SlideShare una empresa de Scribd logo
1 de 97
1
INSTITUTO DE EDUCACIÓN
SUPERIOR PEDAGÓGICO PÚBLICO
“RAFAEL HOYOS RUBIO”
SAN IGNACIO
PROYECTO DE LA INVESTIGACIÓN ACCIÓN
RESOLUCIÓNDE PROBLEMAS ADITIVOS Y MULTIPLICATIVOS CON
NÚMEROS NATURALES PARA DESARROLLAR CAPACIDADES
MATEMÁTICAS EN LOS NIÑOS Y NIÑAS DEL V CICLO DE
EDUCACIÓN PRIMARIA DE LA INSTITUCIÓN EDUCATIVA N°16451,
DEL CASERÍO MANDINGA, DISTRITO Y PROVINCIA DE SAN
IGNACIO EN EL AÑO 2015.
PARA OBTENER EL TÍTULO DE:
PROFESOR EN EDUCACIÓN PRIMARIA
AUTORES
RODRÍGUEZ GARCÍA, Odalis Candelaria
SUAREZ NUÑEZ, Edinson
ASESOR
MG. TOCTO FLORES, Pedro Efrén
SAN IGNACIO – PERÚ
2015
2
DEDICATORIA
A mis queridos padres, por dedicar sus
esfuerzos diariamente, para brindarme
la oportunidad de poder transcender en
mi vida profesional.
A los profesores del Instituto Superior
Pedagógico Público “Rafael Hoyos
Rubio” quienes con su experiencia y
sabiduría nos preparan y muestran el
sendero del éxito.
ODALIS CANDELARIA
ii
3
DEDICATORIA
A Dios que me guía, que me cuida e
ilumina día a día en mí caminar.
A mis padres que con su arduo trabajo y
dedicación, hacen de mí cada día mejor,
y aquellas personas que sin darse cuenta
dan todo por mí, sin importar la distancia.
EDINSON
iii
4
ÍNDICE
CARÁTULA i
DEDICATORIA ii
ÍNDICE iv
PRESENTACIÓN vii
CAPÍTULO I
DATOS INFORMATIVOS
1.1. Título de la investigación 10
1.2. Institución Educativa: 10
1.3. Ubicación de la Institución Educativa 10
1.4. Beneficiarios directos e indirectos 10
1.5. Duración de la investigación 10
1.6. Responsables de la investigación 10
1.7. Asesor de la investigación
CAPÍTULO II
PLANTEAMIENTO DEL PROBLEMA
10
2.1. Descripción del contexto 12
2.2. Descripción de la situación problemática 14
2.3. Análisis crítico de la situación problemática 16
2.4. Definición del problema 18
2.4.1. Enunciado diagnostico
2.4.2. Pregunta de acción
18
18
2.5. Objetivos de la investigación 19
2.6. Hipótesis de acción 19
2.6.1. Unidad de análisis
2.6.2. Término clave
19
20
2.7. Justificación de la investigación 22
iv
5
2.8. Viabilidad del proyecto de investigación 23
2.8.1. Viabilidad social
2.8.2. Viabilidad técnica
2.8.3. Viabilidad económica
CAPÍTULO III
MARCO TEÓRICO CONCEPTUAL
23
23
23
3.1. Antecedentes 25
3.1.1. Internacionales
3.1.2. Nacionales
3.1.3. Locales
25
26
29
3.2. Marco conceptual
3.2.1. Bases científicas
3.2.1.1. Paradigmas de enseñanza en la resolución de
problemas matemáticos
3.2.2. Bases teóricas
32
32
32
34
3.2.2.1. Capacidades matemáticas
3.2.2.2. Resolución de problemas
3.2.2.3. La resolución de problemas y el desarrollo de
capacidades matemáticas.
3.2.2.4. ¿Cómo enseñar matemática resolviendo
situaciones matemáticas?
3.2.2.5. Problemas aritméticos de enunciado verbal
(PAEV)
3.2.2.6. Clasificación de los problemas aditivos
3.2.2.7. Problemas multiplicativos.
3.2.2.8. Procedimientos para la resolución de problemas
Método de Georg Polya
3.2.2.9. Estrategias para la resolución de problemas
3.2.2.10. Ejemplo aplicando los 4 pasos de resolución de
problemas según Polya
3.2.2.11. La resolución de problemas como práctica
pedagógica en la escuela
3.2.2.12. Enfoque centrado en la resolución de problemas
3.2.2.13. características y ventajas del método de la
resolución de problemas.
CAPÍTULO IV
PLAN DE ACCIÒN
35
42
44
45
48
48
55
59
63
64
65
66
68
71
v
6
CAPÍTULO V
PROGRAMA PROPUESTO
CAPÍTULO VI
EVALUACIÓN
6.1. Indicadores de proceso y fuentes de verificación
6.2. Indicadores de proceso y fuentes de
74
CAPÍTULO VII
PRESUPUESTO Y FINANCIAMIENTO
7.1. Presupuesto
7.1.1. Bienes
7.1.2. Servicios
7.2. Financiamiento
84
85
BIBLIOGRAFÍA VIII
ANEXOS
1. Árbol de problemas y árbol de objetivos.
2. Instrumentos de recolección de datos.
3. Validación de instrumentos.
4. Sistematización de la información. (Cuadro, gráficos)
5. Programa de ejecución (programa propuesto, con su respectivo
cartel de capacidades, conocimientos, y actitudes y propuesta de
Actividades de Aprendizaje y/o proyectos)
6. Evidencias del trabajo realizado.
vi
7
PRESENTACIÓN
Niños, jóvenes y adultos nos encontramos inmersos en una realidad de permanente
cambio como resultado de la globalización y de los crecientes avances de las
ciencias, las tecnologías y las comunicaciones. Estar preparados para el cambio y
ser protagonistas del mismo exige que todas las personas, desde pequeñas,
desarrollen capacidades, conocimientos y actitudes para actuar de manera asertiva
en el mundo y en cada realidad particular. En este contexto, el desarrollo del
pensamiento matemático y el razonamiento lógico adquieren significativa
importancia en la educación básica, permitiendo al estudiante estar en capacidad
de responder a los desafíos que se le presentan, planteando y resolviendo con
actitud analítica los problemas de su realidad. La matemática forma parte del
pensamiento humano y se va estructurando desde los primeros años de vida en
forma gradual y sistemática, a través de las interacciones cotidianas.
Los niños observan y exploran su entorno inmediato y los objetos que lo configuran,
estableciendo relaciones entre ellos cuando realizan actividades concretas de
diferentes maneras: utilizando materiales, participando en juegos didácticos y en
actividades productivas familiares, elaborando esquemas, gráficos, dibujos, entre
otros.
Ser competente matemáticamente supone tener habilidad para usar los
conocimientos con flexibilidad y aplicarlos con propiedad en diferentes contextos.
Desde su enfoque cognitivo, la matemática permite al estudiante construir un
razonamiento ordenado y sistemático. Desde su enfoque social y cultural, le dota
de capacidadesy recursos para abordar problemas, explicar los procesos seguidos
y comunicar los resultados obtenidos.
El proceso de Resolución de Problemas implica que el estudiante manipule los
objetos matemáticos, active su propia capacidad mental, ejercite su creatividad,
reflexione y mejore su proceso de pensamiento al aplicar y adaptar diversas
estrategias matemáticas en diferentes contextos. La capacidad para plantear y
resolver problemas, dado el carácter integrador de este proceso, posibilita la
interacción con las demás áreas curriculares coadyuvando al desarrollo de otras
vii
8
capacidades; asimismo, posibilita la conexión de las ideas matemáticas con
intereses y experiencias del estudiante.
Nuestro proyecto de investigación está organizado de siete capítulos:
En el capítulo I, hace referencia a los aspectos generales del proyecto donde se
detalla el título del proyecto, lugar, duración de la investigación entre otros
aspectos.
En el capítulo II, se da a conocer: el planteamiento del problema donde se detalla
la descripción del contexto, descripción de la situación problemática, análisis crítico
de la situación problemática, definición del problema, objetivos de la investigación,
hipótesis de acción, justificación de la investigación y viabilidad del proyecto de
investigación.
En el capítulo III, está referido al marco teórico conceptual en el cual vamos a
detallar los términos clave (las capacidades matemáticas y estrategias para la
resolución de problemas).
En el capítulo IV, se da a conocer el plan de acción, en el cual se detalla las
actividades específicas para el cumplimiento de nuestra investigación.
En el capítulo V, se presenta el programa propuesto con sus respectivos
lineamientos generales.
En el capítulo VI, se detalla la evaluación, donde se describe los indicadores de
evaluación de proceso y resultados con su fuente de verificación.
En el capítulo VII, está referido al presupuesto y el financiamiento de la
investigación.
También presentamos las fuentes bibliográficas consultadas y los anexos
correspondientes.
LOS AUTORES
viii
9
CAPÍTULO I
DATOS INFORMATIVOS
1.1. Título de la investigación
10
Resolución de Problemas Aditivos y multiplicativos con Números Naturales
para desarrollar capacidades matemáticas en los niños y niñas del V ciclo
de Educación Primaria de la Institución Educativa N°16451, del caserío
Mandinga, distrito y provincia de San Ignacio en el año 2015.
1.2. Institución Educativa
N° 16451
1.3. Ubicación de la Institución Educativa
1.3.1. Lugar : Mandinga
1.3.2. Distrito : San Ignacio
1.3.3. Provincia : San Ignacio
1.3.4. Región : Cajamarca
1.4. Beneficiarios directos
CUADRO N° 01
BENEFICIARIOS DIRECTOS
Fuente: Nómina de Matrícula Institución Educativa N°16451 Mandinga año 2015.
1.5. Duración de la investigación
1.5.1. Inicio : Marzo 2015
1.5.2. Termino : Noviembre 2015
1.6. Responsables de la investigación
 Rodríguez García Odalis Candelaria
 Suarez Núñez Edinson
1.7. Asesor de la investigación
Grados Hombres Mujeres Total
5° 5 9 14
6° 1 5 6
Total 6 14 20
11
Mg. Tocto Flores Pedro Efrén
CAPÍTULO II
PLANTEAMIENTO DEL PROBLEMA
12
2.1. Descripción del contexto
2.1.1. Alumno
Los niños y niñas de la Institución Educativa Nº 16451 del caserío
Mandinga, presentan las siguientes características:
Socialmente son amigables y respetuosos, cooperan en la realización
de actividades escolares manuales y de trabajo motriz en
cooperación con sus compañeros, sin embargo algunos de ellos son
tímidos y poco participativos al expresar sus ideas, lo que impide una
buena socialización en el aula entre niños y niñas al realizar
actividades de aprendizaje grupal entre ambos sexos. Debido a la
metodología poco innovadora de la docente de aula, el aprendizaje
de la matemática de niños y niñas es memorístico, es decir son
repetitivos de los conocimientos que la docente les enseña, se ven
limitados de desarrollar su creatividad por la pobreza de estrategias
y el uso de medios y materiales que utiliza su docente.
Por ser una Institución Educativa Multigrado, localizada en área rural,
encontramos algunos niños con extra edad, es decir, que la edad
cronológica no corresponde al grado de estudio en que se encuentran,
siendo los factores emociónales y de intereses diferentes al resto
compañeros de aula. Sin embargo tienen una amplia experiencia y
aprendizajes en la producción agrícola, comercial, ambiental, valores
y costumbres que son un gran potencial para desarrollar en ellos
nuevas capacidades y que deben ser consideradas en el currículo
escolar.
2.1.2. Docente
La docente es una profesional que cuenta con considerable
experiencia en el plano laboral con muchos años de servicio al sector
13
educación, ha recibido cursos de capacitación en algunos programas
implementados por el Ministerio de Educación.
Se ha observado que aplica estrategias metodológicas activas, hace
uso de algunos materiales de la zona para desarrollar determinadas
capacidades matemáticas. Sin embargo, cuando se ha tratado
desarrollar la capacidadde resolución de problemas, se evidencia que
existe un desconocimiento de las estrategias a seguir que
actualmente las sostienen diferentes autores, destacando las formas
tradicionales de resolver problemas mediante las explicaciones
verbales y discursivas, que como resultado vienen generando
limitadas posibilidades que niños y niñas desarrollen esta
competencia de alto demanda cognitiva, como es la resolución de
problemas.
2.1.3. Padres de familia
Los padres de familia del caserío Mandinga son pobladores
procedentes de algunas provincias serranas como lo es:
Huancabamba, Ayabaca, Chota entre otros que tienen sus propias
costumbres alimenticias, creencias religiosas, festividades, formas de
vestir, de curarse y que constituyen un potencial social y cultural que
es transmitido a sus hijos e hijas menores, quienes se encuentra en
edad escolar; las familias del caserío Mandinga, en su mayoría se
dedican a las actividades agrícolas y productivas del café, pan llevar,
pastizales así como una mínima cantidad se dedican a la
comercialización del café y a otros productos, en dichas actividades
también involucran la participación de sus menores hijos e hijas
quienes van desarrollando diferentes capacidades.
El rol que cumplen las familias con relación al aprendizaje escolar con
sus menores hijos es limitado, esta limitación se expresa en la poca
atención y seguimiento diario que hacen a sus hijos con relación a las
actividades y aprendizajes que promueve la Institución Educativa; los
niños y niñas, en su mayoría, no cuenta en casa con un espacio
14
adecuado para hacer tareas de extensión escolar, ausencia de un
horario adecuado y establecido por la familia para hacer sus tareas
escolares, muchas veces la familia abandona a sus niños por las
tardes debidoa las labores de cosecha o productivas, de igual manera
se ha comprobado que papá y mamá no brindan el afecto necesario
a sus hijos ni les dedican un momento para compartir juegos y/o y
paseos recreativos que contribuyen a mejorar la autoestima e
identidad familiar de los niños y niñas.
2.2. Descripción de la situación problemática
Valverde (2010) menciona que sobre las oportunidades disponibles para los
estudiantes en la región presenta un panorama problemático. Los niños y
jóvenes no están siendo preparados de manera apropiada para contar con
las herramientas en matemáticas necesarias en una economía mundial cada
vez más interconectada. Esto se debe a programas débiles, materiales de
aprendizaje inadecuados y falta de destreza de los docentes en las
matemáticas. Las aulas se caracterizan por la memorización de operaciones
computacionales de rutina y la reproducción mecánica de los conceptos;
además los docentes dan a los estudiantes información escasa o incluso
errónea. Si bien los docentes tienen importantes carencias en los
conocimientos básicos de en matemática, con frecuencia no logran asociar
esta debilidad con los bajos niveles en los logros de sus estudiantes. En las
evaluaciones internacionales del rendimiento en la educación, el desempeño
de los estudiantes de la región está constantemente por debajo de los
estudiantes de Asia oriental y de los países industrializados que componen
la Organización para la Cooperación y el Desarrollo Económico.
Al nivel de nuestro país vienen haciéndose grandes esfuerzos por superar
los bajos niveles de aprendizajes en el área de matemática con relación a
los estándares alcanzados por otros países a nivel internacional. La Unidad
de Medición de la Calidad Educativa (UMCE), del Ministerio de Educación,
viene implementando desde aproximadamente seis años atrás la Medición
de la Calidad de los Aprendizajes básicamente en el segundo grado de
educación primaria con énfasis con las áreas de matemática y comunicación
15
integral, a través de la Evaluación Censal al Educando (ECE) cuyos
resultados muestran esperanzadores cambios positivos en la mejora de la
calidad de los aprendizajes que radica fundamentalmente en la capacitación
docente y la designación de presupuesto público para apoyar especialmente
a los educandos en todo el aspecto logístico como es materiales,
infraestructura, equipos, multimedia, servicios sociales.
Con relación a los resultados de los últimos años, encontramos que el 16,8%
alcanzó el nivel esperado en matemática, en la evaluación censal de
rendimiento escolar (ECE 2013) aplicada por el Ministerio de Educación a
los niños y niñas de segundo grado de primaria en todo el país.
Estas cifras evidencian una mejora en relación con los resultados de la
Evaluación Censal al Educando ECE 2012 mejorando en 4,1 puntos
porcentuales en matemática. Sin embargo, estos resultados aun cuando son
positivos- están todavía lejos de lo que debiéramos lograr.
Las regiones del sur siguen liderando los mejores resultados. Moquegua y
Tacna se distinguen nítidamente del resto de regiones en la ECE 2013: en
ambas, más del 40% alcanzó dicho nivel en matemática. Estas regiones
muestran una mejoría sostenida desde hace cinco años.
Regiones andinas y amazónicas presentan una mejora prometedora en el
desempeño educativo. En matemática, Amazonas, Puno y Pasco fueron las
regiones que presentan los mayores incrementos en el rendimiento respecto
del 2012.
Las escuelas públicas siguen mejorado su rendimiento. La proporción de
estudiantes con nivel de aprendizaje satisfactorio en matemática, se
incrementó en 4,3 puntos porcentuales.
La educación rural ha mejorado por segundo año consecutivo. Con relación
al 2012, se incrementó en 2,4 de estudiantes que alcanzó el nivel de
aprendizaje satisfactorio en matemática.
Los resultados de esta evaluación evidencian el gran reto que afronta el país:
reducir las brechas de aprendizaje existentes a fin de que la totalidad de
niños y niñas del Perú tengan acceso a la educación de calidad, a la que
tienen derecho. Para ello, se está trabajando de manera integral y prioritaria
16
en revalorar la carrera docente, mejorar la infraestructura educativa y
modernizar la gestión.
A nivel de nuestra región Cajamarca, los resultados bajos del aprendizaje en
el área de matemática tienen similitud con resultados a nivel nacional, debido
también a la falta de una política educativa regional que aborde planificada
y sistemáticamente esta problemática bajo rendimiento de la calidad de los
aprendizajes, no solamente en esta área, sino también en otras áreas de
formación curricular fundamentales, los resultados de la Evaluación Censal
del Educando (ECE) muestran que el 2013 el 13.5% de los niños y niñas
demuestran haber adquirido los niveles óptimos de aprendizaje en el área
de matemática, mostrando incremento de 4 puntos porcentuales con
relación a los resultados del año 2012 que únicamente el 9.5 % habían
alcanzado óptimamente los aprendizajes de calidad previstos. Esto se debe
a que nuestra región también se viene implementando programas de
capacitación docente donde los más experimentados asesoran y socializan
experiencias pedagógicas en aula.
Los resultados de la Evaluación Censal del Educando demuestran que
obtuvimos el 14.5% de estudiantes que alcanzaron el nivel esperado en el
área de matemática alcanzando 5 puntos porcentuales favorables con
relación al año 2012 que solamente habíamos alcanzado el 9.5% de niños
en el nivel óptimo.
De acuerdo a esta realidad podemos deducir que aún nos queda un gran
reto por mejorar y elevar la calidad de los aprendizajes en el área de
matemática, como en otras áreas, razón por la cual nuestra investigación se
propone hacer un aporte valioso en lo relacionado al manejo de estrategias
metodológicas para desarrollar capacidades en el área de matemática a
través de la resolución de problemas específicamente en la Institución
Educativa N° 16451 Mandinga.
2.3. Análisis crítico de la situación problemática
Entre las causas que influyen negativamente en el bajo nivel de los
aprendizajes en las capacidades del área de matemática, podemos
17
mencionar que existe poca oportunidad de capacitación docente relacionada
con el manejo de nuevos enfoques metodológicos relacionados con el
desarrollo del área de matemática y en especial la resolución de problemas,
otro factor que se pone de manifiesto es el limitado acceso al uso de
materiales estructurados donados por el Ministerio de Educación y la poco
creatividad docente para utilizar los materiales que los encontramos la zona;
así mismo podemos señalar, por estar ubicada la Institución Educativa a la
zona rural está limitada al acceso de los equipos y tecnología de las
Tecnología de la Información y la Comunicación (TIC) que facilitan
información actualizada a niños, niñas y docentes. En consecuencia, la
enseñanza del área de matemática se limita a estrategias de dictado y
escritura en la pizarra para que los niños copien, y cuando se trata de
resolver problemas matemáticos, se deja al niño sin brindarle el
acompañamiento y orientación debida para que haga uso de nuevas
estrategias, por lo tanto los niveles de aprendizaje y desarrollo de
capacidadesmatemáticas son bajos con relación a los estándares de calidad
demandados por el sistema nacional y mundial.
Frente a esta realidad, el grupo de investigación en el marco del enfoque de
la teoría socio crítica, nos proponemos desarrollar un conjunto de estrategias
metodológicas que partiendo de la realidad económica y productiva,
sociocultural, y ambiental el niño pueda alcanzar el desarrollo de sus
capacidades matemáticas preparándolo para que pueda desenvolverse y
resolver diferentes retos del mundo globalizado, a nivel productivo y
comercial, social y ambiental.
Alvarado (2007) sostiene que el paradigma socio-crítico se fundamenta en
la crítica social con un marcado carácter autorreflexivo; considera que el
conocimiento se construye siempre por intereses que parten de las
necesidades de los grupos; pretende la autonomía racional y liberadora del
ser humano; y se consigue mediante la capacitación de los sujetos para la
participación y transformación social. Utiliza la autorreflexión y el
conocimiento interno y personalizado para que cada quien tome conciencia
del rol que le corresponde dentro del grupo; para ello se propone la crítica
ideológica y la aplicación de procedimientos del psicoanálisis que posibilitan
18
la comprensión de la situación de cada individuo, descubriendo sus intereses
a través de la crítica.
El conocimiento se desarrolla mediante un proceso de construcción y
reconstrucción sucesiva de la teoría y la práctica.
2.4. Definición del problema
¿Cómo podemos desarrollar las capacidadesmatemáticas en la Resolución
de Problemas Aditivos y Multiplicativos con Números Naturales en los niños
y niñas del V ciclo de la Institución Educativa N°16451 Mandinga, del distrito
y provincia de San Ignacio en el año 2015?
2.4.1. Enunciado diagnóstico
Los niños y niñas del V ciclo de la Institución Educativa N° 16451
Mandinga, del distrito y provincia de San Ignacio presentan
dificultades en el desarrollo de sus capacidades matemáticas.
2.4.2. Pregunta de acción
¿Cómo desarrollar las capacidades matemáticas en los niños y niñas
de la Institución Educativa N° 16451 Mandinga, del distrito y provincia
de San Ignacio?
2.5. Objetivos de la investigación
2.5.1. Objetivo general
Desarrollar capacidades matemáticas mediante la Resolución de
Problemas Aditivos y Multiplicativos con Números Naturales, en los
niños y niñas del V ciclo de la Institución Educativa N° 16451
Mandinga del distrito y provincia de San Ignacio en el año 2015.
19
2.5.2. Objetivo específicos
 Diagnosticar mediante una prueba de entrada y lista de cotejo el
desarrollo de las capacidades matemáticas al resolver problemas
aditivos y multiplicativos con números naturales en los niños y
niñas del V ciclo de la Institución Educativa N° 16451 Mandinga
del distrito y provincia de San Ignacio en el año 2015.
 Aplicar diferentes pasos y/o estrategias de Resolución de
Problemas Aditivos y Multiplicativos con Números Naturales en
el transcurso de nuestra investigación, mediante una
programación curricular de mediano y corto plazo; en los niños y
niñas de la Institución Educativa N°16451 Mandinga del distrito y
provincia de San Ignacio en el año 2015.
 Evaluar los progresos de las capacidades matemáticas en la
Resolución de Problemas Aditivos y Multiplicativos con Números
Naturales, en los niños y niñas del V ciclo de la Institución
Educativa N° 16451 Mandinga del distrito y provincia de San
Ignacio en el año 2015.
2.6. Hipótesis de acción
La aplicación de estrategias de Resolución de Problemas Aditivos y
Multiplicativos con Números Naturales permitirá desarrollar las capacidades
matemáticas, en los niños y niñas del V ciclo de Educación Básica Regular
de la Institución Educativa N° 16451 Mandinga del distrito y provincia de San
Ignacio en el año 2015.
2.6.1. Unidad de análisis
20
Niños y niñas del V ciclo de Educación primaria de la Institución
Educativa N° 16451 Mandinga del distrito y provincia de San Ignacio
en el año 2015.
2.6.2. Términos clave
 Capacidades matemáticas
Ministerio de Educación (2014, 22) define las capacidades
matemáticas como el conjunto de habilidades para alcanzar
la competencia de resolución de situaciones problemáticas,
todas ellas existe de manera integrada y única en cada
persona, pueden desarrollarse en el aula, la escuela, la
comunidad y a medida que nos dispongamos a de
oportunidades y medios para hacerlo.
Las capacidades matemáticas se despliegan a partir de las
experiencias y expectativas de nuestros estudiantes, en
situaciones problemáticas reales. Esto característica da
sentido y pertinencia motivando e interesando a los
estudiantes buscar mecanismos para su solución. Estas
competencias son las que permiten: matematizar,
representar, comunicar, elaborar estrategias, utilizar
expresiones simbólicas y argumentar, que en la parte
teórica de nuestra investigación serán tratadas a mayor
profundidad.
 Resolución de Problemas Aditivos y Multiplicativos con
Números Naturales
Ministerio de Educación (2014, 27) se considera la
resolución de problemas aditivos como un enfoque que
consiste en promover formas de enseñanza aprendizaje
que den respuesta a situaciones problemáticas cercanas a
21
la vida real. Para eso recurre a tareas y a actividades
matemáticas de progresiva dificultad que plantean
demandas cognitivas crecientes a los estudiantes.
El enfoque pone énfasis en un saber actuar pertinente ante
una situación problemática, presentada en un contexto
particular preciso, moviliza una serie de recursos o saberes,
a través de actividades que satisfagan determinados
criterios de calidad. Este enfoque rompe con la tradicional
manera de entender cómo se aprende la matemática.
Dijkstra (1991, 98) afirma que; es un proceso cognitivo que
involucra conocimiento almacenado en la memoria a corto
y largo plazo. Es un conjunto de actividades mentales y
conductuales, a la vez que implica también factores de
naturaleza cognitiva, afectiva y motivacional.
Polya (1990) “Señala que existen varis concepciones sobre
la resolución de problemas, unas las consideran como el
objetivo de la educación y otros como el medio para el
aprendizaje”. En este contexto debemos distinguir lo
siguiente:
Enseñar “PARA” resolver problemas: se trata que el
estudiante aprenda para que sea capaz de resolver
problemas para su vida cotidiana
Enseñar “SOBRE” resolución de problemas: se propone
que el estudiante aprenda estrategias que le permiten
resolver diferentes problemas.
Enseñar “A TRAVÉS “De resolución de problemas: se
propone que el estudiantes desarrolle capacidades,
habilidades y destrezas, enfrentando situaciones
problemáticas que el docente pueda utilizar como recurso y
durante el proceso de enseñanza y aprendizaje.
22
2.7. Justificación de la investigación
Cada vez que se dan los resultados del Informe del Programa Internacional
para la Evaluación de Estudiantes (PISA), nos enfrentamos con noticias
catastróficas, ya que el Perú se encuentra en el último en la tabla de los
resultados; de 65 países.
Nadie duda que los resultados sea un indicador (no único) de la grave crisis
de nuestra educación, pero tiene origen estructural en la sociedad peruana,
agravada por 20 años de políticas educativas del modelo neoliberal que
impera en nuestro país.
Es así que los resultados del Informe del Programa Internacional para la
Evaluación de Estudiantes (PISA), ha puesto en evidencia nuestras
carencias en la educación en nuestro país.
La resolución de problemas y el desarrollo de capacidades, es un aspecto
fundamental que se debe propiciar en el proceso de aprendizaje de la
matemática; es el desarrollo de capacidades para la resolución de
capacidades, que implican promover la matematización, representación,
comunicación, elaboración de estrategias, utilización del lenguaje
matemático y la argumentación, todas ellas son necesarias para resolver
situaciones problemáticas de la vida cotidiana.
Consideramos que el presente proyecto de investigación es gran
importancia porque busca desarrollar capacidades y actitudes que
favorezcan en niños y niñas del IV ciclo de primaria, la adquisición de
diferentes estrategias en la resolución de problemas aditivos con números
naturales ya que como futuros ciudadanos sean capaces de desarrollar
habilidades para afrontar exitosamente los problemas de su contexto y
mundo globalizado.
23
2.8. Viabilidad del proyecto de investigación
2.8.1. Viabilidad social
Nuestra investigación es viable para la sociedad ya que contamos con
el consentimiento de maestro y padres de familia; además contamos
una gama de fuentes bibliográficas como un asesoramiento pertinente.
2.8.2. Viabilidad técnica
Para el desarrollo del presente proyecto contamos con el
asesoramiento técnico y oportuno correspondiente tanto del profesor
de investigación como asesor, además contamos una gama de
fuentes bibliográficas como el internet, biblioteca.
2.8.3. Viabilidad económica
Los recursos económicos que demandará esta investigación serán
cubiertos con recursos propios por el equipo de investigación.
24
CAPÍTULO III
MARCO TEÓRICO CONCEPTUAL
25
3.1. Antecedentes
3.1.1. Antecedentes Internacionales
Cardona (2007) en su tesis “Pensamiento algebraico en los
alumnos de octavo grado del CIIE a través de la resolución de
problemas”, presentado a la Universidad Pedagógica Nacional
Francisco Morazán – Honduras; con su objetivo general,
explorar las habilidades de pensamiento algebraico que
desarrollan los alumnos de octavo grado de Educación Básica
de CIIE a través de la resolución de problemas, concluye que:
1. La selección adecuada de los problemas, la forma y el
momento en que se presentan. Se debe procurar que los
conocimientos requeridos estén presente en todos los
estudiantes. Las actividades deben aprovechar las
habilidades: aritméticas de los estudiantes como punto de
partida para introducirlos el uso del código algebraico; pues
se evidencio que recurriendo a la aritmética los alumnos
daban paso al algebra, con mayor seguridad. Los
problemas se deben seleccionar según el nivel de
desarrollo del estadio de las operaciones formales que
presenta el grupo.
2. La estrategia de resolución de problemas resulto ser
adecuada para iniciar en los estudiantes el desarrollo de
cada una de las habilidades que se pretendía con cada guía
de trabajo; pues se abordó el aprendizaje del código
algebraico; no a partir de un conocimiento previo de reglas
de transformaciones algebraicas y definiciones; si no a
través de su uso los conceptos algebraicos se desarrollaron
por necesidad y no por un fin en sí mismos. Cada equipo
alcanzo un nivel de dominio de cada habilidad según sus
capacidades internas.
26
Carrero (2006), presentó el trabajo titulado “Planificación de
estrategias didácticas para la enseñanza de la matemática, en
los alumnos del cuarto grado de educación básica”, teniendo
como objetivo general aplicar las estrategias didácticas para la
enseñanza de la matemática en los alumnos de cuarto grado
de educación básica, la U.E “Rafael Antonio González”,
Parroquia Mesa Bolivar, Municipio Antonio Pinto Salinas, del
estado Mérida. Adoptó la modalidad de la investigación acción
participante. Concluye en:
Que la planificación va inmersa las estrategias, las cuales
deben ser adecuadas para que el alumno pueda construir su
propio aprendizaje tomando en cuenta sus experiencias y
necesidades previas. Para que el docente pueda planificar con
resultados exitosos es imprescindible que este contenga
conocimiento teórico – práctico preciso sobre el arsenal de
técnicas para planificar estrategias.
3.1.2. Antecedentes nacionales
Aliaga (2012) en su tesis “Efectividad del programa gpa-resol
en el incremento del nivel de logro en la resolución de
problemas aritméticos aditivos y sustractivos en estudiantes de
segundo grado de primaria de dos instituciones educativas, una
de gestión estatal y otra privada del distrito de san Luis”,
presentada a la universidad Pontificia Universidad Católica del
Perú – Lima; con su objetivo general, establecer la efectividad
del programa “GPA-RESOL” en el incremento del nivel de logro
en la resolución de problemas aritméticos aditivo y sustractivo
en estudiantes de segundo grado de primaria de dos
instituciones educativas, una de gestión estatal y otra privada
del distrito de San Luis, concluye que:
1. El nivel de logro en resolución de problemas aritméticos
aditivos y sustractivos en estudiantes de segundo grado de
27
primaria de dos instituciones educativas, una de gestión
estatal y otra particular del distrito de San Luis después de
la aplicación del programa GPA - RESOL es altamente
significativo.
En el momento pre test el grupo experimental difiere del
grupo control y al interior de los grupos, los estudiantes de
la institución de gestión privada evidencian un mejor nivel
de logro en la resolución de problemas aritméticos aditivos
y sustractivos.
2. En el momento post test el grupo experimental tiene mayor
nivel, pero al interior del grupo experimental el tipo de
gestión no evidenció mayor impacto en el nivel de logro en
la resolución de problemas aritméticos aditivos y
sustractivos.
Bastiand, (2012) en su tesis “Relación entre comprensión
lectora y resolución de problemas matemáticos en estudiantes
de sexto grado de primaria de las instituciones educativas
públicas del Concejo Educativo Municipal de La Molina – 2011”,
presentado a la Universidad Nacional Mayor de San Marcos –
Lima; teniendo como objetivo general determinar la relación
que existe entre la comprensión lectora y la resolución de
problemas matemáticos en los estudiantes de sexto grado de
primaria de las Instituciones Educativas Públicas del Concejo
Educativo Municipal de La Molina en el año 2011, concluye
que:
1. En la prueba de resolución de problemas matemáticos, los
alumnos se ubican en un nivel de “en proceso” con una nota
desaprobatoria de 11.
2. En las fases de la resolución de problemas matemáticos,
los alumnos se ubican de la siguiente manera:
28
a. Comprensión: En proceso, con una nota de 11.2
b. Planificación: Logro previsto, con una nota de 12.6
c. Ejecución: En inicio, con una nota de 09.2
d. Comprobación: En inicio, con una nota de 08.0
3. El 55% de los alumnos de la muestra resolvieron
correctamente las preguntas de la prueba de resolución de
problemas matemáticos; de los cuales, el 56% resolvieron
correctamente las preguntas de comprensión; el 63%, las
preguntas de planificación; el 45%, las preguntas de
ejecución, y el 39%, las preguntas de comprobación.
Roque (2009) en su tesis “influencia de la enseñanza de la
matemática basada en la resolución de problemas en el
mejoramiento del rendimiento académico el caso de los
ingresantes a la escuela de enfermería de la universidad alas
peruanas 2008”, presentada a la Nacional Mayor de San
Marco, Lima con su objetivo principal, determinar y analizar si
existen diferencias significativas en el rendimiento académico
del grupo de estudiantes que trabajan con la estrategia
didáctica de la enseñanza de la matemática, con respecto al
grupo de estudiantes al cual no se le aplica dicha estrategia;
concluyen que:
1. Los niveles de rendimiento académico de los
estudiantes del Primer ciclo de la EP de Enfermería de la FCS
fueron muy bajos al iniciar el semestre académico, es decir
antes de aplicar la estrategia de enseñanza de la matemática
BRP, pues la mayoría absoluta de ellos (82%) tuvieron
puntuaciones entre 21 a 38 puntos. Bajos niveles que se
expresaban y explicaban por las diversas dificultades que
adolecían en su proceso de resolución de problemas:
memorización de fórmulas, desconocimiento de estrategias de
29
solución y, sobre todo, desconocimiento de la enseñanza de la
matemática mediante la resolución de problemas.
2. Los bajos niveles de rendimiento académico de dichos
estudiantes se explica también por factores de carácter
pedagógico –didáctico, como son: Existencia de docentes en la
Educación Secundaria que no les enseñaron la matemática
mediante la resolución de problemas en forma sistemática o
metódica; carencia en la FCS de docentes que proporcionen una
enseñanza planificada y metódica de resolución de problemas,
pues éstos no han recibido capacitación en enseñanza de la
resolución de problemas a estudiantes universitarios, ni han
realizado investigaciones sobre problemas o dificultades del
rendimiento académico de los estudiantes a los que enseñan
diversas asignaturas, y en parte porque no leen con frecuencia
bibliografía sobre enseñanza de resolución de problemas a
estudiantes universitarios.
3.1.3. Antecedentes locales
Gonzales, (2010) En su tesis “Mejoramiento de la enseñanza –
aprendizaje de la resolución de problemas con las operaciones
básicas de números naturales utilizando estrategias lúdicas en
los niños y niñas del IV ciclo de la Institución Educativa
N°16630 caserío López y la Institución Educativa N°16878
caserío la Libertad”; presentada al Instituto de Educación
Superior Pedagógico Público “Rafael Hoyos Rubio”; teniendo
como objetivo general mejorar el proceso de enseñanza –
aprendizaje en la resolución de problemas con las operaciones
básicas de números naturales utilizando estrategias lúdicas en
los niños y niñas del IV ciclo de la Institución Educativa N°
16630 del caserío López y la Institución Educativa N° 16878 del
caserío la Libertad, San Ignacio; concluye que:
30
1. Que la planificación, ejecución y evaluación de actividades
de aprendizaje, aplicando estrategias lúdicas lo cual
permitió elevar el nivel de capacidades, conocimientos y
actitudes en la resolución de problemas de adicción y
sustracción con números naturales en los niños y niñas del
IV ciclo de la Institución Educativa N° 16630 del caserío
López y la Institución Educativa N° 16878 del caserío la
Libertad.
2. La utilización de estrategia lúdicas en los niños y niñas del
IV ciclo permitió mejorar el proceso de enseñanza –
aprendizaje de la resolución de problemas con las
operaciones básicas de números naturales.
Cruz (2004) en su tesis mejorar la capacidad de razonamiento
matemático en los niños y niñas del II y III ciclo de educación
primaria de las instituciones educativas N° 16626 caserío
Marizagua y N°16631 caserío San Antonio de la Balsa
aplicando el método de resolución de problemas en la
planificación y ejecución de actividades de aprendizaje”
presentada al Instituto de Educación Superior Pedagógico
Público “Rafael Hoyos Rubio” con su objetivo general lograr
que los niños y niñas del II y III ciclo mejoren su capacidad de
razonamiento en el área de lógico matemático; concluyen que:
1. Que la aplicación del método de resolución de
problemas en la planificación y ejecución de actividades de
aprendizaje, permitió la capacidad de razonamiento
matemático de los niños y niñas del II y III ciclo de educación
primaria de las instituciones educativas N° 16626 caserío
Marizagua y N°16631 caserío San Antonio de la Balsa.
2. La ejecución del taller de capacitación a docentes
permitió el manejo del método de resolución de problemas, lo
31
que contribuyó al mejoramiento de la práctica docente en el
área de lógico matemático.
Flores (2001) en su tesis “aplicación del método de resolución
de problemas en el desarrollo de capacidades y actitudes de la
operación de números naturales en los Centros Educativos N°
16629 Buenos Aires y N° 16625 Alto Tambillo del distrito de
San Ignacio, presentado al Instituto de Educación Superior
Pedagógico Público, con su objetivo general, elevar el
desarrollo de capacidades y actitudes de la multiplicación de
números naturales del área de lógico matemática aplicando el
método de resolución de problemas en los alumnos del 5°
grado de educación primaria del Centro Educativo N° 16629
Buenos Aires y el Centro Educativo N° 16625 Alto Tambillo del
distrito de san Ignacio, concluye que:
1. El método de resolución de problemas nos permite
encontrar la forma correcta de salir de alguna dificultad.
2. La aplicación adecuada del método de resolución de
problema desarrollará en los alumnos capacidades y
actitudes de comprensión, análisis y solución de los
mismos.
3. Las capacidades y actitudes de la operación de la
multiplicación han sido desarrolladas en un nivel
considerable, contextualizando los contenidos del área de
matemática y aplicando el método de resolución de
problemas.
4. Los niveles de socialización e interacción en el aula han
mejorado, utilizando técnicas de dinámica grupal.
3.2. Marco teórico conceptual
32
3.2.1. Bases científicas
A. Paradigmas de enseñanza en la resolución de problemas
matemáticos
Gascón (1994) considera que resulta interesante interpretar y
describir las principales formas de entender la resolución de
problemas y su función en la enseñanza de la Matemática a partir
del análisis de los diferentes paradigmas o formas ideales de
abordar los problemas, las cuales aparecen frecuentemente
entremezcladas en la práctica docente real. Así podría llevarse a
cabo una reconstrucción racional del papel que ha jugado la
resolución de problemas en la enseñanza de la Matemática en
esta segunda etapa que hemos descrito.
Gascón (1994) señalas los siguientes paradigmas:
1. Teoricista
El paradigma más alejado de la actividad de resolución de
problemas es el teoricista, que considera la misma como un
aspecto secundario dentro del proceso didáctico global, ignorando
las tareas dirigidas a elaborar estrategias de resolución de
problemas, trivializando los problemas y descomponiéndolos en
ejercicios rutinarios. Se consideran las técnicas matemáticas
como técnicas predeterminadas por la teoría.
2. Tecnicista
Luego surge el paradigma tecnicista como respuesta al teoricista,
enfatizando los aspectos más rudimentarios del momento de la
técnica y concentrando en ellos los mayores esfuerzos.
La defensa que hace del dominio de las técnicas es ingenua y
poco fundamentada desde el punto de vista didáctico, pudiendo
caerse en el “operacionismo” estéril.
33
Paradójicamente este paradigma comparte con el teoricista la
trivialización de los problemas, ya que pone todo el énfasis en las
técnicas simples, olvidando los auténticos problemas. Ambos
tienen al conductismo como su referente más claro.
3. Modernista
El paradigma modernista va al rescate de la actividad de
resolución de problemas en sí misma, ignorada por los anteriores.
Se caracteriza por conceder una prioridad absoluta al momento
exploratorio, manteniendo el aislamiento y descontextualización
de los problemas. Aunque pretende superar al conductismo
clásico, coloca en su lugar una interpretación muy superficial de la
Psicología Genética.
4. Constructivista
El paradigma constructivista, por su parte, utiliza la resolución de
problemas para la construcción de nuevos conocimientos. Se basa
en la Psicología Genética y la Psicología Social. Relaciona
funcionalmente el momento exploratorio con el momento teórico,
dando gran importancia al papel de la actividad de resolución de
problemas en la génesis de los conceptos. Continúa ignorando la
función del trabajo de la técnica en la resolución de problemas. No
presenta los problemas tan descontextualizados pero los sigue
considerando aislados.
Los modelos instruccionales más importantes actualmente
dirigidos a la enseñanza de la resolución de problemas en el
campo de las matemáticas se han desarrollado en el marco de los
ambientes de aprendizaje constructivistas. Rodríguez (2005);
destacando las propuestas dentro de la enseñanza basada en
problemas y especialmente la instrucción anclada basada en
ambientes computarizados. Goldman (1999)
34
Todas estas propuestas están basadas en los planteamientos de
Dewey (1933) que defiende la idea de que encontrar un problema
es el comienzo del verdadero aprendizaje y se muestran contrarios
a las prácticas que consisten en utilizar los problemas como
aplicación una vez que cierto conocimiento matemático ha sido
introducido, con el objetivo de utilizarlos para resolver situaciones
“reales”.
3.2.2. Bases teóricas
3.2.2.1. Capacidades matemáticas
A. Definición
Ministerio de Educación (2014, 22) considera las capacidades
matemáticas como el conjunto de habilidades para alcanzar la
competencia de resolución de situaciones problemáticas, todas
ellas existe de manera integrada y única en cada persona,
pueden desarrollarse en el aula, la escuela, la comunidad y a
medida que nos dispongamos a de oportunidades y medios
para hacerlo.
Las capacidades matemáticas se despliegan a partir de las
experiencias y expectativas de nuestros estudiantes, en
situaciones problemáticas reales. Esto característica da sentido
y pertinencia motivando e interesando a los estudiantes buscar
mecanismos para su solución. Estas competencias son las que
permiten: matematizar, representar, comunicar, elaborar
estrategias, utilizar expresiones simbólicas y argumentar, que
en la parte teórica de nuestra investigación serán tratadas a
mayor profundidad.
35
B. Capacidades matemáticas
Estas seis capacidades son las siguientes:
1. Matematizar
La matematización es un proceso que dota de una estructura
matemática a una parte de la realidad o a una situación
problemática real.
Este proceso es eficaz en tanto pueda establecer un
isomorfismo, es decir, igualdad en términos de formas entre la
estructura matemática y la realidad.
Cuando esto ocurre las propiedades de la estructura
matemática corresponden a la realidad y viceversa.
Matematizar Implica también interpretar una solución
matemática o un modelo matemático a la luz del contexto de
una situación problemática.
Por ejemplo:
Los sistemas de numeración tuvieron un origen anatómico.
Nuestros antepasados valiéndose de los dedos de sus manos
contaban hasta diez; uno/huk/, dos/iskay/, tres/ kimsa/,
cuatro/tawa/, cinco/pichqa/, seis/suqta/, siete/qanchis/,
ocho/pusaq/, nueve/isqun/ y diez/chunka). Al llegar a diez
/chunka/, es decir, después de consumir todas las posibilidades
de su «aparato de cálculo» natural, los dedos de sus dos
manos, les fue lógico considerar el número 10 como una unidad
nueva, mayor (la unidad del orden siguiente) y prosiguieron el
contero en los términos siguientes: diez y uno/chunka
hukniyuq/, diez y dos /chunka iskayniyuq/, diez y tres /chunka
kimsayuq/, diez y cuatro/chunka tawayuq/, diez y cinco /chunka
pichkayuq/, diez y seis /chunka suqtayuq/, diez y siete /chunka
qanchikniyuq/, diez y ocho / chunka pusaqniyuq/, diez y
nueve/chunka isqunniyuq/ y dos veces diez (veinte)/iskay
chunka/.
36
“El conteo a base de los dedos de las dos manos dio origen al
sistema de numeración decimal quechua. Nuestros
antepasados dotaron de una estructura matemática decimal a
una parte de su anatomía, sus dos manos y nos legaron el
sistema de numeración decimal quechua” Al llegar a veinte,
formaban la segunda decena y proseguían el conteo hasta
llegar a diez decenas /chunka chunka/ y así lograban formar la
unidad del tercer orden, la centena /pachak/ y así
sucesivamente.
Algo similar, sucedió probablemente con nuestros antepasados
aimaras. Ellos, a diferencia de los quechuas, se valieron de los
dedos sólo de una de sus manos, y contaban con facilidad
hasta llegar a cinco (uno /maya/, dos/paya/, tres/kima/,
cuatro/pusi/ y cinco/qallqu/) Al llegar a cinco, les fue lógico
considerar el número 5 como una unidad nueva, mayor (la
unidad del orden siguiente) y prosiguieron el contero en los
términos siguientes: uno y cinco /ma- qallqu/, dos y cinco / pa-
qallqu/, tres y cinco /ki-qallqu/, cuatro y cinco/pu-qallqu/ y cinco
y cinco/qallqu qallqu. Al llegar a cinco y cinco, formaban la
unidad del segundo orden, después de tercer orden y así
sucesivamente.
Así los aimaras dotaron de una estructura matemática quinaria
a una de sus manos y nos legaron el sistema de numeración
quinaria aimara. Así matematizaron nuestros antepasados
porciones o partes de su anatomía.
“Matematizar implica, entonces, expresar una parcela de la
realidad, un contexto concreto o una situación problemática,
definido en el mundo real, en términos matemáticos”
2. Representar
37
Existen diversas formas de representar las cosas y, por tanto,
diversas maneras de organizar el aprendizaje de la
matemática.
El aprendizaje de la matemática es un proceso que va de lo
concreto a lo abstracto. Entonces, las personas, los niños en
particular, aprendemos matemática con más facilidad si
construimos conceptos y descubrimos procedimientos
matemáticos desde nuestra experiencia real y particular. Esto
supone manipular materiales concretos (estructurados o no),
para pasar luego a manipulaciones simbólicas.
Este tránsito de la manipulación de objetos concretos a objetos
abstractos está apoyado en nuestra capacidad de representar
matemáticamente los objetos.
“La capacidad de representar es fundamental no solo para
enfrentar situaciones problemáticas, sino para organizar el
aprendizaje de la matemática y socializar los conocimientos
matemáticos que los estudiantes vayan logrando”
Por ejemplo:
Cuando enfrentamos a una situación problemática real
susceptible de matematización, la representamos
matemáticamente. Para eso utilizamos distintas
representaciones tales como: gráficos, tablas, diagramas,
imágenes, etc. Así capturamos y describimos la estructura y las
características matemáticas de una determinada situación.
Cuando ya disponemos de resultados matemáticos,
presentados en diversos formatos o representaciones
matemáticas, los interpretamos. Para hacer esa interpretación
nos referimos a la situación problemática y usamos las
representaciones para resolverla. A veces es necesario crear
nuevas representaciones.
38
3. Comunicar
El lenguaje matemático es también una herramienta que nos
permite comunicarnos con los demás. Incluye distintas formas
de expresión y comunicación oral, escrita, simbólica, gráfica.
Todas ellas existen de manera única en cada persona y se
pueden desarrollar en las escuelas si éstas ofrecen
oportunidades y medios para hacerlo.
Buscamos desarrollar esta capacidad en los estudiantes para
que logren comprender desarrollar y expresar con precisión
matemática las ideas, argumentos y procedimientos utilizados,
así como sus conclusiones. Asimismo, para identificar,
interpretar y analizar expresiones matemáticas escritas o
verbales. En matemáticas se busca desarrollar en los
estudiantes esa capacidad para recibir, producir y organizar
mensajes matemáticos orales en forma crítica y creativa. Esto
les facilita tomar decisiones individuales y grupales. La
institución educativa debe brindar situaciones reales de
interacción oral para que los estudiantes tengan oportunidad de
hablar, dialogar, opinar, informar, explicar, describir,
argumentar, debatir, etc., en el marco de las actividades
matemáticas programadas. La lectura y el dar sentido a las
afirmaciones, preguntas, tareas matemáticas, permiten a los
estudiantes crear modelos de situaciones problemáticas, lo
cual es un paso importante para comprender, clarificar, plantear
y resolverlas en términos matemáticos.
“La gran cantidad de información matemática que se dispone
re quiere desarrollar en los estudiantes la capacidad de
comunicación escrita. Eso les posibilita identificar, procesar,
producir y administrar información matemática escrita. El
lenguaje matemático escrito constituye el medio de
comunicación más eficaz”
4. Elaborar estrategias
39
Al enfrentar una situación problemática de la vida real, lo
primero que hacemos es dotarla de una estructura matemática.
Luego, seleccionamos una alternativa de solución entre otras
opciones. Si no disponemos de ninguna alternativa plausible,
intentamos crearla. Entonces, cuando ya disponemos de una
alternativa razonable de solución, elaboramos una estrategia.
De esta manera, la resolución de una situación problemática
supone la selección o elaboración de una estrategia para guiar
el trabajo, interpretar, evaluar y validar su procedimiento y
solución matemáticos. La construcción de conocimientos
matemáticos requiere también seleccionar o crear y diseñar
estrategias de construcción de conocimientos.
Por ejemplo:
Un avión sube a una altura de 2 000 metros, después baja 1
300 metros, vuelve a subir 1500 metros y baja de nuevo 250
metros. ¿A qué altura se encuentra en este momento?
“La capacidad de elaborar estrategias es fundamental para
Primera forma
Segunda forma
40
Construir conocimientos matemáticos, y también para resolver
situaciones problemáticas”
5. Utilizar expresiones simbólicas
Hay diferentes formas de simbolizar. Éstas han ido
construyendo sistemas simbólicos con características
sintácticas, semánticas y funcionales peculiares.
El uso de las expresiones y símbolos matemáticos ayudan a la
comprensión de las ideas matemáticas, sin embargo estas no
son fáciles de generar debido a la complejidad de los procesos
de simbolización. En el desarrollo de los aprendizajes
matemáticos, los estudiantes a partir de sus experiencias
vivenciales e inductivas emplean diferentes niveles del
lenguaje. Inicialmente usan un lenguaje de rasgos coloquiales,
paulatinamente van empleando el lenguaje simbólico hasta
llegar a un lenguaje técnico y formal como resultado de un
proceso de convención y acuerdo en el grupo de trabajo. Al
dotar de estructura matemática a una situación problemática,
necesitamos usar variables, símbolos y expresiones simbólicas
apropiadas. Para lograr esto es importante: Entender la
relación entre el lenguaje del problema y el lenguaje simbólico
necesario para representarlo matemáticamente. Comprender,
manipular y hacer uso de expresiones simbólicas aritméticas y
algebraicas regidas por reglas y convenciones matemáticas, es
decir, por una gramática específica de lenguaje matemático.
“La capacidad de usar símbolos y expresiones simbólicas es
indispensable para construir conocimientos y resolver
problemas matemáticos. Pero también para comunicar,
explicar y entender resultados matemáticos”
6. Argumentar
41
Esta capacidad es fundamental no solo para el desarrollo del
pensamiento matemático, sino para organizar y plantear
secuencias, formular conjeturas y corroborarlas, así como
establecer conceptos, juicios y razonamientos que den
sustento lógico y coherente al procedimiento o solución
encontrada. Así, se diceque la argumentación puede tener tres
diferentes usos:
a) Explicar procesos de resolución de situaciones
problemáticas
b) Justificar, es decir, hacer una exposición de las conclusiones
o resultados a los que se haya llegado
c) Verificar conjeturas, tomando como base elementos del
pensamiento matemático.
La capacidad de argumentar se aplica para justificar la validez
de los resultados obtenidos.
El diálogo colectivo basado en afirmaciones u opiniones
argumentadas, así como el análisis de la validez de los
procesos de resolución de situaciones problemáticas favorecen
el aprendizaje matemático. En la Educación Básica, se procura
que los estudiantes:
 Hagan progresivamente inferencias que les permita deducir
conocimientos a partir de otros, hacer predicciones eficaces
en variadas situaciones concretas, formular conjeturas e
hipótesis.
 Aprendan paulatinamente a utilizar procesos de
pensamiento lógico que den sentido y validez a sus
afirmaciones, y a seleccionar conceptos, hechos,
estrategias y procedimientos coherentes.
 Desarrollen la capacidad para detectar afirmaciones y
justificaciones erróneas. El razonamiento y la demostración
son partes integrantes de la argumentación.
42
Entran en juego al reflexionar sobre las soluciones
matemáticas y permiten crear explicaciones que apoyen o
refuten soluciones matemáticas a situaciones
problemáticas contextualizadas.
“Razonar implica reflexionar sobre los mecanismos lógicos e
intuitivos que hacen posible conectar diferentes partes de la
información. Esto permite llegar a una solución plausible,
analizar e integrar la información, para construir o sostener
argumentos, justificar y validar la toma de decisiones, para
hacer generalizaciones y combinar múltiples elementos de
información”
Las capacidades matemáticas:
 Aparecen y se desarrollan de manera natural sin un orden
pre establecido.
 Se interrelacionan y complementan.
 Se pueden desarrollar de manera simultánea.
 Están articuladas por el conocimiento matemático.
 Las capacidades facilitan el desarrollo de la competencia.
3.2.2.2. Resolución de problemas
A) Definiciones de problema
Ruiz (1994); afirman que un problema es cualquier cosa que
constituye un obstáculo que nos impide alcanzar nuestras metas.
También se entiende un problema como una situación en la que
se percibe la existencia de una dificultad, la cual se expresa en un
desequilibrio entre el estado real de un hecho o fenómeno y un
estado ideal, al que se inspira llegar mediante la superación de los
obstáculos que caracterizan la dificultad en cuestión.
Pólya (1945) considera que “tener un problema significa buscar
conscientemente una acción u operación para obtener una
solución, de la que no dispone de forma inmediata, obligándolo a
engendrar nuevos conocimientos, modificando (enriqueciéndolo o
43
rechazándolo) los que hasta el momento posean, es una situación
que exige el uso del pensamiento y conocimiento matemático para
solucionar un problema”.
B) ¿Qué contiene un problema?
Mayer (1983) sostiene que un problema está constituido por los
siguientes elementos.
1. Los datos. Están constituidos por determinada información que
está presente en el problema.
2. Los objetivos. Es el estado final o deseado del problema. El
pensamiento se encargará de transformar el problema desde
el estado inicial hasta estado final.
3. Los obstáculos. Son las dificultades propias de las diferentes
operaciones adecuadas. Estos elementos se encuentran
presentes en diferentes tipos de problemas, ya sean de
geometría. Polya (1957)
C) ¿Qué es resolver un problema?
Algunos autores señalan que el término "resolver problemas" no
debería ser utilizado puesto que hace énfasis "en obtener una
solución, y las soluciones no siempre son posibles, y que tal vez,
un término más adecuado sea enfrentarse a problemas" Garret
(1988). Pero ya sea que se utilice el primero o el segundo de los
términos, siempre el camino seguido por el individuo para
encontrar la solución del problema y la solución misma constituye
una unidad.
El proceso de resolver problemas puede ser explicado desde tres
pun tos de vista: Según el objetivo que se le asigne a la resolución
de los problemas, según los procesos cognitivos involucrados o de
acuerdo con las particularidades mismas del proceso de
44
resolución de problemas. Según el objetivo de la resolución,
resolver problemas puede ser definido como "un eufemismo para
pensar, y los estudiantes necesitan practicar para volverse
pensadores efectivos"
Pestel (1988), considera de esta forma el ámbito didáctico "como
una actividad de aprendizaje, compleja, que incluye el pensar..., y
que, además,... puede ser descrita como un proceso creativo, ya
que solucionar problemas es pensar creativamente y hallar una
solución a un problema, es un acto productivo" Garret (1989).
Según los procesos cognitivos y las capacidades cognitivas
involucrados, la resolución de problemas incluye "los procesos de
conducta y pensamiento dirigidos hacia la ejecución de una tarea
intelectualmente exigente" Nickerson (1990).
Por esto, "se define como el rango total de procedimientos y
actividades cognitivas que realiza el individuo, desde el
reconocimiento del problema hasta la solución del mismo siendo
la solución del problema el último acto de esta serie de
procedimientos cognitivos" Garret (1989); tales como identificar,
comparar, clasificar, resumir, representar, relacionar variables y
elaborar conclusiones que requieren del uso de las más altas
capacidades cognitivas de análisis, síntesis, evaluación y
creatividad.
3.2.2.3. La resolución de problemas y el desarrollo de
capacidades matemáticas.
Un aspecto fundamental que se debe propiciar en el
proceso de aprendizaje de la matemática es el
desarrollo de capacidades para la resolución de
problemas, que implican promover la matematización,
representación, comunicación, elaboración de
estrategias, utilización del lenguaje matemático y la
45
argumentación, todas ellas necesarias para resolver
situaciones problemáticas de la vida cotidiana.
3.2.2.4. ¿Cómo enseñar matemática resolviendo
situaciones matemáticas?
Como hemos podido ver, el enfoque centrado en la
resolución de problemas no sólo permite a los
estudiantes adquirir habilidades duraderas de
aprendizaje y meta-aprendizaje de la matemática, sino
que modifica totalmente el papel del docente.
A los docentes nos toca ahora guiar, explorar y respaldar
las iniciativas de sus estudiantes, sin dar la clase de
manera frontal tipo conferencia. La resolución de
situaciones problemáticas es un proceso que ayuda a
generar e integrar actividades, tanto en la construcción
de conceptos y procedimientos matemáticos como en la
aplicación de estos a la vida real.
Todo esto redundará, a su vez, en el desarrollo de
capacidades y competencias matemáticas. Ministerio de
Educación (2014, 14)
A. ¿Qué es una situación problemática?
Ministerio de Educación (2014, 14), afirma que una
situación problemática es una situación de dificultad
ante la cual hay que buscar y dar reflexivamente una
respuesta coherente, encontrar una solución.
Estamos, por ejemplo, frente a una situación
problemática cuando no disponemos de estrategias o
medios conocidos de solución.
46
B. ¿Qué es resolver una situación problemática?
Ubillús (1995) considera que una resolver situación
problemática es:
 Encontrarle una solución a un problema
determinado.
 Hallar la manera de superar un obstáculo.
 Encontrar una estrategia allí donde no se disponía
de estrategia alguna.
 Idear la forma de salir de una dificultad.
C. Características de las situaciones problemáticas
1. Situaciones problemáticas en contexto real
Las situaciones problemáticas a plantear en clases
deben surgir de la propia experiencia del estudiante,
considerar datos de la vida real planteados por el
mismo alumno.
Ejemplo: en el corral hay…tipos de animales.
Averigua los datos y completa la tabla.
ANIMALES NÚMERO DE ANIMALES
47
En total hay… animales en el corral.
Aquí hay más…que…
2. Situaciones problemáticas desafiantes
Las situaciones problemáticas que se plantean a los
estudiantes deben ser desafiantes e incitarles a
movilizar toda la voluntad, capacidades y actitudes
necesarias para resolverlas.
3. Situaciones problemáticas motivadoras
Las situaciones problemáticas que se plantean a los
estudiantes deben ser motivadoras, es decir, deben
despertar su curiosidad y su deseo de buscar
soluciones por sí mismos.
4. Situaciones problemáticas interesantes
48
Las situaciones problemáticas que se planteen a los
estudiantes han de ser interesantes para ellos, a fin
de comprometerlos en la búsqueda de su solución.
3.2.2.5. Problemas aritméticos de enunciado verbal (PAEV)
Ministerio de Educación (2014, 33) son las situaciones
que se plantean generalmente a los estudiantes en
matemática. Siendo la resolución de problemas la
primera actividad con la que se encuentran los niños
en su vida escolar, debe ponerse todo el cuidado que
merece el primer paso en un campo de actividad como
este.
Proponemos la siguiente diversidad de problemas, pues
el niño debe enfrentarse a muchas situaciones de
contexto. Entre los problemas aritméticos de enunciado
verbal, se pueden identificar dos clases:
 Problemas aditivos (requieren sumar y restar)
 Problemas multiplicativos (requieren multiplicar y
dividir)
3.2.2.6. Clasificación de los problemas aditivos
Vergnaud (1991, 161) propone seis categorías
fundamentales:
A) Composición
Son problemas en los que dos cantidades de elementos de
una colección se combinan para hallar una tercera y
responden a situaciones como la siguiente.
“En una bolsa hay trece chapitas rojas y nueve azules.
Entonces tengo veintidós chapitas”
Es el problema que plantea la adición por primera vez a los
niños, desde la misma construcción del número natural.
49
“De los veinte niños de mi aula, trece son varones. ¿Cuántas
mujeres hay?
La situación es muy similar a la anterior y no presenta
dificultades para entenderla. Sin embargo su solución hace
uso de la sustracción. Sin embargo la similitud con el
problema anterior permite que la estrategia de solución de la
primera se adapte a este segundo problema con una adición
que llamamos “con hueco”:
21 +…. = 46
Frases como “no se puede sumar manzanas con plátanos”
carecería de sentidos si se pregunta por el total de frutas, con
lo que cantidad de manzanas y plátanos, que son campos de
medida distinta, pasan a componerse y a “sumarse”.
En este otro ejemplo de problemas:
 Hay a varones. Hay b mujeres. ¿Cuántas personas hay?
 Hay a varones. Hay b personas. ¿Cuántas mujeres hay?
La relación entre las proposiciones está dada a través de los
sustantivos “varones”, “mujeres” y “personas”, cuyos
significados mantienen las relaciones parte – parte – todo,
que caracteriza a estos problemas.
En el primer caso, las partes constituirán los datos (D) del
problema y el todo será la incógnita (I). En el segundo caso,
el todo y algunas de las partes constituirán los datos del
problema mientras que la otra parte será la incógnita. En este
contexto, según la operación de adición o sustracción que se
requiera utilizar para resolver el problema de combinación se
generan dos posibilidades:
50
PROBLEMAS
ESTRUCTURA
PARTE PARTE TODO
COMBINACIÓN 1 D D I
COMBINACIÓN 2 D I D
B) Transformación
Estos problemas, se produce una modificación en el tiempo,
se establecen relaciones lógicas aditivas en una secuencia
temporal de sucesos, pasando de un estado inicial a un
estado final mediante una transformación. Ejemplo:
ei t ef
En una caja hay 28 caramelos, Susi comió 13. ¿Cuántos
caramelos quedan en la caja?
En esta clase de problemas es posible distinguir tres
momentos diferentes relacionados con el hecho de como una
cantidad inicial es sometida a una acción que la modifica. Las
tres cantidades que aparecen en los enunciados de esta clase
de problemas reciben los nombres de cantidad inicial, final o
de transformación o cambio.
La pregunta del problema se hará acerca de la cantidad inicial,
final o de la transformación o cambio. Así, dos de las tres
cantidades deben estar en la parte informativa del enunciado
del problema, es decir serán los datos del problema.
A partir de esta estructura se pueden identificar seis
subcategorías dependiendo de la naturaleza de la
transformación (o del cambio) que aumente t + o que
disminuya t – y del dato que se pregunte.
51
INCOGNITA
ESTADO FINAL
ef
INCOGNITA
TRANSFORMACIÓN
(CAMBIO)
t
INCOGNITA
ESTADO INICIAL
ei
T+
1. Patty va a realizar
79 fotocopias,
cuando empieza,
el contador marca
347. ¿Cuánto
marcara el
contador cuando
termine?
2. José tiene 38
globos, se ha
comprado una bolsa
de globos y ahora
tiene 95. ¿Cuántos
globos se ha
comprado?
3. En el último censo
mi pueblo figura
con 3548
habitantes. Si en
el último año ha
crecido 347.
¿Cuántos
habitantes, tenía
hacia un año?
T-
4. Yo guardaba 47
chapitas en una
caja y he regalado
15. ¿Cuántas
tengo en mi caja
de chapitas?
5. Manuel ha jugado a
las bolichas, tenía
27 antes de jugar y
ahora tiene 19.
¿Cuántas bolichas
perdió?
6. Maricela ha
sacado de su
cuenta 365 soles
para hacer unas
compras. Si
después le queda
1466 soles en la
cuenta. ¿Cuánto
tenía antes?
En los problemas 1 y 4:
Se sigue la secuencia cronológica y se aplica la
transformación al estado inicial en ambos casos, aun cuando
en el ejemplo 4 la transformación implique una sustracción.
La complejidad en los problemas 2 y 5 es mayor que en los
anteriores. En estos casos la incógnita está en la
transformación misma (o cambio).
La dificultad de los problemas 3 y 6 es todavía mayor que en
los otros; la resolución implica invertir la transformación y
calcular el estado inicial aplicando la transformación al estado
final.
52
C) Comparación
Son problemas en los que se establece una comparación, en
términos aditivos de dos cantidades, por ejemplo:
“tengo 17 años y mi hermana tres años menos”. Ella tiene 14
años. Existen seis casos dependiendo del tipo de
comparación positiva o negativa y según preguntemos por la
cantidad más grande, la más pequeña o por la comparación.
En los problemas de comparación a las cantidades “más
grande”, “más pequeña” y la comparación, se les denominan
cantidades de referencia, cantidad comparada y de diferencia.
La cantidad comparada aparece a la izquierda de la expresión
“más que” y “menos que” y la cantidad de referencia a su
derecha. Puesto que cualquiera de las cantidades puede ser
objeto de pregunta y dado que el sentido de la comparación
puede establecerse en más o menos; así como se aprecia en
el siguiente cuadro:
PROBLEMAS TIPO
CANTIDAD COMPARACIÓN
Referencia Comparada Diferencia Más Menos
COMBINACIÓN 1
D D I *
COMBINACIÓN 2
D D I *
COMBINACIÓN 3
D I D *
COMBINACIÓN 4
D I D *
COMBINACIÓN 5
I D D *
COMBINACIÓN 6
I D D *
53
D) Composición de transformaciones
Son problemas en los que dos transformaciones se
componen en una tercera resultante de las otras dos. Por
ejemplo:
Panchito tiene una alcancía con dinero. Esta mañana sacó 18
soles para comprar un libro. Por la tarde su mamá le dio 5
soles y los guardó. Al final dl día saca la cuenta que tiene una
diferencia de 3 soles menos en su alcancía.
Esta estructura de problema puede generar una variedad de
problemas dependiendo de la incógnita, sea de las
transformaciones o de la resultante, o del signo de las
transformaciones.
Otro ejemplo: esta mañana he perdido 8 soles y por la tarde
recibí 32 soles. ¿Cuál será el balance del día?
E) Transformación sobre estados relativos
Se trata de problemas en los que una transformación actúa
sobre un estado relativo, para dar lugar a otro estado relativo.
“Antonio le debía Panchito 13 canicas. Le dio 6 ahora le debe
7”.
También esta categoría nos encontraremos con las seis
clases de la categoría II, pero con más casos debido al
carácter positivo o negativo de los estados relativos inicial y
final.
Se llama estado relativo al resultado de una relación, (estado
de cuentas entre las canicas de dos niños por ejemplo).
Matemáticamente deberían ser representados con un número
entero que comportan un signo: positivo o negativo. Pero los
enunciados y resoluciones de estos problemas solo pueden
ser abordados por números naturales.
54
El contexto marcar el carácter positivo o negativo, de las
cantidades que entran en juego, por eso estos problemas
pueden ser trabajados por los niños y niñas sin necesidad de
manejar explícitamente los números enteros.
F) Composición de estados relativos
Son problemas con dos estados relativos que se pueden
componer, no se transforma uno en otro.
“Reimundo le debe 8 bolichas a Manuel, y este 14 a
Reimundo. Luego Manuel le debe 6 a Reimundo.
Existen dos clases correspondientes a la primera categoría de
composición “o combinación” pero con más variantes debido
a la distinta naturaleza de los estados “positivos o negativos”.
Problemas de igualación
Problemas que contienen dos cantidades diferentes,
sobre una de las cuales se actúa aumentándola o
disminuyéndola hasta hacerla igual a la otra. De estas
dos cantidades, una es la cantidad a igualar y la otra es
la cantidad referente.
Igualación 3 Ana tiene 11
fichas. Si Mariela gana 6 más,
tendría tantas como Ana.
¿cuántas
Igualación 4 Yarina tiene 9
fichas. Si Félix pierde 4
fichas, tendría tantas como
yarina.
¿Cuántas fichas tiene Félix?
? 6 9 4
11 ?
Se conoce la cantidad del 1.o y lo
que hay que añadir al 2.o para
igualarla con la del 1.o. Se
pregunta por la cantidad del 2.o.
Se conoce la cantidad del 1.o y
lo que hay que quitar a la del 2.o
para igualarla con la del 1.o Se
pregunta por la cantidad del 2.o.
Tiene Mariela?
55
3.2.2.7. Procedimientos para la resolución de problemas
Método de Georg Polya
La resolución de problemas requiere una serie de
herramientas y procedimientos, como interpretar,
comprender, analizar, explicar, relacionar, entre otros.
Se apela a todos ellos desde el inicio de la tarea
matemática, es decir, desde la identificación de la
situación problemática hasta su solución.
Es necesario ayudar a los estudiantes a identificar las
fases que se requieren hasta la solución, generar un
ambiente de confianza y participación en clase, y hacer
una evaluación sistemática de sus esfuerzos. No perder
de vista que lo principal no es llegar a la “solución
correcta”, sino posibilitar el desarrollo de sus propias
capacidades matemáticas para resolver problemas.
Las fases que se pueden distinguir para resolver un
problema son:
1. Comprender el problema.
2. Diseñar y adaptar una estrategia.
3. Ejecutar la estrategia.
4. Reflexionar sobre el proceso.
FASE 1. Comprender el problema.
Esta fase está enfocada en la comprensión de la
situación planteada. El estudiante debe leer
atentamente el problema y ser capaz de expresarlo en
sus propias palabras (así utilice un lenguaje poco
convencional).
Una buena estrategia es hacer que explique a otro
compañero de qué trata el problema y qué se está
solicitando. O que lo explique sin mencionar números.
56
El docente debe indicar al estudiante que lea el
problema con tranquilidad, sin presiones ni
apresuramientos; que juegue con la situación; que
ponga ejemplos concretos de cada una de las
relaciones que presenta, y que pierda el miedo inicial.
También debe tener presente la necesidad de que el
alumno llegue a una comprensión profunda (inferencial)
de la situación y de lo inútil que para la comprensión
resulta repetir el problema, copiarlo o tratar de
memorizarlo.
En esta fase el docente puede realizar preguntas que
ayuden al estudiante a:
• Identificar las condiciones del problema, si las tuviera.
• Reconocer qué es lo que se pide encontrar.
• Identificar qué información necesita para resolver el
problema y si hay información innecesaria.
• Comprender qué relación hay entre los datos y lo que
se pide encontrar.
Fase 2: Diseñar o adaptar una estrategia de
solución.
En esta fase el estudiante comienza a explorar qué
caminos puede seguir para resolver el problema.
Diseñar una estrategia de solución es pensar en qué
razonamientos, cálculos, construcciones o métodos le
pueden ayudar para hallar la solución del problema.
Dependiendo de la estructura del problema y del estilo
de aprendizaje de los estudiantes, podrán elegir la
estrategia más conveniente.
Los estudiantes decidirán libremente que estrategias
para resolver el problema.
57
El docente no debe decirle a los niños y niñas lo que
tienen que hacer para resolver el problema, sino
propiciar que exploren varias posibilidadesantes de que
elijan su estrategia.
Esta es una de las fases más importantes en el proceso
de resolución, en la que el estudiante activa sus saberes
previos y los relaciona con los elementos del problema
para diseñar una estrategia que lo lleve a resolver con
éxito el problema. Contar con un buen conjunto de
estrategias potencia los conocimientos con los que
cuenta el estudiante, por ello debemos asegurarnos de
que identifique por lo menos una estrategia de solución.
Fase 3: Ejecutar la estrategia
Dentro de un clima de tranquilidad, los estudiantes
aplicarán las estrategias o las operaciones aritméticas
que decidieron utilizar.
En esta fase el docente debe asegurar que el estudiante:
 Lleve a cabo las mejores ideas que se le han ocurrido
en la fase anterior.
Dé su respuesta en una oración completa y no
descontextualizada de la situación.
Use las unidades correctas (metros, nuevos soles,
manzanas, etc.)
Revise y reflexione si su estrategia es adecuada y si
tiene lógica.
Actúe con flexibilidad para cambiar de estrategia cuando
sea necesaria y sin rendirse fácilmente.
El docente estará pendiente del proceso de resolución
del problema que siguen los estudiantes y orientará,
sobre todo, a quienes lo necesiten.
58
Es posible que, al aplicar la estrategia, se dé cuenta de
que no es la más adecuada, por lo que tendrá que
regresar a la fase anterior y diseñar o adaptar una nueva.
Fase 4: Reflexionar sobre lo realizado
Esta etapa es muy importante, pues permite a los
estudiantes reflexionar sobre el trabajo realizado y acerca
de todo lo que han venido pensando.
El docente debe propiciar que el estudiante:
• analice el camino o la estrategia que ha seguido.
• Explique cómo ha llegado a la respuesta.
• intente resolver el problema de otros modos y
reflexione sobre qué estrategias le resultaron más
sencillas.
• Formule nuevas preguntas a partir de la situación
planteada.
• Pidaa otros niños que le expliquen cómo lo resolvieron.
• cambie la información de la pregunta o que la
modifique completamente para ver si la forma de
resolver el problema cambia.
3.2.2.8. Estrategias para la resolución de problemas
A) Estrategias para la resolución de problemas
Ministerio de Educación (2014, 29), nos da a conocer las
siguientes estrategias:
1. Hacer la simulación
Consiste en representar el problema de forma vivencial
mediante una dramatización o con material concreto y de
esa manera hallar la solución.
59
2. Organizar la información
Mediante diagramas, gráficos, esquemas, tablas, figuras,
croquis, para visualizar la situación. En estos diagramas, se
deben incorporar los datos relevantes y eliminar la
información innecesaria. De esta forma el estudiante podrá
visualizar las relaciones entre los elementos que intervienen
en un problema.
3. Buscar problemas relacionados o parecidos
Que haya resuelto antes. El niño puede buscar semejanzas
con otros problemas, casos, juegos, etc., que ya haya
resuelto anteriormente. Se pueden realizar preguntas
como: “¿a qué nos recuerda este problema?” o “¿Es como
aquella otra situación?”
4. Buscar patrones
Consiste en encontrar regularidades en los datos del
problema y usarlas en la solución de problemas.
5. Ensayo error
Consiste en seleccionar algunos valores y probar si alguno
puede ser la solución del problema.
Si se comprueba que un valor cumple con todas las
condiciones del problema, se habrá hallado la solución; de
otra forma, se continúa con el proceso.
6. Usar analogías
60
Implica comparar o relacionar los datos o elementos de un
problema, generando razonamientos para encontrar la
solución por semejanzas.
7. Empezar por el final
Esta estrategia se puede aplicar en la resolución de
problemas en los que conocemos el resultado final del cual
se partirá para hallar el valor inicial.
8. Plantear directamente una operación
Esta estrategia se puede aplicar en la resolución de
problemas cuya estructura aritmética sea clara o de fácil
comprensión para el estudiante.
3.2.2.9. Ejemplo aplicando los 4 pasos de resolución de
problemas según Polya.
61
PROBLEMA: Jesús inicio el juego con 16 canicas. Durante el juego ganó algunas canicas. Ahora
tienes 28 canicas en total. ¿Cuántas canicas ganó durante el juego?
PASOS PARA LA RESOLVER POBLEMAS
COMPRENDER EL
PROBLEMA
 Leer el problema varias cuantas veces sean necesarias para
comprender el problema, tratando de identificar los datos y la incógnita.
 Subrayar con colores los datos y encerrar con una línea la incógnita.
 Se deben responder las siguientes interrogantes:
¿De qué trata el problema?
¿Cuáles son los datos?
¿Qué es lo que nos piden?
DISEÑAR UN PLAN
 Se deben responder a las siguientes interrogantes:
¿Qué haríamos para llegar a la respuesta?
¿Si hemos resuelto algún problema parecido?
¿Qué deberíamos hacer primero?
 Se piensa en diferentes estrategias para resolver el problema, si es
posible se utiliza materiales (estructurado y no estructurado)
APLICACIÓN DE LA
ESTRATEGIA
 Ejecutamos la estrategia elegida.
 Lo representamos en forma gráfica lo trabajado con el material.
 Usamos piedritas:
 Hacemos la operación siguiente:
28 – 16 = 28
REFLEXIÓN SOBRE
LO REALIZADO
 Se explica la estrategia que hemos realizado para resolver el problema.
 Se da una mirada hacia atrás, y se verifica que si el trabajo realizado
es correcto, y si no se debe reformular la estrategia.
62
3.2.2.10. La resolución de problemas como práctica
pedagógica en la escuela
Asumimos el enfoque centrado en resolución de
problemas o enfoque problémico como marco pedagógico
para el desarrollo de las competencias y capacidades
matemáticas, por dos razones:
La resolución de situaciones problemáticas es la actividad
central de la matemática, es el medio principal para
establecer relaciones de funcionalidad matemática con la
realidad cotidiana.
Este enfoque supone cambios pedagógicos y
metodológicos muy significativos, pero sobre todo rompe
con la tradicional manera de entender cómo es que se
aprende la matemática. Este enfoque surge de constatar
que todo lo que aprendemos no se integra del mismo
modo en nuestro conocimiento matemático.
Ejemplo:
Una fórmula matemática o la enunciación de una
propiedad matemática, pueden adquirirse de forma
superficial mediante un proceso de memorización simple.
Esto posibilitará su reproducción de forma más o menos
literal, pero no su utilización para la resolución de
situaciones problemáticas. Es posible disponer de
muchos aprendizajes matemáticos que no sólo seamos
capaces de reproducir, sino de utilizar para dar respuesta
a situaciones problemáticas reales.
63
3.2.2.11. Enfoque centrado en la resolución de problemas
A) Importancia del enfoque centrado en la resolución de
problemas.
Este enfoque consiste en promover formas de enseñanza-
aprendizaje que den respuesta a situaciones problemáticas
cercanas a la vida real. Para eso recurre a tareas y actividades
matemáticas de progresiva dificultad, que plantean demandas
cognitivas crecientes a los estudiantes, con pertinencia a sus
diferencias socio culturales. El enfoque pone énfasis en un
saber actuar pertinente ante una situación problemática,
presentada en un contexto particular preciso, que moviliza una
serie de recursos o saberes, a través de actividades que
satisfagan determinados criterios de calidad. Permite distinguir:
1. Las características superficiales y profundas de una
situación problemática.
Está demostrado que el estudiante novato responde a las
características superficiales del problema (como es el caso
de las palabras clave dentro de su enunciado), mientras que
el experto se guía por las características profundas del
problema (fundamentalmente la estructura de sus
elementos y relaciones, lo que implica la construcción de
una representación interna, de interpretación, comprensión,
matematización, correspondientes, etc.).
2. Relaciona la resolución de situaciones problemáticas
con el desarrollo de capacidades matemáticas.
Aprender a resolver problemas no solo supone dominar una
técnica matemática, sino también procedimientos
estratégicos y de control poderoso para desarrollar
capacidades, como: la matematización, representación,
comunicación, elaboración de estrategias, utilización de
64
expresiones simbólicas, argumentación, entre otras. La
resolución de situaciones problemáticas implica entonces
una acción que, para ser eficaz, moviliza una serie de
recursos, diversos esquemas de actuación que integran al
mismo tiempo conocimientos, procedimientos matemáticos
y actitudes.
3. Busca que los estudiantes valoren y aprecien el
conocimiento matemático.
Por eso propicia que descubran cuán significativo y
funcional puede ser ante una situación problemática precisa
de la realidad.
Así pueden descubrir que la matemática es un instrumento
necesario para la vida, que aporta herramientas para
resolver problemas con mayor eficacia y que permite, por lo
tanto, encontrar respuestas a sus preguntas, acceder al
conocimiento científico, interpretar y transformar el entorno.
También aporta al ejercicio de una ciudadanía plena, pues
refuerza su capacidad de argumentar, deliberar y participar
en la institución educativa y la comunidad.
3.2.2.12. Características y ventajas del método de la resolución
de problemas
a) Características
 Constituye una experiencia que exista en la
mente y puede ser resuelto de una sola clase.
 La resolución de problemas se complementa así
mismo aunque la materia o disciplina sea de
cualquier área del saber.
 Se basa en una situación hipotética, es efectivo,
aunque lo invite a la solución.
65
b) Ventajas
 Se resuelve los problemas con inteligencia y
reflexión.
 Crea la capacidad de discernimiento, reflexivo
descubrimiento, clasificación y critica.
 Estimula la mente del niño(a).
 Activa la cooperación y socialización.
 Coloca al niño(a) en contacto con la vida real.
 Sirve para agrupar los hechos.
 Desarrollar la autoconfianza del niño(a).
 Fomenta la capacidad de aplicación de los
conocimientos.
 Señala el objetivo y punto a donde el niño(a) debe
dirigirse.
 Hace que el niño(a) se sienta responsable de su
labor.
 Desarrollar la memoria lógica del niño(a).
 Sistematizar los hechos inductivos y deductivos.
 Da inicio a que el niño(a), se interese por la
investigación.
66
CAPÍTULO IV
PLAN DE ACCIÓN
67
4.1. Plan de acción
HIPOTESIS
DE ACCCIÓN
ACCIÓNES
GENERALES
ACTIVIDADES
ESPECIFICAS
INDICADORES
FUENTES DE
VERIFICACIÓN
CRONOGRAMA
M A M J J A S O N
La aplicación de
estrategias de
resolución de
problemas aditivos y
multiplicativos con
números naturales
permitirá desarrollar las
capacidades
matemáticas, en los
niños y niñas del V ciclo
de Educación Básica
Regular de la Institución
Educativa N°16451
Mandinga, del distrito y
provincia de San
Ignacio en el año 2015.
1. PLANIFICACIÓN
 Planificación
curricular de largo,
mediano y corto
plazo.
 Revisión de las
Rutas del
Aprendizaje y
Diseño
Curricular
Nacional para
elaborar la
Programación
Curricular Anual
(PCA)
articulando
práctica e
investigación.
 Elaboración del
instrumento de
evaluación
inicio, proceso,
salida.
 Elaboración del
(PCA)
Programación
Curricular Anual
articulando el
(PEI) Proyecto
Educativo
Institucional.
 Elabora la
prueba escrita
para diagnosticar
los niveles de
resolución de
problemas.
 (PCA)
Programación
Curricular Anual.
 Cartel de
capacidades,
conocimientos y
actitudes.
 Prueba escrita
X
x
x
68
2. EJECUCIÓN
Ejecución de
actividades para
desarrollar
capacidades
matemáticas en la
resolución de
problemas aditivos
y multiplicativos
con números
naturales.
 Aplicación de la
prueba escrita
para identificar
la capacidad
como los niños
resuelven
problemas.
 Determinar los
niveles para
identificar la
resolución de
problemas.
 Sistematización
de los resultados
de la prueba
escrita.
X
X X X
3. EVALUACIÓN
Evaluación de las
actividades de
aprendizaje
teniendo los logros
de las
capacidades,
conocimientos,
actitudes;
relacionados con
 Evaluación de la
resolución de
los problemas
aditivos con
números
naturales para
verificar el
desarrollo de las
capacidades
matemáticas en
 Prueba de salida.
 Cuadros
estadísticos.
 Prueba escrita
X
x
x
69
la resolución de
problemas.
las actividades
de aprendizaje.
70
CAPÍTULO V
PROGRAMA PROPUESTO
71
1. DATOS INFORMATIVOS
1.1. Nombre: “Resolvamos Problemas Aditivos y Multiplicativos con
Números Naturales”
1.2. Autores:
 Rodríguez García, Odalis Candelaria.
 Suarez Núñez, Edinson.
1.3. Beneficiarios
Niños y niñas del V ciclo de la Institución educativa N° 16451
Mandinga del distrito y provincia de San Ignacio del año 2015.
1.4. Duración: 9 meses
2. FUNDAMENTACIÓN
El proceso de formación inicial de los docentes en nuestra Institución de
Educación Superior “Rafael Hoyos Rubio” de acuerdo a la demanda laboral y
de contexto educativo actual, provincial y nacional, es necesario desarrollar sus
capacidades de docentes competentes, con una actitud positiva para la
investigación acción permanente en el contexto educativo de aulas
especialmente unidocentes y multigrado donde en el futuro desarrollaran sus
acciones educativas profesionales. Por lo tanto, de acuerdo a la visión y misión
de nuestra Institución de formación Superior Docente, mediante el presente plan
de trabajo de investigación, se propone brindar un espacio de oportunidades
para desarrollar una importante investigación que tiene como propósito aportar
conocimiento científico relaciona con la aplicación de estrategias de resolución
de problemas aditivos y multiplicativos con números naturales en el desarrollo
del área de matemática.
3. OBJETIVOS DEL PROGRAMA
3.1.1. Objetivo general
Aplicar el programa propuesto “Resolvamos Problemas Aditivos y
Multiplicativos con Números Naturales” para lograr que los niños y niñas
del V ciclo de Educación Primaria de la Institución educativa N°16451
72
Mandinga desarrollen capacidades matemáticas a partir de la aplicación
de estrategias de resolución de problemas aditivos y multiplicativos con
números naturales.
3.1.2. Objetivos específicos
a. Elaborar la programación curricular anual y unidades de aprendizaje
considerando las capacidades e indicadores de la resolución de
problemas.
b. Planificar, ejecutar y evaluar las actividades de aprendizaje utilizando
estrategias de resolución de problemas.
c. Sistematizar la información de los resultados de la aplicación del
programa “Resolvemos problemas aditivos y multiplicativos con
números naturales”.
4. DESCRIPCIÓN DEL PROGRAMA
Nuestro programa ha sido elaborado para contribuir el desarrollo de las
capacidades matemáticas mediante la aplicación de estrategias de resolución
de problemas aditivos multiplicativos con números naturales en el área de
matemática en la Institución Educativa N°16451 del caserío Mandinga lo cual
se desarrollará con actividades de aprendizaje en el V ciclo de Educación
Primaria.
5. DISEÑO DEL PROGRAMA
El programa trata de conocer las capacidades matemáticas actuales desde la
propuesta del Ministerio de Educación a través de las Rutas de Aprendizaje y
en el marco de los nuevos enfoques educativos.
73
DURANTEANTES DESPUES
 Docentes que
desconocen
estrategias
metodológicas
innovadoras en la
resolución de
problemas aditivos y
multiplicativos con
números naturales.
 Limitada
capacitación docente
en el tratamiento
curricular de las
capacidades del
área de matemática
según las rutas de
aprendizaje.
 Dificultad de
socialización entre
varones y mujeres al
desarrollar trabajos
en equipo con las
capacidades
matemáticas.
 Desarrollar las
actividades de
aprendizaje
considerando las
estrategias de
resolución de
problemas aditivos y
multiplicativos con
números naturales
para desarrollar las
capacidades
matemáticas.
 Docentes se
empoderan de la
utilización de
estrategias de
resolución de
problemas aditivos y
multiplicativos para
desarrollar las
capacidades
matemáticas.
 Niños y niñas
desarrollan
capacidades
matemáticas a partir
de la resolución de
problemas aditivos y
multiplicativos con
números naturales
trabajando en grupo.
 Docentes conocen
estrategias
metodológicas
innovadoras en la
resolución de
problemas aditivos
y multiplicativos
con números
naturales.
 Docente de aula
mejoran su práctica
pedagogía en el
desarrollo de
capacidades
matemáticas.
 Facilidad de
socialización entre
varones y mujeres
al desarrollar
trabajos en equipo
con las
capacidades
matemáticas.
74
6. ESTRATEGIAS METODOLÓGICAS
Utilizamos las actividades de aprendizaje del programa, para obtener buenos
resultados académicos en los niños y niñas del V ciclo de Educación Primaria
de la Institución Educativa N°16451, del caserío Mandinga, distrito y provincia
de San Ignacio en el año 2015.
6.1.1. Actividades de aprendizaje y cronograma
N° NOMBRE DE LAACTIVIDADES DE APRENDIZAJE FECHA
1° Resolvemos problemas de sustracción y adición con
números naturales en cuatro pasos.
18 - 03 -15
2° Prueba diagnostica 25 - 03 - 15
3° Resolvemos problemas de comparación: 1, 2, 3 y 4. 30 - 03 - 15
4° Resolvemos problemas de igualación 01 - 04 - 15
5°
Resolvemos problemas de proporcionalidad simple o
razón: reparto equitativo y combinación.
18 - 05 - 15 /
20 - 05 - 15
6 Resolvemos problemas de combinación O1 - 06 - 15
7° Resolvemos problemas de cambio 08 - 06 - 15
8°
Estrategias para resolver problemas aditivos y
multiplicativos.
29 - 06 - 15 /
01 - 07 - 15
9° Problemas que implican el múltiplo y divisores de números
naturales
13 - 07 - 15
10°
Estrategias para resolver problemas aditivos y
multiplicativos relacionados a la potencia cuadrada y
cúbica.
20 - 07 - 15 /
22 - 07 - 15
11° Problemas que implican el múltiplo y divisores de números
naturales.
03 - 08 - 15
12° Resolvemos adiciones y sustracciones. 17 - 08 -15
13°
Resolvemos problemas de proporcionalidad simple
repetición de una medida.
24 - 08 - 15 /
26 – 08 - 15
14°
Resolvemos problemas de adicción y sustracción con
números naturales hasta seis cifras en situaciones de la
vida diaria.
31 – 08 - 15
15°
Resolvemos problemas de adicción y sustracción con
números naturales mayores de seis cifras en situaciones
de la vida diaria.
07 – 09 - 15
16° Resolvemos problemas con referentes temporales:
minutos y segundos.
14 – 09 - 15
16°
Resolvemos problemas con referentes temporales: años,
décadas y siglos.
21 – 09 -15 /
23 – 09 - 15
75
7. PRESUPUESTO
El presupuesto y los gastos serán solventados por el equipo de investigación.
8. EVALUACIÓN
Evaluar, verificación y constatación de todas las actividades previstas con sus
respectivos instrumentos.
76
CAPÍTULO VI
EVALUACIÓN
6.1. Indicadores de proceso y fuentes de verificación
6.1.1. Hipótesis de acción.
La aplicación de estrategias de resolución de problemas aditivos y
multiplicativos con números naturales permitirá desarrollar las
77
capacidades matemáticas, en los niños y niñas del V ciclo de
Educación Básica Regular de la Institución Educativa N°16451
Mandinga, del distrito y provincia de San Ignacio en el año 2015.
- Acción N° 01
 Revisión de las Rutas del Aprendizaje y Diseño Curricular Nacional.
- Indicadores de proceso
 Elaboración de la Planificación curricular anual.
- Fuentes de verificación
 Programación curricular anual.
- Acción N° 02
 Planificación de actividades de aprendizaje
- Indicadores de proceso
 Actividades de aprendizaje
- Fuentes de verificación
 Diario de clases.
- Acción N° 03
 Aplicación de pruebas de entrada para diagnosticar el desarrollo de
capacidades matemáticas relacionada con la resolución de
problemas aditivos y multiplicativos con números naturales.
- Indicadores de proceso
 Pruebas de diagnostico
- Fuentes de verificación
 Pruebas de diagnóstico en los diarios de clases.
- Acción N° 04
78
 Ejecución de las actividades de aprendizaje teniendo en
cuenta las capacidades matemáticas en la resolución de
problemas aditivos y multiplicativos con números naturales.
- Indicadores de proceso
 Actividades de aprendizaje.
- Fuentes de verificación
 Diario de clases.
- Acción N° 05
 Aplicación de instrumentos de proceso para evaluar el
desarrollo de las capacidadesmatemáticas en la resolución
de problemas aditivos y multiplicativos con números
naturales.
- Indicadores de proceso
 Pruebas de proceso.
- Fuentes de verificación
 Pruebas de proceso en diarios de clase.
- Acción N° 06
 Aplicación de pruebas de salida para verificar el logro de las
capacidades matemáticas relacionada con la resolución de
problemas aditivos y multiplicativos con números naturales.
- Indicadores de proceso
 Pruebas de salida.
- Fuentes de verificación
 Pruebas de salida en los diarios de clases.
6.2. Indicadores de proceso y fuentes de verificación
6.2.1. Hipótesis de acción
79
La aplicación de estrategias de resolución de problemas aditivos y
multiplicativos con números naturales permitirá desarrollar las
capacidades matemáticas, en los niños y niñas del V ciclo de
Educación Básica Regular de la Institución Educativa N°16451
Mandinga, del distrito y provincia de San Ignacio en el año 2015.
- Resultado esperado N°01
 Evaluación de la resolución de problemas aditivos y
multiplicativos con números naturales en las actividades de
aprendizaje para verificar el desarrollo de las capacidades
matemáticas.
- Indicadores de resultado
 Aplicación de prueba de salida para determinar el desarrollo
de las capacidades matemáticas.
- Fuentes de verificación
 Prueba de salida.
 Tablas y gráficos estadísticos de inicio, proceso y salida con el
respectivo análisis e interpretación.
80
CAPÍTULO VII
PRESUPUESTO Y FINANCIAMIENTO
7.1. Presupuesto
7.1.1. Bienes
81
7.1.2. Servicios
Total bienes S/. 230.00
Total Servicios S/. 750.00
Total general S/. 980.00
DESCRIPCIÓN
DEL BIEN
UNIDAD DE
MEDIDA
COSTO
UNITARIO
COSTO
TOTAL
2 paquetes de papel bond A4
Papel sábana
Cinta masketing
Fotocopias
2 cajas de plumones
Cartulinas
Millar
Ciento
Unidad
Unidad
Docena
unidad
12.50
25.00
2.00
0.10
3.00
0.50
25.00
25.00
20.00
150.00
72.00
15.00
TOTAL 307.00
DESCRIPCIÓN
DEL SERVICIO
COSTO
UNITARIO
COSTO
TOTAL
Asesor
Digitador
Colaborador
Movilidad
Otros
300.00
50.00
200.00
6.00
200.00
300.00
50.00
200.00
576.00
200.00
TOTAL 1326.00
82
7.2. Financiamiento
Los gastos que originen la ejecución del presente proyecto de
investigación serán solventados por el investigador.
BIBLIOGRAFÍA
 Autores varios (1996.) “la resolución de problemas”. Revista UNO (revista
didáctica de las matemáticas N° 8). Barcelona.
PROYECTO DE RESOLUCIÓN DE PROBLEMAS ADITIVOS Y MULTIPLICATIVOS
PROYECTO DE RESOLUCIÓN DE PROBLEMAS ADITIVOS Y MULTIPLICATIVOS
PROYECTO DE RESOLUCIÓN DE PROBLEMAS ADITIVOS Y MULTIPLICATIVOS
PROYECTO DE RESOLUCIÓN DE PROBLEMAS ADITIVOS Y MULTIPLICATIVOS
PROYECTO DE RESOLUCIÓN DE PROBLEMAS ADITIVOS Y MULTIPLICATIVOS
PROYECTO DE RESOLUCIÓN DE PROBLEMAS ADITIVOS Y MULTIPLICATIVOS
PROYECTO DE RESOLUCIÓN DE PROBLEMAS ADITIVOS Y MULTIPLICATIVOS
PROYECTO DE RESOLUCIÓN DE PROBLEMAS ADITIVOS Y MULTIPLICATIVOS
PROYECTO DE RESOLUCIÓN DE PROBLEMAS ADITIVOS Y MULTIPLICATIVOS
PROYECTO DE RESOLUCIÓN DE PROBLEMAS ADITIVOS Y MULTIPLICATIVOS
PROYECTO DE RESOLUCIÓN DE PROBLEMAS ADITIVOS Y MULTIPLICATIVOS
PROYECTO DE RESOLUCIÓN DE PROBLEMAS ADITIVOS Y MULTIPLICATIVOS
PROYECTO DE RESOLUCIÓN DE PROBLEMAS ADITIVOS Y MULTIPLICATIVOS
PROYECTO DE RESOLUCIÓN DE PROBLEMAS ADITIVOS Y MULTIPLICATIVOS
PROYECTO DE RESOLUCIÓN DE PROBLEMAS ADITIVOS Y MULTIPLICATIVOS

Más contenido relacionado

La actualidad más candente

Educación matemática realista
Educación matemática realistaEducación matemática realista
Educación matemática realistaagueda73
 
Proyecto de Aprendizaje Fomentemos el cuidado del medio ambiente
Proyecto  de Aprendizaje  Fomentemos el cuidado del medio ambienteProyecto  de Aprendizaje  Fomentemos el cuidado del medio ambiente
Proyecto de Aprendizaje Fomentemos el cuidado del medio ambienteMaría Elita Vásquez Mera
 
ESTRATEGIAS PARA LA ENSEÑANZA DE LAS CIENCIAS A PARTIR DEL USO DE MATERIALES
ESTRATEGIAS PARA LA ENSEÑANZA DE LAS CIENCIAS A PARTIR DEL USO DE MATERIALESESTRATEGIAS PARA LA ENSEÑANZA DE LAS CIENCIAS A PARTIR DEL USO DE MATERIALES
ESTRATEGIAS PARA LA ENSEÑANZA DE LAS CIENCIAS A PARTIR DEL USO DE MATERIALESYESSICA NATALI CORREA MARTINEZ
 
Enfoque: Resolución de problemas
Enfoque: Resolución de problemas Enfoque: Resolución de problemas
Enfoque: Resolución de problemas Víctor Huertas
 
I Competencias curriculares Matemáticas Primaria
I Competencias curriculares Matemáticas PrimariaI Competencias curriculares Matemáticas Primaria
I Competencias curriculares Matemáticas PrimariaPrograma TIC B03
 
Plan de clase mcm y mcd
Plan de clase mcm y mcdPlan de clase mcm y mcd
Plan de clase mcm y mcdLilia White
 
Ppt procesos didácticos en educación primaria
Ppt procesos didácticos en educación primariaPpt procesos didácticos en educación primaria
Ppt procesos didácticos en educación primariaMARIA ASUNCION GOMEZ
 
Objetivos de aprendizajes para la educación primaria
Objetivos de aprendizajes para la educación primariaObjetivos de aprendizajes para la educación primaria
Objetivos de aprendizajes para la educación primariaMARITO426
 
ONE 2013: Criterios de evaluación. Matemática.
ONE 2013: Criterios de evaluación. Matemática.ONE 2013: Criterios de evaluación. Matemática.
ONE 2013: Criterios de evaluación. Matemática.Pedro Roberto Casanova
 
Enfoque del Área Personal Social
Enfoque del Área Personal SocialEnfoque del Área Personal Social
Enfoque del Área Personal SocialJACQUELINE VILELA
 
Proyecto de aprendiendo matemática a través del juego
Proyecto de aprendiendo matemática a través del juegoProyecto de aprendiendo matemática a través del juego
Proyecto de aprendiendo matemática a través del juegomilzaruz
 
Importancia de la enseñanza de la matemática
Importancia de la enseñanza de la matemáticaImportancia de la enseñanza de la matemática
Importancia de la enseñanza de la matemáticaCelia Elizabeth Villagra
 
Teoría de las situaciones didácticas de Guy Brousseau
Teoría de las situaciones didácticas de Guy BrousseauTeoría de las situaciones didácticas de Guy Brousseau
Teoría de las situaciones didácticas de Guy BrousseauMARITO426
 
Plan 6to grado bloque 1 matemáticas (2016-2017).doc
Plan 6to grado   bloque 1 matemáticas (2016-2017).docPlan 6to grado   bloque 1 matemáticas (2016-2017).doc
Plan 6to grado bloque 1 matemáticas (2016-2017).docSEP-IEEPO
 
Secuencia didáctica: Matemáticas (Multiplicación)
Secuencia didáctica: Matemáticas (Multiplicación)Secuencia didáctica: Matemáticas (Multiplicación)
Secuencia didáctica: Matemáticas (Multiplicación)Aldair Medina Tarriba
 
Planificacion area y perimetro
Planificacion area y perimetroPlanificacion area y perimetro
Planificacion area y perimetromarylinalejandra
 
Didáctica de las Matemáticas.
Didáctica de las Matemáticas.Didáctica de las Matemáticas.
Didáctica de las Matemáticas.Leonardo Palomino
 

La actualidad más candente (20)

Educación matemática realista
Educación matemática realistaEducación matemática realista
Educación matemática realista
 
Ppt estrategias matemática final
Ppt estrategias matemática  finalPpt estrategias matemática  final
Ppt estrategias matemática final
 
Proyecto de Aprendizaje Fomentemos el cuidado del medio ambiente
Proyecto  de Aprendizaje  Fomentemos el cuidado del medio ambienteProyecto  de Aprendizaje  Fomentemos el cuidado del medio ambiente
Proyecto de Aprendizaje Fomentemos el cuidado del medio ambiente
 
ESTRATEGIAS PARA LA ENSEÑANZA DE LAS CIENCIAS A PARTIR DEL USO DE MATERIALES
ESTRATEGIAS PARA LA ENSEÑANZA DE LAS CIENCIAS A PARTIR DEL USO DE MATERIALESESTRATEGIAS PARA LA ENSEÑANZA DE LAS CIENCIAS A PARTIR DEL USO DE MATERIALES
ESTRATEGIAS PARA LA ENSEÑANZA DE LAS CIENCIAS A PARTIR DEL USO DE MATERIALES
 
Enfoque: Resolución de problemas
Enfoque: Resolución de problemas Enfoque: Resolución de problemas
Enfoque: Resolución de problemas
 
La división
La divisiónLa división
La división
 
I Competencias curriculares Matemáticas Primaria
I Competencias curriculares Matemáticas PrimariaI Competencias curriculares Matemáticas Primaria
I Competencias curriculares Matemáticas Primaria
 
Plan de clase mcm y mcd
Plan de clase mcm y mcdPlan de clase mcm y mcd
Plan de clase mcm y mcd
 
Ppt procesos didácticos en educación primaria
Ppt procesos didácticos en educación primariaPpt procesos didácticos en educación primaria
Ppt procesos didácticos en educación primaria
 
Objetivos de aprendizajes para la educación primaria
Objetivos de aprendizajes para la educación primariaObjetivos de aprendizajes para la educación primaria
Objetivos de aprendizajes para la educación primaria
 
ONE 2013: Criterios de evaluación. Matemática.
ONE 2013: Criterios de evaluación. Matemática.ONE 2013: Criterios de evaluación. Matemática.
ONE 2013: Criterios de evaluación. Matemática.
 
Enfoque del Área Personal Social
Enfoque del Área Personal SocialEnfoque del Área Personal Social
Enfoque del Área Personal Social
 
Ejemplos de Problemas Aditivos
Ejemplos de Problemas AditivosEjemplos de Problemas Aditivos
Ejemplos de Problemas Aditivos
 
Proyecto de aprendiendo matemática a través del juego
Proyecto de aprendiendo matemática a través del juegoProyecto de aprendiendo matemática a través del juego
Proyecto de aprendiendo matemática a través del juego
 
Importancia de la enseñanza de la matemática
Importancia de la enseñanza de la matemáticaImportancia de la enseñanza de la matemática
Importancia de la enseñanza de la matemática
 
Teoría de las situaciones didácticas de Guy Brousseau
Teoría de las situaciones didácticas de Guy BrousseauTeoría de las situaciones didácticas de Guy Brousseau
Teoría de las situaciones didácticas de Guy Brousseau
 
Plan 6to grado bloque 1 matemáticas (2016-2017).doc
Plan 6to grado   bloque 1 matemáticas (2016-2017).docPlan 6to grado   bloque 1 matemáticas (2016-2017).doc
Plan 6to grado bloque 1 matemáticas (2016-2017).doc
 
Secuencia didáctica: Matemáticas (Multiplicación)
Secuencia didáctica: Matemáticas (Multiplicación)Secuencia didáctica: Matemáticas (Multiplicación)
Secuencia didáctica: Matemáticas (Multiplicación)
 
Planificacion area y perimetro
Planificacion area y perimetroPlanificacion area y perimetro
Planificacion area y perimetro
 
Didáctica de las Matemáticas.
Didáctica de las Matemáticas.Didáctica de las Matemáticas.
Didáctica de las Matemáticas.
 

Destacado

Taller problemas aritméticos aditivos y multiplicativos
Taller problemas aritméticos aditivos y multiplicativosTaller problemas aritméticos aditivos y multiplicativos
Taller problemas aritméticos aditivos y multiplicativosJackelin Toledo
 
Pensamiento multiplicativo
Pensamiento multiplicativoPensamiento multiplicativo
Pensamiento multiplicativoEdgar Pineda
 
Problemas multiplicativos
Problemas multiplicativosProblemas multiplicativos
Problemas multiplicativosRey Román
 
Documentos primaria-sesiones-unidad05-tercer grado-matematica-3g-u5-mat-sesion06
Documentos primaria-sesiones-unidad05-tercer grado-matematica-3g-u5-mat-sesion06Documentos primaria-sesiones-unidad05-tercer grado-matematica-3g-u5-mat-sesion06
Documentos primaria-sesiones-unidad05-tercer grado-matematica-3g-u5-mat-sesion06Teresa Clotilde Ojeda Sánchez
 
Enseñanza y aprendizaje de los problemas multiplicativos
Enseñanza y aprendizaje de los problemas multiplicativosEnseñanza y aprendizaje de los problemas multiplicativos
Enseñanza y aprendizaje de los problemas multiplicativosSEJ
 
Documentos primaria-sesiones-unidad05-tercer grado-integrados-orientacion
Documentos primaria-sesiones-unidad05-tercer grado-integrados-orientacionDocumentos primaria-sesiones-unidad05-tercer grado-integrados-orientacion
Documentos primaria-sesiones-unidad05-tercer grado-integrados-orientacionTeresa Clotilde Ojeda Sánchez
 
Documentos primaria-sesiones-unidad05-tercer grado-matematica-matematica-3g-u5
Documentos primaria-sesiones-unidad05-tercer grado-matematica-matematica-3g-u5Documentos primaria-sesiones-unidad05-tercer grado-matematica-matematica-3g-u5
Documentos primaria-sesiones-unidad05-tercer grado-matematica-matematica-3g-u5Teresa Clotilde Ojeda Sánchez
 
Documentos primaria-sesiones-unidad05-tercer grado-matematica-3g-u5-mat-sesion08
Documentos primaria-sesiones-unidad05-tercer grado-matematica-3g-u5-mat-sesion08Documentos primaria-sesiones-unidad05-tercer grado-matematica-3g-u5-mat-sesion08
Documentos primaria-sesiones-unidad05-tercer grado-matematica-3g-u5-mat-sesion08Teresa Clotilde Ojeda Sánchez
 
Proyectos matematicas primaria
Proyectos matematicas primariaProyectos matematicas primaria
Proyectos matematicas primariaEditorial MD
 
Rutas del aprendizaje:Fasciculo primaria matematica iv y v
Rutas del aprendizaje:Fasciculo primaria matematica iv y vRutas del aprendizaje:Fasciculo primaria matematica iv y v
Rutas del aprendizaje:Fasciculo primaria matematica iv y vsisicha3
 
CAJITAS LIRO para la resolución de problemas aditivos (PAEV)
CAJITAS LIRO para la resolución de problemas aditivos (PAEV)CAJITAS LIRO para la resolución de problemas aditivos (PAEV)
CAJITAS LIRO para la resolución de problemas aditivos (PAEV)Lily Rosas
 

Destacado (13)

Taller problemas aritméticos aditivos y multiplicativos
Taller problemas aritméticos aditivos y multiplicativosTaller problemas aritméticos aditivos y multiplicativos
Taller problemas aritméticos aditivos y multiplicativos
 
Pensamiento multiplicativo
Pensamiento multiplicativoPensamiento multiplicativo
Pensamiento multiplicativo
 
Problemas multiplicativos
Problemas multiplicativosProblemas multiplicativos
Problemas multiplicativos
 
Documentos primaria-sesiones-unidad05-tercer grado-matematica-3g-u5-mat-sesion06
Documentos primaria-sesiones-unidad05-tercer grado-matematica-3g-u5-mat-sesion06Documentos primaria-sesiones-unidad05-tercer grado-matematica-3g-u5-mat-sesion06
Documentos primaria-sesiones-unidad05-tercer grado-matematica-3g-u5-mat-sesion06
 
Enseñanza y aprendizaje de los problemas multiplicativos
Enseñanza y aprendizaje de los problemas multiplicativosEnseñanza y aprendizaje de los problemas multiplicativos
Enseñanza y aprendizaje de los problemas multiplicativos
 
Documentos primaria-sesiones-unidad05-tercer grado-integrados-orientacion
Documentos primaria-sesiones-unidad05-tercer grado-integrados-orientacionDocumentos primaria-sesiones-unidad05-tercer grado-integrados-orientacion
Documentos primaria-sesiones-unidad05-tercer grado-integrados-orientacion
 
Documentos primaria-sesiones-unidad05-tercer grado-matematica-matematica-3g-u5
Documentos primaria-sesiones-unidad05-tercer grado-matematica-matematica-3g-u5Documentos primaria-sesiones-unidad05-tercer grado-matematica-matematica-3g-u5
Documentos primaria-sesiones-unidad05-tercer grado-matematica-matematica-3g-u5
 
Documentos primaria-sesiones-unidad05-tercer grado-matematica-3g-u5-mat-sesion08
Documentos primaria-sesiones-unidad05-tercer grado-matematica-3g-u5-mat-sesion08Documentos primaria-sesiones-unidad05-tercer grado-matematica-3g-u5-mat-sesion08
Documentos primaria-sesiones-unidad05-tercer grado-matematica-3g-u5-mat-sesion08
 
Proyectos matematicas primaria
Proyectos matematicas primariaProyectos matematicas primaria
Proyectos matematicas primaria
 
matemática fracciones
matemática fraccionesmatemática fracciones
matemática fracciones
 
4 estrategias paev
4 estrategias paev4 estrategias paev
4 estrategias paev
 
Rutas del aprendizaje:Fasciculo primaria matematica iv y v
Rutas del aprendizaje:Fasciculo primaria matematica iv y vRutas del aprendizaje:Fasciculo primaria matematica iv y v
Rutas del aprendizaje:Fasciculo primaria matematica iv y v
 
CAJITAS LIRO para la resolución de problemas aditivos (PAEV)
CAJITAS LIRO para la resolución de problemas aditivos (PAEV)CAJITAS LIRO para la resolución de problemas aditivos (PAEV)
CAJITAS LIRO para la resolución de problemas aditivos (PAEV)
 

Similar a PROYECTO DE RESOLUCIÓN DE PROBLEMAS ADITIVOS Y MULTIPLICATIVOS

EL JUEGO, ESTRATEGIA LUDICA PARA FACILITAR EL
EL JUEGO, ESTRATEGIA LUDICA PARA FACILITAR ELEL JUEGO, ESTRATEGIA LUDICA PARA FACILITAR EL
EL JUEGO, ESTRATEGIA LUDICA PARA FACILITAR ELalizenith
 
Didactica de las matematicas en Educacio.pdf
Didactica de las matematicas en Educacio.pdfDidactica de las matematicas en Educacio.pdf
Didactica de las matematicas en Educacio.pdfBritoSay3
 
Plan de asignatura de matematica grado sexto
Plan de asignatura de matematica grado sextoPlan de asignatura de matematica grado sexto
Plan de asignatura de matematica grado sextofrankmerlano
 
Didactica de las Matematicas en Educacion Infantil UNIR Ccesa007.pdf
Didactica de las Matematicas en Educacion Infantil UNIR  Ccesa007.pdfDidactica de las Matematicas en Educacion Infantil UNIR  Ccesa007.pdf
Didactica de las Matematicas en Educacion Infantil UNIR Ccesa007.pdfDemetrio Ccesa Rayme
 
4. avance 09 07-15 marleni (1)
4. avance 09 07-15 marleni (1)4. avance 09 07-15 marleni (1)
4. avance 09 07-15 marleni (1)Miguel Vargas
 
Proyecto integrador de áreas
Proyecto integrador de áreasProyecto integrador de áreas
Proyecto integrador de áreasFernando Garzon
 
1. formato para programaciones de area
1. formato para programaciones de area1. formato para programaciones de area
1. formato para programaciones de areaCristianbastidas077
 
Proyecto Final Ochoa Rojas Celso Diplomado En Linea.
Proyecto Final   Ochoa Rojas Celso Diplomado En Linea.Proyecto Final   Ochoa Rojas Celso Diplomado En Linea.
Proyecto Final Ochoa Rojas Celso Diplomado En Linea.Celso Ochoa
 
Programacion anual de matematica 2013 3° sec
Programacion anual de matematica 2013   3° secProgramacion anual de matematica 2013   3° sec
Programacion anual de matematica 2013 3° secReymundo Salcedo
 
GUTIERREZ LEIDY MICROCLASE.docx
GUTIERREZ LEIDY MICROCLASE.docxGUTIERREZ LEIDY MICROCLASE.docx
GUTIERREZ LEIDY MICROCLASE.docxYonalir
 
Programación curricular anual de matematica 2011
Programación curricular anual de matematica 2011Programación curricular anual de matematica 2011
Programación curricular anual de matematica 2011Francisco Contreras
 
Matematicas divertidas con las tics.proyecto de aula.
Matematicas divertidas con las tics.proyecto de aula.Matematicas divertidas con las tics.proyecto de aula.
Matematicas divertidas con las tics.proyecto de aula.luzmyreya
 
Proyecto de investigacion
Proyecto de investigacionProyecto de investigacion
Proyecto de investigacionsama2016
 
Programacion anual de matematica 2013 2° sec
Programacion anual de matematica 2013   2° secProgramacion anual de matematica 2013   2° sec
Programacion anual de matematica 2013 2° secReymundo Salcedo
 
Proyecto de aula
Proyecto de aulaProyecto de aula
Proyecto de aulajohanna9110
 
Proyecto de aula
Proyecto de aulaProyecto de aula
Proyecto de aulajohanna9110
 
Proyecto de aula
Proyecto de aulaProyecto de aula
Proyecto de aulameryluzvega
 

Similar a PROYECTO DE RESOLUCIÓN DE PROBLEMAS ADITIVOS Y MULTIPLICATIVOS (20)

EL JUEGO, ESTRATEGIA LUDICA PARA FACILITAR EL
EL JUEGO, ESTRATEGIA LUDICA PARA FACILITAR ELEL JUEGO, ESTRATEGIA LUDICA PARA FACILITAR EL
EL JUEGO, ESTRATEGIA LUDICA PARA FACILITAR EL
 
Didactica de las matematicas en Educacio.pdf
Didactica de las matematicas en Educacio.pdfDidactica de las matematicas en Educacio.pdf
Didactica de las matematicas en Educacio.pdf
 
Plan de asignatura de matematica grado sexto
Plan de asignatura de matematica grado sextoPlan de asignatura de matematica grado sexto
Plan de asignatura de matematica grado sexto
 
Didactica de las Matematicas en Educacion Infantil UNIR Ccesa007.pdf
Didactica de las Matematicas en Educacion Infantil UNIR  Ccesa007.pdfDidactica de las Matematicas en Educacion Infantil UNIR  Ccesa007.pdf
Didactica de las Matematicas en Educacion Infantil UNIR Ccesa007.pdf
 
4. avance 09 07-15 marleni (1)
4. avance 09 07-15 marleni (1)4. avance 09 07-15 marleni (1)
4. avance 09 07-15 marleni (1)
 
Presentación proyecto ondas Sabaneta 2015
Presentación proyecto ondas Sabaneta 2015Presentación proyecto ondas Sabaneta 2015
Presentación proyecto ondas Sabaneta 2015
 
Proyecto integrador de áreas
Proyecto integrador de áreasProyecto integrador de áreas
Proyecto integrador de áreas
 
1. formato para programaciones de area
1. formato para programaciones de area1. formato para programaciones de area
1. formato para programaciones de area
 
Proyecto Final Ochoa Rojas Celso Diplomado En Linea.
Proyecto Final   Ochoa Rojas Celso Diplomado En Linea.Proyecto Final   Ochoa Rojas Celso Diplomado En Linea.
Proyecto Final Ochoa Rojas Celso Diplomado En Linea.
 
Plan de area matematicas
Plan de area matematicasPlan de area matematicas
Plan de area matematicas
 
Programacion anual de matematica 2013 3° sec
Programacion anual de matematica 2013   3° secProgramacion anual de matematica 2013   3° sec
Programacion anual de matematica 2013 3° sec
 
GUTIERREZ LEIDY MICROCLASE.docx
GUTIERREZ LEIDY MICROCLASE.docxGUTIERREZ LEIDY MICROCLASE.docx
GUTIERREZ LEIDY MICROCLASE.docx
 
Programación curricular anual de matematica 2011
Programación curricular anual de matematica 2011Programación curricular anual de matematica 2011
Programación curricular anual de matematica 2011
 
Matematicas divertidas con las tics.proyecto de aula.
Matematicas divertidas con las tics.proyecto de aula.Matematicas divertidas con las tics.proyecto de aula.
Matematicas divertidas con las tics.proyecto de aula.
 
DISCALCULIA.docx
DISCALCULIA.docxDISCALCULIA.docx
DISCALCULIA.docx
 
Proyecto de investigacion
Proyecto de investigacionProyecto de investigacion
Proyecto de investigacion
 
Programacion anual de matematica 2013 2° sec
Programacion anual de matematica 2013   2° secProgramacion anual de matematica 2013   2° sec
Programacion anual de matematica 2013 2° sec
 
Proyecto de aula
Proyecto de aulaProyecto de aula
Proyecto de aula
 
Proyecto de aula
Proyecto de aulaProyecto de aula
Proyecto de aula
 
Proyecto de aula
Proyecto de aulaProyecto de aula
Proyecto de aula
 

Último

Normas de convivencia para imprimir gratis
Normas de convivencia para imprimir gratisNormas de convivencia para imprimir gratis
Normas de convivencia para imprimir gratisbrasilyamile
 
CERTIFICACIÓN DE CAPACITACIÓN PARA EL CENSO - tfdxwBRz6f3AP7QU.pdf
CERTIFICACIÓN DE CAPACITACIÓN PARA EL CENSO - tfdxwBRz6f3AP7QU.pdfCERTIFICACIÓN DE CAPACITACIÓN PARA EL CENSO - tfdxwBRz6f3AP7QU.pdf
CERTIFICACIÓN DE CAPACITACIÓN PARA EL CENSO - tfdxwBRz6f3AP7QU.pdfasnsdt
 
APORTES Y CARACTERISTICAS DE LAS OBRAS DE CORBUSIER. MIES VAN DER ROHE
APORTES Y CARACTERISTICAS DE LAS OBRAS DE  CORBUSIER. MIES VAN DER ROHEAPORTES Y CARACTERISTICAS DE LAS OBRAS DE  CORBUSIER. MIES VAN DER ROHE
APORTES Y CARACTERISTICAS DE LAS OBRAS DE CORBUSIER. MIES VAN DER ROHEgonzalezdfidelibus
 
plantilla-de-messi-1.pdf es muy especial
plantilla-de-messi-1.pdf es muy especialplantilla-de-messi-1.pdf es muy especial
plantilla-de-messi-1.pdf es muy especialAndreaMlaga1
 
Proceso de percepción visual y de reconocimiento
Proceso de percepción visual y de reconocimientoProceso de percepción visual y de reconocimiento
Proceso de percepción visual y de reconocimientoJorge Fernandez
 
Presentación Proyecto Vintage Scrapbook Marrón (1).pdf
Presentación Proyecto Vintage Scrapbook Marrón (1).pdfPresentación Proyecto Vintage Scrapbook Marrón (1).pdf
Presentación Proyecto Vintage Scrapbook Marrón (1).pdfAdrianaCarolinaMoral2
 
Presentacion de 100 psicologos dijeron.pptx
Presentacion de 100 psicologos dijeron.pptxPresentacion de 100 psicologos dijeron.pptx
Presentacion de 100 psicologos dijeron.pptxbarbaracantuflr
 
PDU - PLAN DE DESARROLLO URBANO DE LA CIUDAD DE CHICLAYO
PDU - PLAN DE DESARROLLO URBANO DE LA CIUDAD DE CHICLAYOPDU - PLAN DE DESARROLLO URBANO DE LA CIUDAD DE CHICLAYO
PDU - PLAN DE DESARROLLO URBANO DE LA CIUDAD DE CHICLAYOManuelBustamante49
 
Brochure Tuna Haus _ Hecho para mascotas.pdf
Brochure Tuna Haus _ Hecho para mascotas.pdfBrochure Tuna Haus _ Hecho para mascotas.pdf
Brochure Tuna Haus _ Hecho para mascotas.pdfhellotunahaus
 
Jesus Diaz afiche Manierismo .pdf arquitectura
Jesus Diaz afiche Manierismo .pdf arquitecturaJesus Diaz afiche Manierismo .pdf arquitectura
Jesus Diaz afiche Manierismo .pdf arquitecturajesusgrosales12
 
TIPOS DE LINEAS utilizados en dibujo técnico mecánico
TIPOS DE LINEAS utilizados en dibujo técnico mecánicoTIPOS DE LINEAS utilizados en dibujo técnico mecánico
TIPOS DE LINEAS utilizados en dibujo técnico mecánicoWilsonChambi4
 
Arquitectura moderna nazareth bermudez PSM
Arquitectura moderna nazareth bermudez PSMArquitectura moderna nazareth bermudez PSM
Arquitectura moderna nazareth bermudez PSMNaza59
 
Guía de actividades y rúbrica de evaluación - Unidad 3 - Escenario 4 - Rol de...
Guía de actividades y rúbrica de evaluación - Unidad 3 - Escenario 4 - Rol de...Guía de actividades y rúbrica de evaluación - Unidad 3 - Escenario 4 - Rol de...
Guía de actividades y rúbrica de evaluación - Unidad 3 - Escenario 4 - Rol de...MayerlyAscanioNavarr
 
Geometrías de la imaginación: Diseño e iconografía de Querétaro
Geometrías de la imaginación: Diseño e iconografía de QuerétaroGeometrías de la imaginación: Diseño e iconografía de Querétaro
Geometrías de la imaginación: Diseño e iconografía de QuerétaroJuan Carlos Fonseca Mata
 
diseño de plantas agroindustriales unidad
diseño de plantas agroindustriales unidaddiseño de plantas agroindustriales unidad
diseño de plantas agroindustriales unidaddabuitragoi
 
Espacios únicos creados por nuestros clientes
Espacios únicos creados por nuestros clientesEspacios únicos creados por nuestros clientes
Espacios únicos creados por nuestros clientesespejosflorida
 
guia de talles de camitas cucciolos 2024.pdf
guia de talles de camitas cucciolos 2024.pdfguia de talles de camitas cucciolos 2024.pdf
guia de talles de camitas cucciolos 2024.pdfcucciolosfabrica
 
Le Corbusier y Mies van der Rohe: Aportes a la Arquitectura Moderna
Le Corbusier y Mies van der Rohe: Aportes a la Arquitectura ModernaLe Corbusier y Mies van der Rohe: Aportes a la Arquitectura Moderna
Le Corbusier y Mies van der Rohe: Aportes a la Arquitectura Modernasofpaolpz
 

Último (20)

Normas de convivencia para imprimir gratis
Normas de convivencia para imprimir gratisNormas de convivencia para imprimir gratis
Normas de convivencia para imprimir gratis
 
CERTIFICACIÓN DE CAPACITACIÓN PARA EL CENSO - tfdxwBRz6f3AP7QU.pdf
CERTIFICACIÓN DE CAPACITACIÓN PARA EL CENSO - tfdxwBRz6f3AP7QU.pdfCERTIFICACIÓN DE CAPACITACIÓN PARA EL CENSO - tfdxwBRz6f3AP7QU.pdf
CERTIFICACIÓN DE CAPACITACIÓN PARA EL CENSO - tfdxwBRz6f3AP7QU.pdf
 
APORTES Y CARACTERISTICAS DE LAS OBRAS DE CORBUSIER. MIES VAN DER ROHE
APORTES Y CARACTERISTICAS DE LAS OBRAS DE  CORBUSIER. MIES VAN DER ROHEAPORTES Y CARACTERISTICAS DE LAS OBRAS DE  CORBUSIER. MIES VAN DER ROHE
APORTES Y CARACTERISTICAS DE LAS OBRAS DE CORBUSIER. MIES VAN DER ROHE
 
1.La locomoción de los seres vivos diseño
1.La locomoción de los seres vivos diseño1.La locomoción de los seres vivos diseño
1.La locomoción de los seres vivos diseño
 
Arte textil: Tejidos artesanos en la frontera hispano-lusa
Arte textil: Tejidos artesanos en la frontera hispano-lusaArte textil: Tejidos artesanos en la frontera hispano-lusa
Arte textil: Tejidos artesanos en la frontera hispano-lusa
 
plantilla-de-messi-1.pdf es muy especial
plantilla-de-messi-1.pdf es muy especialplantilla-de-messi-1.pdf es muy especial
plantilla-de-messi-1.pdf es muy especial
 
Proceso de percepción visual y de reconocimiento
Proceso de percepción visual y de reconocimientoProceso de percepción visual y de reconocimiento
Proceso de percepción visual y de reconocimiento
 
Presentación Proyecto Vintage Scrapbook Marrón (1).pdf
Presentación Proyecto Vintage Scrapbook Marrón (1).pdfPresentación Proyecto Vintage Scrapbook Marrón (1).pdf
Presentación Proyecto Vintage Scrapbook Marrón (1).pdf
 
Presentacion de 100 psicologos dijeron.pptx
Presentacion de 100 psicologos dijeron.pptxPresentacion de 100 psicologos dijeron.pptx
Presentacion de 100 psicologos dijeron.pptx
 
PDU - PLAN DE DESARROLLO URBANO DE LA CIUDAD DE CHICLAYO
PDU - PLAN DE DESARROLLO URBANO DE LA CIUDAD DE CHICLAYOPDU - PLAN DE DESARROLLO URBANO DE LA CIUDAD DE CHICLAYO
PDU - PLAN DE DESARROLLO URBANO DE LA CIUDAD DE CHICLAYO
 
Brochure Tuna Haus _ Hecho para mascotas.pdf
Brochure Tuna Haus _ Hecho para mascotas.pdfBrochure Tuna Haus _ Hecho para mascotas.pdf
Brochure Tuna Haus _ Hecho para mascotas.pdf
 
Jesus Diaz afiche Manierismo .pdf arquitectura
Jesus Diaz afiche Manierismo .pdf arquitecturaJesus Diaz afiche Manierismo .pdf arquitectura
Jesus Diaz afiche Manierismo .pdf arquitectura
 
TIPOS DE LINEAS utilizados en dibujo técnico mecánico
TIPOS DE LINEAS utilizados en dibujo técnico mecánicoTIPOS DE LINEAS utilizados en dibujo técnico mecánico
TIPOS DE LINEAS utilizados en dibujo técnico mecánico
 
Arquitectura moderna nazareth bermudez PSM
Arquitectura moderna nazareth bermudez PSMArquitectura moderna nazareth bermudez PSM
Arquitectura moderna nazareth bermudez PSM
 
Guía de actividades y rúbrica de evaluación - Unidad 3 - Escenario 4 - Rol de...
Guía de actividades y rúbrica de evaluación - Unidad 3 - Escenario 4 - Rol de...Guía de actividades y rúbrica de evaluación - Unidad 3 - Escenario 4 - Rol de...
Guía de actividades y rúbrica de evaluación - Unidad 3 - Escenario 4 - Rol de...
 
Geometrías de la imaginación: Diseño e iconografía de Querétaro
Geometrías de la imaginación: Diseño e iconografía de QuerétaroGeometrías de la imaginación: Diseño e iconografía de Querétaro
Geometrías de la imaginación: Diseño e iconografía de Querétaro
 
diseño de plantas agroindustriales unidad
diseño de plantas agroindustriales unidaddiseño de plantas agroindustriales unidad
diseño de plantas agroindustriales unidad
 
Espacios únicos creados por nuestros clientes
Espacios únicos creados por nuestros clientesEspacios únicos creados por nuestros clientes
Espacios únicos creados por nuestros clientes
 
guia de talles de camitas cucciolos 2024.pdf
guia de talles de camitas cucciolos 2024.pdfguia de talles de camitas cucciolos 2024.pdf
guia de talles de camitas cucciolos 2024.pdf
 
Le Corbusier y Mies van der Rohe: Aportes a la Arquitectura Moderna
Le Corbusier y Mies van der Rohe: Aportes a la Arquitectura ModernaLe Corbusier y Mies van der Rohe: Aportes a la Arquitectura Moderna
Le Corbusier y Mies van der Rohe: Aportes a la Arquitectura Moderna
 

PROYECTO DE RESOLUCIÓN DE PROBLEMAS ADITIVOS Y MULTIPLICATIVOS

  • 1. 1 INSTITUTO DE EDUCACIÓN SUPERIOR PEDAGÓGICO PÚBLICO “RAFAEL HOYOS RUBIO” SAN IGNACIO PROYECTO DE LA INVESTIGACIÓN ACCIÓN RESOLUCIÓNDE PROBLEMAS ADITIVOS Y MULTIPLICATIVOS CON NÚMEROS NATURALES PARA DESARROLLAR CAPACIDADES MATEMÁTICAS EN LOS NIÑOS Y NIÑAS DEL V CICLO DE EDUCACIÓN PRIMARIA DE LA INSTITUCIÓN EDUCATIVA N°16451, DEL CASERÍO MANDINGA, DISTRITO Y PROVINCIA DE SAN IGNACIO EN EL AÑO 2015. PARA OBTENER EL TÍTULO DE: PROFESOR EN EDUCACIÓN PRIMARIA AUTORES RODRÍGUEZ GARCÍA, Odalis Candelaria SUAREZ NUÑEZ, Edinson ASESOR MG. TOCTO FLORES, Pedro Efrén SAN IGNACIO – PERÚ 2015
  • 2. 2 DEDICATORIA A mis queridos padres, por dedicar sus esfuerzos diariamente, para brindarme la oportunidad de poder transcender en mi vida profesional. A los profesores del Instituto Superior Pedagógico Público “Rafael Hoyos Rubio” quienes con su experiencia y sabiduría nos preparan y muestran el sendero del éxito. ODALIS CANDELARIA ii
  • 3. 3 DEDICATORIA A Dios que me guía, que me cuida e ilumina día a día en mí caminar. A mis padres que con su arduo trabajo y dedicación, hacen de mí cada día mejor, y aquellas personas que sin darse cuenta dan todo por mí, sin importar la distancia. EDINSON iii
  • 4. 4 ÍNDICE CARÁTULA i DEDICATORIA ii ÍNDICE iv PRESENTACIÓN vii CAPÍTULO I DATOS INFORMATIVOS 1.1. Título de la investigación 10 1.2. Institución Educativa: 10 1.3. Ubicación de la Institución Educativa 10 1.4. Beneficiarios directos e indirectos 10 1.5. Duración de la investigación 10 1.6. Responsables de la investigación 10 1.7. Asesor de la investigación CAPÍTULO II PLANTEAMIENTO DEL PROBLEMA 10 2.1. Descripción del contexto 12 2.2. Descripción de la situación problemática 14 2.3. Análisis crítico de la situación problemática 16 2.4. Definición del problema 18 2.4.1. Enunciado diagnostico 2.4.2. Pregunta de acción 18 18 2.5. Objetivos de la investigación 19 2.6. Hipótesis de acción 19 2.6.1. Unidad de análisis 2.6.2. Término clave 19 20 2.7. Justificación de la investigación 22 iv
  • 5. 5 2.8. Viabilidad del proyecto de investigación 23 2.8.1. Viabilidad social 2.8.2. Viabilidad técnica 2.8.3. Viabilidad económica CAPÍTULO III MARCO TEÓRICO CONCEPTUAL 23 23 23 3.1. Antecedentes 25 3.1.1. Internacionales 3.1.2. Nacionales 3.1.3. Locales 25 26 29 3.2. Marco conceptual 3.2.1. Bases científicas 3.2.1.1. Paradigmas de enseñanza en la resolución de problemas matemáticos 3.2.2. Bases teóricas 32 32 32 34 3.2.2.1. Capacidades matemáticas 3.2.2.2. Resolución de problemas 3.2.2.3. La resolución de problemas y el desarrollo de capacidades matemáticas. 3.2.2.4. ¿Cómo enseñar matemática resolviendo situaciones matemáticas? 3.2.2.5. Problemas aritméticos de enunciado verbal (PAEV) 3.2.2.6. Clasificación de los problemas aditivos 3.2.2.7. Problemas multiplicativos. 3.2.2.8. Procedimientos para la resolución de problemas Método de Georg Polya 3.2.2.9. Estrategias para la resolución de problemas 3.2.2.10. Ejemplo aplicando los 4 pasos de resolución de problemas según Polya 3.2.2.11. La resolución de problemas como práctica pedagógica en la escuela 3.2.2.12. Enfoque centrado en la resolución de problemas 3.2.2.13. características y ventajas del método de la resolución de problemas. CAPÍTULO IV PLAN DE ACCIÒN 35 42 44 45 48 48 55 59 63 64 65 66 68 71 v
  • 6. 6 CAPÍTULO V PROGRAMA PROPUESTO CAPÍTULO VI EVALUACIÓN 6.1. Indicadores de proceso y fuentes de verificación 6.2. Indicadores de proceso y fuentes de 74 CAPÍTULO VII PRESUPUESTO Y FINANCIAMIENTO 7.1. Presupuesto 7.1.1. Bienes 7.1.2. Servicios 7.2. Financiamiento 84 85 BIBLIOGRAFÍA VIII ANEXOS 1. Árbol de problemas y árbol de objetivos. 2. Instrumentos de recolección de datos. 3. Validación de instrumentos. 4. Sistematización de la información. (Cuadro, gráficos) 5. Programa de ejecución (programa propuesto, con su respectivo cartel de capacidades, conocimientos, y actitudes y propuesta de Actividades de Aprendizaje y/o proyectos) 6. Evidencias del trabajo realizado. vi
  • 7. 7 PRESENTACIÓN Niños, jóvenes y adultos nos encontramos inmersos en una realidad de permanente cambio como resultado de la globalización y de los crecientes avances de las ciencias, las tecnologías y las comunicaciones. Estar preparados para el cambio y ser protagonistas del mismo exige que todas las personas, desde pequeñas, desarrollen capacidades, conocimientos y actitudes para actuar de manera asertiva en el mundo y en cada realidad particular. En este contexto, el desarrollo del pensamiento matemático y el razonamiento lógico adquieren significativa importancia en la educación básica, permitiendo al estudiante estar en capacidad de responder a los desafíos que se le presentan, planteando y resolviendo con actitud analítica los problemas de su realidad. La matemática forma parte del pensamiento humano y se va estructurando desde los primeros años de vida en forma gradual y sistemática, a través de las interacciones cotidianas. Los niños observan y exploran su entorno inmediato y los objetos que lo configuran, estableciendo relaciones entre ellos cuando realizan actividades concretas de diferentes maneras: utilizando materiales, participando en juegos didácticos y en actividades productivas familiares, elaborando esquemas, gráficos, dibujos, entre otros. Ser competente matemáticamente supone tener habilidad para usar los conocimientos con flexibilidad y aplicarlos con propiedad en diferentes contextos. Desde su enfoque cognitivo, la matemática permite al estudiante construir un razonamiento ordenado y sistemático. Desde su enfoque social y cultural, le dota de capacidadesy recursos para abordar problemas, explicar los procesos seguidos y comunicar los resultados obtenidos. El proceso de Resolución de Problemas implica que el estudiante manipule los objetos matemáticos, active su propia capacidad mental, ejercite su creatividad, reflexione y mejore su proceso de pensamiento al aplicar y adaptar diversas estrategias matemáticas en diferentes contextos. La capacidad para plantear y resolver problemas, dado el carácter integrador de este proceso, posibilita la interacción con las demás áreas curriculares coadyuvando al desarrollo de otras vii
  • 8. 8 capacidades; asimismo, posibilita la conexión de las ideas matemáticas con intereses y experiencias del estudiante. Nuestro proyecto de investigación está organizado de siete capítulos: En el capítulo I, hace referencia a los aspectos generales del proyecto donde se detalla el título del proyecto, lugar, duración de la investigación entre otros aspectos. En el capítulo II, se da a conocer: el planteamiento del problema donde se detalla la descripción del contexto, descripción de la situación problemática, análisis crítico de la situación problemática, definición del problema, objetivos de la investigación, hipótesis de acción, justificación de la investigación y viabilidad del proyecto de investigación. En el capítulo III, está referido al marco teórico conceptual en el cual vamos a detallar los términos clave (las capacidades matemáticas y estrategias para la resolución de problemas). En el capítulo IV, se da a conocer el plan de acción, en el cual se detalla las actividades específicas para el cumplimiento de nuestra investigación. En el capítulo V, se presenta el programa propuesto con sus respectivos lineamientos generales. En el capítulo VI, se detalla la evaluación, donde se describe los indicadores de evaluación de proceso y resultados con su fuente de verificación. En el capítulo VII, está referido al presupuesto y el financiamiento de la investigación. También presentamos las fuentes bibliográficas consultadas y los anexos correspondientes. LOS AUTORES viii
  • 9. 9 CAPÍTULO I DATOS INFORMATIVOS 1.1. Título de la investigación
  • 10. 10 Resolución de Problemas Aditivos y multiplicativos con Números Naturales para desarrollar capacidades matemáticas en los niños y niñas del V ciclo de Educación Primaria de la Institución Educativa N°16451, del caserío Mandinga, distrito y provincia de San Ignacio en el año 2015. 1.2. Institución Educativa N° 16451 1.3. Ubicación de la Institución Educativa 1.3.1. Lugar : Mandinga 1.3.2. Distrito : San Ignacio 1.3.3. Provincia : San Ignacio 1.3.4. Región : Cajamarca 1.4. Beneficiarios directos CUADRO N° 01 BENEFICIARIOS DIRECTOS Fuente: Nómina de Matrícula Institución Educativa N°16451 Mandinga año 2015. 1.5. Duración de la investigación 1.5.1. Inicio : Marzo 2015 1.5.2. Termino : Noviembre 2015 1.6. Responsables de la investigación  Rodríguez García Odalis Candelaria  Suarez Núñez Edinson 1.7. Asesor de la investigación Grados Hombres Mujeres Total 5° 5 9 14 6° 1 5 6 Total 6 14 20
  • 11. 11 Mg. Tocto Flores Pedro Efrén CAPÍTULO II PLANTEAMIENTO DEL PROBLEMA
  • 12. 12 2.1. Descripción del contexto 2.1.1. Alumno Los niños y niñas de la Institución Educativa Nº 16451 del caserío Mandinga, presentan las siguientes características: Socialmente son amigables y respetuosos, cooperan en la realización de actividades escolares manuales y de trabajo motriz en cooperación con sus compañeros, sin embargo algunos de ellos son tímidos y poco participativos al expresar sus ideas, lo que impide una buena socialización en el aula entre niños y niñas al realizar actividades de aprendizaje grupal entre ambos sexos. Debido a la metodología poco innovadora de la docente de aula, el aprendizaje de la matemática de niños y niñas es memorístico, es decir son repetitivos de los conocimientos que la docente les enseña, se ven limitados de desarrollar su creatividad por la pobreza de estrategias y el uso de medios y materiales que utiliza su docente. Por ser una Institución Educativa Multigrado, localizada en área rural, encontramos algunos niños con extra edad, es decir, que la edad cronológica no corresponde al grado de estudio en que se encuentran, siendo los factores emociónales y de intereses diferentes al resto compañeros de aula. Sin embargo tienen una amplia experiencia y aprendizajes en la producción agrícola, comercial, ambiental, valores y costumbres que son un gran potencial para desarrollar en ellos nuevas capacidades y que deben ser consideradas en el currículo escolar. 2.1.2. Docente La docente es una profesional que cuenta con considerable experiencia en el plano laboral con muchos años de servicio al sector
  • 13. 13 educación, ha recibido cursos de capacitación en algunos programas implementados por el Ministerio de Educación. Se ha observado que aplica estrategias metodológicas activas, hace uso de algunos materiales de la zona para desarrollar determinadas capacidades matemáticas. Sin embargo, cuando se ha tratado desarrollar la capacidadde resolución de problemas, se evidencia que existe un desconocimiento de las estrategias a seguir que actualmente las sostienen diferentes autores, destacando las formas tradicionales de resolver problemas mediante las explicaciones verbales y discursivas, que como resultado vienen generando limitadas posibilidades que niños y niñas desarrollen esta competencia de alto demanda cognitiva, como es la resolución de problemas. 2.1.3. Padres de familia Los padres de familia del caserío Mandinga son pobladores procedentes de algunas provincias serranas como lo es: Huancabamba, Ayabaca, Chota entre otros que tienen sus propias costumbres alimenticias, creencias religiosas, festividades, formas de vestir, de curarse y que constituyen un potencial social y cultural que es transmitido a sus hijos e hijas menores, quienes se encuentra en edad escolar; las familias del caserío Mandinga, en su mayoría se dedican a las actividades agrícolas y productivas del café, pan llevar, pastizales así como una mínima cantidad se dedican a la comercialización del café y a otros productos, en dichas actividades también involucran la participación de sus menores hijos e hijas quienes van desarrollando diferentes capacidades. El rol que cumplen las familias con relación al aprendizaje escolar con sus menores hijos es limitado, esta limitación se expresa en la poca atención y seguimiento diario que hacen a sus hijos con relación a las actividades y aprendizajes que promueve la Institución Educativa; los niños y niñas, en su mayoría, no cuenta en casa con un espacio
  • 14. 14 adecuado para hacer tareas de extensión escolar, ausencia de un horario adecuado y establecido por la familia para hacer sus tareas escolares, muchas veces la familia abandona a sus niños por las tardes debidoa las labores de cosecha o productivas, de igual manera se ha comprobado que papá y mamá no brindan el afecto necesario a sus hijos ni les dedican un momento para compartir juegos y/o y paseos recreativos que contribuyen a mejorar la autoestima e identidad familiar de los niños y niñas. 2.2. Descripción de la situación problemática Valverde (2010) menciona que sobre las oportunidades disponibles para los estudiantes en la región presenta un panorama problemático. Los niños y jóvenes no están siendo preparados de manera apropiada para contar con las herramientas en matemáticas necesarias en una economía mundial cada vez más interconectada. Esto se debe a programas débiles, materiales de aprendizaje inadecuados y falta de destreza de los docentes en las matemáticas. Las aulas se caracterizan por la memorización de operaciones computacionales de rutina y la reproducción mecánica de los conceptos; además los docentes dan a los estudiantes información escasa o incluso errónea. Si bien los docentes tienen importantes carencias en los conocimientos básicos de en matemática, con frecuencia no logran asociar esta debilidad con los bajos niveles en los logros de sus estudiantes. En las evaluaciones internacionales del rendimiento en la educación, el desempeño de los estudiantes de la región está constantemente por debajo de los estudiantes de Asia oriental y de los países industrializados que componen la Organización para la Cooperación y el Desarrollo Económico. Al nivel de nuestro país vienen haciéndose grandes esfuerzos por superar los bajos niveles de aprendizajes en el área de matemática con relación a los estándares alcanzados por otros países a nivel internacional. La Unidad de Medición de la Calidad Educativa (UMCE), del Ministerio de Educación, viene implementando desde aproximadamente seis años atrás la Medición de la Calidad de los Aprendizajes básicamente en el segundo grado de educación primaria con énfasis con las áreas de matemática y comunicación
  • 15. 15 integral, a través de la Evaluación Censal al Educando (ECE) cuyos resultados muestran esperanzadores cambios positivos en la mejora de la calidad de los aprendizajes que radica fundamentalmente en la capacitación docente y la designación de presupuesto público para apoyar especialmente a los educandos en todo el aspecto logístico como es materiales, infraestructura, equipos, multimedia, servicios sociales. Con relación a los resultados de los últimos años, encontramos que el 16,8% alcanzó el nivel esperado en matemática, en la evaluación censal de rendimiento escolar (ECE 2013) aplicada por el Ministerio de Educación a los niños y niñas de segundo grado de primaria en todo el país. Estas cifras evidencian una mejora en relación con los resultados de la Evaluación Censal al Educando ECE 2012 mejorando en 4,1 puntos porcentuales en matemática. Sin embargo, estos resultados aun cuando son positivos- están todavía lejos de lo que debiéramos lograr. Las regiones del sur siguen liderando los mejores resultados. Moquegua y Tacna se distinguen nítidamente del resto de regiones en la ECE 2013: en ambas, más del 40% alcanzó dicho nivel en matemática. Estas regiones muestran una mejoría sostenida desde hace cinco años. Regiones andinas y amazónicas presentan una mejora prometedora en el desempeño educativo. En matemática, Amazonas, Puno y Pasco fueron las regiones que presentan los mayores incrementos en el rendimiento respecto del 2012. Las escuelas públicas siguen mejorado su rendimiento. La proporción de estudiantes con nivel de aprendizaje satisfactorio en matemática, se incrementó en 4,3 puntos porcentuales. La educación rural ha mejorado por segundo año consecutivo. Con relación al 2012, se incrementó en 2,4 de estudiantes que alcanzó el nivel de aprendizaje satisfactorio en matemática. Los resultados de esta evaluación evidencian el gran reto que afronta el país: reducir las brechas de aprendizaje existentes a fin de que la totalidad de niños y niñas del Perú tengan acceso a la educación de calidad, a la que tienen derecho. Para ello, se está trabajando de manera integral y prioritaria
  • 16. 16 en revalorar la carrera docente, mejorar la infraestructura educativa y modernizar la gestión. A nivel de nuestra región Cajamarca, los resultados bajos del aprendizaje en el área de matemática tienen similitud con resultados a nivel nacional, debido también a la falta de una política educativa regional que aborde planificada y sistemáticamente esta problemática bajo rendimiento de la calidad de los aprendizajes, no solamente en esta área, sino también en otras áreas de formación curricular fundamentales, los resultados de la Evaluación Censal del Educando (ECE) muestran que el 2013 el 13.5% de los niños y niñas demuestran haber adquirido los niveles óptimos de aprendizaje en el área de matemática, mostrando incremento de 4 puntos porcentuales con relación a los resultados del año 2012 que únicamente el 9.5 % habían alcanzado óptimamente los aprendizajes de calidad previstos. Esto se debe a que nuestra región también se viene implementando programas de capacitación docente donde los más experimentados asesoran y socializan experiencias pedagógicas en aula. Los resultados de la Evaluación Censal del Educando demuestran que obtuvimos el 14.5% de estudiantes que alcanzaron el nivel esperado en el área de matemática alcanzando 5 puntos porcentuales favorables con relación al año 2012 que solamente habíamos alcanzado el 9.5% de niños en el nivel óptimo. De acuerdo a esta realidad podemos deducir que aún nos queda un gran reto por mejorar y elevar la calidad de los aprendizajes en el área de matemática, como en otras áreas, razón por la cual nuestra investigación se propone hacer un aporte valioso en lo relacionado al manejo de estrategias metodológicas para desarrollar capacidades en el área de matemática a través de la resolución de problemas específicamente en la Institución Educativa N° 16451 Mandinga. 2.3. Análisis crítico de la situación problemática Entre las causas que influyen negativamente en el bajo nivel de los aprendizajes en las capacidades del área de matemática, podemos
  • 17. 17 mencionar que existe poca oportunidad de capacitación docente relacionada con el manejo de nuevos enfoques metodológicos relacionados con el desarrollo del área de matemática y en especial la resolución de problemas, otro factor que se pone de manifiesto es el limitado acceso al uso de materiales estructurados donados por el Ministerio de Educación y la poco creatividad docente para utilizar los materiales que los encontramos la zona; así mismo podemos señalar, por estar ubicada la Institución Educativa a la zona rural está limitada al acceso de los equipos y tecnología de las Tecnología de la Información y la Comunicación (TIC) que facilitan información actualizada a niños, niñas y docentes. En consecuencia, la enseñanza del área de matemática se limita a estrategias de dictado y escritura en la pizarra para que los niños copien, y cuando se trata de resolver problemas matemáticos, se deja al niño sin brindarle el acompañamiento y orientación debida para que haga uso de nuevas estrategias, por lo tanto los niveles de aprendizaje y desarrollo de capacidadesmatemáticas son bajos con relación a los estándares de calidad demandados por el sistema nacional y mundial. Frente a esta realidad, el grupo de investigación en el marco del enfoque de la teoría socio crítica, nos proponemos desarrollar un conjunto de estrategias metodológicas que partiendo de la realidad económica y productiva, sociocultural, y ambiental el niño pueda alcanzar el desarrollo de sus capacidades matemáticas preparándolo para que pueda desenvolverse y resolver diferentes retos del mundo globalizado, a nivel productivo y comercial, social y ambiental. Alvarado (2007) sostiene que el paradigma socio-crítico se fundamenta en la crítica social con un marcado carácter autorreflexivo; considera que el conocimiento se construye siempre por intereses que parten de las necesidades de los grupos; pretende la autonomía racional y liberadora del ser humano; y se consigue mediante la capacitación de los sujetos para la participación y transformación social. Utiliza la autorreflexión y el conocimiento interno y personalizado para que cada quien tome conciencia del rol que le corresponde dentro del grupo; para ello se propone la crítica ideológica y la aplicación de procedimientos del psicoanálisis que posibilitan
  • 18. 18 la comprensión de la situación de cada individuo, descubriendo sus intereses a través de la crítica. El conocimiento se desarrolla mediante un proceso de construcción y reconstrucción sucesiva de la teoría y la práctica. 2.4. Definición del problema ¿Cómo podemos desarrollar las capacidadesmatemáticas en la Resolución de Problemas Aditivos y Multiplicativos con Números Naturales en los niños y niñas del V ciclo de la Institución Educativa N°16451 Mandinga, del distrito y provincia de San Ignacio en el año 2015? 2.4.1. Enunciado diagnóstico Los niños y niñas del V ciclo de la Institución Educativa N° 16451 Mandinga, del distrito y provincia de San Ignacio presentan dificultades en el desarrollo de sus capacidades matemáticas. 2.4.2. Pregunta de acción ¿Cómo desarrollar las capacidades matemáticas en los niños y niñas de la Institución Educativa N° 16451 Mandinga, del distrito y provincia de San Ignacio? 2.5. Objetivos de la investigación 2.5.1. Objetivo general Desarrollar capacidades matemáticas mediante la Resolución de Problemas Aditivos y Multiplicativos con Números Naturales, en los niños y niñas del V ciclo de la Institución Educativa N° 16451 Mandinga del distrito y provincia de San Ignacio en el año 2015.
  • 19. 19 2.5.2. Objetivo específicos  Diagnosticar mediante una prueba de entrada y lista de cotejo el desarrollo de las capacidades matemáticas al resolver problemas aditivos y multiplicativos con números naturales en los niños y niñas del V ciclo de la Institución Educativa N° 16451 Mandinga del distrito y provincia de San Ignacio en el año 2015.  Aplicar diferentes pasos y/o estrategias de Resolución de Problemas Aditivos y Multiplicativos con Números Naturales en el transcurso de nuestra investigación, mediante una programación curricular de mediano y corto plazo; en los niños y niñas de la Institución Educativa N°16451 Mandinga del distrito y provincia de San Ignacio en el año 2015.  Evaluar los progresos de las capacidades matemáticas en la Resolución de Problemas Aditivos y Multiplicativos con Números Naturales, en los niños y niñas del V ciclo de la Institución Educativa N° 16451 Mandinga del distrito y provincia de San Ignacio en el año 2015. 2.6. Hipótesis de acción La aplicación de estrategias de Resolución de Problemas Aditivos y Multiplicativos con Números Naturales permitirá desarrollar las capacidades matemáticas, en los niños y niñas del V ciclo de Educación Básica Regular de la Institución Educativa N° 16451 Mandinga del distrito y provincia de San Ignacio en el año 2015. 2.6.1. Unidad de análisis
  • 20. 20 Niños y niñas del V ciclo de Educación primaria de la Institución Educativa N° 16451 Mandinga del distrito y provincia de San Ignacio en el año 2015. 2.6.2. Términos clave  Capacidades matemáticas Ministerio de Educación (2014, 22) define las capacidades matemáticas como el conjunto de habilidades para alcanzar la competencia de resolución de situaciones problemáticas, todas ellas existe de manera integrada y única en cada persona, pueden desarrollarse en el aula, la escuela, la comunidad y a medida que nos dispongamos a de oportunidades y medios para hacerlo. Las capacidades matemáticas se despliegan a partir de las experiencias y expectativas de nuestros estudiantes, en situaciones problemáticas reales. Esto característica da sentido y pertinencia motivando e interesando a los estudiantes buscar mecanismos para su solución. Estas competencias son las que permiten: matematizar, representar, comunicar, elaborar estrategias, utilizar expresiones simbólicas y argumentar, que en la parte teórica de nuestra investigación serán tratadas a mayor profundidad.  Resolución de Problemas Aditivos y Multiplicativos con Números Naturales Ministerio de Educación (2014, 27) se considera la resolución de problemas aditivos como un enfoque que consiste en promover formas de enseñanza aprendizaje que den respuesta a situaciones problemáticas cercanas a
  • 21. 21 la vida real. Para eso recurre a tareas y a actividades matemáticas de progresiva dificultad que plantean demandas cognitivas crecientes a los estudiantes. El enfoque pone énfasis en un saber actuar pertinente ante una situación problemática, presentada en un contexto particular preciso, moviliza una serie de recursos o saberes, a través de actividades que satisfagan determinados criterios de calidad. Este enfoque rompe con la tradicional manera de entender cómo se aprende la matemática. Dijkstra (1991, 98) afirma que; es un proceso cognitivo que involucra conocimiento almacenado en la memoria a corto y largo plazo. Es un conjunto de actividades mentales y conductuales, a la vez que implica también factores de naturaleza cognitiva, afectiva y motivacional. Polya (1990) “Señala que existen varis concepciones sobre la resolución de problemas, unas las consideran como el objetivo de la educación y otros como el medio para el aprendizaje”. En este contexto debemos distinguir lo siguiente: Enseñar “PARA” resolver problemas: se trata que el estudiante aprenda para que sea capaz de resolver problemas para su vida cotidiana Enseñar “SOBRE” resolución de problemas: se propone que el estudiante aprenda estrategias que le permiten resolver diferentes problemas. Enseñar “A TRAVÉS “De resolución de problemas: se propone que el estudiantes desarrolle capacidades, habilidades y destrezas, enfrentando situaciones problemáticas que el docente pueda utilizar como recurso y durante el proceso de enseñanza y aprendizaje.
  • 22. 22 2.7. Justificación de la investigación Cada vez que se dan los resultados del Informe del Programa Internacional para la Evaluación de Estudiantes (PISA), nos enfrentamos con noticias catastróficas, ya que el Perú se encuentra en el último en la tabla de los resultados; de 65 países. Nadie duda que los resultados sea un indicador (no único) de la grave crisis de nuestra educación, pero tiene origen estructural en la sociedad peruana, agravada por 20 años de políticas educativas del modelo neoliberal que impera en nuestro país. Es así que los resultados del Informe del Programa Internacional para la Evaluación de Estudiantes (PISA), ha puesto en evidencia nuestras carencias en la educación en nuestro país. La resolución de problemas y el desarrollo de capacidades, es un aspecto fundamental que se debe propiciar en el proceso de aprendizaje de la matemática; es el desarrollo de capacidades para la resolución de capacidades, que implican promover la matematización, representación, comunicación, elaboración de estrategias, utilización del lenguaje matemático y la argumentación, todas ellas son necesarias para resolver situaciones problemáticas de la vida cotidiana. Consideramos que el presente proyecto de investigación es gran importancia porque busca desarrollar capacidades y actitudes que favorezcan en niños y niñas del IV ciclo de primaria, la adquisición de diferentes estrategias en la resolución de problemas aditivos con números naturales ya que como futuros ciudadanos sean capaces de desarrollar habilidades para afrontar exitosamente los problemas de su contexto y mundo globalizado.
  • 23. 23 2.8. Viabilidad del proyecto de investigación 2.8.1. Viabilidad social Nuestra investigación es viable para la sociedad ya que contamos con el consentimiento de maestro y padres de familia; además contamos una gama de fuentes bibliográficas como un asesoramiento pertinente. 2.8.2. Viabilidad técnica Para el desarrollo del presente proyecto contamos con el asesoramiento técnico y oportuno correspondiente tanto del profesor de investigación como asesor, además contamos una gama de fuentes bibliográficas como el internet, biblioteca. 2.8.3. Viabilidad económica Los recursos económicos que demandará esta investigación serán cubiertos con recursos propios por el equipo de investigación.
  • 25. 25 3.1. Antecedentes 3.1.1. Antecedentes Internacionales Cardona (2007) en su tesis “Pensamiento algebraico en los alumnos de octavo grado del CIIE a través de la resolución de problemas”, presentado a la Universidad Pedagógica Nacional Francisco Morazán – Honduras; con su objetivo general, explorar las habilidades de pensamiento algebraico que desarrollan los alumnos de octavo grado de Educación Básica de CIIE a través de la resolución de problemas, concluye que: 1. La selección adecuada de los problemas, la forma y el momento en que se presentan. Se debe procurar que los conocimientos requeridos estén presente en todos los estudiantes. Las actividades deben aprovechar las habilidades: aritméticas de los estudiantes como punto de partida para introducirlos el uso del código algebraico; pues se evidencio que recurriendo a la aritmética los alumnos daban paso al algebra, con mayor seguridad. Los problemas se deben seleccionar según el nivel de desarrollo del estadio de las operaciones formales que presenta el grupo. 2. La estrategia de resolución de problemas resulto ser adecuada para iniciar en los estudiantes el desarrollo de cada una de las habilidades que se pretendía con cada guía de trabajo; pues se abordó el aprendizaje del código algebraico; no a partir de un conocimiento previo de reglas de transformaciones algebraicas y definiciones; si no a través de su uso los conceptos algebraicos se desarrollaron por necesidad y no por un fin en sí mismos. Cada equipo alcanzo un nivel de dominio de cada habilidad según sus capacidades internas.
  • 26. 26 Carrero (2006), presentó el trabajo titulado “Planificación de estrategias didácticas para la enseñanza de la matemática, en los alumnos del cuarto grado de educación básica”, teniendo como objetivo general aplicar las estrategias didácticas para la enseñanza de la matemática en los alumnos de cuarto grado de educación básica, la U.E “Rafael Antonio González”, Parroquia Mesa Bolivar, Municipio Antonio Pinto Salinas, del estado Mérida. Adoptó la modalidad de la investigación acción participante. Concluye en: Que la planificación va inmersa las estrategias, las cuales deben ser adecuadas para que el alumno pueda construir su propio aprendizaje tomando en cuenta sus experiencias y necesidades previas. Para que el docente pueda planificar con resultados exitosos es imprescindible que este contenga conocimiento teórico – práctico preciso sobre el arsenal de técnicas para planificar estrategias. 3.1.2. Antecedentes nacionales Aliaga (2012) en su tesis “Efectividad del programa gpa-resol en el incremento del nivel de logro en la resolución de problemas aritméticos aditivos y sustractivos en estudiantes de segundo grado de primaria de dos instituciones educativas, una de gestión estatal y otra privada del distrito de san Luis”, presentada a la universidad Pontificia Universidad Católica del Perú – Lima; con su objetivo general, establecer la efectividad del programa “GPA-RESOL” en el incremento del nivel de logro en la resolución de problemas aritméticos aditivo y sustractivo en estudiantes de segundo grado de primaria de dos instituciones educativas, una de gestión estatal y otra privada del distrito de San Luis, concluye que: 1. El nivel de logro en resolución de problemas aritméticos aditivos y sustractivos en estudiantes de segundo grado de
  • 27. 27 primaria de dos instituciones educativas, una de gestión estatal y otra particular del distrito de San Luis después de la aplicación del programa GPA - RESOL es altamente significativo. En el momento pre test el grupo experimental difiere del grupo control y al interior de los grupos, los estudiantes de la institución de gestión privada evidencian un mejor nivel de logro en la resolución de problemas aritméticos aditivos y sustractivos. 2. En el momento post test el grupo experimental tiene mayor nivel, pero al interior del grupo experimental el tipo de gestión no evidenció mayor impacto en el nivel de logro en la resolución de problemas aritméticos aditivos y sustractivos. Bastiand, (2012) en su tesis “Relación entre comprensión lectora y resolución de problemas matemáticos en estudiantes de sexto grado de primaria de las instituciones educativas públicas del Concejo Educativo Municipal de La Molina – 2011”, presentado a la Universidad Nacional Mayor de San Marcos – Lima; teniendo como objetivo general determinar la relación que existe entre la comprensión lectora y la resolución de problemas matemáticos en los estudiantes de sexto grado de primaria de las Instituciones Educativas Públicas del Concejo Educativo Municipal de La Molina en el año 2011, concluye que: 1. En la prueba de resolución de problemas matemáticos, los alumnos se ubican en un nivel de “en proceso” con una nota desaprobatoria de 11. 2. En las fases de la resolución de problemas matemáticos, los alumnos se ubican de la siguiente manera:
  • 28. 28 a. Comprensión: En proceso, con una nota de 11.2 b. Planificación: Logro previsto, con una nota de 12.6 c. Ejecución: En inicio, con una nota de 09.2 d. Comprobación: En inicio, con una nota de 08.0 3. El 55% de los alumnos de la muestra resolvieron correctamente las preguntas de la prueba de resolución de problemas matemáticos; de los cuales, el 56% resolvieron correctamente las preguntas de comprensión; el 63%, las preguntas de planificación; el 45%, las preguntas de ejecución, y el 39%, las preguntas de comprobación. Roque (2009) en su tesis “influencia de la enseñanza de la matemática basada en la resolución de problemas en el mejoramiento del rendimiento académico el caso de los ingresantes a la escuela de enfermería de la universidad alas peruanas 2008”, presentada a la Nacional Mayor de San Marco, Lima con su objetivo principal, determinar y analizar si existen diferencias significativas en el rendimiento académico del grupo de estudiantes que trabajan con la estrategia didáctica de la enseñanza de la matemática, con respecto al grupo de estudiantes al cual no se le aplica dicha estrategia; concluyen que: 1. Los niveles de rendimiento académico de los estudiantes del Primer ciclo de la EP de Enfermería de la FCS fueron muy bajos al iniciar el semestre académico, es decir antes de aplicar la estrategia de enseñanza de la matemática BRP, pues la mayoría absoluta de ellos (82%) tuvieron puntuaciones entre 21 a 38 puntos. Bajos niveles que se expresaban y explicaban por las diversas dificultades que adolecían en su proceso de resolución de problemas: memorización de fórmulas, desconocimiento de estrategias de
  • 29. 29 solución y, sobre todo, desconocimiento de la enseñanza de la matemática mediante la resolución de problemas. 2. Los bajos niveles de rendimiento académico de dichos estudiantes se explica también por factores de carácter pedagógico –didáctico, como son: Existencia de docentes en la Educación Secundaria que no les enseñaron la matemática mediante la resolución de problemas en forma sistemática o metódica; carencia en la FCS de docentes que proporcionen una enseñanza planificada y metódica de resolución de problemas, pues éstos no han recibido capacitación en enseñanza de la resolución de problemas a estudiantes universitarios, ni han realizado investigaciones sobre problemas o dificultades del rendimiento académico de los estudiantes a los que enseñan diversas asignaturas, y en parte porque no leen con frecuencia bibliografía sobre enseñanza de resolución de problemas a estudiantes universitarios. 3.1.3. Antecedentes locales Gonzales, (2010) En su tesis “Mejoramiento de la enseñanza – aprendizaje de la resolución de problemas con las operaciones básicas de números naturales utilizando estrategias lúdicas en los niños y niñas del IV ciclo de la Institución Educativa N°16630 caserío López y la Institución Educativa N°16878 caserío la Libertad”; presentada al Instituto de Educación Superior Pedagógico Público “Rafael Hoyos Rubio”; teniendo como objetivo general mejorar el proceso de enseñanza – aprendizaje en la resolución de problemas con las operaciones básicas de números naturales utilizando estrategias lúdicas en los niños y niñas del IV ciclo de la Institución Educativa N° 16630 del caserío López y la Institución Educativa N° 16878 del caserío la Libertad, San Ignacio; concluye que:
  • 30. 30 1. Que la planificación, ejecución y evaluación de actividades de aprendizaje, aplicando estrategias lúdicas lo cual permitió elevar el nivel de capacidades, conocimientos y actitudes en la resolución de problemas de adicción y sustracción con números naturales en los niños y niñas del IV ciclo de la Institución Educativa N° 16630 del caserío López y la Institución Educativa N° 16878 del caserío la Libertad. 2. La utilización de estrategia lúdicas en los niños y niñas del IV ciclo permitió mejorar el proceso de enseñanza – aprendizaje de la resolución de problemas con las operaciones básicas de números naturales. Cruz (2004) en su tesis mejorar la capacidad de razonamiento matemático en los niños y niñas del II y III ciclo de educación primaria de las instituciones educativas N° 16626 caserío Marizagua y N°16631 caserío San Antonio de la Balsa aplicando el método de resolución de problemas en la planificación y ejecución de actividades de aprendizaje” presentada al Instituto de Educación Superior Pedagógico Público “Rafael Hoyos Rubio” con su objetivo general lograr que los niños y niñas del II y III ciclo mejoren su capacidad de razonamiento en el área de lógico matemático; concluyen que: 1. Que la aplicación del método de resolución de problemas en la planificación y ejecución de actividades de aprendizaje, permitió la capacidad de razonamiento matemático de los niños y niñas del II y III ciclo de educación primaria de las instituciones educativas N° 16626 caserío Marizagua y N°16631 caserío San Antonio de la Balsa. 2. La ejecución del taller de capacitación a docentes permitió el manejo del método de resolución de problemas, lo
  • 31. 31 que contribuyó al mejoramiento de la práctica docente en el área de lógico matemático. Flores (2001) en su tesis “aplicación del método de resolución de problemas en el desarrollo de capacidades y actitudes de la operación de números naturales en los Centros Educativos N° 16629 Buenos Aires y N° 16625 Alto Tambillo del distrito de San Ignacio, presentado al Instituto de Educación Superior Pedagógico Público, con su objetivo general, elevar el desarrollo de capacidades y actitudes de la multiplicación de números naturales del área de lógico matemática aplicando el método de resolución de problemas en los alumnos del 5° grado de educación primaria del Centro Educativo N° 16629 Buenos Aires y el Centro Educativo N° 16625 Alto Tambillo del distrito de san Ignacio, concluye que: 1. El método de resolución de problemas nos permite encontrar la forma correcta de salir de alguna dificultad. 2. La aplicación adecuada del método de resolución de problema desarrollará en los alumnos capacidades y actitudes de comprensión, análisis y solución de los mismos. 3. Las capacidades y actitudes de la operación de la multiplicación han sido desarrolladas en un nivel considerable, contextualizando los contenidos del área de matemática y aplicando el método de resolución de problemas. 4. Los niveles de socialización e interacción en el aula han mejorado, utilizando técnicas de dinámica grupal. 3.2. Marco teórico conceptual
  • 32. 32 3.2.1. Bases científicas A. Paradigmas de enseñanza en la resolución de problemas matemáticos Gascón (1994) considera que resulta interesante interpretar y describir las principales formas de entender la resolución de problemas y su función en la enseñanza de la Matemática a partir del análisis de los diferentes paradigmas o formas ideales de abordar los problemas, las cuales aparecen frecuentemente entremezcladas en la práctica docente real. Así podría llevarse a cabo una reconstrucción racional del papel que ha jugado la resolución de problemas en la enseñanza de la Matemática en esta segunda etapa que hemos descrito. Gascón (1994) señalas los siguientes paradigmas: 1. Teoricista El paradigma más alejado de la actividad de resolución de problemas es el teoricista, que considera la misma como un aspecto secundario dentro del proceso didáctico global, ignorando las tareas dirigidas a elaborar estrategias de resolución de problemas, trivializando los problemas y descomponiéndolos en ejercicios rutinarios. Se consideran las técnicas matemáticas como técnicas predeterminadas por la teoría. 2. Tecnicista Luego surge el paradigma tecnicista como respuesta al teoricista, enfatizando los aspectos más rudimentarios del momento de la técnica y concentrando en ellos los mayores esfuerzos. La defensa que hace del dominio de las técnicas es ingenua y poco fundamentada desde el punto de vista didáctico, pudiendo caerse en el “operacionismo” estéril.
  • 33. 33 Paradójicamente este paradigma comparte con el teoricista la trivialización de los problemas, ya que pone todo el énfasis en las técnicas simples, olvidando los auténticos problemas. Ambos tienen al conductismo como su referente más claro. 3. Modernista El paradigma modernista va al rescate de la actividad de resolución de problemas en sí misma, ignorada por los anteriores. Se caracteriza por conceder una prioridad absoluta al momento exploratorio, manteniendo el aislamiento y descontextualización de los problemas. Aunque pretende superar al conductismo clásico, coloca en su lugar una interpretación muy superficial de la Psicología Genética. 4. Constructivista El paradigma constructivista, por su parte, utiliza la resolución de problemas para la construcción de nuevos conocimientos. Se basa en la Psicología Genética y la Psicología Social. Relaciona funcionalmente el momento exploratorio con el momento teórico, dando gran importancia al papel de la actividad de resolución de problemas en la génesis de los conceptos. Continúa ignorando la función del trabajo de la técnica en la resolución de problemas. No presenta los problemas tan descontextualizados pero los sigue considerando aislados. Los modelos instruccionales más importantes actualmente dirigidos a la enseñanza de la resolución de problemas en el campo de las matemáticas se han desarrollado en el marco de los ambientes de aprendizaje constructivistas. Rodríguez (2005); destacando las propuestas dentro de la enseñanza basada en problemas y especialmente la instrucción anclada basada en ambientes computarizados. Goldman (1999)
  • 34. 34 Todas estas propuestas están basadas en los planteamientos de Dewey (1933) que defiende la idea de que encontrar un problema es el comienzo del verdadero aprendizaje y se muestran contrarios a las prácticas que consisten en utilizar los problemas como aplicación una vez que cierto conocimiento matemático ha sido introducido, con el objetivo de utilizarlos para resolver situaciones “reales”. 3.2.2. Bases teóricas 3.2.2.1. Capacidades matemáticas A. Definición Ministerio de Educación (2014, 22) considera las capacidades matemáticas como el conjunto de habilidades para alcanzar la competencia de resolución de situaciones problemáticas, todas ellas existe de manera integrada y única en cada persona, pueden desarrollarse en el aula, la escuela, la comunidad y a medida que nos dispongamos a de oportunidades y medios para hacerlo. Las capacidades matemáticas se despliegan a partir de las experiencias y expectativas de nuestros estudiantes, en situaciones problemáticas reales. Esto característica da sentido y pertinencia motivando e interesando a los estudiantes buscar mecanismos para su solución. Estas competencias son las que permiten: matematizar, representar, comunicar, elaborar estrategias, utilizar expresiones simbólicas y argumentar, que en la parte teórica de nuestra investigación serán tratadas a mayor profundidad.
  • 35. 35 B. Capacidades matemáticas Estas seis capacidades son las siguientes: 1. Matematizar La matematización es un proceso que dota de una estructura matemática a una parte de la realidad o a una situación problemática real. Este proceso es eficaz en tanto pueda establecer un isomorfismo, es decir, igualdad en términos de formas entre la estructura matemática y la realidad. Cuando esto ocurre las propiedades de la estructura matemática corresponden a la realidad y viceversa. Matematizar Implica también interpretar una solución matemática o un modelo matemático a la luz del contexto de una situación problemática. Por ejemplo: Los sistemas de numeración tuvieron un origen anatómico. Nuestros antepasados valiéndose de los dedos de sus manos contaban hasta diez; uno/huk/, dos/iskay/, tres/ kimsa/, cuatro/tawa/, cinco/pichqa/, seis/suqta/, siete/qanchis/, ocho/pusaq/, nueve/isqun/ y diez/chunka). Al llegar a diez /chunka/, es decir, después de consumir todas las posibilidades de su «aparato de cálculo» natural, los dedos de sus dos manos, les fue lógico considerar el número 10 como una unidad nueva, mayor (la unidad del orden siguiente) y prosiguieron el contero en los términos siguientes: diez y uno/chunka hukniyuq/, diez y dos /chunka iskayniyuq/, diez y tres /chunka kimsayuq/, diez y cuatro/chunka tawayuq/, diez y cinco /chunka pichkayuq/, diez y seis /chunka suqtayuq/, diez y siete /chunka qanchikniyuq/, diez y ocho / chunka pusaqniyuq/, diez y nueve/chunka isqunniyuq/ y dos veces diez (veinte)/iskay chunka/.
  • 36. 36 “El conteo a base de los dedos de las dos manos dio origen al sistema de numeración decimal quechua. Nuestros antepasados dotaron de una estructura matemática decimal a una parte de su anatomía, sus dos manos y nos legaron el sistema de numeración decimal quechua” Al llegar a veinte, formaban la segunda decena y proseguían el conteo hasta llegar a diez decenas /chunka chunka/ y así lograban formar la unidad del tercer orden, la centena /pachak/ y así sucesivamente. Algo similar, sucedió probablemente con nuestros antepasados aimaras. Ellos, a diferencia de los quechuas, se valieron de los dedos sólo de una de sus manos, y contaban con facilidad hasta llegar a cinco (uno /maya/, dos/paya/, tres/kima/, cuatro/pusi/ y cinco/qallqu/) Al llegar a cinco, les fue lógico considerar el número 5 como una unidad nueva, mayor (la unidad del orden siguiente) y prosiguieron el contero en los términos siguientes: uno y cinco /ma- qallqu/, dos y cinco / pa- qallqu/, tres y cinco /ki-qallqu/, cuatro y cinco/pu-qallqu/ y cinco y cinco/qallqu qallqu. Al llegar a cinco y cinco, formaban la unidad del segundo orden, después de tercer orden y así sucesivamente. Así los aimaras dotaron de una estructura matemática quinaria a una de sus manos y nos legaron el sistema de numeración quinaria aimara. Así matematizaron nuestros antepasados porciones o partes de su anatomía. “Matematizar implica, entonces, expresar una parcela de la realidad, un contexto concreto o una situación problemática, definido en el mundo real, en términos matemáticos” 2. Representar
  • 37. 37 Existen diversas formas de representar las cosas y, por tanto, diversas maneras de organizar el aprendizaje de la matemática. El aprendizaje de la matemática es un proceso que va de lo concreto a lo abstracto. Entonces, las personas, los niños en particular, aprendemos matemática con más facilidad si construimos conceptos y descubrimos procedimientos matemáticos desde nuestra experiencia real y particular. Esto supone manipular materiales concretos (estructurados o no), para pasar luego a manipulaciones simbólicas. Este tránsito de la manipulación de objetos concretos a objetos abstractos está apoyado en nuestra capacidad de representar matemáticamente los objetos. “La capacidad de representar es fundamental no solo para enfrentar situaciones problemáticas, sino para organizar el aprendizaje de la matemática y socializar los conocimientos matemáticos que los estudiantes vayan logrando” Por ejemplo: Cuando enfrentamos a una situación problemática real susceptible de matematización, la representamos matemáticamente. Para eso utilizamos distintas representaciones tales como: gráficos, tablas, diagramas, imágenes, etc. Así capturamos y describimos la estructura y las características matemáticas de una determinada situación. Cuando ya disponemos de resultados matemáticos, presentados en diversos formatos o representaciones matemáticas, los interpretamos. Para hacer esa interpretación nos referimos a la situación problemática y usamos las representaciones para resolverla. A veces es necesario crear nuevas representaciones.
  • 38. 38 3. Comunicar El lenguaje matemático es también una herramienta que nos permite comunicarnos con los demás. Incluye distintas formas de expresión y comunicación oral, escrita, simbólica, gráfica. Todas ellas existen de manera única en cada persona y se pueden desarrollar en las escuelas si éstas ofrecen oportunidades y medios para hacerlo. Buscamos desarrollar esta capacidad en los estudiantes para que logren comprender desarrollar y expresar con precisión matemática las ideas, argumentos y procedimientos utilizados, así como sus conclusiones. Asimismo, para identificar, interpretar y analizar expresiones matemáticas escritas o verbales. En matemáticas se busca desarrollar en los estudiantes esa capacidad para recibir, producir y organizar mensajes matemáticos orales en forma crítica y creativa. Esto les facilita tomar decisiones individuales y grupales. La institución educativa debe brindar situaciones reales de interacción oral para que los estudiantes tengan oportunidad de hablar, dialogar, opinar, informar, explicar, describir, argumentar, debatir, etc., en el marco de las actividades matemáticas programadas. La lectura y el dar sentido a las afirmaciones, preguntas, tareas matemáticas, permiten a los estudiantes crear modelos de situaciones problemáticas, lo cual es un paso importante para comprender, clarificar, plantear y resolverlas en términos matemáticos. “La gran cantidad de información matemática que se dispone re quiere desarrollar en los estudiantes la capacidad de comunicación escrita. Eso les posibilita identificar, procesar, producir y administrar información matemática escrita. El lenguaje matemático escrito constituye el medio de comunicación más eficaz” 4. Elaborar estrategias
  • 39. 39 Al enfrentar una situación problemática de la vida real, lo primero que hacemos es dotarla de una estructura matemática. Luego, seleccionamos una alternativa de solución entre otras opciones. Si no disponemos de ninguna alternativa plausible, intentamos crearla. Entonces, cuando ya disponemos de una alternativa razonable de solución, elaboramos una estrategia. De esta manera, la resolución de una situación problemática supone la selección o elaboración de una estrategia para guiar el trabajo, interpretar, evaluar y validar su procedimiento y solución matemáticos. La construcción de conocimientos matemáticos requiere también seleccionar o crear y diseñar estrategias de construcción de conocimientos. Por ejemplo: Un avión sube a una altura de 2 000 metros, después baja 1 300 metros, vuelve a subir 1500 metros y baja de nuevo 250 metros. ¿A qué altura se encuentra en este momento? “La capacidad de elaborar estrategias es fundamental para Primera forma Segunda forma
  • 40. 40 Construir conocimientos matemáticos, y también para resolver situaciones problemáticas” 5. Utilizar expresiones simbólicas Hay diferentes formas de simbolizar. Éstas han ido construyendo sistemas simbólicos con características sintácticas, semánticas y funcionales peculiares. El uso de las expresiones y símbolos matemáticos ayudan a la comprensión de las ideas matemáticas, sin embargo estas no son fáciles de generar debido a la complejidad de los procesos de simbolización. En el desarrollo de los aprendizajes matemáticos, los estudiantes a partir de sus experiencias vivenciales e inductivas emplean diferentes niveles del lenguaje. Inicialmente usan un lenguaje de rasgos coloquiales, paulatinamente van empleando el lenguaje simbólico hasta llegar a un lenguaje técnico y formal como resultado de un proceso de convención y acuerdo en el grupo de trabajo. Al dotar de estructura matemática a una situación problemática, necesitamos usar variables, símbolos y expresiones simbólicas apropiadas. Para lograr esto es importante: Entender la relación entre el lenguaje del problema y el lenguaje simbólico necesario para representarlo matemáticamente. Comprender, manipular y hacer uso de expresiones simbólicas aritméticas y algebraicas regidas por reglas y convenciones matemáticas, es decir, por una gramática específica de lenguaje matemático. “La capacidad de usar símbolos y expresiones simbólicas es indispensable para construir conocimientos y resolver problemas matemáticos. Pero también para comunicar, explicar y entender resultados matemáticos” 6. Argumentar
  • 41. 41 Esta capacidad es fundamental no solo para el desarrollo del pensamiento matemático, sino para organizar y plantear secuencias, formular conjeturas y corroborarlas, así como establecer conceptos, juicios y razonamientos que den sustento lógico y coherente al procedimiento o solución encontrada. Así, se diceque la argumentación puede tener tres diferentes usos: a) Explicar procesos de resolución de situaciones problemáticas b) Justificar, es decir, hacer una exposición de las conclusiones o resultados a los que se haya llegado c) Verificar conjeturas, tomando como base elementos del pensamiento matemático. La capacidad de argumentar se aplica para justificar la validez de los resultados obtenidos. El diálogo colectivo basado en afirmaciones u opiniones argumentadas, así como el análisis de la validez de los procesos de resolución de situaciones problemáticas favorecen el aprendizaje matemático. En la Educación Básica, se procura que los estudiantes:  Hagan progresivamente inferencias que les permita deducir conocimientos a partir de otros, hacer predicciones eficaces en variadas situaciones concretas, formular conjeturas e hipótesis.  Aprendan paulatinamente a utilizar procesos de pensamiento lógico que den sentido y validez a sus afirmaciones, y a seleccionar conceptos, hechos, estrategias y procedimientos coherentes.  Desarrollen la capacidad para detectar afirmaciones y justificaciones erróneas. El razonamiento y la demostración son partes integrantes de la argumentación.
  • 42. 42 Entran en juego al reflexionar sobre las soluciones matemáticas y permiten crear explicaciones que apoyen o refuten soluciones matemáticas a situaciones problemáticas contextualizadas. “Razonar implica reflexionar sobre los mecanismos lógicos e intuitivos que hacen posible conectar diferentes partes de la información. Esto permite llegar a una solución plausible, analizar e integrar la información, para construir o sostener argumentos, justificar y validar la toma de decisiones, para hacer generalizaciones y combinar múltiples elementos de información” Las capacidades matemáticas:  Aparecen y se desarrollan de manera natural sin un orden pre establecido.  Se interrelacionan y complementan.  Se pueden desarrollar de manera simultánea.  Están articuladas por el conocimiento matemático.  Las capacidades facilitan el desarrollo de la competencia. 3.2.2.2. Resolución de problemas A) Definiciones de problema Ruiz (1994); afirman que un problema es cualquier cosa que constituye un obstáculo que nos impide alcanzar nuestras metas. También se entiende un problema como una situación en la que se percibe la existencia de una dificultad, la cual se expresa en un desequilibrio entre el estado real de un hecho o fenómeno y un estado ideal, al que se inspira llegar mediante la superación de los obstáculos que caracterizan la dificultad en cuestión. Pólya (1945) considera que “tener un problema significa buscar conscientemente una acción u operación para obtener una solución, de la que no dispone de forma inmediata, obligándolo a engendrar nuevos conocimientos, modificando (enriqueciéndolo o
  • 43. 43 rechazándolo) los que hasta el momento posean, es una situación que exige el uso del pensamiento y conocimiento matemático para solucionar un problema”. B) ¿Qué contiene un problema? Mayer (1983) sostiene que un problema está constituido por los siguientes elementos. 1. Los datos. Están constituidos por determinada información que está presente en el problema. 2. Los objetivos. Es el estado final o deseado del problema. El pensamiento se encargará de transformar el problema desde el estado inicial hasta estado final. 3. Los obstáculos. Son las dificultades propias de las diferentes operaciones adecuadas. Estos elementos se encuentran presentes en diferentes tipos de problemas, ya sean de geometría. Polya (1957) C) ¿Qué es resolver un problema? Algunos autores señalan que el término "resolver problemas" no debería ser utilizado puesto que hace énfasis "en obtener una solución, y las soluciones no siempre son posibles, y que tal vez, un término más adecuado sea enfrentarse a problemas" Garret (1988). Pero ya sea que se utilice el primero o el segundo de los términos, siempre el camino seguido por el individuo para encontrar la solución del problema y la solución misma constituye una unidad. El proceso de resolver problemas puede ser explicado desde tres pun tos de vista: Según el objetivo que se le asigne a la resolución de los problemas, según los procesos cognitivos involucrados o de acuerdo con las particularidades mismas del proceso de
  • 44. 44 resolución de problemas. Según el objetivo de la resolución, resolver problemas puede ser definido como "un eufemismo para pensar, y los estudiantes necesitan practicar para volverse pensadores efectivos" Pestel (1988), considera de esta forma el ámbito didáctico "como una actividad de aprendizaje, compleja, que incluye el pensar..., y que, además,... puede ser descrita como un proceso creativo, ya que solucionar problemas es pensar creativamente y hallar una solución a un problema, es un acto productivo" Garret (1989). Según los procesos cognitivos y las capacidades cognitivas involucrados, la resolución de problemas incluye "los procesos de conducta y pensamiento dirigidos hacia la ejecución de una tarea intelectualmente exigente" Nickerson (1990). Por esto, "se define como el rango total de procedimientos y actividades cognitivas que realiza el individuo, desde el reconocimiento del problema hasta la solución del mismo siendo la solución del problema el último acto de esta serie de procedimientos cognitivos" Garret (1989); tales como identificar, comparar, clasificar, resumir, representar, relacionar variables y elaborar conclusiones que requieren del uso de las más altas capacidades cognitivas de análisis, síntesis, evaluación y creatividad. 3.2.2.3. La resolución de problemas y el desarrollo de capacidades matemáticas. Un aspecto fundamental que se debe propiciar en el proceso de aprendizaje de la matemática es el desarrollo de capacidades para la resolución de problemas, que implican promover la matematización, representación, comunicación, elaboración de estrategias, utilización del lenguaje matemático y la
  • 45. 45 argumentación, todas ellas necesarias para resolver situaciones problemáticas de la vida cotidiana. 3.2.2.4. ¿Cómo enseñar matemática resolviendo situaciones matemáticas? Como hemos podido ver, el enfoque centrado en la resolución de problemas no sólo permite a los estudiantes adquirir habilidades duraderas de aprendizaje y meta-aprendizaje de la matemática, sino que modifica totalmente el papel del docente. A los docentes nos toca ahora guiar, explorar y respaldar las iniciativas de sus estudiantes, sin dar la clase de manera frontal tipo conferencia. La resolución de situaciones problemáticas es un proceso que ayuda a generar e integrar actividades, tanto en la construcción de conceptos y procedimientos matemáticos como en la aplicación de estos a la vida real. Todo esto redundará, a su vez, en el desarrollo de capacidades y competencias matemáticas. Ministerio de Educación (2014, 14) A. ¿Qué es una situación problemática? Ministerio de Educación (2014, 14), afirma que una situación problemática es una situación de dificultad ante la cual hay que buscar y dar reflexivamente una respuesta coherente, encontrar una solución. Estamos, por ejemplo, frente a una situación problemática cuando no disponemos de estrategias o medios conocidos de solución.
  • 46. 46 B. ¿Qué es resolver una situación problemática? Ubillús (1995) considera que una resolver situación problemática es:  Encontrarle una solución a un problema determinado.  Hallar la manera de superar un obstáculo.  Encontrar una estrategia allí donde no se disponía de estrategia alguna.  Idear la forma de salir de una dificultad. C. Características de las situaciones problemáticas 1. Situaciones problemáticas en contexto real Las situaciones problemáticas a plantear en clases deben surgir de la propia experiencia del estudiante, considerar datos de la vida real planteados por el mismo alumno. Ejemplo: en el corral hay…tipos de animales. Averigua los datos y completa la tabla. ANIMALES NÚMERO DE ANIMALES
  • 47. 47 En total hay… animales en el corral. Aquí hay más…que… 2. Situaciones problemáticas desafiantes Las situaciones problemáticas que se plantean a los estudiantes deben ser desafiantes e incitarles a movilizar toda la voluntad, capacidades y actitudes necesarias para resolverlas. 3. Situaciones problemáticas motivadoras Las situaciones problemáticas que se plantean a los estudiantes deben ser motivadoras, es decir, deben despertar su curiosidad y su deseo de buscar soluciones por sí mismos. 4. Situaciones problemáticas interesantes
  • 48. 48 Las situaciones problemáticas que se planteen a los estudiantes han de ser interesantes para ellos, a fin de comprometerlos en la búsqueda de su solución. 3.2.2.5. Problemas aritméticos de enunciado verbal (PAEV) Ministerio de Educación (2014, 33) son las situaciones que se plantean generalmente a los estudiantes en matemática. Siendo la resolución de problemas la primera actividad con la que se encuentran los niños en su vida escolar, debe ponerse todo el cuidado que merece el primer paso en un campo de actividad como este. Proponemos la siguiente diversidad de problemas, pues el niño debe enfrentarse a muchas situaciones de contexto. Entre los problemas aritméticos de enunciado verbal, se pueden identificar dos clases:  Problemas aditivos (requieren sumar y restar)  Problemas multiplicativos (requieren multiplicar y dividir) 3.2.2.6. Clasificación de los problemas aditivos Vergnaud (1991, 161) propone seis categorías fundamentales: A) Composición Son problemas en los que dos cantidades de elementos de una colección se combinan para hallar una tercera y responden a situaciones como la siguiente. “En una bolsa hay trece chapitas rojas y nueve azules. Entonces tengo veintidós chapitas” Es el problema que plantea la adición por primera vez a los niños, desde la misma construcción del número natural.
  • 49. 49 “De los veinte niños de mi aula, trece son varones. ¿Cuántas mujeres hay? La situación es muy similar a la anterior y no presenta dificultades para entenderla. Sin embargo su solución hace uso de la sustracción. Sin embargo la similitud con el problema anterior permite que la estrategia de solución de la primera se adapte a este segundo problema con una adición que llamamos “con hueco”: 21 +…. = 46 Frases como “no se puede sumar manzanas con plátanos” carecería de sentidos si se pregunta por el total de frutas, con lo que cantidad de manzanas y plátanos, que son campos de medida distinta, pasan a componerse y a “sumarse”. En este otro ejemplo de problemas:  Hay a varones. Hay b mujeres. ¿Cuántas personas hay?  Hay a varones. Hay b personas. ¿Cuántas mujeres hay? La relación entre las proposiciones está dada a través de los sustantivos “varones”, “mujeres” y “personas”, cuyos significados mantienen las relaciones parte – parte – todo, que caracteriza a estos problemas. En el primer caso, las partes constituirán los datos (D) del problema y el todo será la incógnita (I). En el segundo caso, el todo y algunas de las partes constituirán los datos del problema mientras que la otra parte será la incógnita. En este contexto, según la operación de adición o sustracción que se requiera utilizar para resolver el problema de combinación se generan dos posibilidades:
  • 50. 50 PROBLEMAS ESTRUCTURA PARTE PARTE TODO COMBINACIÓN 1 D D I COMBINACIÓN 2 D I D B) Transformación Estos problemas, se produce una modificación en el tiempo, se establecen relaciones lógicas aditivas en una secuencia temporal de sucesos, pasando de un estado inicial a un estado final mediante una transformación. Ejemplo: ei t ef En una caja hay 28 caramelos, Susi comió 13. ¿Cuántos caramelos quedan en la caja? En esta clase de problemas es posible distinguir tres momentos diferentes relacionados con el hecho de como una cantidad inicial es sometida a una acción que la modifica. Las tres cantidades que aparecen en los enunciados de esta clase de problemas reciben los nombres de cantidad inicial, final o de transformación o cambio. La pregunta del problema se hará acerca de la cantidad inicial, final o de la transformación o cambio. Así, dos de las tres cantidades deben estar en la parte informativa del enunciado del problema, es decir serán los datos del problema. A partir de esta estructura se pueden identificar seis subcategorías dependiendo de la naturaleza de la transformación (o del cambio) que aumente t + o que disminuya t – y del dato que se pregunte.
  • 51. 51 INCOGNITA ESTADO FINAL ef INCOGNITA TRANSFORMACIÓN (CAMBIO) t INCOGNITA ESTADO INICIAL ei T+ 1. Patty va a realizar 79 fotocopias, cuando empieza, el contador marca 347. ¿Cuánto marcara el contador cuando termine? 2. José tiene 38 globos, se ha comprado una bolsa de globos y ahora tiene 95. ¿Cuántos globos se ha comprado? 3. En el último censo mi pueblo figura con 3548 habitantes. Si en el último año ha crecido 347. ¿Cuántos habitantes, tenía hacia un año? T- 4. Yo guardaba 47 chapitas en una caja y he regalado 15. ¿Cuántas tengo en mi caja de chapitas? 5. Manuel ha jugado a las bolichas, tenía 27 antes de jugar y ahora tiene 19. ¿Cuántas bolichas perdió? 6. Maricela ha sacado de su cuenta 365 soles para hacer unas compras. Si después le queda 1466 soles en la cuenta. ¿Cuánto tenía antes? En los problemas 1 y 4: Se sigue la secuencia cronológica y se aplica la transformación al estado inicial en ambos casos, aun cuando en el ejemplo 4 la transformación implique una sustracción. La complejidad en los problemas 2 y 5 es mayor que en los anteriores. En estos casos la incógnita está en la transformación misma (o cambio). La dificultad de los problemas 3 y 6 es todavía mayor que en los otros; la resolución implica invertir la transformación y calcular el estado inicial aplicando la transformación al estado final.
  • 52. 52 C) Comparación Son problemas en los que se establece una comparación, en términos aditivos de dos cantidades, por ejemplo: “tengo 17 años y mi hermana tres años menos”. Ella tiene 14 años. Existen seis casos dependiendo del tipo de comparación positiva o negativa y según preguntemos por la cantidad más grande, la más pequeña o por la comparación. En los problemas de comparación a las cantidades “más grande”, “más pequeña” y la comparación, se les denominan cantidades de referencia, cantidad comparada y de diferencia. La cantidad comparada aparece a la izquierda de la expresión “más que” y “menos que” y la cantidad de referencia a su derecha. Puesto que cualquiera de las cantidades puede ser objeto de pregunta y dado que el sentido de la comparación puede establecerse en más o menos; así como se aprecia en el siguiente cuadro: PROBLEMAS TIPO CANTIDAD COMPARACIÓN Referencia Comparada Diferencia Más Menos COMBINACIÓN 1 D D I * COMBINACIÓN 2 D D I * COMBINACIÓN 3 D I D * COMBINACIÓN 4 D I D * COMBINACIÓN 5 I D D * COMBINACIÓN 6 I D D *
  • 53. 53 D) Composición de transformaciones Son problemas en los que dos transformaciones se componen en una tercera resultante de las otras dos. Por ejemplo: Panchito tiene una alcancía con dinero. Esta mañana sacó 18 soles para comprar un libro. Por la tarde su mamá le dio 5 soles y los guardó. Al final dl día saca la cuenta que tiene una diferencia de 3 soles menos en su alcancía. Esta estructura de problema puede generar una variedad de problemas dependiendo de la incógnita, sea de las transformaciones o de la resultante, o del signo de las transformaciones. Otro ejemplo: esta mañana he perdido 8 soles y por la tarde recibí 32 soles. ¿Cuál será el balance del día? E) Transformación sobre estados relativos Se trata de problemas en los que una transformación actúa sobre un estado relativo, para dar lugar a otro estado relativo. “Antonio le debía Panchito 13 canicas. Le dio 6 ahora le debe 7”. También esta categoría nos encontraremos con las seis clases de la categoría II, pero con más casos debido al carácter positivo o negativo de los estados relativos inicial y final. Se llama estado relativo al resultado de una relación, (estado de cuentas entre las canicas de dos niños por ejemplo). Matemáticamente deberían ser representados con un número entero que comportan un signo: positivo o negativo. Pero los enunciados y resoluciones de estos problemas solo pueden ser abordados por números naturales.
  • 54. 54 El contexto marcar el carácter positivo o negativo, de las cantidades que entran en juego, por eso estos problemas pueden ser trabajados por los niños y niñas sin necesidad de manejar explícitamente los números enteros. F) Composición de estados relativos Son problemas con dos estados relativos que se pueden componer, no se transforma uno en otro. “Reimundo le debe 8 bolichas a Manuel, y este 14 a Reimundo. Luego Manuel le debe 6 a Reimundo. Existen dos clases correspondientes a la primera categoría de composición “o combinación” pero con más variantes debido a la distinta naturaleza de los estados “positivos o negativos”. Problemas de igualación Problemas que contienen dos cantidades diferentes, sobre una de las cuales se actúa aumentándola o disminuyéndola hasta hacerla igual a la otra. De estas dos cantidades, una es la cantidad a igualar y la otra es la cantidad referente. Igualación 3 Ana tiene 11 fichas. Si Mariela gana 6 más, tendría tantas como Ana. ¿cuántas Igualación 4 Yarina tiene 9 fichas. Si Félix pierde 4 fichas, tendría tantas como yarina. ¿Cuántas fichas tiene Félix? ? 6 9 4 11 ? Se conoce la cantidad del 1.o y lo que hay que añadir al 2.o para igualarla con la del 1.o. Se pregunta por la cantidad del 2.o. Se conoce la cantidad del 1.o y lo que hay que quitar a la del 2.o para igualarla con la del 1.o Se pregunta por la cantidad del 2.o. Tiene Mariela?
  • 55. 55 3.2.2.7. Procedimientos para la resolución de problemas Método de Georg Polya La resolución de problemas requiere una serie de herramientas y procedimientos, como interpretar, comprender, analizar, explicar, relacionar, entre otros. Se apela a todos ellos desde el inicio de la tarea matemática, es decir, desde la identificación de la situación problemática hasta su solución. Es necesario ayudar a los estudiantes a identificar las fases que se requieren hasta la solución, generar un ambiente de confianza y participación en clase, y hacer una evaluación sistemática de sus esfuerzos. No perder de vista que lo principal no es llegar a la “solución correcta”, sino posibilitar el desarrollo de sus propias capacidades matemáticas para resolver problemas. Las fases que se pueden distinguir para resolver un problema son: 1. Comprender el problema. 2. Diseñar y adaptar una estrategia. 3. Ejecutar la estrategia. 4. Reflexionar sobre el proceso. FASE 1. Comprender el problema. Esta fase está enfocada en la comprensión de la situación planteada. El estudiante debe leer atentamente el problema y ser capaz de expresarlo en sus propias palabras (así utilice un lenguaje poco convencional). Una buena estrategia es hacer que explique a otro compañero de qué trata el problema y qué se está solicitando. O que lo explique sin mencionar números.
  • 56. 56 El docente debe indicar al estudiante que lea el problema con tranquilidad, sin presiones ni apresuramientos; que juegue con la situación; que ponga ejemplos concretos de cada una de las relaciones que presenta, y que pierda el miedo inicial. También debe tener presente la necesidad de que el alumno llegue a una comprensión profunda (inferencial) de la situación y de lo inútil que para la comprensión resulta repetir el problema, copiarlo o tratar de memorizarlo. En esta fase el docente puede realizar preguntas que ayuden al estudiante a: • Identificar las condiciones del problema, si las tuviera. • Reconocer qué es lo que se pide encontrar. • Identificar qué información necesita para resolver el problema y si hay información innecesaria. • Comprender qué relación hay entre los datos y lo que se pide encontrar. Fase 2: Diseñar o adaptar una estrategia de solución. En esta fase el estudiante comienza a explorar qué caminos puede seguir para resolver el problema. Diseñar una estrategia de solución es pensar en qué razonamientos, cálculos, construcciones o métodos le pueden ayudar para hallar la solución del problema. Dependiendo de la estructura del problema y del estilo de aprendizaje de los estudiantes, podrán elegir la estrategia más conveniente. Los estudiantes decidirán libremente que estrategias para resolver el problema.
  • 57. 57 El docente no debe decirle a los niños y niñas lo que tienen que hacer para resolver el problema, sino propiciar que exploren varias posibilidadesantes de que elijan su estrategia. Esta es una de las fases más importantes en el proceso de resolución, en la que el estudiante activa sus saberes previos y los relaciona con los elementos del problema para diseñar una estrategia que lo lleve a resolver con éxito el problema. Contar con un buen conjunto de estrategias potencia los conocimientos con los que cuenta el estudiante, por ello debemos asegurarnos de que identifique por lo menos una estrategia de solución. Fase 3: Ejecutar la estrategia Dentro de un clima de tranquilidad, los estudiantes aplicarán las estrategias o las operaciones aritméticas que decidieron utilizar. En esta fase el docente debe asegurar que el estudiante:  Lleve a cabo las mejores ideas que se le han ocurrido en la fase anterior. Dé su respuesta en una oración completa y no descontextualizada de la situación. Use las unidades correctas (metros, nuevos soles, manzanas, etc.) Revise y reflexione si su estrategia es adecuada y si tiene lógica. Actúe con flexibilidad para cambiar de estrategia cuando sea necesaria y sin rendirse fácilmente. El docente estará pendiente del proceso de resolución del problema que siguen los estudiantes y orientará, sobre todo, a quienes lo necesiten.
  • 58. 58 Es posible que, al aplicar la estrategia, se dé cuenta de que no es la más adecuada, por lo que tendrá que regresar a la fase anterior y diseñar o adaptar una nueva. Fase 4: Reflexionar sobre lo realizado Esta etapa es muy importante, pues permite a los estudiantes reflexionar sobre el trabajo realizado y acerca de todo lo que han venido pensando. El docente debe propiciar que el estudiante: • analice el camino o la estrategia que ha seguido. • Explique cómo ha llegado a la respuesta. • intente resolver el problema de otros modos y reflexione sobre qué estrategias le resultaron más sencillas. • Formule nuevas preguntas a partir de la situación planteada. • Pidaa otros niños que le expliquen cómo lo resolvieron. • cambie la información de la pregunta o que la modifique completamente para ver si la forma de resolver el problema cambia. 3.2.2.8. Estrategias para la resolución de problemas A) Estrategias para la resolución de problemas Ministerio de Educación (2014, 29), nos da a conocer las siguientes estrategias: 1. Hacer la simulación Consiste en representar el problema de forma vivencial mediante una dramatización o con material concreto y de esa manera hallar la solución.
  • 59. 59 2. Organizar la información Mediante diagramas, gráficos, esquemas, tablas, figuras, croquis, para visualizar la situación. En estos diagramas, se deben incorporar los datos relevantes y eliminar la información innecesaria. De esta forma el estudiante podrá visualizar las relaciones entre los elementos que intervienen en un problema. 3. Buscar problemas relacionados o parecidos Que haya resuelto antes. El niño puede buscar semejanzas con otros problemas, casos, juegos, etc., que ya haya resuelto anteriormente. Se pueden realizar preguntas como: “¿a qué nos recuerda este problema?” o “¿Es como aquella otra situación?” 4. Buscar patrones Consiste en encontrar regularidades en los datos del problema y usarlas en la solución de problemas. 5. Ensayo error Consiste en seleccionar algunos valores y probar si alguno puede ser la solución del problema. Si se comprueba que un valor cumple con todas las condiciones del problema, se habrá hallado la solución; de otra forma, se continúa con el proceso. 6. Usar analogías
  • 60. 60 Implica comparar o relacionar los datos o elementos de un problema, generando razonamientos para encontrar la solución por semejanzas. 7. Empezar por el final Esta estrategia se puede aplicar en la resolución de problemas en los que conocemos el resultado final del cual se partirá para hallar el valor inicial. 8. Plantear directamente una operación Esta estrategia se puede aplicar en la resolución de problemas cuya estructura aritmética sea clara o de fácil comprensión para el estudiante. 3.2.2.9. Ejemplo aplicando los 4 pasos de resolución de problemas según Polya.
  • 61. 61 PROBLEMA: Jesús inicio el juego con 16 canicas. Durante el juego ganó algunas canicas. Ahora tienes 28 canicas en total. ¿Cuántas canicas ganó durante el juego? PASOS PARA LA RESOLVER POBLEMAS COMPRENDER EL PROBLEMA  Leer el problema varias cuantas veces sean necesarias para comprender el problema, tratando de identificar los datos y la incógnita.  Subrayar con colores los datos y encerrar con una línea la incógnita.  Se deben responder las siguientes interrogantes: ¿De qué trata el problema? ¿Cuáles son los datos? ¿Qué es lo que nos piden? DISEÑAR UN PLAN  Se deben responder a las siguientes interrogantes: ¿Qué haríamos para llegar a la respuesta? ¿Si hemos resuelto algún problema parecido? ¿Qué deberíamos hacer primero?  Se piensa en diferentes estrategias para resolver el problema, si es posible se utiliza materiales (estructurado y no estructurado) APLICACIÓN DE LA ESTRATEGIA  Ejecutamos la estrategia elegida.  Lo representamos en forma gráfica lo trabajado con el material.  Usamos piedritas:  Hacemos la operación siguiente: 28 – 16 = 28 REFLEXIÓN SOBRE LO REALIZADO  Se explica la estrategia que hemos realizado para resolver el problema.  Se da una mirada hacia atrás, y se verifica que si el trabajo realizado es correcto, y si no se debe reformular la estrategia.
  • 62. 62 3.2.2.10. La resolución de problemas como práctica pedagógica en la escuela Asumimos el enfoque centrado en resolución de problemas o enfoque problémico como marco pedagógico para el desarrollo de las competencias y capacidades matemáticas, por dos razones: La resolución de situaciones problemáticas es la actividad central de la matemática, es el medio principal para establecer relaciones de funcionalidad matemática con la realidad cotidiana. Este enfoque supone cambios pedagógicos y metodológicos muy significativos, pero sobre todo rompe con la tradicional manera de entender cómo es que se aprende la matemática. Este enfoque surge de constatar que todo lo que aprendemos no se integra del mismo modo en nuestro conocimiento matemático. Ejemplo: Una fórmula matemática o la enunciación de una propiedad matemática, pueden adquirirse de forma superficial mediante un proceso de memorización simple. Esto posibilitará su reproducción de forma más o menos literal, pero no su utilización para la resolución de situaciones problemáticas. Es posible disponer de muchos aprendizajes matemáticos que no sólo seamos capaces de reproducir, sino de utilizar para dar respuesta a situaciones problemáticas reales.
  • 63. 63 3.2.2.11. Enfoque centrado en la resolución de problemas A) Importancia del enfoque centrado en la resolución de problemas. Este enfoque consiste en promover formas de enseñanza- aprendizaje que den respuesta a situaciones problemáticas cercanas a la vida real. Para eso recurre a tareas y actividades matemáticas de progresiva dificultad, que plantean demandas cognitivas crecientes a los estudiantes, con pertinencia a sus diferencias socio culturales. El enfoque pone énfasis en un saber actuar pertinente ante una situación problemática, presentada en un contexto particular preciso, que moviliza una serie de recursos o saberes, a través de actividades que satisfagan determinados criterios de calidad. Permite distinguir: 1. Las características superficiales y profundas de una situación problemática. Está demostrado que el estudiante novato responde a las características superficiales del problema (como es el caso de las palabras clave dentro de su enunciado), mientras que el experto se guía por las características profundas del problema (fundamentalmente la estructura de sus elementos y relaciones, lo que implica la construcción de una representación interna, de interpretación, comprensión, matematización, correspondientes, etc.). 2. Relaciona la resolución de situaciones problemáticas con el desarrollo de capacidades matemáticas. Aprender a resolver problemas no solo supone dominar una técnica matemática, sino también procedimientos estratégicos y de control poderoso para desarrollar capacidades, como: la matematización, representación, comunicación, elaboración de estrategias, utilización de
  • 64. 64 expresiones simbólicas, argumentación, entre otras. La resolución de situaciones problemáticas implica entonces una acción que, para ser eficaz, moviliza una serie de recursos, diversos esquemas de actuación que integran al mismo tiempo conocimientos, procedimientos matemáticos y actitudes. 3. Busca que los estudiantes valoren y aprecien el conocimiento matemático. Por eso propicia que descubran cuán significativo y funcional puede ser ante una situación problemática precisa de la realidad. Así pueden descubrir que la matemática es un instrumento necesario para la vida, que aporta herramientas para resolver problemas con mayor eficacia y que permite, por lo tanto, encontrar respuestas a sus preguntas, acceder al conocimiento científico, interpretar y transformar el entorno. También aporta al ejercicio de una ciudadanía plena, pues refuerza su capacidad de argumentar, deliberar y participar en la institución educativa y la comunidad. 3.2.2.12. Características y ventajas del método de la resolución de problemas a) Características  Constituye una experiencia que exista en la mente y puede ser resuelto de una sola clase.  La resolución de problemas se complementa así mismo aunque la materia o disciplina sea de cualquier área del saber.  Se basa en una situación hipotética, es efectivo, aunque lo invite a la solución.
  • 65. 65 b) Ventajas  Se resuelve los problemas con inteligencia y reflexión.  Crea la capacidad de discernimiento, reflexivo descubrimiento, clasificación y critica.  Estimula la mente del niño(a).  Activa la cooperación y socialización.  Coloca al niño(a) en contacto con la vida real.  Sirve para agrupar los hechos.  Desarrollar la autoconfianza del niño(a).  Fomenta la capacidad de aplicación de los conocimientos.  Señala el objetivo y punto a donde el niño(a) debe dirigirse.  Hace que el niño(a) se sienta responsable de su labor.  Desarrollar la memoria lógica del niño(a).  Sistematizar los hechos inductivos y deductivos.  Da inicio a que el niño(a), se interese por la investigación.
  • 67. 67 4.1. Plan de acción HIPOTESIS DE ACCCIÓN ACCIÓNES GENERALES ACTIVIDADES ESPECIFICAS INDICADORES FUENTES DE VERIFICACIÓN CRONOGRAMA M A M J J A S O N La aplicación de estrategias de resolución de problemas aditivos y multiplicativos con números naturales permitirá desarrollar las capacidades matemáticas, en los niños y niñas del V ciclo de Educación Básica Regular de la Institución Educativa N°16451 Mandinga, del distrito y provincia de San Ignacio en el año 2015. 1. PLANIFICACIÓN  Planificación curricular de largo, mediano y corto plazo.  Revisión de las Rutas del Aprendizaje y Diseño Curricular Nacional para elaborar la Programación Curricular Anual (PCA) articulando práctica e investigación.  Elaboración del instrumento de evaluación inicio, proceso, salida.  Elaboración del (PCA) Programación Curricular Anual articulando el (PEI) Proyecto Educativo Institucional.  Elabora la prueba escrita para diagnosticar los niveles de resolución de problemas.  (PCA) Programación Curricular Anual.  Cartel de capacidades, conocimientos y actitudes.  Prueba escrita X x x
  • 68. 68 2. EJECUCIÓN Ejecución de actividades para desarrollar capacidades matemáticas en la resolución de problemas aditivos y multiplicativos con números naturales.  Aplicación de la prueba escrita para identificar la capacidad como los niños resuelven problemas.  Determinar los niveles para identificar la resolución de problemas.  Sistematización de los resultados de la prueba escrita. X X X X 3. EVALUACIÓN Evaluación de las actividades de aprendizaje teniendo los logros de las capacidades, conocimientos, actitudes; relacionados con  Evaluación de la resolución de los problemas aditivos con números naturales para verificar el desarrollo de las capacidades matemáticas en  Prueba de salida.  Cuadros estadísticos.  Prueba escrita X x x
  • 69. 69 la resolución de problemas. las actividades de aprendizaje.
  • 71. 71 1. DATOS INFORMATIVOS 1.1. Nombre: “Resolvamos Problemas Aditivos y Multiplicativos con Números Naturales” 1.2. Autores:  Rodríguez García, Odalis Candelaria.  Suarez Núñez, Edinson. 1.3. Beneficiarios Niños y niñas del V ciclo de la Institución educativa N° 16451 Mandinga del distrito y provincia de San Ignacio del año 2015. 1.4. Duración: 9 meses 2. FUNDAMENTACIÓN El proceso de formación inicial de los docentes en nuestra Institución de Educación Superior “Rafael Hoyos Rubio” de acuerdo a la demanda laboral y de contexto educativo actual, provincial y nacional, es necesario desarrollar sus capacidades de docentes competentes, con una actitud positiva para la investigación acción permanente en el contexto educativo de aulas especialmente unidocentes y multigrado donde en el futuro desarrollaran sus acciones educativas profesionales. Por lo tanto, de acuerdo a la visión y misión de nuestra Institución de formación Superior Docente, mediante el presente plan de trabajo de investigación, se propone brindar un espacio de oportunidades para desarrollar una importante investigación que tiene como propósito aportar conocimiento científico relaciona con la aplicación de estrategias de resolución de problemas aditivos y multiplicativos con números naturales en el desarrollo del área de matemática. 3. OBJETIVOS DEL PROGRAMA 3.1.1. Objetivo general Aplicar el programa propuesto “Resolvamos Problemas Aditivos y Multiplicativos con Números Naturales” para lograr que los niños y niñas del V ciclo de Educación Primaria de la Institución educativa N°16451
  • 72. 72 Mandinga desarrollen capacidades matemáticas a partir de la aplicación de estrategias de resolución de problemas aditivos y multiplicativos con números naturales. 3.1.2. Objetivos específicos a. Elaborar la programación curricular anual y unidades de aprendizaje considerando las capacidades e indicadores de la resolución de problemas. b. Planificar, ejecutar y evaluar las actividades de aprendizaje utilizando estrategias de resolución de problemas. c. Sistematizar la información de los resultados de la aplicación del programa “Resolvemos problemas aditivos y multiplicativos con números naturales”. 4. DESCRIPCIÓN DEL PROGRAMA Nuestro programa ha sido elaborado para contribuir el desarrollo de las capacidades matemáticas mediante la aplicación de estrategias de resolución de problemas aditivos multiplicativos con números naturales en el área de matemática en la Institución Educativa N°16451 del caserío Mandinga lo cual se desarrollará con actividades de aprendizaje en el V ciclo de Educación Primaria. 5. DISEÑO DEL PROGRAMA El programa trata de conocer las capacidades matemáticas actuales desde la propuesta del Ministerio de Educación a través de las Rutas de Aprendizaje y en el marco de los nuevos enfoques educativos.
  • 73. 73 DURANTEANTES DESPUES  Docentes que desconocen estrategias metodológicas innovadoras en la resolución de problemas aditivos y multiplicativos con números naturales.  Limitada capacitación docente en el tratamiento curricular de las capacidades del área de matemática según las rutas de aprendizaje.  Dificultad de socialización entre varones y mujeres al desarrollar trabajos en equipo con las capacidades matemáticas.  Desarrollar las actividades de aprendizaje considerando las estrategias de resolución de problemas aditivos y multiplicativos con números naturales para desarrollar las capacidades matemáticas.  Docentes se empoderan de la utilización de estrategias de resolución de problemas aditivos y multiplicativos para desarrollar las capacidades matemáticas.  Niños y niñas desarrollan capacidades matemáticas a partir de la resolución de problemas aditivos y multiplicativos con números naturales trabajando en grupo.  Docentes conocen estrategias metodológicas innovadoras en la resolución de problemas aditivos y multiplicativos con números naturales.  Docente de aula mejoran su práctica pedagogía en el desarrollo de capacidades matemáticas.  Facilidad de socialización entre varones y mujeres al desarrollar trabajos en equipo con las capacidades matemáticas.
  • 74. 74 6. ESTRATEGIAS METODOLÓGICAS Utilizamos las actividades de aprendizaje del programa, para obtener buenos resultados académicos en los niños y niñas del V ciclo de Educación Primaria de la Institución Educativa N°16451, del caserío Mandinga, distrito y provincia de San Ignacio en el año 2015. 6.1.1. Actividades de aprendizaje y cronograma N° NOMBRE DE LAACTIVIDADES DE APRENDIZAJE FECHA 1° Resolvemos problemas de sustracción y adición con números naturales en cuatro pasos. 18 - 03 -15 2° Prueba diagnostica 25 - 03 - 15 3° Resolvemos problemas de comparación: 1, 2, 3 y 4. 30 - 03 - 15 4° Resolvemos problemas de igualación 01 - 04 - 15 5° Resolvemos problemas de proporcionalidad simple o razón: reparto equitativo y combinación. 18 - 05 - 15 / 20 - 05 - 15 6 Resolvemos problemas de combinación O1 - 06 - 15 7° Resolvemos problemas de cambio 08 - 06 - 15 8° Estrategias para resolver problemas aditivos y multiplicativos. 29 - 06 - 15 / 01 - 07 - 15 9° Problemas que implican el múltiplo y divisores de números naturales 13 - 07 - 15 10° Estrategias para resolver problemas aditivos y multiplicativos relacionados a la potencia cuadrada y cúbica. 20 - 07 - 15 / 22 - 07 - 15 11° Problemas que implican el múltiplo y divisores de números naturales. 03 - 08 - 15 12° Resolvemos adiciones y sustracciones. 17 - 08 -15 13° Resolvemos problemas de proporcionalidad simple repetición de una medida. 24 - 08 - 15 / 26 – 08 - 15 14° Resolvemos problemas de adicción y sustracción con números naturales hasta seis cifras en situaciones de la vida diaria. 31 – 08 - 15 15° Resolvemos problemas de adicción y sustracción con números naturales mayores de seis cifras en situaciones de la vida diaria. 07 – 09 - 15 16° Resolvemos problemas con referentes temporales: minutos y segundos. 14 – 09 - 15 16° Resolvemos problemas con referentes temporales: años, décadas y siglos. 21 – 09 -15 / 23 – 09 - 15
  • 75. 75 7. PRESUPUESTO El presupuesto y los gastos serán solventados por el equipo de investigación. 8. EVALUACIÓN Evaluar, verificación y constatación de todas las actividades previstas con sus respectivos instrumentos.
  • 76. 76 CAPÍTULO VI EVALUACIÓN 6.1. Indicadores de proceso y fuentes de verificación 6.1.1. Hipótesis de acción. La aplicación de estrategias de resolución de problemas aditivos y multiplicativos con números naturales permitirá desarrollar las
  • 77. 77 capacidades matemáticas, en los niños y niñas del V ciclo de Educación Básica Regular de la Institución Educativa N°16451 Mandinga, del distrito y provincia de San Ignacio en el año 2015. - Acción N° 01  Revisión de las Rutas del Aprendizaje y Diseño Curricular Nacional. - Indicadores de proceso  Elaboración de la Planificación curricular anual. - Fuentes de verificación  Programación curricular anual. - Acción N° 02  Planificación de actividades de aprendizaje - Indicadores de proceso  Actividades de aprendizaje - Fuentes de verificación  Diario de clases. - Acción N° 03  Aplicación de pruebas de entrada para diagnosticar el desarrollo de capacidades matemáticas relacionada con la resolución de problemas aditivos y multiplicativos con números naturales. - Indicadores de proceso  Pruebas de diagnostico - Fuentes de verificación  Pruebas de diagnóstico en los diarios de clases. - Acción N° 04
  • 78. 78  Ejecución de las actividades de aprendizaje teniendo en cuenta las capacidades matemáticas en la resolución de problemas aditivos y multiplicativos con números naturales. - Indicadores de proceso  Actividades de aprendizaje. - Fuentes de verificación  Diario de clases. - Acción N° 05  Aplicación de instrumentos de proceso para evaluar el desarrollo de las capacidadesmatemáticas en la resolución de problemas aditivos y multiplicativos con números naturales. - Indicadores de proceso  Pruebas de proceso. - Fuentes de verificación  Pruebas de proceso en diarios de clase. - Acción N° 06  Aplicación de pruebas de salida para verificar el logro de las capacidades matemáticas relacionada con la resolución de problemas aditivos y multiplicativos con números naturales. - Indicadores de proceso  Pruebas de salida. - Fuentes de verificación  Pruebas de salida en los diarios de clases. 6.2. Indicadores de proceso y fuentes de verificación 6.2.1. Hipótesis de acción
  • 79. 79 La aplicación de estrategias de resolución de problemas aditivos y multiplicativos con números naturales permitirá desarrollar las capacidades matemáticas, en los niños y niñas del V ciclo de Educación Básica Regular de la Institución Educativa N°16451 Mandinga, del distrito y provincia de San Ignacio en el año 2015. - Resultado esperado N°01  Evaluación de la resolución de problemas aditivos y multiplicativos con números naturales en las actividades de aprendizaje para verificar el desarrollo de las capacidades matemáticas. - Indicadores de resultado  Aplicación de prueba de salida para determinar el desarrollo de las capacidades matemáticas. - Fuentes de verificación  Prueba de salida.  Tablas y gráficos estadísticos de inicio, proceso y salida con el respectivo análisis e interpretación.
  • 80. 80 CAPÍTULO VII PRESUPUESTO Y FINANCIAMIENTO 7.1. Presupuesto 7.1.1. Bienes
  • 81. 81 7.1.2. Servicios Total bienes S/. 230.00 Total Servicios S/. 750.00 Total general S/. 980.00 DESCRIPCIÓN DEL BIEN UNIDAD DE MEDIDA COSTO UNITARIO COSTO TOTAL 2 paquetes de papel bond A4 Papel sábana Cinta masketing Fotocopias 2 cajas de plumones Cartulinas Millar Ciento Unidad Unidad Docena unidad 12.50 25.00 2.00 0.10 3.00 0.50 25.00 25.00 20.00 150.00 72.00 15.00 TOTAL 307.00 DESCRIPCIÓN DEL SERVICIO COSTO UNITARIO COSTO TOTAL Asesor Digitador Colaborador Movilidad Otros 300.00 50.00 200.00 6.00 200.00 300.00 50.00 200.00 576.00 200.00 TOTAL 1326.00
  • 82. 82 7.2. Financiamiento Los gastos que originen la ejecución del presente proyecto de investigación serán solventados por el investigador. BIBLIOGRAFÍA  Autores varios (1996.) “la resolución de problemas”. Revista UNO (revista didáctica de las matemáticas N° 8). Barcelona.