SlideShare una empresa de Scribd logo
1 de 11
República bolivariana de Venezuela
            Ministerio del poder popular para la defensa
Universidad nacional experimental politécnica de las fuerzas armadas
                              UNEFA




                                                                       Integrantes :
                                                                       Jairo Abreu
                                                                       Jennifer luckert
                                                                       Dairimar Pérez
                                                                       Dennys Gómez

                                                                       Sección : 1T2IS

                     Barquisimeto,
                     Julio2012
Rectas en R3

Sea P0(x0,y0,z 0) un punto
que pertenece a la recta L, con
vector director d diferente del
vector cero dado por (a,b, c).
Se define a L como el conjunto
de puntos P(x ,y ,z ) tales que la
dirección del vector P0P es
paralela a d.
Ecuaciones


encontrar la ecuación de una recta dados
dos puntos de la recta o un punto y la
pendiente de la recta En el plano R2
podemos. En R3, las ideas básicas son las
mismas, así que podemos hallar la
ecuación de la recta si conocemos dos
puntos de ella o un vector paralelo a la
recta. Denotamos Po como un punto de la
recta (xo,yo,zo), v como el vector dirección
(a,b,c), y t como un numero real
cualquiera, podemos obtener las dos
ecuaciones de la recta.

 P    tv       P0
( x, y , z )    t (a, b, c) ( x0 , y0 , z0 )
                                           x   ta   x0
 Ecuaciones param etric
                      as                   y   tb   y0
                                           z   tc   z0



Con estas ecuaciones podemos obtener n puntos de la recta. Si despejamos la t en las tres
ecuaciones e igualamos, obtenemos:




                                                         x x0    y y0            z z0
Ecuacionessim etricas
                                                          a       b               c
Ejemplos:
Hallar las ecuaciones parametricas y simétricas de la recta que tiene por vector dirección
v=(1,-2,3) y pasa por el punto (1,1,1).




                                                                     y
   v ( 1, 2 ,3 )
   P0 ( 1,1,1 )
                                                                          L

                          x     ta x0      x    t 1
   Ec. param etric
                 as       y     tb y0     y     2t 1
                                                                                        x
                          z     tc z0      z   3t 1
                      x 1        y 1    z 1             z
   Ec. sim etricas
                       1           2     3                        v

   Si t 1 P ( 2 , 1,4 )       Si t   1 P ( 0 ,3 , 2 )
Angulo entre una recta y un plano




Se define el ángulo que forman dos rectas como el ángulo que
determinan sus vectores directores.

Sea N un vector en R 3 diferente de cero . Sea T un punto en R3 .

Se dice que el conjunto de puntos X generan un plano que contiene al
punto T, si cumplen que :
                                    __ __
                                   (0X - 0T) . N = 0

Si se denota por π el plano que contiene a
T y los puntos X En R3 que satisfacen (∗), entonces se dice que N es el
vector normal de π.
Números directores de la intersección de dos planos



     Para determinar un plano se necesitan un punto Po(xo ,yo ,zo) y un vector
     normal al plano. La ecuación del plano viene entonces dada por la
     relación: A(x - xo) + B(y - yo) + C(z - zo) = 0 ⇒ A.x + B.y + C.z + D = 0
     (1)Donde D = -A.xo - B.yo - C.zo

     Se pueden considerar varios casos particulares según que uno o dos de
     los coeficientes de la ecuación (1) sean nulos.

     1) Plano paralelo al eje OX. Se tiene A = 0 y la ecuación toma la forma:



      B.y + C.z + D = 0

       Siendo el vector director normal al plano de la forma:
2) Plano paralelo al eje OY.
Se tiene B = 0 y la ecuación general toma la forma: A.x + C.z + D = 0
Siendo el vector director normal al plano de la forma:




3) Plano paralelo al eje OZ. Se tiene C = 0 y la ecuación general
toma la forma : A.x + B.y + D = 0
 Siendo el vector director normal al plano de la forma:




  4) Plano que pasa por el origen. Se tiene D = 0 y la
  ecuación general toma la forma:
             A.x + B.y + C.z = 0
5)Plano perpendicular al eje OZ. Se tiene en este caso A = 0, B =
0 y la ecuación general toma la forma: C.z + D = 0 ; z = Cte.
Esta ecuación puede considerarse también como la correspondiente a
un plano paralelo al plano XOY


 6)Plano perpendicular al eje OY o, lo que es igual, paralelo al plano
 XOZ. Se tiene en este caso A = 0, C = 0 y la ecuación general toma la
 forma: B.y + D = 0 ; y = Cte.



 7) Plano perpendicular al eje OX o, lo que es igual, paralelo al plano
 YOZ. Se tiene en este caso B = 0, C = 0 y la ecuación general toma la
 forma: A.x + D = 0 ; x = Cte.
Rectas en r3

Más contenido relacionado

La actualidad más candente

Presentacion transformacion de coordenadas, parabola y elipse
Presentacion transformacion de coordenadas, parabola y elipsePresentacion transformacion de coordenadas, parabola y elipse
Presentacion transformacion de coordenadas, parabola y elipse
sixtoalcivarc
 
La ecuación canónica
La ecuación  canónica La ecuación  canónica
La ecuación canónica
Juan Vega
 
Capitulo ii. grafica de una ecuacion y lugares geometricos parte iii
Capitulo ii. grafica de una ecuacion y lugares geometricos parte iiiCapitulo ii. grafica de una ecuacion y lugares geometricos parte iii
Capitulo ii. grafica de una ecuacion y lugares geometricos parte iii
Willi Tinal
 
Problemario de cónicas
Problemario de cónicasProblemario de cónicas
Problemario de cónicas
Paty Jaime
 

La actualidad más candente (17)

Transformacion de coordenadas(geometría)
Transformacion de coordenadas(geometría)Transformacion de coordenadas(geometría)
Transformacion de coordenadas(geometría)
 
Unidad parabola shared
Unidad parabola sharedUnidad parabola shared
Unidad parabola shared
 
Republica bolivarianade venezuela
Republica  bolivarianade venezuelaRepublica  bolivarianade venezuela
Republica bolivarianade venezuela
 
Presentacion transformacion de coordenadas, parabola y elipse
Presentacion transformacion de coordenadas, parabola y elipsePresentacion transformacion de coordenadas, parabola y elipse
Presentacion transformacion de coordenadas, parabola y elipse
 
Geometria analitica-
 Geometria analitica- Geometria analitica-
Geometria analitica-
 
La ecuación canónica
La ecuación  canónica La ecuación  canónica
La ecuación canónica
 
Geometria analitica
Geometria analiticaGeometria analitica
Geometria analitica
 
Capitulo ii. grafica de una ecuacion y lugares geometricos parte iii
Capitulo ii. grafica de una ecuacion y lugares geometricos parte iiiCapitulo ii. grafica de una ecuacion y lugares geometricos parte iii
Capitulo ii. grafica de una ecuacion y lugares geometricos parte iii
 
Parábola
ParábolaParábola
Parábola
 
Problemario de cónicas
Problemario de cónicasProblemario de cónicas
Problemario de cónicas
 
Matematicas 3 unidad 5
Matematicas 3 unidad 5Matematicas 3 unidad 5
Matematicas 3 unidad 5
 
lugares geometricos
lugares geometricoslugares geometricos
lugares geometricos
 
rectas y planos en R3
rectas y planos en R3rectas y planos en R3
rectas y planos en R3
 
Ecuación de la parábola
Ecuación de la parábola Ecuación de la parábola
Ecuación de la parábola
 
PARÁBOLA
PARÁBOLAPARÁBOLA
PARÁBOLA
 
Geometría Analítica
Geometría AnalíticaGeometría Analítica
Geometría Analítica
 
La recta
La rectaLa recta
La recta
 

Similar a Rectas en r3 (20)

recta en r3
recta en r3recta en r3
recta en r3
 
Presentación2
Presentación2Presentación2
Presentación2
 
Geometria
GeometriaGeometria
Geometria
 
Espacio afin rectas planos
Espacio afin  rectas planosEspacio afin  rectas planos
Espacio afin rectas planos
 
Rectas en el plan outp
Rectas en el plan outpRectas en el plan outp
Rectas en el plan outp
 
Rectas en el plano UTP
Rectas en el plano UTPRectas en el plano UTP
Rectas en el plano UTP
 
Rectas en el plano UTP
Rectas en el plano UTPRectas en el plano UTP
Rectas en el plano UTP
 
Rectas en el plano UTP
Rectas en el plano UTPRectas en el plano UTP
Rectas en el plano UTP
 
rectas y planos-21-B- 09-11-21.ppt
rectas y planos-21-B- 09-11-21.pptrectas y planos-21-B- 09-11-21.ppt
rectas y planos-21-B- 09-11-21.ppt
 
Vectores en el espacio
Vectores en el espacioVectores en el espacio
Vectores en el espacio
 
Gcmat3
Gcmat3Gcmat3
Gcmat3
 
Brenda matematica+
Brenda  matematica+Brenda  matematica+
Brenda matematica+
 
Algebra vectorial
Algebra vectorialAlgebra vectorial
Algebra vectorial
 
Geometria analitica
Geometria analiticaGeometria analitica
Geometria analitica
 
La recta2013
La recta2013La recta2013
La recta2013
 
Geometria analitica[1]
Geometria analitica[1]Geometria analitica[1]
Geometria analitica[1]
 
Ecuaciones parametricas
Ecuaciones parametricasEcuaciones parametricas
Ecuaciones parametricas
 
PRE CALCULO N°13 ESAN
PRE CALCULO N°13 ESANPRE CALCULO N°13 ESAN
PRE CALCULO N°13 ESAN
 
Geometria
GeometriaGeometria
Geometria
 
Plano numerico de joan cortez. unidad 2
Plano numerico de joan cortez. unidad 2Plano numerico de joan cortez. unidad 2
Plano numerico de joan cortez. unidad 2
 

Último

Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
JonathanCovena1
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Francisco158360
 
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
MiNeyi1
 
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
MiNeyi1
 
Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdf
patriciaines1993
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdf
NancyLoaa
 
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
RigoTito
 

Último (20)

Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonables
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes d
 
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
SESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.docSESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.doc
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
 
Abril 2024 - Maestra Jardinera Ediba.pdf
Abril 2024 -  Maestra Jardinera Ediba.pdfAbril 2024 -  Maestra Jardinera Ediba.pdf
Abril 2024 - Maestra Jardinera Ediba.pdf
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
 
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
 
Supuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docxSupuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docx
 
Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024
 
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
 
Unidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la InvestigaciónUnidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la Investigación
 
Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdf
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
 
Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdf
 
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática5    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática5    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
 
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
 
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptPINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
 

Rectas en r3

  • 1. República bolivariana de Venezuela Ministerio del poder popular para la defensa Universidad nacional experimental politécnica de las fuerzas armadas UNEFA Integrantes : Jairo Abreu Jennifer luckert Dairimar Pérez Dennys Gómez Sección : 1T2IS Barquisimeto, Julio2012
  • 2. Rectas en R3 Sea P0(x0,y0,z 0) un punto que pertenece a la recta L, con vector director d diferente del vector cero dado por (a,b, c). Se define a L como el conjunto de puntos P(x ,y ,z ) tales que la dirección del vector P0P es paralela a d.
  • 3. Ecuaciones encontrar la ecuación de una recta dados dos puntos de la recta o un punto y la pendiente de la recta En el plano R2 podemos. En R3, las ideas básicas son las mismas, así que podemos hallar la ecuación de la recta si conocemos dos puntos de ella o un vector paralelo a la recta. Denotamos Po como un punto de la recta (xo,yo,zo), v como el vector dirección (a,b,c), y t como un numero real cualquiera, podemos obtener las dos ecuaciones de la recta.
  • 4.  P tv P0 ( x, y , z ) t (a, b, c) ( x0 , y0 , z0 ) x ta x0 Ecuaciones param etric as y tb y0 z tc z0 Con estas ecuaciones podemos obtener n puntos de la recta. Si despejamos la t en las tres ecuaciones e igualamos, obtenemos: x x0 y y0 z z0 Ecuacionessim etricas a b c
  • 5. Ejemplos: Hallar las ecuaciones parametricas y simétricas de la recta que tiene por vector dirección v=(1,-2,3) y pasa por el punto (1,1,1).  y v ( 1, 2 ,3 ) P0 ( 1,1,1 ) L x ta x0 x t 1 Ec. param etric as y tb y0 y 2t 1 x z tc z0 z 3t 1 x 1 y 1 z 1 z Ec. sim etricas 1 2 3 v Si t 1 P ( 2 , 1,4 ) Si t 1 P ( 0 ,3 , 2 )
  • 6. Angulo entre una recta y un plano Se define el ángulo que forman dos rectas como el ángulo que determinan sus vectores directores. Sea N un vector en R 3 diferente de cero . Sea T un punto en R3 . Se dice que el conjunto de puntos X generan un plano que contiene al punto T, si cumplen que : __ __ (0X - 0T) . N = 0 Si se denota por π el plano que contiene a T y los puntos X En R3 que satisfacen (∗), entonces se dice que N es el vector normal de π.
  • 7.
  • 8. Números directores de la intersección de dos planos Para determinar un plano se necesitan un punto Po(xo ,yo ,zo) y un vector normal al plano. La ecuación del plano viene entonces dada por la relación: A(x - xo) + B(y - yo) + C(z - zo) = 0 ⇒ A.x + B.y + C.z + D = 0 (1)Donde D = -A.xo - B.yo - C.zo Se pueden considerar varios casos particulares según que uno o dos de los coeficientes de la ecuación (1) sean nulos. 1) Plano paralelo al eje OX. Se tiene A = 0 y la ecuación toma la forma: B.y + C.z + D = 0 Siendo el vector director normal al plano de la forma:
  • 9. 2) Plano paralelo al eje OY. Se tiene B = 0 y la ecuación general toma la forma: A.x + C.z + D = 0 Siendo el vector director normal al plano de la forma: 3) Plano paralelo al eje OZ. Se tiene C = 0 y la ecuación general toma la forma : A.x + B.y + D = 0 Siendo el vector director normal al plano de la forma: 4) Plano que pasa por el origen. Se tiene D = 0 y la ecuación general toma la forma: A.x + B.y + C.z = 0
  • 10. 5)Plano perpendicular al eje OZ. Se tiene en este caso A = 0, B = 0 y la ecuación general toma la forma: C.z + D = 0 ; z = Cte. Esta ecuación puede considerarse también como la correspondiente a un plano paralelo al plano XOY 6)Plano perpendicular al eje OY o, lo que es igual, paralelo al plano XOZ. Se tiene en este caso A = 0, C = 0 y la ecuación general toma la forma: B.y + D = 0 ; y = Cte. 7) Plano perpendicular al eje OX o, lo que es igual, paralelo al plano YOZ. Se tiene en este caso B = 0, C = 0 y la ecuación general toma la forma: A.x + D = 0 ; x = Cte.