SlideShare una empresa de Scribd logo

Cuantificadores

Los cuantificadores son símbolos utilizados en lógica y matemáticas para indicar cuántos elementos de un conjunto cumplen una propiedad. Los cuantificadores más estudiados son el universal y el existencial. La implicación significa que algo está implícito dentro de algo que lo oculta, mientras que la explicación es desplegar lo implícito. Tanto la condición como la implicación se expresan como A -> B, pero difieren en que la condición es una afirmación hipotética sobre una relación formal, mientras que la implicación exige una

1 de 3
Descargar para leer sin conexión
 Cuantificadores<br />-1308101005840En lógica, teoría de conjuntos y matemáticas en general, los cuantificadores son símbolos utilizados para indicar cuántos elementos de un conjunto dado cumplen con cierta propiedad. Existen muchos tipos de cuantificadores, pero quizás los más estudiados y utilizados sean:<br />Ejemplo:<br />40957510160<br />958215149225Ejemplo<br />Implicación<br />Etimológicamente del latín “in ─ plicare”, significa el hecho de algo que está “plegado” o doblado en el interior de algo que oculta lo que hay en su interior que, por tanto, aunque está, no es visible o perceptible.<br />Su contraposición se manifiesta en el término latino “ex ─ plicare”. La “explicación” es el hecho de desplegar lo que está plegado; sacar al exterior, hacer visible, o comprensible, aquello que está “implicado” en el interior de algo que lo hacía oculto o no comprensible.<br />Implicación y Condición<br />Aunque en el lenguaje ordinario no suele tener importancia esta distinción, en su sentido lógico y científico las diferencias pueden tener un sentido importante.<br />Tanto la condición como la implicacion en el cálculo lógico se expresan según el esquema A -> B, que puede leerse de dos formas:<br />A -> BSi A entonces Bquot;
Si hoy es martes entonces mañana es miércolesquot;
A -> BA implica Bquot;
Hoy es martesquot;
, implica que, (por tanto) quot;
mañana es miércolesquot;
<br />En el primer caso hemos leído una condición. En el segundo una implicación.<br />1.- Observamos que, en su escritura, la expresión difiere de forma fundamental en el uso de las comillas:<br />quot;
Si A entonces Bquot;
 es una y única proposición y como tal una única afirmación; por tanto, en su interpretación lógica,tiene dos valores posibles de verdad, es decir, puede ser verdadera o falsa. Su tabla de valores de verdad nos indica que solamente es falsa en el caso en que “A” sea verdadera y “B” sea falsa, y en los demás casos posibles es verdadera. Pero a falta de información complementaria no podemos afirmar como tal proposición ni su verdad ni su falsedad.<br />En quot;
A implica Bquot;
 hay dos proposiciones, y dos afirmaciones.[6] Pero el valor de cada una es diferente. De modo que afirmando quot;
Aquot;
, como sentencia verdadera en su contenido semántico, se exige la afirmación de quot;
Bquot;
 como sentencia verdadera en su contenido semántico. Dicho de otra manera, la afirmación de la segunda depende de la validez epistemológica de la primera.<br />2.- Lo condicional es una afirmación hipotética sobre una relación meramente formal. “si se da una condición (antecedente), tiene que darse también lo condicionado (consecuente)”. El hecho de que no se dé la condición no afecta al hecho de que se dé o no se dé lo condicionado.<br />En la implicación, sin embargo, la relación se establece sobre sentencia en su condición de quot;
contenido semánticoquot;
. A debería tomarse como afirmación sobre quot;
Aquot;
; y B como afirmación sobre quot;
Bquot;
.<br />Mientras la condición es una relación meramente sintáctica, la implicación exige además una relación semántica. En este segundo caso la condición responde a un contenido material.<br />Así pues implicación debe entenderse como:<br />La verdad de A exige, o lleva implícita, es decir implicada, la verdad de B.<br />O, si queremos ponerla en forma hipotética:<br />Si se afirma como verdadero A tiene que afirmarse como verdadero B.<br />
Cuantificadores
Cuantificadores

Recomendados

Algunos conceptos bàsicos de logica
Algunos conceptos bàsicos de logicaAlgunos conceptos bàsicos de logica
Algunos conceptos bàsicos de logicaSandra Morales
 
Proposición
ProposiciónProposición
Proposiciónsheyz10
 
Aspectos importantes. ed_unidad_1
Aspectos importantes. ed_unidad_1Aspectos importantes. ed_unidad_1
Aspectos importantes. ed_unidad_1marcellopiai
 
Proposición Simple y Compuesta - conjuntos por Edison Iza
Proposición Simple y Compuesta - conjuntos por Edison IzaProposición Simple y Compuesta - conjuntos por Edison Iza
Proposición Simple y Compuesta - conjuntos por Edison IzaEdisonIza7
 
Claves y restricciones
Claves y restriccionesClaves y restricciones
Claves y restriccionesbebesonik0
 

Más contenido relacionado

La actualidad más candente

Geremi avila-proposiciones
Geremi avila-proposicionesGeremi avila-proposiciones
Geremi avila-proposicionesGeremiAvila
 
F1 7.5 cuadro de oposición
F1 7.5 cuadro de oposiciónF1 7.5 cuadro de oposición
F1 7.5 cuadro de oposiciónludimagister
 
Union De Conjuntos
Union De ConjuntosUnion De Conjuntos
Union De Conjuntosfredylozada
 
Dia positiva de matematicas
Dia positiva de matematicasDia positiva de matematicas
Dia positiva de matematicasanaveramacias
 
Calculo proposicional
Calculo proposicionalCalculo proposicional
Calculo proposicionalyeliadan_16
 
Conjuntos Por Kevin Alvarez
Conjuntos Por Kevin AlvarezConjuntos Por Kevin Alvarez
Conjuntos Por Kevin AlvarezGabo Alvarez
 
Relacion Entre Conjuntos
Relacion Entre ConjuntosRelacion Entre Conjuntos
Relacion Entre Conjuntosfredylozada
 
Lógica proposicional
Lógica proposicionalLógica proposicional
Lógica proposicionalNatty Correa
 
LÓGICA MATEMÁTICAS (RESUMIDO)
LÓGICA MATEMÁTICAS (RESUMIDO)LÓGICA MATEMÁTICAS (RESUMIDO)
LÓGICA MATEMÁTICAS (RESUMIDO)G1ss3l4
 
La ConstruccióN De Un Sistema LóGico
La ConstruccióN De Un Sistema LóGicoLa ConstruccióN De Un Sistema LóGico
La ConstruccióN De Un Sistema LóGicoJulio Moreno
 
Algebra y las propopisisciones
Algebra y las propopisisciones Algebra y las propopisisciones
Algebra y las propopisisciones PedroR23
 

La actualidad más candente (15)

Conjuntos estructura
Conjuntos estructuraConjuntos estructura
Conjuntos estructura
 
Geremi avila-proposiciones
Geremi avila-proposicionesGeremi avila-proposiciones
Geremi avila-proposiciones
 
F1 7.5 cuadro de oposición
F1 7.5 cuadro de oposiciónF1 7.5 cuadro de oposición
F1 7.5 cuadro de oposición
 
Union De Conjuntos
Union De ConjuntosUnion De Conjuntos
Union De Conjuntos
 
Dia positiva de matematicas
Dia positiva de matematicasDia positiva de matematicas
Dia positiva de matematicas
 
Proposiciones
ProposicionesProposiciones
Proposiciones
 
Calculo proposicional
Calculo proposicionalCalculo proposicional
Calculo proposicional
 
Conjuntos Por Kevin Alvarez
Conjuntos Por Kevin AlvarezConjuntos Por Kevin Alvarez
Conjuntos Por Kevin Alvarez
 
Relacion Entre Conjuntos
Relacion Entre ConjuntosRelacion Entre Conjuntos
Relacion Entre Conjuntos
 
Manual de excel UTPL
Manual de excel UTPLManual de excel UTPL
Manual de excel UTPL
 
Lógica proposicional
Lógica proposicionalLógica proposicional
Lógica proposicional
 
LÓGICA MATEMÁTICAS (RESUMIDO)
LÓGICA MATEMÁTICAS (RESUMIDO)LÓGICA MATEMÁTICAS (RESUMIDO)
LÓGICA MATEMÁTICAS (RESUMIDO)
 
Calculo proposicional
Calculo proposicionalCalculo proposicional
Calculo proposicional
 
La ConstruccióN De Un Sistema LóGico
La ConstruccióN De Un Sistema LóGicoLa ConstruccióN De Un Sistema LóGico
La ConstruccióN De Un Sistema LóGico
 
Algebra y las propopisisciones
Algebra y las propopisisciones Algebra y las propopisisciones
Algebra y las propopisisciones
 

Destacado

Cuantificador existencial
Cuantificador existencialCuantificador existencial
Cuantificador existencialemperador09
 
Cuantificadores existenciales
Cuantificadores existencialesCuantificadores existenciales
Cuantificadores existencialesAlba Castro
 
Conectivos logicos
Conectivos logicosConectivos logicos
Conectivos logicosEdward Solis
 
Lógica y conjuntos proposiciones y cuantificadores
Lógica y conjuntos proposiciones y cuantificadoresLógica y conjuntos proposiciones y cuantificadores
Lógica y conjuntos proposiciones y cuantificadoresjazzme
 

Destacado (9)

Cuantificador existencial
Cuantificador existencialCuantificador existencial
Cuantificador existencial
 
Cuantificadores
CuantificadoresCuantificadores
Cuantificadores
 
Cuantificadores
CuantificadoresCuantificadores
Cuantificadores
 
Cuantificadores existenciales
Cuantificadores existencialesCuantificadores existenciales
Cuantificadores existenciales
 
Cuantificadores
CuantificadoresCuantificadores
Cuantificadores
 
Cuantificadores
CuantificadoresCuantificadores
Cuantificadores
 
Cuantificadores xime
Cuantificadores ximeCuantificadores xime
Cuantificadores xime
 
Conectivos logicos
Conectivos logicosConectivos logicos
Conectivos logicos
 
Lógica y conjuntos proposiciones y cuantificadores
Lógica y conjuntos proposiciones y cuantificadoresLógica y conjuntos proposiciones y cuantificadores
Lógica y conjuntos proposiciones y cuantificadores
 

Similar a Cuantificadores

Similar a Cuantificadores (18)

Estructuras discretas
Estructuras discretas Estructuras discretas
Estructuras discretas
 
Proposiciones
ProposicionesProposiciones
Proposiciones
 
Tautologia y contraddicciones
Tautologia y contraddiccionesTautologia y contraddicciones
Tautologia y contraddicciones
 
Obdulio Banda, Los valores de certeza del condicional
Obdulio Banda, Los valores de certeza del condicionalObdulio Banda, Los valores de certeza del condicional
Obdulio Banda, Los valores de certeza del condicional
 
Banda, los val. de cert. del cond. escr. y pensam.
Banda, los val. de cert. del cond. escr. y pensam.Banda, los val. de cert. del cond. escr. y pensam.
Banda, los val. de cert. del cond. escr. y pensam.
 
Logica matematica 3 rodrigo andres hoyos perdomo
Logica matematica 3 rodrigo andres hoyos perdomoLogica matematica 3 rodrigo andres hoyos perdomo
Logica matematica 3 rodrigo andres hoyos perdomo
 
Cuaderno digital fabian gutierrez
Cuaderno digital fabian gutierrezCuaderno digital fabian gutierrez
Cuaderno digital fabian gutierrez
 
Asignación 1 Estructura Discreta
Asignación 1  Estructura DiscretaAsignación 1  Estructura Discreta
Asignación 1 Estructura Discreta
 
Estructura reinaldo salas
Estructura reinaldo salasEstructura reinaldo salas
Estructura reinaldo salas
 
Logica difusa
Logica difusaLogica difusa
Logica difusa
 
Logica matematica modalidad
Logica matematica modalidad Logica matematica modalidad
Logica matematica modalidad
 
2. lógica proposicional
2. lógica proposicional2. lógica proposicional
2. lógica proposicional
 
Unidad 1 alexandre medina-álgebra
Unidad 1 alexandre medina-álgebraUnidad 1 alexandre medina-álgebra
Unidad 1 alexandre medina-álgebra
 
Tablas de-verdad-para-c (1)
Tablas de-verdad-para-c (1)Tablas de-verdad-para-c (1)
Tablas de-verdad-para-c (1)
 
Tablas de-verdad-para-c++
Tablas de-verdad-para-c++Tablas de-verdad-para-c++
Tablas de-verdad-para-c++
 
Asignacion 1 estructura d.
Asignacion 1 estructura d.Asignacion 1 estructura d.
Asignacion 1 estructura d.
 
Funciones Veritativas
Funciones VeritativasFunciones Veritativas
Funciones Veritativas
 
Proposiciones
ProposicionesProposiciones
Proposiciones
 

Último

DOCUMENTO |1-sobre ficha de postulacionm
DOCUMENTO |1-sobre ficha de postulacionmDOCUMENTO |1-sobre ficha de postulacionm
DOCUMENTO |1-sobre ficha de postulacionmdavidcamposyupanqui
 
SIGNOS DE PUNTUACIÓN ALUMNO PARA EL.docx
SIGNOS DE PUNTUACIÓN ALUMNO PARA EL.docxSIGNOS DE PUNTUACIÓN ALUMNO PARA EL.docx
SIGNOS DE PUNTUACIÓN ALUMNO PARA EL.docxjhonatanguisabalo
 
Programa de Actividades Team Building y Experiencias para Empresas
Programa de Actividades Team Building y Experiencias para EmpresasPrograma de Actividades Team Building y Experiencias para Empresas
Programa de Actividades Team Building y Experiencias para EmpresasRubén
 
RECURSOS ESPECIFICOS A ACTIVIDADES DE RSE A LO LARGO DEL AÑO.pdf
RECURSOS ESPECIFICOS A ACTIVIDADES DE RSE A LO LARGO DEL AÑO.pdfRECURSOS ESPECIFICOS A ACTIVIDADES DE RSE A LO LARGO DEL AÑO.pdf
RECURSOS ESPECIFICOS A ACTIVIDADES DE RSE A LO LARGO DEL AÑO.pdfprinverperueirl
 
CIRCULAR INFORMATIVA AYUDAS ELX EMPLEA 2024.ppsx
CIRCULAR INFORMATIVA AYUDAS ELX EMPLEA 2024.ppsxCIRCULAR INFORMATIVA AYUDAS ELX EMPLEA 2024.ppsx
CIRCULAR INFORMATIVA AYUDAS ELX EMPLEA 2024.ppsxCORPORACIONJURIDICA
 
ducumento 1 sobre los sIGNOS DE PUNTUACIÓN ALUMNO .docx
ducumento 1 sobre los sIGNOS DE PUNTUACIÓN ALUMNO .docxducumento 1 sobre los sIGNOS DE PUNTUACIÓN ALUMNO .docx
ducumento 1 sobre los sIGNOS DE PUNTUACIÓN ALUMNO .docxshakirpieraraujocubi
 
entro1-Sobre ficha de postulaciónpresalon
entro1-Sobre ficha de postulaciónpresalonentro1-Sobre ficha de postulaciónpresalon
entro1-Sobre ficha de postulaciónpresalonsalonapre
 
CIRCULAR INFORMATIVA FIESTAS LABORALES 2024.ppsx
CIRCULAR INFORMATIVA FIESTAS LABORALES 2024.ppsxCIRCULAR INFORMATIVA FIESTAS LABORALES 2024.ppsx
CIRCULAR INFORMATIVA FIESTAS LABORALES 2024.ppsxCORPORACIONJURIDICA
 
Poka Yoke o Baka Yoke Universidad de Sonora Ing Semiconductores
Poka Yoke o Baka Yoke Universidad de Sonora Ing SemiconductoresPoka Yoke o Baka Yoke Universidad de Sonora Ing Semiconductores
Poka Yoke o Baka Yoke Universidad de Sonora Ing SemiconductoresSalvatoreSagnelliSal
 
Documento 1 - Sobre ficha de postulación
Documento 1 - Sobre ficha de postulaciónDocumento 1 - Sobre ficha de postulación
Documento 1 - Sobre ficha de postulaciónutilisare2023
 
ADMINISTRACIÓN DE EMPRESAS QUÉ ES Y ANTECEDENTES
ADMINISTRACIÓN DE EMPRESAS QUÉ ES Y ANTECEDENTESADMINISTRACIÓN DE EMPRESAS QUÉ ES Y ANTECEDENTES
ADMINISTRACIÓN DE EMPRESAS QUÉ ES Y ANTECEDENTESmartinez012tm
 
3.3 Programa de prestaciones Individuales.docx
3.3 Programa de prestaciones Individuales.docx3.3 Programa de prestaciones Individuales.docx
3.3 Programa de prestaciones Individuales.docxJuanManuelDelgadoHer
 

Último (13)

DOCUMENTO |1-sobre ficha de postulacionm
DOCUMENTO |1-sobre ficha de postulacionmDOCUMENTO |1-sobre ficha de postulacionm
DOCUMENTO |1-sobre ficha de postulacionm
 
SIGNOS DE PUNTUACIÓN ALUMNO PARA EL.docx
SIGNOS DE PUNTUACIÓN ALUMNO PARA EL.docxSIGNOS DE PUNTUACIÓN ALUMNO PARA EL.docx
SIGNOS DE PUNTUACIÓN ALUMNO PARA EL.docx
 
Programa de Actividades Team Building y Experiencias para Empresas
Programa de Actividades Team Building y Experiencias para EmpresasPrograma de Actividades Team Building y Experiencias para Empresas
Programa de Actividades Team Building y Experiencias para Empresas
 
FORO DE INICIATIVAS A CANDIDATOS A LA PRESIDENCIA 2024.pdf
FORO DE INICIATIVAS A CANDIDATOS A LA PRESIDENCIA 2024.pdfFORO DE INICIATIVAS A CANDIDATOS A LA PRESIDENCIA 2024.pdf
FORO DE INICIATIVAS A CANDIDATOS A LA PRESIDENCIA 2024.pdf
 
RECURSOS ESPECIFICOS A ACTIVIDADES DE RSE A LO LARGO DEL AÑO.pdf
RECURSOS ESPECIFICOS A ACTIVIDADES DE RSE A LO LARGO DEL AÑO.pdfRECURSOS ESPECIFICOS A ACTIVIDADES DE RSE A LO LARGO DEL AÑO.pdf
RECURSOS ESPECIFICOS A ACTIVIDADES DE RSE A LO LARGO DEL AÑO.pdf
 
CIRCULAR INFORMATIVA AYUDAS ELX EMPLEA 2024.ppsx
CIRCULAR INFORMATIVA AYUDAS ELX EMPLEA 2024.ppsxCIRCULAR INFORMATIVA AYUDAS ELX EMPLEA 2024.ppsx
CIRCULAR INFORMATIVA AYUDAS ELX EMPLEA 2024.ppsx
 
ducumento 1 sobre los sIGNOS DE PUNTUACIÓN ALUMNO .docx
ducumento 1 sobre los sIGNOS DE PUNTUACIÓN ALUMNO .docxducumento 1 sobre los sIGNOS DE PUNTUACIÓN ALUMNO .docx
ducumento 1 sobre los sIGNOS DE PUNTUACIÓN ALUMNO .docx
 
entro1-Sobre ficha de postulaciónpresalon
entro1-Sobre ficha de postulaciónpresalonentro1-Sobre ficha de postulaciónpresalon
entro1-Sobre ficha de postulaciónpresalon
 
CIRCULAR INFORMATIVA FIESTAS LABORALES 2024.ppsx
CIRCULAR INFORMATIVA FIESTAS LABORALES 2024.ppsxCIRCULAR INFORMATIVA FIESTAS LABORALES 2024.ppsx
CIRCULAR INFORMATIVA FIESTAS LABORALES 2024.ppsx
 
Poka Yoke o Baka Yoke Universidad de Sonora Ing Semiconductores
Poka Yoke o Baka Yoke Universidad de Sonora Ing SemiconductoresPoka Yoke o Baka Yoke Universidad de Sonora Ing Semiconductores
Poka Yoke o Baka Yoke Universidad de Sonora Ing Semiconductores
 
Documento 1 - Sobre ficha de postulación
Documento 1 - Sobre ficha de postulaciónDocumento 1 - Sobre ficha de postulación
Documento 1 - Sobre ficha de postulación
 
ADMINISTRACIÓN DE EMPRESAS QUÉ ES Y ANTECEDENTES
ADMINISTRACIÓN DE EMPRESAS QUÉ ES Y ANTECEDENTESADMINISTRACIÓN DE EMPRESAS QUÉ ES Y ANTECEDENTES
ADMINISTRACIÓN DE EMPRESAS QUÉ ES Y ANTECEDENTES
 
3.3 Programa de prestaciones Individuales.docx
3.3 Programa de prestaciones Individuales.docx3.3 Programa de prestaciones Individuales.docx
3.3 Programa de prestaciones Individuales.docx
 

Cuantificadores

  • 1. Cuantificadores<br />-1308101005840En lógica, teoría de conjuntos y matemáticas en general, los cuantificadores son símbolos utilizados para indicar cuántos elementos de un conjunto dado cumplen con cierta propiedad. Existen muchos tipos de cuantificadores, pero quizás los más estudiados y utilizados sean:<br />Ejemplo:<br />40957510160<br />958215149225Ejemplo<br />Implicación<br />Etimológicamente del latín “in ─ plicare”, significa el hecho de algo que está “plegado” o doblado en el interior de algo que oculta lo que hay en su interior que, por tanto, aunque está, no es visible o perceptible.<br />Su contraposición se manifiesta en el término latino “ex ─ plicare”. La “explicación” es el hecho de desplegar lo que está plegado; sacar al exterior, hacer visible, o comprensible, aquello que está “implicado” en el interior de algo que lo hacía oculto o no comprensible.<br />Implicación y Condición<br />Aunque en el lenguaje ordinario no suele tener importancia esta distinción, en su sentido lógico y científico las diferencias pueden tener un sentido importante.<br />Tanto la condición como la implicacion en el cálculo lógico se expresan según el esquema A -> B, que puede leerse de dos formas:<br />A -> BSi A entonces Bquot; Si hoy es martes entonces mañana es miércolesquot; A -> BA implica Bquot; Hoy es martesquot; , implica que, (por tanto) quot; mañana es miércolesquot; <br />En el primer caso hemos leído una condición. En el segundo una implicación.<br />1.- Observamos que, en su escritura, la expresión difiere de forma fundamental en el uso de las comillas:<br />quot; Si A entonces Bquot; es una y única proposición y como tal una única afirmación; por tanto, en su interpretación lógica,tiene dos valores posibles de verdad, es decir, puede ser verdadera o falsa. Su tabla de valores de verdad nos indica que solamente es falsa en el caso en que “A” sea verdadera y “B” sea falsa, y en los demás casos posibles es verdadera. Pero a falta de información complementaria no podemos afirmar como tal proposición ni su verdad ni su falsedad.<br />En quot; A implica Bquot; hay dos proposiciones, y dos afirmaciones.[6] Pero el valor de cada una es diferente. De modo que afirmando quot; Aquot; , como sentencia verdadera en su contenido semántico, se exige la afirmación de quot; Bquot; como sentencia verdadera en su contenido semántico. Dicho de otra manera, la afirmación de la segunda depende de la validez epistemológica de la primera.<br />2.- Lo condicional es una afirmación hipotética sobre una relación meramente formal. “si se da una condición (antecedente), tiene que darse también lo condicionado (consecuente)”. El hecho de que no se dé la condición no afecta al hecho de que se dé o no se dé lo condicionado.<br />En la implicación, sin embargo, la relación se establece sobre sentencia en su condición de quot; contenido semánticoquot; . A debería tomarse como afirmación sobre quot; Aquot; ; y B como afirmación sobre quot; Bquot; .<br />Mientras la condición es una relación meramente sintáctica, la implicación exige además una relación semántica. En este segundo caso la condición responde a un contenido material.<br />Así pues implicación debe entenderse como:<br />La verdad de A exige, o lleva implícita, es decir implicada, la verdad de B.<br />O, si queremos ponerla en forma hipotética:<br />Si se afirma como verdadero A tiene que afirmarse como verdadero B.<br />