SlideShare una empresa de Scribd logo
1 de 10
Universidad Autónoma
de Nuevo León
EscuelayPreparatoriatécnicamédica
Fenómenos químicos en el entorno
Docente: JOEL GERARDO MARTINEZ CUELLAR
Etapa1.Reaccionesquímicasysurepresentación
(Reporteescrito)
Grupo 304 EQUIPO 4
2067907 GARRIDO RAMIREZ ALEXIA
2068704 GONZALEZ CARREON CAMILA
2068093 GUERRA MENDOZA FRIDA YIDALTHY
2068680 HERNANDEZ ZAPIEN ITZEL
2068058 LEAL INFANTE BRENDA DENISSE
2068713 OVALLE RODRIGUEZ SAMANTHA JOANA
Bachillerato técnico en enfermería
Fotosíntesis y respiración
La fotosíntesis es el proceso en el cual la energía
de la luz se convierte en energía química en forma
de azúcares. En un proceso impulsado por la
energía de la luz, se crean moléculas de glucosa (y
otros azúcares) a partir de agua y dióxido de
carbono, mientras que se libera oxígeno como
subproducto.
Mediante este proceso se elaboran los alimentos de
las plantas. Para realizar la fotosíntesis, las plantas
necesitan de la clorofila, que es una sustancia de
color verde que tienen en las hojas. Esta es la
fuente de la vida para la mayor parte de los seres
vivos, debido a que crea energía indispensable
para los diferentes procesos vitales, además de
producir la mayor parte del oxígeno de la
atmosfera.
Ecuación química que representa la reacción durante este proceso
La ecuación de la fotosíntesis es la siguiente:
6CO2 + 6H20 + (energía) → C6H12O6 + 6O2 Dióxido de
carbono + agua + energía de la luz producen glucosa y
oxígeno.
La ecuación representa el proceso mediante el cual las plantas y algunas
bacterias producen glucosa a partir de dióxido de carbono y agua usando
la energía de la luz solar.
La fotosíntesis se compone de dos etapas, que es la reacción dependiente
de la luz y las reacciones independientes de la luz, como se explica en
Jones y Jones. La reacción dependiente de la luz usa la energía de la luz
solar captada por los cloroplastos en las hojas de la planta para producir
una fuente de electrones para las reacciones independientes de la luz. Las
reacciones independientes de la luz utilizan la energía de la fuente de los
electrones para reducir el dióxido de carbono para producir así la glucosa.
La función principal de la respiración celular es la generación de
energía en forma de ATP para poder dirigirla a las funciones de la
célula. Tanto los animales como las plantas requieren extraer la
energía química contenida en las moléculas orgánicas que usan
como alimento. En el caso de los vegetales, estas moléculas son
los azúcares que la misma planta sintetiza con el uso de la
energía solar en el famoso proceso fotosintético.
Los animales, por otro lado, no son capaces de sintetizar su
propio alimento. La respiración es el proceso celular que permite
utilizar la energía almacenada en los carbohidratos utilizando
oxígeno. Los productos son el dióxido de carbono, ATP y agua. El
ATP se utiliza para las reacciones metabólicas mientras que el
CO2 sale de la célula y luego se elimina.
Descripción del proceso de respiración
Ecuación química que representa la reacción durante la respiración
La reacción química global de la respiración es la siguiente:
C6 H12 06 + 602→ 6CO2 + 6H2O + energía (ATP).
Una molécula de glucosa más seis moléculas de gas de oxígeno se
transforman en seis moléculas de dióxido de carbono más seis moléculas
de agua. La energía química es liberada por la reacción.
La respiración celular es la reacción opuesta a la fotosíntesis, en la que las
plantas producen oxígeno y glucosa. Como el oxígeno y el dióxido de
carbono se intercambian durante estas dos reacciones, la fotosíntesis y la
respiración celular son parte de los procesos que equilibran las
concentraciones atmosféricas de estos gases.
Importancia de la relación entre la fotosíntesis y la respiración
Importancia de la relación entre la fotosíntesis y la respiración
La fotosíntesis es el proceso biológico donde la energía
solar se usa para transformar el dióxido de carbono y el
agua en carbohidratos y oxígeno. La respiración celular
es el proceso biológico por el que los carbohidratos y el
oxígeno se transforman para producir energía en forma
de ATP. En la fotosíntesis se libera oxígeno que luego
es utilizado en la respiración. La fotosíntesis y la
respiración celular son importantes para la continuidad
de la vida porque sin ellas los seres vivos no
existiríamos.
El mundo estaría lleno de dióxido de carbono y no habría oxígeno en el aire, lo cual es
esencial para la vida, esto quiere decir que las plantas por medio de la fotosíntesis se
encargan de purificar el aire eliminado de dióxido de carbono, el cual puede ser tóxico para
los humanos y animales. En el proceso de fotosíntesis las plantas también generan
glucosa su fase oscura, y la glucosa también es importante para nuestro cuerpo, y
nosotros podemos absorber o consumirla de las plantas y sus frutos.
producción del acero
El acero es una aleación de hierro y carbono. La
Organización Mundial del Acero define el acero más
específicamente como que contiene menos del 2% de
carbono y 1% de manganeso y pequeñas cantidades
de silicio, fósforo, azufre y oxígeno. Cambiar la
cantidad de carbono puede cambiar las propiedades
del acero, haciéndolo más o menos fuerte, duro, dúctil
o maleable.
La soldabilidad de un acero está influenciada
principalmente por su contenido de carbono. Además,
la contribución de otros elementos como el
manganeso, cromo, molibdeno, vanadio, cobre, níquel
y silicio dentro de la composición del acero también
tiene un efecto sobre su equivalencia de carbono (CE).
Fabricación del acero
El acero es un metal que se obtiene mediante la aleación (mezcla de uno o más
elementos) de hierro (Fe) y carbono (C) siempre que el porcentaje de carbono
varié entre el 0.035 y 2.14%. A menudo suelen incluirse en la aleación otros
materiales como el cromo (Cr), el níquel (Ni) o el manganeso (Mg) con el fin de
brindarle al material ciertas propiedades en especial, éstos son llamados aceros
aleados. Para conseguir esta aleación se deben introducir los materiales dentro
de un horno a muy altas temperaturas para ser fundidos por el calor y eliminar las
impurezas presentes en el hierro. Después de esto se consigue un material
resistente y maleable, pero con un pequeño inconveniente, al ser un metal como
la mayoría de los metales se oxida y tiende a perder sus cualidades; normalmente
la plata tiende a ponerse negra, el aluminio cambia a blanco, el cobre cambia a
verde y el aluminio tiende a ponerse rojo. En el caso del acero el hierro presente
en el tiende a oxidarse al mezclarse con el oxígeno en el ambiente y crean óxidos
de hierro de un característico color rojo.
Para evitar la oxidación causada por el oxígeno presente en el aire o el agua en el
proceso de aleación se incorpora cromo (Cr) el cual crea una capa protectora
conocida como capa activa, que es la encargada de impedir que el oxígeno
penetre el material. A este tipo de acero se le conoce como acero inoxidable, éste
a su vez es tiene propiedades anticorrosivas, que le permiten ser resistente a la
corrosión causada por los líquidos; para garantizar esta cualidad la mezcla debe
tener como mínimo un 10.5% de cromo.
Las reacciones químicas involucras en la producción de acero por el método
de los convertidores son las siguientes:
2Fe + O2 --------> 2FeO
Si + 2FeO -------> SiO2 + 2Fe
Mn + FeO ------> MnO +Fe
Primero se hace pasar aire por el convertidor para oxidar los residuos de
Silicio y Manganeso formando sus respectivos óxidos,
MnO + SiO2 ------> MnO.SiO2
FeO + SiO2 -------> FeO.SiO2
Ecuaciones químicas que representan las reacciones involucradas en
el proceso de producción del acero
Usos y aplicaciones del acero
Los óxidos se combinan y forman escoria que es fácil de eliminar
C + FeO ------> CO + Fe
Debido a las altas temperaturas, el carbono contenido se comienza a eliminar
formando monóxido de carbono.
Después de esto, para elevar los niveles de carbono al porcentaje que se desea, se
pasa por una fundición especial.
Usos y aplicaciones del acero
Prácticamente la totalidad de los utensilios que
usamos a diario o en la tecnología que nos hacen la
vida más fácil., están hechos de acero, o ha sido el
acero un material fundamental para su realización.
Desde los rodillos que se utilizan para producir el
papel que utilizamos o las maquinas rotativas que
producen los periódicos y revistas que leemos,
pasando por los cubiertos de acero inoxidable que
nos metemos a diario en la boca decenas de veces,
los refuerzos de las vigas de hormigón armado, o
los perfiles de acero de las estructuras de nuestros
edificios, hasta una gran parte de los
aerogeneradores que nos permiten producir
electricidad sin generar CO2, o la mayor parte de la
instalación tecnológica más avanzada que ha
creado el hombre, el gran colisionador de hadrones
(LHC) , cuyos más de 70,000 toneladas de acero,
constituyen la base de la misma, los mismos
teléfonos celulares y dispositivos electrónicos usan
este material para resistir a golpes y caídas.
La gasolina es una mezcla que se hace a
partir de varios hidrocarburos que derivan
directamente del petróleo. Es el
componente principal para los motores
que trabajan por medio de combustión
interna, aunque también tiene otros usos
importantes.
Combustión de la gasolina
Descripción del proceso de obtención de la gasolina
Para obtener combustible, primero se debe encontrar un campo petrolífero. Por lo
general, está atrapado en capas profundas de rocas en depósitos donde el
petróleo está más concentrado en la densidad del agua. Por encima del campo
petrolífero hay gas natural. Los pozos más profundos se perforarán a más de
10.000 metros.
Se extrae el petróleo crudo. Los artículos que no se envían para exportación se
envían a refinerías. A partir de ahí, las clases de hidrocarburos que lo componen
son separados para ser aprovechados.
Para obtener el producto final que es la gasolina, primero se debe calentar el
petróleo. A medida que aumenta la temperatura, los compuestos con menos
átomos de carbono en sus moléculas se vuelven más móviles. Después de eso, el
compuesto líquido se evapora y desaparece.
Todos los procesos se llevan a cabo en una torre de instalación, que es el
corazón de la refinería. Si el crudo está dentro, se calienta a 400ºC. Durante este
proceso, el vapor sube a través de las distintas secciones y el material se
condensa según sus propiedades.
Cada combustible pasa por un proceso de refinación y luego por varios procesos
para elaborar el producto final utilizando aditivos desarrollados por cada
empresa con fines de marketing.
Ventajas Desventajas
• Bajo costo por el beneficio de los
kilómetros de rendimiento
obtenidos por cada litro en autos
de bajo consumo.
• Maquinaria con menor costo
derivado del uso extendido de este
combustible a través del tiempo.
• Utiliza fuentes no renovables de
combustibles.
• Daña el medio ambiente, a través de
los componentes que desprende
durante la combustión.
• Alta flamabilidad, lo que la hace
propensa a accidentes, incendios y
explosiones.
Las ecuaciones químicas que representan la combustión del
octano y el heptano son:
2 C₈H₁₈ +25 O₂ = 16CO₂ + 18H₂O
C₇H₁₆ +11 O₂ = 7CO₂ + 8H₂O
Explicación:
Se tiene que el octano y heptano son compuestos orgánicos representados como:
Octano: C₈H₁₈
Heptano: C₇H₁₆
En el proceso de combustión cada compuesto reacciona en presencia de oxígeno
produciendo dióxido de carbono y agua:
Hidrocarburo + oxígeno= Dióxido de carbono + agua
Por lo tanto, las reacciones son:
• 2 C₈H₁₈ +25 O₂ = 16CO₂ + 18H₂O
• C₇H₁₆ +11 O₂ = 7CO₂ + 8H₂O
Aspectos positivos y negativos del uso de la gasolina como combustible
Conclusión
Este tema se nos hizo muy interesante e importante, ya que
vimos que en una reacción química los cuerpos o sustancias
experimentan transformaciones que alteran su composición
química y por tanto sus propiedades, dando origen a sustancias
nuevas. Las sustancias que experimentan los cambios reciben
el nombre de reactivos y las que se transforman se denominan
productos. La característica fundamental de las reacciones
químicas es que a partir de las sustancias iniciales o reactivos
se forma una o más sustancias nuevas o productos.
Por lo tanto, al realizar esta investigación, pudimos analizar
diferentes procesos en los cuales se lleva a cabo alguna
reacción química para así nosotros podamos hacer uso de ello.
Como en el caso de la fotosíntesis, que es el proceso en el cual
la energía de la luz se convierte en energía química en forma de
azúcares. En un proceso impulsado por la energía de la luz, se
crean moléculas de glucosa (y otros azúcares) a partir de agua y
dióxido de carbono, mientras que se libera oxígeno como
subproducto. O también la respiración que es algo básico en el
ser humano.
Entonces comprendimos que las reacciones químicas también
son importantes para las personas y no solo se usan en la
química al experimentar, si no que son parte de nuestro día a
día.
Bibliografía
Briceño, G., V. (2021, 6 febrero). Gasolina | Qué es, para qué sirve,
tipos, características, ventajas, obtención. Euston96.
https://www.euston96.com/gasolina/
https://www.alacero.org/es/page/el-acero/que-es-el-acero
https://www.ainoxsas.com/como-se-fabrica-el-
acero/#:~:text=El%20acero%20es%20un%20metal%20que%20se%
20obtiene,de%20carbono%20vari%C3%A9%20entre%20el%200.03
5%20y%202.14%25.
http://www.gasolinamx.com/aspectos-positivos-y-negativos-del-uso-
de-la-gasolina
https://www.technemexico.com/el-acero-sus-usos-y-aplicaciones-en-
la-industria/

Más contenido relacionado

La actualidad más candente

La actualidad más candente (19)

Estrés Oxidativo
Estrés OxidativoEstrés Oxidativo
Estrés Oxidativo
 
Exposición de Química (Oxigeno)
Exposición de Química (Oxigeno) Exposición de Química (Oxigeno)
Exposición de Química (Oxigeno)
 
Que es una especie reactiva del oxigeno
Que es una especie reactiva del oxigenoQue es una especie reactiva del oxigeno
Que es una especie reactiva del oxigeno
 
La oxidación
La oxidaciónLa oxidación
La oxidación
 
Unit 2
Unit 2Unit 2
Unit 2
 
Bioelementos
Bioelementos Bioelementos
Bioelementos
 
bioelementos, agua y sales minerales
bioelementos, agua y sales mineralesbioelementos, agua y sales minerales
bioelementos, agua y sales minerales
 
Oxigeno, el elemento indispensable para la vida pero no existe puro en la nat...
Oxigeno, el elemento indispensable para la vida pero no existe puro en la nat...Oxigeno, el elemento indispensable para la vida pero no existe puro en la nat...
Oxigeno, el elemento indispensable para la vida pero no existe puro en la nat...
 
Corrosion duhay
Corrosion duhayCorrosion duhay
Corrosion duhay
 
Los bioelementos
Los bioelementosLos bioelementos
Los bioelementos
 
Bioelementos
BioelementosBioelementos
Bioelementos
 
Quimica de los radicales libres y aplicaciones medicas
Quimica de los radicales libres y aplicaciones medicasQuimica de los radicales libres y aplicaciones medicas
Quimica de los radicales libres y aplicaciones medicas
 
El oxígeno
El oxígenoEl oxígeno
El oxígeno
 
Bioelementos, agua y sales minerales
Bioelementos, agua y sales mineralesBioelementos, agua y sales minerales
Bioelementos, agua y sales minerales
 
Reacciones químicas
Reacciones químicasReacciones químicas
Reacciones químicas
 
Reacciones químicas
Reacciones químicasReacciones químicas
Reacciones químicas
 
El Oxígeno
El OxígenoEl Oxígeno
El Oxígeno
 
Exposicion quimica orgánica sistemas biológicos de oxido reduccion enzimas y ...
Exposicion quimica orgánica sistemas biológicos de oxido reduccion enzimas y ...Exposicion quimica orgánica sistemas biológicos de oxido reduccion enzimas y ...
Exposicion quimica orgánica sistemas biológicos de oxido reduccion enzimas y ...
 
La materia viva
La materia vivaLa materia viva
La materia viva
 

Similar a Fotosíntesis y respiración: procesos vitales

Similar a Fotosíntesis y respiración: procesos vitales (20)

Quimica en la naturaleza
Quimica en la naturalezaQuimica en la naturaleza
Quimica en la naturaleza
 
Reacciones quimicas[1]
Reacciones quimicas[1]Reacciones quimicas[1]
Reacciones quimicas[1]
 
Reacciones químicas
Reacciones químicasReacciones químicas
Reacciones químicas
 
Laura presentacion
Laura presentacionLaura presentacion
Laura presentacion
 
Carlos
CarlosCarlos
Carlos
 
Rafael
RafaelRafael
Rafael
 
ciclo del carbono.pptx
ciclo del carbono.pptxciclo del carbono.pptx
ciclo del carbono.pptx
 
Reacciones quimicas
Reacciones quimicasReacciones quimicas
Reacciones quimicas
 
Reacciones quimicas(2)
Reacciones quimicas(2)Reacciones quimicas(2)
Reacciones quimicas(2)
 
Importancia de las reacciones oxido reducción
Importancia de las reacciones oxido  reducciónImportancia de las reacciones oxido  reducción
Importancia de las reacciones oxido reducción
 
Oxidaciones y reducciones biologicas
Oxidaciones y reducciones biologicasOxidaciones y reducciones biologicas
Oxidaciones y reducciones biologicas
 
ECOLOGIA Y MANEJO DE FAUNA.pptx
ECOLOGIA Y MANEJO DE FAUNA.pptxECOLOGIA Y MANEJO DE FAUNA.pptx
ECOLOGIA Y MANEJO DE FAUNA.pptx
 
EL HIDRÓGENO
EL HIDRÓGENO EL HIDRÓGENO
EL HIDRÓGENO
 
Ciclos biogeoquimicos
Ciclos biogeoquimicosCiclos biogeoquimicos
Ciclos biogeoquimicos
 
Reaaciones quimicas(mixel)
Reaaciones quimicas(mixel)Reaaciones quimicas(mixel)
Reaaciones quimicas(mixel)
 
Diego
DiegoDiego
Diego
 
OXIGENO E HIDROGENO
OXIGENO E HIDROGENOOXIGENO E HIDROGENO
OXIGENO E HIDROGENO
 
Sistema nervioso autónomo
Sistema nervioso autónomoSistema nervioso autónomo
Sistema nervioso autónomo
 
Manuel osso reacciones quimicas(2)
Manuel osso   reacciones quimicas(2)Manuel osso   reacciones quimicas(2)
Manuel osso reacciones quimicas(2)
 
Manuel osso reacciones quimicas
Manuel osso   reacciones quimicasManuel osso   reacciones quimicas
Manuel osso reacciones quimicas
 

Último

Límites derivadas e integrales y análisis matemático.pptx
Límites derivadas e integrales y análisis matemático.pptxLímites derivadas e integrales y análisis matemático.pptx
Límites derivadas e integrales y análisis matemático.pptxErichManriqueCastill
 
enfermedades infecciosas diarrea viral bovina presentacion umss
enfermedades infecciosas diarrea viral bovina presentacion umssenfermedades infecciosas diarrea viral bovina presentacion umss
enfermedades infecciosas diarrea viral bovina presentacion umssCinthyaMercado3
 
BACTERIAS , PARASITOS Y LEVADURAS EN LA ORINA
BACTERIAS , PARASITOS Y LEVADURAS EN LA ORINABACTERIAS , PARASITOS Y LEVADURAS EN LA ORINA
BACTERIAS , PARASITOS Y LEVADURAS EN LA ORINAArletteGabrielaHerna
 
EXAMEN ANDROLOGICO O CAPACIDAD REPRODUCTIVA EN EQUINOS.pptx
EXAMEN ANDROLOGICO O CAPACIDAD REPRODUCTIVA  EN EQUINOS.pptxEXAMEN ANDROLOGICO O CAPACIDAD REPRODUCTIVA  EN EQUINOS.pptx
EXAMEN ANDROLOGICO O CAPACIDAD REPRODUCTIVA EN EQUINOS.pptxJhonFonseca16
 
HISTORIA NATURAL DE LA ENFEREMEDAD: SARAMPION
HISTORIA NATURAL DE LA ENFEREMEDAD: SARAMPIONHISTORIA NATURAL DE LA ENFEREMEDAD: SARAMPION
HISTORIA NATURAL DE LA ENFEREMEDAD: SARAMPIONAleMena14
 
valoracion hemodinamica y respuesta a fluidorerapia
valoracion hemodinamica y respuesta a fluidorerapiavaloracion hemodinamica y respuesta a fluidorerapia
valoracion hemodinamica y respuesta a fluidorerapiaresiutihjaf
 
SESIÓN DE APRENDIZAJE N° 5 SEMANA 7 CYT I BIMESTRE ESTUDIANTES.pdf
SESIÓN DE APRENDIZAJE N° 5  SEMANA 7 CYT  I BIMESTRE ESTUDIANTES.pdfSESIÓN DE APRENDIZAJE N° 5  SEMANA 7 CYT  I BIMESTRE ESTUDIANTES.pdf
SESIÓN DE APRENDIZAJE N° 5 SEMANA 7 CYT I BIMESTRE ESTUDIANTES.pdfkevingblassespinalor
 
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)s.calleja
 
LOS DISTINTOS MUNICIPIO_SALUDABLE DE BOLIVIA
LOS DISTINTOS MUNICIPIO_SALUDABLE DE BOLIVIALOS DISTINTOS MUNICIPIO_SALUDABLE DE BOLIVIA
LOS DISTINTOS MUNICIPIO_SALUDABLE DE BOLIVIALozadaAcuaMonserratt
 
PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...
PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...
PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...ocanajuanpablo0
 
Procedimiento e interpretación de los coprocultivos.pdf
Procedimiento e interpretación de los coprocultivos.pdfProcedimiento e interpretación de los coprocultivos.pdf
Procedimiento e interpretación de los coprocultivos.pdfCarlaLSarita1
 
Piccato, P. - Historia mínima de la violencia en México [2022].pdf
Piccato, P. - Historia mínima de la violencia en México [2022].pdfPiccato, P. - Historia mínima de la violencia en México [2022].pdf
Piccato, P. - Historia mínima de la violencia en México [2022].pdffrank0071
 
tecnica de necropsia en bovinos rum.pptx
tecnica de necropsia en bovinos rum.pptxtecnica de necropsia en bovinos rum.pptx
tecnica de necropsia en bovinos rum.pptxJESUSDANIELYONGOLIVE
 
TEST BETA III: APLICACIÓN E INTERPRETACIÓN.pptx
TEST BETA III: APLICACIÓN E INTERPRETACIÓN.pptxTEST BETA III: APLICACIÓN E INTERPRETACIÓN.pptx
TEST BETA III: APLICACIÓN E INTERPRETACIÓN.pptxXavierCrdenasGarca
 
Sternhell & Sznajder & Asheri. - El nacimiento de la ideología fascista [ocr]...
Sternhell & Sznajder & Asheri. - El nacimiento de la ideología fascista [ocr]...Sternhell & Sznajder & Asheri. - El nacimiento de la ideología fascista [ocr]...
Sternhell & Sznajder & Asheri. - El nacimiento de la ideología fascista [ocr]...frank0071
 
Fowler, Will. - Santa Anna, héroe o villano [2018].pdf
Fowler, Will. - Santa Anna, héroe o villano [2018].pdfFowler, Will. - Santa Anna, héroe o villano [2018].pdf
Fowler, Will. - Santa Anna, héroe o villano [2018].pdffrank0071
 
Centro de masa, centro de gravedad y equilibrio.pptx
Centro de masa, centro de gravedad y equilibrio.pptxCentro de masa, centro de gravedad y equilibrio.pptx
Centro de masa, centro de gravedad y equilibrio.pptxErichManriqueCastill
 
4.-ENLACE-QUÍMICO.-LIBRO-PRINCIPAL (1).pdf
4.-ENLACE-QUÍMICO.-LIBRO-PRINCIPAL (1).pdf4.-ENLACE-QUÍMICO.-LIBRO-PRINCIPAL (1).pdf
4.-ENLACE-QUÍMICO.-LIBRO-PRINCIPAL (1).pdfvguadarramaespinal
 
Generalidades de Morfología y del aparato musculoesquelético.pdf
Generalidades de Morfología y del aparato musculoesquelético.pdfGeneralidades de Morfología y del aparato musculoesquelético.pdf
Generalidades de Morfología y del aparato musculoesquelético.pdfJosefinaRojas27
 
problemas_oscilaciones_amortiguadas.pdf aplicadas a la mecanica
problemas_oscilaciones_amortiguadas.pdf aplicadas a la mecanicaproblemas_oscilaciones_amortiguadas.pdf aplicadas a la mecanica
problemas_oscilaciones_amortiguadas.pdf aplicadas a la mecanicaArturoDavilaObando
 

Último (20)

Límites derivadas e integrales y análisis matemático.pptx
Límites derivadas e integrales y análisis matemático.pptxLímites derivadas e integrales y análisis matemático.pptx
Límites derivadas e integrales y análisis matemático.pptx
 
enfermedades infecciosas diarrea viral bovina presentacion umss
enfermedades infecciosas diarrea viral bovina presentacion umssenfermedades infecciosas diarrea viral bovina presentacion umss
enfermedades infecciosas diarrea viral bovina presentacion umss
 
BACTERIAS , PARASITOS Y LEVADURAS EN LA ORINA
BACTERIAS , PARASITOS Y LEVADURAS EN LA ORINABACTERIAS , PARASITOS Y LEVADURAS EN LA ORINA
BACTERIAS , PARASITOS Y LEVADURAS EN LA ORINA
 
EXAMEN ANDROLOGICO O CAPACIDAD REPRODUCTIVA EN EQUINOS.pptx
EXAMEN ANDROLOGICO O CAPACIDAD REPRODUCTIVA  EN EQUINOS.pptxEXAMEN ANDROLOGICO O CAPACIDAD REPRODUCTIVA  EN EQUINOS.pptx
EXAMEN ANDROLOGICO O CAPACIDAD REPRODUCTIVA EN EQUINOS.pptx
 
HISTORIA NATURAL DE LA ENFEREMEDAD: SARAMPION
HISTORIA NATURAL DE LA ENFEREMEDAD: SARAMPIONHISTORIA NATURAL DE LA ENFEREMEDAD: SARAMPION
HISTORIA NATURAL DE LA ENFEREMEDAD: SARAMPION
 
valoracion hemodinamica y respuesta a fluidorerapia
valoracion hemodinamica y respuesta a fluidorerapiavaloracion hemodinamica y respuesta a fluidorerapia
valoracion hemodinamica y respuesta a fluidorerapia
 
SESIÓN DE APRENDIZAJE N° 5 SEMANA 7 CYT I BIMESTRE ESTUDIANTES.pdf
SESIÓN DE APRENDIZAJE N° 5  SEMANA 7 CYT  I BIMESTRE ESTUDIANTES.pdfSESIÓN DE APRENDIZAJE N° 5  SEMANA 7 CYT  I BIMESTRE ESTUDIANTES.pdf
SESIÓN DE APRENDIZAJE N° 5 SEMANA 7 CYT I BIMESTRE ESTUDIANTES.pdf
 
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
 
LOS DISTINTOS MUNICIPIO_SALUDABLE DE BOLIVIA
LOS DISTINTOS MUNICIPIO_SALUDABLE DE BOLIVIALOS DISTINTOS MUNICIPIO_SALUDABLE DE BOLIVIA
LOS DISTINTOS MUNICIPIO_SALUDABLE DE BOLIVIA
 
PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...
PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...
PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...
 
Procedimiento e interpretación de los coprocultivos.pdf
Procedimiento e interpretación de los coprocultivos.pdfProcedimiento e interpretación de los coprocultivos.pdf
Procedimiento e interpretación de los coprocultivos.pdf
 
Piccato, P. - Historia mínima de la violencia en México [2022].pdf
Piccato, P. - Historia mínima de la violencia en México [2022].pdfPiccato, P. - Historia mínima de la violencia en México [2022].pdf
Piccato, P. - Historia mínima de la violencia en México [2022].pdf
 
tecnica de necropsia en bovinos rum.pptx
tecnica de necropsia en bovinos rum.pptxtecnica de necropsia en bovinos rum.pptx
tecnica de necropsia en bovinos rum.pptx
 
TEST BETA III: APLICACIÓN E INTERPRETACIÓN.pptx
TEST BETA III: APLICACIÓN E INTERPRETACIÓN.pptxTEST BETA III: APLICACIÓN E INTERPRETACIÓN.pptx
TEST BETA III: APLICACIÓN E INTERPRETACIÓN.pptx
 
Sternhell & Sznajder & Asheri. - El nacimiento de la ideología fascista [ocr]...
Sternhell & Sznajder & Asheri. - El nacimiento de la ideología fascista [ocr]...Sternhell & Sznajder & Asheri. - El nacimiento de la ideología fascista [ocr]...
Sternhell & Sznajder & Asheri. - El nacimiento de la ideología fascista [ocr]...
 
Fowler, Will. - Santa Anna, héroe o villano [2018].pdf
Fowler, Will. - Santa Anna, héroe o villano [2018].pdfFowler, Will. - Santa Anna, héroe o villano [2018].pdf
Fowler, Will. - Santa Anna, héroe o villano [2018].pdf
 
Centro de masa, centro de gravedad y equilibrio.pptx
Centro de masa, centro de gravedad y equilibrio.pptxCentro de masa, centro de gravedad y equilibrio.pptx
Centro de masa, centro de gravedad y equilibrio.pptx
 
4.-ENLACE-QUÍMICO.-LIBRO-PRINCIPAL (1).pdf
4.-ENLACE-QUÍMICO.-LIBRO-PRINCIPAL (1).pdf4.-ENLACE-QUÍMICO.-LIBRO-PRINCIPAL (1).pdf
4.-ENLACE-QUÍMICO.-LIBRO-PRINCIPAL (1).pdf
 
Generalidades de Morfología y del aparato musculoesquelético.pdf
Generalidades de Morfología y del aparato musculoesquelético.pdfGeneralidades de Morfología y del aparato musculoesquelético.pdf
Generalidades de Morfología y del aparato musculoesquelético.pdf
 
problemas_oscilaciones_amortiguadas.pdf aplicadas a la mecanica
problemas_oscilaciones_amortiguadas.pdf aplicadas a la mecanicaproblemas_oscilaciones_amortiguadas.pdf aplicadas a la mecanica
problemas_oscilaciones_amortiguadas.pdf aplicadas a la mecanica
 

Fotosíntesis y respiración: procesos vitales

  • 1. Universidad Autónoma de Nuevo León EscuelayPreparatoriatécnicamédica Fenómenos químicos en el entorno Docente: JOEL GERARDO MARTINEZ CUELLAR Etapa1.Reaccionesquímicasysurepresentación (Reporteescrito) Grupo 304 EQUIPO 4 2067907 GARRIDO RAMIREZ ALEXIA 2068704 GONZALEZ CARREON CAMILA 2068093 GUERRA MENDOZA FRIDA YIDALTHY 2068680 HERNANDEZ ZAPIEN ITZEL 2068058 LEAL INFANTE BRENDA DENISSE 2068713 OVALLE RODRIGUEZ SAMANTHA JOANA Bachillerato técnico en enfermería
  • 2. Fotosíntesis y respiración La fotosíntesis es el proceso en el cual la energía de la luz se convierte en energía química en forma de azúcares. En un proceso impulsado por la energía de la luz, se crean moléculas de glucosa (y otros azúcares) a partir de agua y dióxido de carbono, mientras que se libera oxígeno como subproducto. Mediante este proceso se elaboran los alimentos de las plantas. Para realizar la fotosíntesis, las plantas necesitan de la clorofila, que es una sustancia de color verde que tienen en las hojas. Esta es la fuente de la vida para la mayor parte de los seres vivos, debido a que crea energía indispensable para los diferentes procesos vitales, además de producir la mayor parte del oxígeno de la atmosfera. Ecuación química que representa la reacción durante este proceso La ecuación de la fotosíntesis es la siguiente: 6CO2 + 6H20 + (energía) → C6H12O6 + 6O2 Dióxido de carbono + agua + energía de la luz producen glucosa y oxígeno. La ecuación representa el proceso mediante el cual las plantas y algunas bacterias producen glucosa a partir de dióxido de carbono y agua usando la energía de la luz solar. La fotosíntesis se compone de dos etapas, que es la reacción dependiente de la luz y las reacciones independientes de la luz, como se explica en Jones y Jones. La reacción dependiente de la luz usa la energía de la luz solar captada por los cloroplastos en las hojas de la planta para producir una fuente de electrones para las reacciones independientes de la luz. Las reacciones independientes de la luz utilizan la energía de la fuente de los electrones para reducir el dióxido de carbono para producir así la glucosa.
  • 3. La función principal de la respiración celular es la generación de energía en forma de ATP para poder dirigirla a las funciones de la célula. Tanto los animales como las plantas requieren extraer la energía química contenida en las moléculas orgánicas que usan como alimento. En el caso de los vegetales, estas moléculas son los azúcares que la misma planta sintetiza con el uso de la energía solar en el famoso proceso fotosintético. Los animales, por otro lado, no son capaces de sintetizar su propio alimento. La respiración es el proceso celular que permite utilizar la energía almacenada en los carbohidratos utilizando oxígeno. Los productos son el dióxido de carbono, ATP y agua. El ATP se utiliza para las reacciones metabólicas mientras que el CO2 sale de la célula y luego se elimina. Descripción del proceso de respiración Ecuación química que representa la reacción durante la respiración La reacción química global de la respiración es la siguiente: C6 H12 06 + 602→ 6CO2 + 6H2O + energía (ATP). Una molécula de glucosa más seis moléculas de gas de oxígeno se transforman en seis moléculas de dióxido de carbono más seis moléculas de agua. La energía química es liberada por la reacción. La respiración celular es la reacción opuesta a la fotosíntesis, en la que las plantas producen oxígeno y glucosa. Como el oxígeno y el dióxido de carbono se intercambian durante estas dos reacciones, la fotosíntesis y la respiración celular son parte de los procesos que equilibran las concentraciones atmosféricas de estos gases.
  • 4. Importancia de la relación entre la fotosíntesis y la respiración Importancia de la relación entre la fotosíntesis y la respiración La fotosíntesis es el proceso biológico donde la energía solar se usa para transformar el dióxido de carbono y el agua en carbohidratos y oxígeno. La respiración celular es el proceso biológico por el que los carbohidratos y el oxígeno se transforman para producir energía en forma de ATP. En la fotosíntesis se libera oxígeno que luego es utilizado en la respiración. La fotosíntesis y la respiración celular son importantes para la continuidad de la vida porque sin ellas los seres vivos no existiríamos. El mundo estaría lleno de dióxido de carbono y no habría oxígeno en el aire, lo cual es esencial para la vida, esto quiere decir que las plantas por medio de la fotosíntesis se encargan de purificar el aire eliminado de dióxido de carbono, el cual puede ser tóxico para los humanos y animales. En el proceso de fotosíntesis las plantas también generan glucosa su fase oscura, y la glucosa también es importante para nuestro cuerpo, y nosotros podemos absorber o consumirla de las plantas y sus frutos. producción del acero El acero es una aleación de hierro y carbono. La Organización Mundial del Acero define el acero más específicamente como que contiene menos del 2% de carbono y 1% de manganeso y pequeñas cantidades de silicio, fósforo, azufre y oxígeno. Cambiar la cantidad de carbono puede cambiar las propiedades del acero, haciéndolo más o menos fuerte, duro, dúctil o maleable. La soldabilidad de un acero está influenciada principalmente por su contenido de carbono. Además, la contribución de otros elementos como el manganeso, cromo, molibdeno, vanadio, cobre, níquel y silicio dentro de la composición del acero también tiene un efecto sobre su equivalencia de carbono (CE).
  • 5. Fabricación del acero El acero es un metal que se obtiene mediante la aleación (mezcla de uno o más elementos) de hierro (Fe) y carbono (C) siempre que el porcentaje de carbono varié entre el 0.035 y 2.14%. A menudo suelen incluirse en la aleación otros materiales como el cromo (Cr), el níquel (Ni) o el manganeso (Mg) con el fin de brindarle al material ciertas propiedades en especial, éstos son llamados aceros aleados. Para conseguir esta aleación se deben introducir los materiales dentro de un horno a muy altas temperaturas para ser fundidos por el calor y eliminar las impurezas presentes en el hierro. Después de esto se consigue un material resistente y maleable, pero con un pequeño inconveniente, al ser un metal como la mayoría de los metales se oxida y tiende a perder sus cualidades; normalmente la plata tiende a ponerse negra, el aluminio cambia a blanco, el cobre cambia a verde y el aluminio tiende a ponerse rojo. En el caso del acero el hierro presente en el tiende a oxidarse al mezclarse con el oxígeno en el ambiente y crean óxidos de hierro de un característico color rojo. Para evitar la oxidación causada por el oxígeno presente en el aire o el agua en el proceso de aleación se incorpora cromo (Cr) el cual crea una capa protectora conocida como capa activa, que es la encargada de impedir que el oxígeno penetre el material. A este tipo de acero se le conoce como acero inoxidable, éste a su vez es tiene propiedades anticorrosivas, que le permiten ser resistente a la corrosión causada por los líquidos; para garantizar esta cualidad la mezcla debe tener como mínimo un 10.5% de cromo. Las reacciones químicas involucras en la producción de acero por el método de los convertidores son las siguientes: 2Fe + O2 --------> 2FeO Si + 2FeO -------> SiO2 + 2Fe Mn + FeO ------> MnO +Fe Primero se hace pasar aire por el convertidor para oxidar los residuos de Silicio y Manganeso formando sus respectivos óxidos, MnO + SiO2 ------> MnO.SiO2 FeO + SiO2 -------> FeO.SiO2 Ecuaciones químicas que representan las reacciones involucradas en el proceso de producción del acero
  • 6. Usos y aplicaciones del acero Los óxidos se combinan y forman escoria que es fácil de eliminar C + FeO ------> CO + Fe Debido a las altas temperaturas, el carbono contenido se comienza a eliminar formando monóxido de carbono. Después de esto, para elevar los niveles de carbono al porcentaje que se desea, se pasa por una fundición especial. Usos y aplicaciones del acero Prácticamente la totalidad de los utensilios que usamos a diario o en la tecnología que nos hacen la vida más fácil., están hechos de acero, o ha sido el acero un material fundamental para su realización. Desde los rodillos que se utilizan para producir el papel que utilizamos o las maquinas rotativas que producen los periódicos y revistas que leemos, pasando por los cubiertos de acero inoxidable que nos metemos a diario en la boca decenas de veces, los refuerzos de las vigas de hormigón armado, o los perfiles de acero de las estructuras de nuestros edificios, hasta una gran parte de los aerogeneradores que nos permiten producir electricidad sin generar CO2, o la mayor parte de la instalación tecnológica más avanzada que ha creado el hombre, el gran colisionador de hadrones (LHC) , cuyos más de 70,000 toneladas de acero, constituyen la base de la misma, los mismos teléfonos celulares y dispositivos electrónicos usan este material para resistir a golpes y caídas.
  • 7. La gasolina es una mezcla que se hace a partir de varios hidrocarburos que derivan directamente del petróleo. Es el componente principal para los motores que trabajan por medio de combustión interna, aunque también tiene otros usos importantes. Combustión de la gasolina Descripción del proceso de obtención de la gasolina Para obtener combustible, primero se debe encontrar un campo petrolífero. Por lo general, está atrapado en capas profundas de rocas en depósitos donde el petróleo está más concentrado en la densidad del agua. Por encima del campo petrolífero hay gas natural. Los pozos más profundos se perforarán a más de 10.000 metros. Se extrae el petróleo crudo. Los artículos que no se envían para exportación se envían a refinerías. A partir de ahí, las clases de hidrocarburos que lo componen son separados para ser aprovechados. Para obtener el producto final que es la gasolina, primero se debe calentar el petróleo. A medida que aumenta la temperatura, los compuestos con menos átomos de carbono en sus moléculas se vuelven más móviles. Después de eso, el compuesto líquido se evapora y desaparece. Todos los procesos se llevan a cabo en una torre de instalación, que es el corazón de la refinería. Si el crudo está dentro, se calienta a 400ºC. Durante este proceso, el vapor sube a través de las distintas secciones y el material se condensa según sus propiedades. Cada combustible pasa por un proceso de refinación y luego por varios procesos para elaborar el producto final utilizando aditivos desarrollados por cada empresa con fines de marketing.
  • 8. Ventajas Desventajas • Bajo costo por el beneficio de los kilómetros de rendimiento obtenidos por cada litro en autos de bajo consumo. • Maquinaria con menor costo derivado del uso extendido de este combustible a través del tiempo. • Utiliza fuentes no renovables de combustibles. • Daña el medio ambiente, a través de los componentes que desprende durante la combustión. • Alta flamabilidad, lo que la hace propensa a accidentes, incendios y explosiones. Las ecuaciones químicas que representan la combustión del octano y el heptano son: 2 C₈H₁₈ +25 O₂ = 16CO₂ + 18H₂O C₇H₁₆ +11 O₂ = 7CO₂ + 8H₂O Explicación: Se tiene que el octano y heptano son compuestos orgánicos representados como: Octano: C₈H₁₈ Heptano: C₇H₁₆ En el proceso de combustión cada compuesto reacciona en presencia de oxígeno produciendo dióxido de carbono y agua: Hidrocarburo + oxígeno= Dióxido de carbono + agua Por lo tanto, las reacciones son: • 2 C₈H₁₈ +25 O₂ = 16CO₂ + 18H₂O • C₇H₁₆ +11 O₂ = 7CO₂ + 8H₂O Aspectos positivos y negativos del uso de la gasolina como combustible
  • 9. Conclusión Este tema se nos hizo muy interesante e importante, ya que vimos que en una reacción química los cuerpos o sustancias experimentan transformaciones que alteran su composición química y por tanto sus propiedades, dando origen a sustancias nuevas. Las sustancias que experimentan los cambios reciben el nombre de reactivos y las que se transforman se denominan productos. La característica fundamental de las reacciones químicas es que a partir de las sustancias iniciales o reactivos se forma una o más sustancias nuevas o productos. Por lo tanto, al realizar esta investigación, pudimos analizar diferentes procesos en los cuales se lleva a cabo alguna reacción química para así nosotros podamos hacer uso de ello. Como en el caso de la fotosíntesis, que es el proceso en el cual la energía de la luz se convierte en energía química en forma de azúcares. En un proceso impulsado por la energía de la luz, se crean moléculas de glucosa (y otros azúcares) a partir de agua y dióxido de carbono, mientras que se libera oxígeno como subproducto. O también la respiración que es algo básico en el ser humano. Entonces comprendimos que las reacciones químicas también son importantes para las personas y no solo se usan en la química al experimentar, si no que son parte de nuestro día a día.
  • 10. Bibliografía Briceño, G., V. (2021, 6 febrero). Gasolina | Qué es, para qué sirve, tipos, características, ventajas, obtención. Euston96. https://www.euston96.com/gasolina/ https://www.alacero.org/es/page/el-acero/que-es-el-acero https://www.ainoxsas.com/como-se-fabrica-el- acero/#:~:text=El%20acero%20es%20un%20metal%20que%20se% 20obtiene,de%20carbono%20vari%C3%A9%20entre%20el%200.03 5%20y%202.14%25. http://www.gasolinamx.com/aspectos-positivos-y-negativos-del-uso- de-la-gasolina https://www.technemexico.com/el-acero-sus-usos-y-aplicaciones-en- la-industria/