo sobre José María Arguedas Peruanodocx
danelycacchavaldivia
 
ELEMENTOS DE LA COMPRENSION ORAL-ESCUCHA ACTIVA.pdf
ELEMENTOS DE LA COMPRENSION ORAL-ESCUCHA ACTIVA.pdfELEMENTOS DE LA COMPRENSION ORAL-ESCUCHA ACTIVA.pdf
ELEMENTOS DE LA COMPRENSION ORAL-ESCUCHA ACTIVA.pdf
DaliaAndrade1
 
Calidad de vida laboral - Ética y Responsabilidad Social Empresarial
Calidad de vida laboral - Ética y Responsabilidad Social EmpresarialCalidad de vida laboral - Ética y Responsabilidad Social Empresarial
Calidad de vida laboral - Ética y Responsabilidad Social Empresarial
JonathanCovena1
 
Mapa-conceptual-de-la-Evolucion-del-Hombre-3.pptx
Mapa-conceptual-de-la-Evolucion-del-Hombre-3.pptxMapa-conceptual-de-la-Evolucion-del-Hombre-3.pptx
Mapa-conceptual-de-la-Evolucion-del-Hombre-3.pptx
ElizabethLpez634570
 
Los acontecimientos finales de la tierra.pdf
Los acontecimientos finales de la tierra.pdfLos acontecimientos finales de la tierra.pdf
Los acontecimientos finales de la tierra.pdf
Alejandrino Halire Ccahuana
 
Sesión: Los acontecimientos finales de la tierra
Sesión: Los acontecimientos finales de la tierraSesión: Los acontecimientos finales de la tierra
Sesión: Los acontecimientos finales de la tierra
https://gramadal.wordpress.com/
 
La mujer del flujo de sangre, un pa.pptx
La mujer del flujo de sangre, un pa.pptxLa mujer del flujo de sangre, un pa.pptx
La mujer del flujo de sangre, un pa.pptx
francisconaranjofern1
 
Clasificación de los animales vertebrados
Clasificación de los animales vertebradosClasificación de los animales vertebrados
Clasificación de los animales vertebrados
DianaLopez859290
 
Instructivo de Habilidades Socioemocionales y Factores de Riesgo Ccesa007.pdf
Instructivo de Habilidades Socioemocionales y Factores de Riesgo  Ccesa007.pdfInstructivo de Habilidades Socioemocionales y Factores de Riesgo  Ccesa007.pdf
Instructivo de Habilidades Socioemocionales y Factores de Riesgo Ccesa007.pdf
Demetrio Ccesa Rayme
 
5° T3 EDITABLE EVALUACIÓN DARUKEL 2023-2024.pdf
5° T3 EDITABLE EVALUACIÓN DARUKEL 2023-2024.pdf5° T3 EDITABLE EVALUACIÓN DARUKEL 2023-2024.pdf
5° T3 EDITABLE EVALUACIÓN DARUKEL 2023-2024.pdf
manuelhinojosa1950
 
2.- DIARIO -MANIFESTACIONES-LECTURA...pdf
2.- DIARIO -MANIFESTACIONES-LECTURA...pdf2.- DIARIO -MANIFESTACIONES-LECTURA...pdf
2.- DIARIO -MANIFESTACIONES-LECTURA...pdf
MiNeyi1
 
Elmer crizologo rojas.pdf aplicaciones en internet
Elmer crizologo rojas.pdf aplicaciones en internetElmer crizologo rojas.pdf aplicaciones en internet
Elmer crizologo rojas.pdf aplicaciones en internet
Elmer Crizologo Rojas
 
Presentación sector la arenita_paijan pptx
Presentación sector la arenita_paijan pptxPresentación sector la arenita_paijan pptx
Presentación sector la arenita_paijan pptx
Aracely Natalia Lopez Talavera
 
Mi Comunidad en paijan peru visitalo ya..
Mi Comunidad en paijan peru visitalo ya..Mi Comunidad en paijan peru visitalo ya..
Mi Comunidad en paijan peru visitalo ya..
santi cachique
 
Os presentamos un nuevo Acompaña2 en Relideleon
Os presentamos un nuevo Acompaña2 en RelideleonOs presentamos un nuevo Acompaña2 en Relideleon
Os presentamos un nuevo Acompaña2 en Relideleon
Profes de Relideleón Apellidos
 
UESJLS Robótica Clase 19 - Dibujo de un polígono sobre otro
UESJLS Robótica Clase 19 - Dibujo de un  polígono sobre otroUESJLS Robótica Clase 19 - Dibujo de un  polígono sobre otro
UESJLS Robótica Clase 19 - Dibujo de un polígono sobre otro
Docente Informático
 

Último (20)

Apoplejia_UNIVERSIDAD CENTRAL DEL ECUADOR
Apoplejia_UNIVERSIDAD CENTRAL DEL ECUADORApoplejia_UNIVERSIDAD CENTRAL DEL ECUADOR
Apoplejia_UNIVERSIDAD CENTRAL DEL ECUADOR
 
DIPLOMA Teachers For Future junio2024.pdf
DIPLOMA Teachers For Future junio2024.pdfDIPLOMA Teachers For Future junio2024.pdf
DIPLOMA Teachers For Future junio2024.pdf
 
La filosofía presocrática y los filosofos más relvantes del periodo.
La filosofía presocrática y los filosofos más relvantes del periodo.La filosofía presocrática y los filosofos más relvantes del periodo.
La filosofía presocrática y los filosofos más relvantes del periodo.
 
PRINCIPALES INNOVACIONES CURRICULARES 2024.pdf
PRINCIPALES INNOVACIONES CURRICULARES 2024.pdfPRINCIPALES INNOVACIONES CURRICULARES 2024.pdf
PRINCIPALES INNOVACIONES CURRICULARES 2024.pdf
 
Ensayo sobre José María Arguedas Peruanodocx
Ensayo sobre José María Arguedas PeruanodocxEnsayo sobre José María Arguedas Peruanodocx
Ensayo sobre José María Arguedas Peruanodocx
 
ELEMENTOS DE LA COMPRENSION ORAL-ESCUCHA ACTIVA.pdf
ELEMENTOS DE LA COMPRENSION ORAL-ESCUCHA ACTIVA.pdfELEMENTOS DE LA COMPRENSION ORAL-ESCUCHA ACTIVA.pdf
ELEMENTOS DE LA COMPRENSION ORAL-ESCUCHA ACTIVA.pdf
 
Calidad de vida laboral - Ética y Responsabilidad Social Empresarial
Calidad de vida laboral - Ética y Responsabilidad Social EmpresarialCalidad de vida laboral - Ética y Responsabilidad Social Empresarial
Calidad de vida laboral - Ética y Responsabilidad Social Empresarial
 
Mapa-conceptual-de-la-Evolucion-del-Hombre-3.pptx
Mapa-conceptual-de-la-Evolucion-del-Hombre-3.pptxMapa-conceptual-de-la-Evolucion-del-Hombre-3.pptx
Mapa-conceptual-de-la-Evolucion-del-Hombre-3.pptx
 
Los acontecimientos finales de la tierra.pdf
Los acontecimientos finales de la tierra.pdfLos acontecimientos finales de la tierra.pdf
Los acontecimientos finales de la tierra.pdf
 
Sesión: Los acontecimientos finales de la tierra
Sesión: Los acontecimientos finales de la tierraSesión: Los acontecimientos finales de la tierra
Sesión: Los acontecimientos finales de la tierra
 
La mujer del flujo de sangre, un pa.pptx
La mujer del flujo de sangre, un pa.pptxLa mujer del flujo de sangre, un pa.pptx
La mujer del flujo de sangre, un pa.pptx
 
Clasificación de los animales vertebrados
Clasificación de los animales vertebradosClasificación de los animales vertebrados
Clasificación de los animales vertebrados
 
Instructivo de Habilidades Socioemocionales y Factores de Riesgo Ccesa007.pdf
Instructivo de Habilidades Socioemocionales y Factores de Riesgo  Ccesa007.pdfInstructivo de Habilidades Socioemocionales y Factores de Riesgo  Ccesa007.pdf
Instructivo de Habilidades Socioemocionales y Factores de Riesgo Ccesa007.pdf
 
5° T3 EDITABLE EVALUACIÓN DARUKEL 2023-2024.pdf
5° T3 EDITABLE EVALUACIÓN DARUKEL 2023-2024.pdf5° T3 EDITABLE EVALUACIÓN DARUKEL 2023-2024.pdf
5° T3 EDITABLE EVALUACIÓN DARUKEL 2023-2024.pdf
 
2.- DIARIO -MANIFESTACIONES-LECTURA...pdf
2.- DIARIO -MANIFESTACIONES-LECTURA...pdf2.- DIARIO -MANIFESTACIONES-LECTURA...pdf
2.- DIARIO -MANIFESTACIONES-LECTURA...pdf
 
Elmer crizologo rojas.pdf aplicaciones en internet
Elmer crizologo rojas.pdf aplicaciones en internetElmer crizologo rojas.pdf aplicaciones en internet
Elmer crizologo rojas.pdf aplicaciones en internet
 
Presentación sector la arenita_paijan pptx
Presentación sector la arenita_paijan pptxPresentación sector la arenita_paijan pptx
Presentación sector la arenita_paijan pptx
 
Mi Comunidad en paijan peru visitalo ya..
Mi Comunidad en paijan peru visitalo ya..Mi Comunidad en paijan peru visitalo ya..
Mi Comunidad en paijan peru visitalo ya..
 
Os presentamos un nuevo Acompaña2 en Relideleon
Os presentamos un nuevo Acompaña2 en RelideleonOs presentamos un nuevo Acompaña2 en Relideleon
Os presentamos un nuevo Acompaña2 en Relideleon
 
UESJLS Robótica Clase 19 - Dibujo de un polígono sobre otro
UESJLS Robótica Clase 19 - Dibujo de un  polígono sobre otroUESJLS Robótica Clase 19 - Dibujo de un  polígono sobre otro
UESJLS Robótica Clase 19 - Dibujo de un polígono sobre otro
 

trabajodematematicas33.pptx

  • 1.
  • 2. A partir de conocer la ubicación de dos puntos en el plano cartesiano, es posible determinar la distancia que hay entre éstos. Cuando algún punto se encuentra en el eje de las x o de las abscisas o en una recta paralela a éste eje, la distancia entre los puntos corresponde al valor absoluto de las diferencia de sus abscisas. (x 2 – x 1 ). Ejemplo: La distancia entre los puntos (–4, 0) y (5, 0). Donde (-4) = x 1 ; 5 = x 2. Aplicando la fórmula es 5 – (–4) = 5 +4 = 9 unidades.
  • 3. El punto medio, es el punto que se encuentra a la misma distancia de otros dos puntos cualquiera o extremos de un segmento. Si es un segmento, el punto medio es el que lo divide en dos partes iguales. Ejemplo: Sean A(x_1, y_1, z_1) y B(x_2, y_2, z_2) los extremos de un segmento, el punto medio del segmento viene dado por:
  • 4. En las ecuaciones se sustituyen ciertos valores, para definir los puntos que seguirá la gráfica. Es importante destacar, que las funciones pueden variar mucho una de otra, por lo tanto, es necesario identificar con cual tipo de ecuación se está trabajando. Recuerda que existen ecuaciones para funciones lineales, parábolas, hipérbolas, circunferencias, elipses, entre otras. Lo primero que debes tener en cuenta para representan las ecuaciones en el plano cartesiano Es que todo se fundamente en el par ordenado. Este se define sustituyendo un valor independiente en la ecuación y consiguiendo así la variable dependiente. Seguidamente, se organizan y se representan en el plano cartesiano. Una vez que se hayan representados todos los pares ordenados en el plano cartesiano, es necesarios empezar a unirlos. Para ello, es importante que sigas el orden que seguiste para calcular los pares ordenados. Como resultado, conseguirás la gráfica correspondiente a la ecuación de la función desarrollada
  • 5. La circunferencia es el lugar geométrico de los puntos del plano cartesiano que equidistan de un punto fijo llamado centro. Una circunferencia queda determinada cuando conocemos: Tres puntos de la misma, equidistantes del centro, El centro y el radio, El centro y un punto en ella, El centro y una recta tangente a la circunferencia. También podemos decir que la circunferencia es la línea formada por todos los puntos que están a la misma distancia de otro punto, llamado centro .Esta propiedad es la clave para hallar la expresión analítica de una circunferencia. Entonces, entrando en el terreno de la Geometría Analítica , (dentro del Plano Cartesiano ) diremos que para cualquier punto, P (x, y) , de una circunferencia cuyo centro es el punto C (a, b) y con radio r ─, la ecuación ordinaria es(x ─ a) 2 + (y ─ b) 2 = r 2 Ejemplo:
  • 6. En el Plano Cartesiano una parábola puede tener su vértice en cualquier par de coordenadas y puede estar orientada hacia arriba, hacia abajo o hacia la izquierda o la derecha. Ecuaciones de la parábola con vértice en el origen Primeramente, estudiaremos la ecuación de la parábola para los casos en que su vértice esté en el origen, y según esto, tenemos cuatro posibilidades de ecuación y cada una es característica. Para iniciar nuestra explicación empezaremos con la parábola cuyo vértice está en el origen, su eje focal o de simetría coincide con el eje de las X (abscisas) y que está orientada (se abre) hacia la derecha. Por definición, sabemos que, en una parábola la distancia entre un punto “P” (no confundir con el “parámetro p”), cualquiera de coordenadas (x, y), y el foco “F” será igual a la distancia entre la directriz (D) y dicho punto, como vemos en la figura:
  • 7. Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante. Elementos de la elipse: 1. Focos: Son los puntos fijos F y F'. 2. Eje focal: Es la recta que pasa por los focos. 3. Eje secundario: Es la mediatriz del segmento FF'. 4. Centro: Es el punto de intersección de los ejes. 5. Radios vectores: Son los segmentos que van desde un punto de la elipse a los focos: PF y PF'. 6. Distancia focal: Es el segmento segmento de longitud 2c, c es el valor de la semidistancia focal. 7. Vértices: Son los puntos de intersección de la elipse con los ejes: A, A', B y B'. 8. Eje mayor: Es el segmento segmento de longitud 2a, a es el valor del semieje mayor. 9. Eje menor: Es el segmento segmento de longitud 2b, b es el valor del semieje menor. 10. Ejes de simetría: Son las rectas que contienen al eje mayor o al eje menor. 11. Centro de simetría: Coincide con el centro de la elipse, que es el punto de intersección de los ejes de simetría.
  • 8. La hipérbola es una curva plana, abierta, con dos ramas; se define como el lugar geométrico de los puntos cuya diferencia de distancias a otros dos fijos, llamados focos, es constante e igual a 2a = AB, la longitud del eje real. Tiene dos ejes perpendiculares que se cortan en el punto medio O, centro de la curva. El eje mayor AB se llama eje real y se representa por 2a; el eje menor se representa por 2b y se llama imaginario porque no tiene puntos comunes con la curva. Los focos están en el eje real. La distancia focal se representa por 2c. Entre a, b y c existe la relación c2 = a2 + b2. La hipérbola es simétrica respecto de los dos ejes y, por lo tanto respecto del centro O. Las rectas que unen un punto M de la curva con dos focos, se llaman radios vectores r y r' y por definición se verifica: r - r' = 2a. La circunferencia principal de la hipérbola es la que tiene por centro O y radio 2a. Se define como el lugar geométrico de los pies de las perpendiculares trazadas por los focos a cada una de las tangentes. Las circunferencias focales tienen por centro los focos y radio a.
  • 9. Se denomina CONICA a todas las curvas intersección entre un cono y un plano; si dicho plano no pasa por el vértice, se obtienen las cónicas propiamente dichas. Se clasifican en tres tipos: elipse, parábola e hipérbola. Un cono circular recto. En función de la relación existente entre el ángulo de conicidad (α) y la inclinación del plano respecto del eje del cono (β), pueden obtenerse diferentes secciones cónicas