SlideShare una empresa de Scribd logo
1 de 3
Karen Michelle GuillénCarvajal
Equivalente mecánico del calor
Mucho tiempo antes que el calor fuera concebido como transferencia de energía, se habían
diseñado maneras prácticas de medirlo. La unidad de calor se determinó con base en las
propiedades del agua y se denominó caloría (derivado del antiguo concepto del calórico). Esta
unidad continúa en uso y se define así:Una caloría (cal) es la cantidad de calor necesaria para
elevar un grado Celsius (°C) la temperatura de un gramo de agua (de 14.5 o
C a 15.5 o
C a la
presión de una atmósfera).
Los métodos para determinar unidades de calor se han perfeccionado al relacionarlos con la
energía. En el Sistema Internacional(SI) se mide la energía por medio del joule (J), el cual se
define como:El producto de fuerza por distancia, donde fuerza se mide en Newton y distancia
en metros.
A través de experimentos se ha comprobado que para elevar un grado Celsius la
temperatura de un gramo de agua, se necesita transferir 4.186 J de energía mediante trabajo
mecánico. Por tanto, una caloría produce el mismo incremento de temperatura en un gramo de
agua que cuando se realiza en ella un trabajo de 4.186 J, ya que en ambos casos se transfiere
la misma cantidad de energía. Esta igualdad se conoce como equivalente mecánico del calor:
Experimento
En el experimento de Joule se determina el equivalente mecánico del calor, que ya sabemos
cómo se define.
Mediante esta experiencia simulada, se pretende poner de manifiesto la gran cantidad de
energía que es necesaria transformar en calor para elevar apreciablemente la temperatura de
un volumen pequeño de agua.
Descripción
Un recipiente aislado térmicamente contiene una cierta cantidad de agua, con un termómetro
para medir su temperatura, un eje con unas paletas que se ponen en movimiento por la acción
de una pesa (o dos de acuerdo a la referencia que se tome), tal como se muestra en la figura.
Karen Michelle GuillénCarvajal
La versión original del experimento, consta de dos pesas iguales que cuelgan simétricamente
del eje. La pesa, que se mueve con velocidad prácticamente constante, pierde energía
potencial. Como consecuencia, el agua agitada por las paletas se calienta debido a la fricción.
Si el bloque de masa M desciende una altura h, la energía potencial disminuye en Mgh, y ésta
es la energía que se utiliza para calentar el agua (se desprecian otras pérdidas).
Joule encontró que la disminución de energía potencial es proporcional al incremento de
temperatura del agua. La constante de proporcionalidad (el calor específico del agua) es igual a
Karen Michelle GuillénCarvajal
4.186 J/(g ºC). Por tanto, 4.186 J de energía mecánica aumentan la temperatura de 1g de agua
en 1º C. Se define la caloría como 4.186 J sin referencia a la sustancia que se está calentando.
En la simulación de la experiencia de Joule, se desprecia el equivalente en agua del
calorímetro, del termómetro, del eje y de las paletas, la pérdida de energía por las paredes
aislantes del recipiente del calorímetro y otras pérdidas debidas al rozamiento en las poleas,
etc.
Sea M la masa del bloque que cuelga y h su desplazamiento vertical
m la masa de agua del calorímetro
T0 la temperatura inicial del aguay T la temperatura final
g=9.8 m/s2
la aceleración de la gravedad
La conversión de energía mecánica íntegramente en calor se expresa mediante la siguiente
ecuación.
Se despeja el calor específico (c aunque también se encuentra comúnmente en Cp) del agua
que estará expresado en J/(kg K).
Como el calor especifico del agua es por definición c=1 cal/(g ºC), obtenemos la equivalencia
entre las unidades de calor y de trabajo o energía.
Referencias
http://www.sc.ehu.es/sbweb/fisica/estadistica/otros/joule/joule.htm
https://mx.answers.yahoo.com/question/index?qid=20060822141302AATl5GC
http://www.tareasya.com.mx/index.php/tareas-ya/secundaria/ciencias-2/calor-y-
temperatura/1778-Equivalente-mec%C3%A1nico-del-calor.html
https://www.youtube.com/watch?v=V44_AtPKpGo

Más contenido relacionado

La actualidad más candente

Van ness capitulo 3 orihuela contreras jose
Van ness capitulo 3 orihuela contreras joseVan ness capitulo 3 orihuela contreras jose
Van ness capitulo 3 orihuela contreras joseSoldado Aliado<3
 
Tippens fisica 7e_diapositivas_16
Tippens fisica 7e_diapositivas_16Tippens fisica 7e_diapositivas_16
Tippens fisica 7e_diapositivas_16Robert
 
Ejercicios resultos transporte de calor
Ejercicios resultos transporte de calorEjercicios resultos transporte de calor
Ejercicios resultos transporte de caloralvaro gómez
 
Ejercicios de termodinamica
Ejercicios de termodinamicaEjercicios de termodinamica
Ejercicios de termodinamicaHector Hernandez
 
Ejercicios de ley cero de la termodinámica
Ejercicios de ley cero de la termodinámicaEjercicios de ley cero de la termodinámica
Ejercicios de ley cero de la termodinámicasaulotapiatoscano
 
Practica 3 ley 0 de la termodinamica
Practica 3 ley 0 de la termodinamicaPractica 3 ley 0 de la termodinamica
Practica 3 ley 0 de la termodinamica20_masambriento
 
Calor Especifico
Calor EspecificoCalor Especifico
Calor EspecificoERICK CONDE
 
2 da ley termodinamica
2 da ley termodinamica2 da ley termodinamica
2 da ley termodinamicaDeximar Boza
 
9 termodinamica[1]
9 termodinamica[1]9 termodinamica[1]
9 termodinamica[1]Nar Dy
 
Segunda ley de la termodinamica
Segunda ley de la termodinamicaSegunda ley de la termodinamica
Segunda ley de la termodinamicaCarolina Herrera
 
Calor especifico informe
Calor especifico informeCalor especifico informe
Calor especifico informejunior13pk
 
Primera ley de la termodinámica
Primera ley de la termodinámicaPrimera ley de la termodinámica
Primera ley de la termodinámicaMaxwell Altamirano
 
Problemas conveccion
Problemas conveccionProblemas conveccion
Problemas conveccionsleven00
 
Ejemplos de la 2da ley de termodamica y entropia
Ejemplos de la 2da ley de termodamica y entropiaEjemplos de la 2da ley de termodamica y entropia
Ejemplos de la 2da ley de termodamica y entropiaAlexander Casio Cristaldo
 

La actualidad más candente (20)

Informe lab 2
Informe lab 2Informe lab 2
Informe lab 2
 
Van ness capitulo 3 orihuela contreras jose
Van ness capitulo 3 orihuela contreras joseVan ness capitulo 3 orihuela contreras jose
Van ness capitulo 3 orihuela contreras jose
 
Tippens fisica 7e_diapositivas_16
Tippens fisica 7e_diapositivas_16Tippens fisica 7e_diapositivas_16
Tippens fisica 7e_diapositivas_16
 
Ejercicios resultos transporte de calor
Ejercicios resultos transporte de calorEjercicios resultos transporte de calor
Ejercicios resultos transporte de calor
 
Ejercicios de termodinamica
Ejercicios de termodinamicaEjercicios de termodinamica
Ejercicios de termodinamica
 
INFORME DE LA CAPACIDAD CALIRÍFICA DE UN CALORÍMETRO
INFORME DE LA CAPACIDAD CALIRÍFICA DE UN CALORÍMETROINFORME DE LA CAPACIDAD CALIRÍFICA DE UN CALORÍMETRO
INFORME DE LA CAPACIDAD CALIRÍFICA DE UN CALORÍMETRO
 
Ejercicios de ley cero de la termodinámica
Ejercicios de ley cero de la termodinámicaEjercicios de ley cero de la termodinámica
Ejercicios de ley cero de la termodinámica
 
Practica 3 ley 0 de la termodinamica
Practica 3 ley 0 de la termodinamicaPractica 3 ley 0 de la termodinamica
Practica 3 ley 0 de la termodinamica
 
Calor Especifico
Calor EspecificoCalor Especifico
Calor Especifico
 
Entropía
EntropíaEntropía
Entropía
 
2 da ley termodinamica
2 da ley termodinamica2 da ley termodinamica
2 da ley termodinamica
 
9 termodinamica[1]
9 termodinamica[1]9 termodinamica[1]
9 termodinamica[1]
 
Segunda ley de la termodinamica
Segunda ley de la termodinamicaSegunda ley de la termodinamica
Segunda ley de la termodinamica
 
Calor especifico informe
Calor especifico informeCalor especifico informe
Calor especifico informe
 
Calor
CalorCalor
Calor
 
Ejemplos y Problemas
Ejemplos y ProblemasEjemplos y Problemas
Ejemplos y Problemas
 
Primera ley de la termodinámica
Primera ley de la termodinámicaPrimera ley de la termodinámica
Primera ley de la termodinámica
 
Problemas conveccion
Problemas conveccionProblemas conveccion
Problemas conveccion
 
Ejemplos de la 2da ley de termodamica y entropia
Ejemplos de la 2da ley de termodamica y entropiaEjemplos de la 2da ley de termodamica y entropia
Ejemplos de la 2da ley de termodamica y entropia
 
Transferencia de calor
Transferencia de calorTransferencia de calor
Transferencia de calor
 

Destacado (20)

Fundamento teorico-de-calor específico-Practica 02
Fundamento teorico-de-calor específico-Practica 02Fundamento teorico-de-calor específico-Practica 02
Fundamento teorico-de-calor específico-Practica 02
 
Equivalente mecánico del calor
Equivalente mecánico del calorEquivalente mecánico del calor
Equivalente mecánico del calor
 
Gegereka+ Liveplasma
Gegereka+ LiveplasmaGegereka+ Liveplasma
Gegereka+ Liveplasma
 
Gestores
GestoresGestores
Gestores
 
Gestor de imágenes y de videos
Gestor de imágenes y de videosGestor de imágenes y de videos
Gestor de imágenes y de videos
 
El cuento
El cuentoEl cuento
El cuento
 
Termodinamica
TermodinamicaTermodinamica
Termodinamica
 
Ejercicios Propuestos de Fisica y Quimicax
Ejercicios Propuestos de Fisica y QuimicaxEjercicios Propuestos de Fisica y Quimicax
Ejercicios Propuestos de Fisica y Quimicax
 
Energias
EnergiasEnergias
Energias
 
Practica 3; entalpia de combustión (equipo phywe)
Practica 3; entalpia de combustión (equipo phywe)Practica 3; entalpia de combustión (equipo phywe)
Practica 3; entalpia de combustión (equipo phywe)
 
Equivalente eléctrico del calor
Equivalente eléctrico del calorEquivalente eléctrico del calor
Equivalente eléctrico del calor
 
Temp
TempTemp
Temp
 
Fisica 2 lab 5
Fisica 2 lab 5Fisica 2 lab 5
Fisica 2 lab 5
 
Manualdefluidos i 2010
Manualdefluidos i 2010Manualdefluidos i 2010
Manualdefluidos i 2010
 
Parctica #6 termo
Parctica #6 termoParctica #6 termo
Parctica #6 termo
 
Ejercicios de termoquímica
Ejercicios de termoquímicaEjercicios de termoquímica
Ejercicios de termoquímica
 
Camara de-refrigeracion-para-papas
Camara de-refrigeracion-para-papasCamara de-refrigeracion-para-papas
Camara de-refrigeracion-para-papas
 
Parctica #5 termo
Parctica #5 termoParctica #5 termo
Parctica #5 termo
 
Termoquímica 2015
Termoquímica 2015Termoquímica 2015
Termoquímica 2015
 
Fundamento Conceptual - Práctica 3
Fundamento Conceptual - Práctica 3Fundamento Conceptual - Práctica 3
Fundamento Conceptual - Práctica 3
 

Similar a Equiv mec calor

El experimento de joule
El experimento de jouleEl experimento de joule
El experimento de jouleLeonardo Meza
 
El experimento de joule
El experimento de jouleEl experimento de joule
El experimento de jouleAlicia Navarro
 
Equivalente mecánico del calor
Equivalente mecánico del calorEquivalente mecánico del calor
Equivalente mecánico del calorJasminSeufert
 
Primera ley de la termodinamica
Primera ley de la termodinamicaPrimera ley de la termodinamica
Primera ley de la termodinamicaSabena29
 
Experimento de joule
Experimento de jouleExperimento de joule
Experimento de joulegreciaibarra
 
Calor y primera ley de la termodinamica segundo viaje
Calor y primera ley de la termodinamica segundo viajeCalor y primera ley de la termodinamica segundo viaje
Calor y primera ley de la termodinamica segundo viajeoskar205064523
 
Calor y primera ley de la termodinamica segundo viaje
Calor y primera ley de la termodinamica segundo viajeCalor y primera ley de la termodinamica segundo viaje
Calor y primera ley de la termodinamica segundo viajeoskar205064523
 
15 CALOR Y TERMODINÁMICA.pdf
15 CALOR Y TERMODINÁMICA.pdf15 CALOR Y TERMODINÁMICA.pdf
15 CALOR Y TERMODINÁMICA.pdfHanssEspino
 
Primera ley de la termodinámica
Primera ley de la termodinámicaPrimera ley de la termodinámica
Primera ley de la termodinámicafisicaamandalabarca
 
Equivalente mecánico de calor
Equivalente mecánico de calorEquivalente mecánico de calor
Equivalente mecánico de calorCarito_27
 
Calorimetría y cambios de fase
Calorimetría y cambios de faseCalorimetría y cambios de fase
Calorimetría y cambios de faseDurvel de la Cruz
 
Calor y temperatura
Calor y temperaturaCalor y temperatura
Calor y temperaturadaniela
 
Presentacion Del Calor Especifico En Fisica
Presentacion Del Calor Especifico En FisicaPresentacion Del Calor Especifico En Fisica
Presentacion Del Calor Especifico En Fisicaclaudiakatherine
 

Similar a Equiv mec calor (20)

El experimento de joule
El experimento de jouleEl experimento de joule
El experimento de joule
 
Experimento de joule
Experimento de jouleExperimento de joule
Experimento de joule
 
Experimento joule
Experimento jouleExperimento joule
Experimento joule
 
Calor especifico del agua
Calor especifico del aguaCalor especifico del agua
Calor especifico del agua
 
Cap13
Cap13Cap13
Cap13
 
El experimento de joule
El experimento de jouleEl experimento de joule
El experimento de joule
 
Equivalente mecánico del calor
Equivalente mecánico del calorEquivalente mecánico del calor
Equivalente mecánico del calor
 
Calorimetria
CalorimetriaCalorimetria
Calorimetria
 
Primera ley de la termodinamica
Primera ley de la termodinamicaPrimera ley de la termodinamica
Primera ley de la termodinamica
 
Cap13
Cap13Cap13
Cap13
 
Experimento de joule
Experimento de jouleExperimento de joule
Experimento de joule
 
Calor y primera ley de la termodinamica segundo viaje
Calor y primera ley de la termodinamica segundo viajeCalor y primera ley de la termodinamica segundo viaje
Calor y primera ley de la termodinamica segundo viaje
 
Calor y primera ley de la termodinamica segundo viaje
Calor y primera ley de la termodinamica segundo viajeCalor y primera ley de la termodinamica segundo viaje
Calor y primera ley de la termodinamica segundo viaje
 
15 CALOR Y TERMODINÁMICA.pdf
15 CALOR Y TERMODINÁMICA.pdf15 CALOR Y TERMODINÁMICA.pdf
15 CALOR Y TERMODINÁMICA.pdf
 
Cantidad de calor
Cantidad de calorCantidad de calor
Cantidad de calor
 
Primera ley de la termodinámica
Primera ley de la termodinámicaPrimera ley de la termodinámica
Primera ley de la termodinámica
 
Equivalente mecánico de calor
Equivalente mecánico de calorEquivalente mecánico de calor
Equivalente mecánico de calor
 
Calorimetría y cambios de fase
Calorimetría y cambios de faseCalorimetría y cambios de fase
Calorimetría y cambios de fase
 
Calor y temperatura
Calor y temperaturaCalor y temperatura
Calor y temperatura
 
Presentacion Del Calor Especifico En Fisica
Presentacion Del Calor Especifico En FisicaPresentacion Del Calor Especifico En Fisica
Presentacion Del Calor Especifico En Fisica
 

Más de Karen M. Guillén

Práctica XIV Determinación de eficiencia y calor en aletas
Práctica XIV Determinación de eficiencia y calor en aletasPráctica XIV Determinación de eficiencia y calor en aletas
Práctica XIV Determinación de eficiencia y calor en aletasKaren M. Guillén
 
Práctica XVI Expansión y compresión volumétrica
Práctica XVI Expansión y compresión volumétricaPráctica XVI Expansión y compresión volumétrica
Práctica XVI Expansión y compresión volumétricaKaren M. Guillén
 
Práctica XV Radiación: calor y emisividad
Práctica XV Radiación: calor y emisividadPráctica XV Radiación: calor y emisividad
Práctica XV Radiación: calor y emisividadKaren M. Guillén
 
Práctica XVI Expansión y compresión volumétrica
Práctica XVI Expansión y compresión volumétrica Práctica XVI Expansión y compresión volumétrica
Práctica XVI Expansión y compresión volumétrica Karen M. Guillén
 
Práctica XIII Determinación del coeficiende de convección
Práctica XIII Determinación del coeficiende de convección Práctica XIII Determinación del coeficiende de convección
Práctica XIII Determinación del coeficiende de convección Karen M. Guillén
 
Práctica XII Visualización del movimiento convectivo
Práctica XII Visualización del movimiento convectivoPráctica XII Visualización del movimiento convectivo
Práctica XII Visualización del movimiento convectivoKaren M. Guillén
 
Práctica X y XI Aplicación de la Ley de Fourier
Práctica X y XI Aplicación de la Ley de FourierPráctica X y XI Aplicación de la Ley de Fourier
Práctica X y XI Aplicación de la Ley de FourierKaren M. Guillén
 
Práctica VIII Ecuación de Bernoulli
Práctica VIII Ecuación de BernoulliPráctica VIII Ecuación de Bernoulli
Práctica VIII Ecuación de BernoulliKaren M. Guillén
 
Práctica VI Mesa hidrodinámica
Práctica VI Mesa hidrodinámicaPráctica VI Mesa hidrodinámica
Práctica VI Mesa hidrodinámicaKaren M. Guillén
 
Práctica VII Caída de presion en lecho empacado
Práctica VII Caída de presion en lecho empacadoPráctica VII Caída de presion en lecho empacado
Práctica VII Caída de presion en lecho empacadoKaren M. Guillén
 
Práctica V Curvas Características de una bomba
Práctica V Curvas Características de una bombaPráctica V Curvas Características de una bomba
Práctica V Curvas Características de una bombaKaren M. Guillén
 
Práctica V Curvas Características de una bomba
Práctica V Curvas Características de una bombaPráctica V Curvas Características de una bomba
Práctica V Curvas Características de una bombaKaren M. Guillén
 
Práctica IV Experimento de Reynolds
Práctica IV Experimento de ReynoldsPráctica IV Experimento de Reynolds
Práctica IV Experimento de ReynoldsKaren M. Guillén
 
Práctica III Detección de flujo laminar y turbulento
Práctica III Detección de flujo laminar y turbulentoPráctica III Detección de flujo laminar y turbulento
Práctica III Detección de flujo laminar y turbulentoKaren M. Guillén
 

Más de Karen M. Guillén (20)

Práctica XIV Determinación de eficiencia y calor en aletas
Práctica XIV Determinación de eficiencia y calor en aletasPráctica XIV Determinación de eficiencia y calor en aletas
Práctica XIV Determinación de eficiencia y calor en aletas
 
Práctica XVI Expansión y compresión volumétrica
Práctica XVI Expansión y compresión volumétricaPráctica XVI Expansión y compresión volumétrica
Práctica XVI Expansión y compresión volumétrica
 
Práctica XV Radiación: calor y emisividad
Práctica XV Radiación: calor y emisividadPráctica XV Radiación: calor y emisividad
Práctica XV Radiación: calor y emisividad
 
Práctica XVI Expansión y compresión volumétrica
Práctica XVI Expansión y compresión volumétrica Práctica XVI Expansión y compresión volumétrica
Práctica XVI Expansión y compresión volumétrica
 
Práctica XV Radiación
Práctica XV Radiación Práctica XV Radiación
Práctica XV Radiación
 
Práctica XIII Determinación del coeficiende de convección
Práctica XIII Determinación del coeficiende de convección Práctica XIII Determinación del coeficiende de convección
Práctica XIII Determinación del coeficiende de convección
 
Práctica XII Visualización del movimiento convectivo
Práctica XII Visualización del movimiento convectivoPráctica XII Visualización del movimiento convectivo
Práctica XII Visualización del movimiento convectivo
 
Práctica X y XI Aplicación de la Ley de Fourier
Práctica X y XI Aplicación de la Ley de FourierPráctica X y XI Aplicación de la Ley de Fourier
Práctica X y XI Aplicación de la Ley de Fourier
 
Práctica IX Ley de Fick
Práctica IX Ley de FickPráctica IX Ley de Fick
Práctica IX Ley de Fick
 
Práctica VIII Ecuación de Bernoulli
Práctica VIII Ecuación de BernoulliPráctica VIII Ecuación de Bernoulli
Práctica VIII Ecuación de Bernoulli
 
Práctica VI Mesa hidrodinámica
Práctica VI Mesa hidrodinámicaPráctica VI Mesa hidrodinámica
Práctica VI Mesa hidrodinámica
 
Práctica VII Caída de presion en lecho empacado
Práctica VII Caída de presion en lecho empacadoPráctica VII Caída de presion en lecho empacado
Práctica VII Caída de presion en lecho empacado
 
Práctica V Curvas Características de una bomba
Práctica V Curvas Características de una bombaPráctica V Curvas Características de una bomba
Práctica V Curvas Características de una bomba
 
Práctica V Curvas Características de una bomba
Práctica V Curvas Características de una bombaPráctica V Curvas Características de una bomba
Práctica V Curvas Características de una bomba
 
Práctica IV Experimento de Reynolds
Práctica IV Experimento de ReynoldsPráctica IV Experimento de Reynolds
Práctica IV Experimento de Reynolds
 
Práctica III Detección de flujo laminar y turbulento
Práctica III Detección de flujo laminar y turbulentoPráctica III Detección de flujo laminar y turbulento
Práctica III Detección de flujo laminar y turbulento
 
Práctica II Completo listo
Práctica II Completo listoPráctica II Completo listo
Práctica II Completo listo
 
Práctica II Completo
Práctica II CompletoPráctica II Completo
Práctica II Completo
 
Presentación de resultados
Presentación de resultadosPresentación de resultados
Presentación de resultados
 
Práctica II Completo
Práctica II CompletoPráctica II Completo
Práctica II Completo
 

Último

DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADOJosé Luis Palma
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleJonathanCovena1
 
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docxGLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docxAleParedes11
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdfgimenanahuel
 
cortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuacortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuaDANNYISAACCARVAJALGA
 
6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docxCeciliaGuerreroGonza1
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxAna Fernandez
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...JAVIER SOLIS NOYOLA
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadAlejandrino Halire Ccahuana
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
Factores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFactores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFlor Idalia Espinoza Ortega
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosCesarFernandez937857
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSjlorentemartos
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoFundación YOD YOD
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 

Último (20)

DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo Sostenible
 
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docxGLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
 
Unidad 4 | Teorías de las Comunicación | MCDI
Unidad 4 | Teorías de las Comunicación | MCDIUnidad 4 | Teorías de las Comunicación | MCDI
Unidad 4 | Teorías de las Comunicación | MCDI
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf
 
cortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuacortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahua
 
6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docx
 
Defendamos la verdad. La defensa es importante.
Defendamos la verdad. La defensa es importante.Defendamos la verdad. La defensa es importante.
Defendamos la verdad. La defensa es importante.
 
Sesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdfSesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdf
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdad
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
 
Factores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFactores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamica
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos Básicos
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativo
 
La Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdfLa Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdf
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 

Equiv mec calor

  • 1. Karen Michelle GuillénCarvajal Equivalente mecánico del calor Mucho tiempo antes que el calor fuera concebido como transferencia de energía, se habían diseñado maneras prácticas de medirlo. La unidad de calor se determinó con base en las propiedades del agua y se denominó caloría (derivado del antiguo concepto del calórico). Esta unidad continúa en uso y se define así:Una caloría (cal) es la cantidad de calor necesaria para elevar un grado Celsius (°C) la temperatura de un gramo de agua (de 14.5 o C a 15.5 o C a la presión de una atmósfera). Los métodos para determinar unidades de calor se han perfeccionado al relacionarlos con la energía. En el Sistema Internacional(SI) se mide la energía por medio del joule (J), el cual se define como:El producto de fuerza por distancia, donde fuerza se mide en Newton y distancia en metros. A través de experimentos se ha comprobado que para elevar un grado Celsius la temperatura de un gramo de agua, se necesita transferir 4.186 J de energía mediante trabajo mecánico. Por tanto, una caloría produce el mismo incremento de temperatura en un gramo de agua que cuando se realiza en ella un trabajo de 4.186 J, ya que en ambos casos se transfiere la misma cantidad de energía. Esta igualdad se conoce como equivalente mecánico del calor: Experimento En el experimento de Joule se determina el equivalente mecánico del calor, que ya sabemos cómo se define. Mediante esta experiencia simulada, se pretende poner de manifiesto la gran cantidad de energía que es necesaria transformar en calor para elevar apreciablemente la temperatura de un volumen pequeño de agua. Descripción Un recipiente aislado térmicamente contiene una cierta cantidad de agua, con un termómetro para medir su temperatura, un eje con unas paletas que se ponen en movimiento por la acción de una pesa (o dos de acuerdo a la referencia que se tome), tal como se muestra en la figura.
  • 2. Karen Michelle GuillénCarvajal La versión original del experimento, consta de dos pesas iguales que cuelgan simétricamente del eje. La pesa, que se mueve con velocidad prácticamente constante, pierde energía potencial. Como consecuencia, el agua agitada por las paletas se calienta debido a la fricción. Si el bloque de masa M desciende una altura h, la energía potencial disminuye en Mgh, y ésta es la energía que se utiliza para calentar el agua (se desprecian otras pérdidas). Joule encontró que la disminución de energía potencial es proporcional al incremento de temperatura del agua. La constante de proporcionalidad (el calor específico del agua) es igual a
  • 3. Karen Michelle GuillénCarvajal 4.186 J/(g ºC). Por tanto, 4.186 J de energía mecánica aumentan la temperatura de 1g de agua en 1º C. Se define la caloría como 4.186 J sin referencia a la sustancia que se está calentando. En la simulación de la experiencia de Joule, se desprecia el equivalente en agua del calorímetro, del termómetro, del eje y de las paletas, la pérdida de energía por las paredes aislantes del recipiente del calorímetro y otras pérdidas debidas al rozamiento en las poleas, etc. Sea M la masa del bloque que cuelga y h su desplazamiento vertical m la masa de agua del calorímetro T0 la temperatura inicial del aguay T la temperatura final g=9.8 m/s2 la aceleración de la gravedad La conversión de energía mecánica íntegramente en calor se expresa mediante la siguiente ecuación. Se despeja el calor específico (c aunque también se encuentra comúnmente en Cp) del agua que estará expresado en J/(kg K). Como el calor especifico del agua es por definición c=1 cal/(g ºC), obtenemos la equivalencia entre las unidades de calor y de trabajo o energía. Referencias http://www.sc.ehu.es/sbweb/fisica/estadistica/otros/joule/joule.htm https://mx.answers.yahoo.com/question/index?qid=20060822141302AATl5GC http://www.tareasya.com.mx/index.php/tareas-ya/secundaria/ciencias-2/calor-y- temperatura/1778-Equivalente-mec%C3%A1nico-del-calor.html https://www.youtube.com/watch?v=V44_AtPKpGo