SlideShare una empresa de Scribd logo
1 de 16
Descargar para leer sin conexión
UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 
2014 1 
INDUSTRIA: FÁBRICA DE CEMENTO 
Un químico de la división de desarrollo e investigación de una compañía descubrió que al mezclar dos reactivos en determinada proporción y temperatura elevada, obtiene un producto de un valor mucho mayor que el de los reactivos. La compañía considera la fabricación del producto empleando un proceso basado en dicha reacción. Ahora el asunto se convierte en un problema de ingeniería o de manera más preciso, en cientos de problemas de ingeniería 
Se asume que la compañía es una fábrica de Cemento y el producto que se obtuvo de la mezcla de los dos reactivos es un aditivo que mejora de manera sustancial las propiedades del Cemento. Los dos reactivos se introducen junto con la materia prima (caliza, sílice, alúmina, óxido de hierro) al horno rotario para la sinterización y formación del Clinker. Mediante un método seco. 
1. ¿Qué tipo de reactor debe emplear? ¿Un tubo largo? ¿Un tanque grande? ¿Varios tanques pequeños? ¿Un tubo de ensayo gigantesco? ¿De qué material? ¿Será necesario calentarlo? En caso afirmativo, ¿a qué temperatura y cuánto tiempo? ¿Con un calentador eléctrico en el interior del reactor o fuera de él? ¿Haciendo pasar un fluido caliente a través de un serpentín de calentamiento en el interior del reactor? ¿Calentando los reactivos antes de introducirlos al reactor? ¿Aportará la reacción su propio calor, de manera que sólo se requiera calentamiento en la etapa inicial? Si es así ¿será posible que el reactor se salga de control y que llegue a explotar? ¿Deben aplicarse medidas de control para evitar esto? ¿De qué tipo? 
El reactor es un horno rotatorio horizontal. Debe ser previamente calentado con un pre calentador y trabaja a una temperatura de 1500 °C. Los reactivos deben ser homogenizados juntos con las materias primas en el molino de bolas. Y esa mezcla ingresa al horno rotatorio. 
2. ¿Dónde se obtendrán los reactivos? Será mejor comprarlos o fabricarlos? ¿En qué proporción se alimentarán el reactor? 
Debido a que la cantidad que se utiliza de los reactivos es inferior al de las materias primas, no justifica que sean fabricados por la compañía por lo que deben comprarse. Se alimenta al reactor junto con el resto de materias primas para la producción del Clinker. 
3. ¿Convendrá vender como tal el efluente del reactor, mismo que contiene el producto y los reactivos no consumidos, o será mejor separar el producto de los reactivos y recircular estos últimos? Si es deseable una separación, ¿cómo podría llevarse a cabo? ¿calentando la mezcla y retirando y condensando el vapor, el cual tendrá una mayor concentración de las sustancias volátiles que la mezcla original? ¿Añadiendo otra sustancia que extraiga el producto y sea inmiscible con los reactivos, para después separar ambas fases en forma mecánica? Si todos los materiales del proceso son gases a la temperatura de reacción, ¿se podrá enfriar la mezcla a una temperatura a la cual se condense el producto pero no
UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 
2014 2 
los reactivos, o viceversa? En caso de que sean líquidos, ¿se podrá enfriar la mezcla a una temperatura a la cual cristalice el producto? Si se elige alguna de estas alternativas, ¿qué tipo de equipo se requerirá? ¿De qué dimensiones? ¿Qué material será necesario? ¿Cuáles son los requisitos de calentamiento o enfriamiento? ¿Se necesitan controles para mantener la operación del proceso dentro de límites bien definidos? ¿Qué tipo de controles? ¿Deberán ser manuales o automáticos? 
Debido a las mismas condiciones de trabajo en el horno (temperatura promedio de 1400°C), todos los reactivos se transforman en productos, la calidad de éste, depende principalmente de las características del crudo (reactivos) y a las condiciones de operación. 
4. ¿Cómo se desplazarán las corrientes de reactivos y productos y los equipos de calentamiento, enfriamiento y separación requeridos por el proceso, hasta y desde el reactor? ¿Quizá por gravedad partiendo de una tanque de alimentación elevado? ¿Con bombas, sopladores, compresoras o bandas de transmisión? ¿De qué tipo? ¿Cuáles serán sus dimensiones? ¿Cuál es el material de las tuberías? 
El desplazamiento de los reactivos o materias primas así como del producto será mediante la utilización de fajas transportadoras, de bombas neumáticas tipo Fuller tipo M con diámetro de 350 mm (con capacidad de 600 toneladas métricas por hora de cemento Portland), de ventiladores así como de tuberías de acero. 
5. ¿Se sabe lo suficiente con respecto al sistema de reacción como para responder a todas estas preguntas, o será necesario llevar a cabo estudios de laboratorio adicionales? ¿Qué tipo de estudios? ¿Podrán emplearse de manera directa los datos de laboratorio para diseñar la planta industrial, o será preciso construir una planta piloto más pequeña para probar el diseño? ¿Qué tan pequeña? 
Si se conoce lo suficiente respecto al sistema de reacción, donde la reacción está dada por la siguiente ecuación química: 
CaCO3 + Al2O3 · 2SiO2 · H2O + SiO2  C3S + C2S + C3A + C4AF 
Donde: C3S: 3CaOSiO2 C2S: 2CaOSiO2
UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 
2014 3 
C3A: 3CaOAl2O3 C4AF: 4CaOAl2O3Fe2O3 
No es necesario llevar a cabo estudios de laboratorios adicionales ni construir uma planta piloto más pequeña a fin de probar el diseño. 
6. ¿Qué podría salir mal durante el proceso y que se podría hacer cuando esto ocurra? 
 En el caso de que haya vibraciones en el molino, se realizará inmediatamente acciones correctivas reduciendo la alimentación del molino, consiguiendo un grosor óptimo del lecho. Si se declara inválida la medición de un proceso (por ejemplo, por un fallo en el equipo), el controlador sustituirá automáticamente las mediciones con señales de prioridad secundarias o valores estimados para continuar las operaciones. Esta sustitución provisional de las mediciones también la puede seleccionar manual mente el operador si se extrae un dispositivo manualmente para su mantenimiento. 
 En el caso de atasco en el horno, la aplicación asegura una acción rápida para conseguir una recuperación óptima, reduciendo la alimentación y supervisando el molino hasta que se restauren las condiciones normales. Si se declara inválida la medición de un proceso (por ejemplo, por un fallo en el equipo), el controlador sustituirá automáticamente las mediciones con señales de prioridad secundarias o valores estimados para continuar las operaciones. Esta sustitución provisional de las mediciones también la puede seleccionar manual mente el operador si se extrae un dispositivo manualmente para su mantenimiento. 
 En el caso de problemas como la caída de revestimientos en el horno, se reduce la alimentación y velocidad del horno, a la vez que controla las condiciones del horno para asegurar una recuperación rápida y controlada. Una detención del molino de crudo es otro de los problemas, para ello se debe gestionar los cambios en la presión de los gases cambiando la velocidad de los ventiladores de tiro inducido y EP. 
 Otros ejemplos de problemas gestionados incluyen un alto nivel de salida de CO del precalentador, una acumulación de lecho en el enfriador y una detención del molino de carbón que afecte a la alimentación de carbón al horno. 
7. ¿genera productos de desecho el proceso? ¿En qué cantidades? ¿Son potencialmente dañinos si se liberan al medio sin tratar? En caso afirmativo, ¿Qué daños provocarán? ¿Qué se debe hacer para reducir los riesgos de contaminación? ¿Dar tratamiento químico a los desechos? ¿Se podrán envasar los desechos sólidos y líquidos en contenedores, sellarlos y lanzarlos al mar? ¿Se podrán dispersar los gases en la atmósfera con una chimenea alta? ¿Será posible precipitar los sólidos de los gases por un método electrostático?
UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 
2014 4 
Los principales productos de desecho que caracterizan a esta industria son: 
 Emisiones de NOx, SO2 y partículas, asociadas al funcionamiento del horno de Clinker. Del mismo modo, la descarbonatación de la caliza entrante en el proceso, genera la emisión de CO2, vapor de agua y oxígeno. 
 Adicionalmente, se pueden producir emisiones de CO y COV durante la combustión. La cantidad liberada por el horno dependerá del contenido en materia orgánica del combustible, así como de las condiciones de la combustión. 
 El eventual uso de residuos orgánicos, como combustibles alternativos, podría aportar un riesgo adicional, como es la posible generación de emisiones de dioxinas y furanos, asociadas a la presencia de cloro y compuestos orgánicos durante la combustión. 
 Emisiones de partículas durante las operaciones de manipulación, transporte y almacenamiento de materias primas y combustibles sólidos. 
 Emisiones de metales y sus compuestos, presentes tanto en las materias primas como en los combustibles utilizados en el horno. 
 Residuos procedentes de la depuración de las materias primas durante el proceso de preparación del crudo. 
 Residuos compuestos por las partículas acumuladas en los filtros, que no puedan ser recirculadas. 
 Residuos originados en la instalación como consecuencia del mantenimiento mecánico de los equipos (aceites, filtros, baterías, material contaminado por Hidrocarburos). Igualmente, el mantenimiento eléctrico supone la generación de residuos peligrosos como fluorescentes, baterías, plásticos, ó material contaminado con PCB's. 
 Contaminación de aguas pluviales por arrastre de los combustibles (carbón, coque), y ciertos aditivos, normalmente acumulados en acopios exteriores ubicados a la intemperie. 
En el siguiente cuadro se detalla el volumen aproximado de los residuos sólidos generados:
UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 
2014 5 
Unidad operativa Origen del efluente m3 descargados m3 descargados m3 descargados Cementos Pacasmayo Proceso de enfriamiento de equipos 406,450 381,950 502,020 Cementos Selva Proceso industrial 96,000 91,000 285,490.6 
El polvo, especialmente la sílice libre, constituye un riesgo importante para la salud de los empleados de la planta cuya exposición provoca la silicosis. Algunos de los impactos mencionados pueden ser evitados completamente, o atenuados más exitosamente, si se escoge el sitio de la planta con cuidado. 
Las emisiones liberadas a la atmósfera, son el principal riesgo de la industria cementera. 
SOLUCIÓN AL PROBLEMA: El coprocesado en la producción de cemento es una forma óptima de recuperación de la energía y la materia de los residuos. Ofrece una solución sólida y segura para la sociedad, el medio ambiente y la industria cementera, sustituyendo los recursos no renovables por residuos bajo estrictas medidas de control. 
La utilización de residuos como combustibles alternativos, también llamada coprocesado, disminuye la dependencia energética de los combustibles fósiles o tradicionales y, al mismo tiempo, reduce las emisiones. Por otra parte, su uso como materias primas alternativas tiene un gran número de beneficios, entre los que podemos destacar la menor necesidad de explotación de las canteras y una mejora en la huella medioambiental de tales actividades. La sustitución del Clinker en la producción del cemento es otro ejemplo de la contribución positiva del sector a la gestión de los recursos. 
El uso de materiales alternativos en la industria cementera reduce las emisiones globales de CO2 y no tiene un impacto negativo en el proceso de producción, ni en las emisiones o la calidad técnica del producto final.
UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 
2014 6 
Además, el coprocesado en la industria cementera se realiza de una manera fiable sin que afecte a la seguridad y salud de sus trabajadores y vecinos. 
El coprocesado de residuos en la industria cementera facilita la posibilidad de alcanzar un máximo de sustitución de materiales no renovables. Los tipos de residuos que pueden usarse en una planta cementera varían en función de cada instalación. 
Como regla básica, los residuos aceptados como combustible y/o materia prima alternativa deben aportar un valor añadido al horno de cemento en términos de poder calorífico de la parte orgánica y/o valor material de la parte mineral. Algunos combustibles alternativos cumplirán a la vez ambos requisitos, haciendo difícil formular un criterio general en relación a los materiales que son coprocesador en la industria cementera. Según las características del proceso de producción, la industria cementera puede coprocesar: 
 Combustibles alternativos que tengan un importante poder calorífico (por ejemplo: aceites usados). 
 Materias primas alternativas que contengan componentes minerales adecuados para la producción de Clinker o cemento (por ejemplo: suelos contaminados). 
 Materiales que aporten poder calorífico y proporcionen, al mismo tiempo, componentes minerales (por ejemplo: lodos de la industria papelera y neumáticos usados).
UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 
2014 7
UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 
2014 8 
La fabricación de cemento incluye el transporte de materiales polvorientos o pulverizados desde la cantera de piedra caliza, hasta el embarque del producto terminado para envío. Las partículas son la causa más importante del impacto ambiental negativo. Los precipitadores electrostáticos, o los filtros de bolsa, constituyen un requerimiento rutinario para controlar las emisiones de partículas de los hornos. El control del polvo que resulta del transporte de los materiales es uno de los desafíos más difíciles; las bandas transportadoras, pilas de acopio, y caminos de la planta, pueden ser causas más importantes de degradación de la calidad del aire, que las emisiones del molino y el horno. Se deben emplear recolectores mecánicos de polvo donde sea práctico, por ejemplo, en los trituradores, transportadores y el sistema de carga. En la mayoría de los casos, el polvo recolectado puede ser reciclado, reduciendo el costo y disminuyendo la producción de desechos sólidos. Se puede mantener limpios los camiones de la planta con aspiradoras y/o rociadores, a fin de eliminar el polvo atmosférico causado por el tráfico y el viento. Deben ser cubiertas las pilas de acopio tanto como sea posible. Los camiones que transportan materiales a la planta y fuera de ésta deben tener carpas y límites de velocidad. 
Control de emisiones de NOx 
 Instalación de un quemador de bajo NOx, en este tipo de equipos es menor la cantidad de aire requerido para la combustión, y por tanto se genera una atmósfera con menor contenido en oxígeno. 
 Combustión por etapas, mediante un sistema de ciclones y precalcinador. 
 Reducción no catalítica-selectiva, esta técnica utiliza amoníaco o sustancias similares, como reductor, a fin de transformar los óxidos de nitrógeno en nitrógeno atmosférico. Esta técnica tiene asociado el riesgo de emisiones o derrames de los productos utilizados para la reducción de los óxidos de nitrógeno. Actualmente esta técnica se encuentra en fase de desarrollo. 
Control de emisiones de SOx 
La concentración de oxígeno en el horno, es un parámetro crítico en las emisiones de óxidos de azufre. Al contrario de lo ocurrido con los óxidos de nitrógeno (NOx), una atmósfera oxidante favorece la minimización
UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 
2014 9 
de emisiones de éstos compuestos. La adición de absorbente en hornos de vía seca, es una medida adicional para el control de emisiones de SOx. 
El material absorbente (cal viva, cal apagada ó cenizas volantes con alto contenido de cal) es inyectado al gas de salida del horno, o bien se añade cal al crudo entrante en el precalentador. Este procedimiento es muy costoso, por lo que sólo será recomendable en el caso de ser insuficiente la implantación de medidas primarias para el control de SO 2 , como la disminución de la temperatura de llama, el aumento de contenido en O 2 y el control de la estabilidad en el funcionamiento del horno. 
Control Emisiones de fuentes difusas 
 Cerramiento total o parcial de las instalaciones que alberguen acopios de sustancias pulverulentas. 
 Sistemas de inyección de agua y supresores químicos de polvo en los acopios de material almacenado. 
 Construcción de barreras que reduzcan la acción del viento sobre zonas de manipulación de materiales. 
 Sistemas fijos o móviles, de aspiración y desempolvamiento de instalaciones de carga de cemento a granel. 
 Ventilación y recogida de partículas en filtros de mangas. 
 Almacenamiento del cemento en silos, con sistema de manipulación automática. Éstos equipos, disponen de filtros, en los que quedan retenidas las partículas liberadas en operaciones de carga y descarga. 
 Precipitadores electrostáticos: estos captadores generan un campo electrostático que carga las partículas positivamente. Éstas, son atraídas y retenidas por las placas que se sitúan dentro del precipitador, con carga negativa. La limpieza periódica de las placas es necesaria para asegurar el buen funcionamiento del equipo. Para mantener la eficacia del precipitador, es conveniente evitar las subidas bruscas en la concentración de CO. 
8. ¿Qué partes del proceso podrán automatizarse y cómo se hará la automatización? 
La automatización permitirá a la empresa una operación más veloz y estable del transporte del producto, así como registrar, vigilar y monitorear de una manera rápida, en tiempo real e histórico los parámetros principales del proceso.
UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 
2014 10 
El control avanzado de procesos asegura un mejor funcionamiento de las plantas de cemento, incrementando la estabilidad y aumentando su rentabilidad. 
Beneficios directos 
 Hasta un 8% más de producción. 
 Hasta un 6% menos de consumo de combustible/energía. 
 Hasta un 30% menos de desviación estándar de la calidad. 
 Recuperación de la inversión en menos de un año (dependiendo de las aplicaciones específicas). 
Beneficios indirectos 
 Estabilidad a largo plazo. 
 Menos desgaste de los equipos. 
 Menos tiempo de parada. 
 Menos costes de mantenimiento 
Con un control avanzado de los procesos y optimización de la planta de cemento se consigue la máxima eficiencia y una mayor rentabilidad. Con la estabilización de la planta, se optimiza la producción, gestiona y corrige las interrupciones en el proceso y reduce al mínimo el desgaste de los equipos de la planta, todo con el fin de asegurar un rendimiento óptimo de la planta. Mejorando la disponibilidad y utilización de los equipos, el sistema ayuda a reducir los costes operativos y de mantenimiento. Con el uso de una caja de herramientas sofisticada y módulos de aplicación especializados, se realizará continuamente complejos análisis de las condiciones de los procesos de una planta. Eso permite realizar ajustes en el proceso con más frecuencia y fiabilidad de lo que lo haría solo el operador humano. Si se instala en un ordenador estándar, el sistema cuenta con una interfaz gráfica fácil de interpretar y capacidades de tendencia y alarma avanzadas fáciles de usar y utilizar, y es compatible con la mayoría de sistemas de control de plantas. 
Aplicación en horno y enfriador 
Un horno y enfriador inestables llevan a una producción no eficiente y a una calidad del Clinker inconsistente. Estabilizar el horno y el enfriador utilizando un control avanzado de procesos, que incrementa la producción, reduce los bloqueos de los ciclones y las formaciones en el anillo del horno a la vez que ofrece una calidad consistente de clínker. 
Ventajas 
 Incremento de hasta un 4% en la producción.
UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 
2014 11 
 Menos bloqueos de los ciclones y formaciones en el anillo del horno. 
 Calidad consistente con una reducción en la desviación estándar de hasta el 30%. 
 Funcionamiento más estable. 
Retos de control: Controlar un horno de cemento siempre ha sido una tarea difícil para los operadores de las plantas de cemento. Hoy en día no solo está bien tener un sistema de control de cocción basado en ordenador, es una necesidad práctica. Tanto la complejidad inherente del proceso de cocción como las consecuencias de largo alcance del clínker que no cumple las especificaciones, las malas condiciones de funcionamiento y las paradas de la producción hacen que un sistema de control automatizado sea indispensable. El control de procesos del horno se divide en tres estrategias: normal, optimización y control de problemas: 
a) Control normal 
En el control normal se estabiliza el proceso. La estabilización es un requisito previo para el control de optimización y un elemento clave, por lo tanto, para la estrategia de control general. La estrategia de control normal estabiliza el precalentador, el horno y el enfriador con una serie de índices de rendimiento clave calculados. Estos índices incluyen el Índice de temperatura en la zona de quemado, el Índice de estabilidad en el funcionamiento del horno y el Índice de consumo de calor del horno. 
Entre las acciones de corrección se suelen incluir una combinación de cambios en la inyección del combustible, la alimentación del horno y la velocidad, así como en la velocidad del ventilador. El resultado es un control estable de la temperatura en el calcinador, un grado de llenado estable en el horno, un funcionamiento del enfriador estable y una calidad de clínker consistente. 
b) Control de optimización 
Una vez el proceso se ha estabilizado, se optimiza el proceso operando lo más cerca posible de los límites. En el control de optimización, se mantiene la cantidad de cal libre cerca del objetivo permitiendo incrementar ese objetivo. 
Además, se controla el factor de saturación de la cal (LSF) en la alimentación del horno y ajusta automáticamente el objetivo de cal libre para evitar un quemado excesivo del clínker. Se asegura consecuentemente un menor consumo de combustible y reduce al mínimo el riesgo de obtener un clínker que no cumple las especificaciones. El horno y el enfriador pueden optimizarse aún más con una aplicación de ampliación para múltiples combustibles. 
c) Problemas y control personalizado 
En el caso de problemas como la caída de revestimientos en el horno, se reduce la alimentación y velocidad del horno, a la vez que controla las condiciones del horno para asegurar una recuperación rápida y controlada. 
Una detención del molino de crudo es otro de los problemas, para ello se debe gestionar los cambios en la presión de los gases cambiando la velocidad de los ventiladores de tiro inducido y EP. 
Otros ejemplos de problemas gestionados incluyen un alto nivel de salida de CO del precalentador, una acumulación de lecho en el enfriador y una detención del molino de carbón que afecte a la alimentación de carbón al horno. 
Parámetros controlados 
 Alimentación, velocidad y combustible del horno. 
 Combustible del calcinador. 
 Velocidad del ventilador de tiro inducido.
UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 
2014 12 
 Parrilla del enfriador y velocidad de los ventiladores. 
Parámetros supervisados 
 Mediciones del analizador de gases de la entrada del horno. 
 Temperaturas y presión del horno. 
 Par del horno. 
 Presión y temperaturas del enfriador. 
9. ¿Cuánto costará todo esto? ¿A qué precio podrá venderse el producto, y a quién? ¿Qué utilidades dejara el proceso cada año? ¿Vale la pena llevarlo a cabo? Si es así, ¿dónde convendría construir la planta? 
Con la estabilización, el horno y el enfriador, utilizando un control avanzado de procesos, implementar esto en la planta de producción de cementó no será muy costoso, ya que a la ves también reduce las emisiones que se producen en la planta. 
Para poder proceder de manera realista en este aspecto de precios, es necesario primero hacer un recuento de las clases y tipos de cementos que efectivamente se producen, o pueden producirse, En este caso se producirá el cemento portland tipo I, incluyendo sus respectivas características, usos indicados y normas aplicables.
UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 
2014 13 
Se venderá a 20 soles la bolsa de 42.5 kg de cemento Tipo I, Y Se venderá a la industria de la construcción que se dediquen a la Construcción general como: pavimento, puentes, trabajos de mampostería, edificios de concreto reforzado, columnas y placas. Etc. 
Utilidades que dejara el proceso cada año: 
 Se producirán 200,266 TM / año (supuesto). 
 El ingreso por ventas seria: 200,266 TM*(1000Kg/TM)*20 soles/42.5kg = 94, 242,823.5 millones. 
 Costo de inversión: 36, 801,266.7 millones. 
 Utilidad neta: 94, 242,823.5 - 36, 801,266.7 = s/. 57, 441,556.8 millones/ año 
Si vale la pena llevarla a cabo, y se construirá en lugares que permiten una racional distribución del producto, de manera que los costos de transporte no gravan exageradamente al usuario. 
Las fábricas de cemento comprenden dentro de un radio de 300 km. a las más importantes colectividades urbanas y rurales de un país permitiendo el transporte eficiente, es recomendable que se ubiquen cerca a los valles 
10. Una vez construida la planta, ¿qué procedimiento deberá seguir para el arranque de la misma? 
Como la planta será automatizado Para el arranque requieren de la colaboración entre los diversos departamentos de una empresa (gestión, logística, automatización, distribución, etc.). En esta sección se enfoca el problema en concreto en la parte de automatización, desde el punto de vista del trabajo que debe realizar el ingeniero/ingeniera técnica. El marco metodológico consta de las fases siguientes, que el operario debe realizar: 
 Automatización 
 Supervisión 
 Interacción 
 Implementación 
 Pruebas
UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 
2014 14 
11. Trascurrido seis meses del arranque de la planta, ¿porque el producto no es igual al que se construía en el laboratorio? ¿Es una falla del equipo, o se modificaron las condiciones en alguna parte entre el proceso de laboratorio y el industrial? ¿Cómo investigarlo? ¿Cómo se puede corregir el problema? ¿Será necesario detener la operación para hacer las modificaciones? 
No es igual, porque a nivel de laboratorio se producía en cantidades pequeñas y a nivel industrial la cantidad varia y son muy grandes, también puede ser que haya habido algún cambio en el proceso, o que haya una falla en algún equipo, se tiene que hacer una revisión técnica tanto en el proceso como en la maquinaria. Para investigar cual es la causa se debe aplicar un Programa de Detección y Análisis de Fallas. 
El programa de Detección analítica de Fallas DAF, proporciona las habilidades y destrezas para la solución y prevención de problemas en ambientes productivos, acompañando los esfuerzos de mejoramiento continuo. 
Beneficios: 
 Reducción del tiempo de reparación. 
 Minimización de tiempo de preparación y arranque de equipos. 
 Disminución de fallas repetitivas. 
 Aumento en la disponibilidad de equipos. 
 Reducción de retrabajos y desperdicio. 
 Reducción en la frecuencia de fallas. 
 Mejora del mantenimiento preventivo. 
 Reducción de costos por fallas de calidad. 
 Mayor eficiencia en el trabajo en equipo. 
Para corregir el problema se debe identificar las causas de las fallas, para luego corregirlas. Causas comunes de falla (la lista no es exhaustiva): 
 Mal uso o abuso de los equipos. 
 Errores de montaje. 
 Errores de fabricación. 
 Mantenimiento inadecuado.
UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 
2014 15 
 Errores de Diseño. 
 Material inadecuado. 
 Tratamientos térmicos incorrectos. 
 Condiciones no previstas de operación. 
 Inadecuado control o protección ambiental. 
 Defectos de soldadura. 
 Defectos de forja. 
No es necesario detener el proceso de operación ya que el sistema de transporte de cemento está diseñado para operar de forma continua, evitando paradas innecesarias de proceso por alguna posible falla de cualquier equipo involucrado, ya que el mismo cuenta con alarmas que anuncian la alerta directa proveniente de alguna variable de campo permitiendo reconocer rápidamente la alarma generada y así continuar con el proceso si la misma no reviste mayor atención. 
12. El hecho de que se hayan producido tres explosiones y cuatro incendios en un lapso de seis meses en el reactor, ¿es significativo de una serie de coincidencias? En cualquier caso, ¿cómo evitar que vuelva a 
ocurrir? 
No son incidencias ya que la ocurrencia de estos acontecimientos es muy seguida, de inmediato se debe instalar un sistema de seguridad y salud en el trabajo, evaluando todos los peligros potenciales para poder eliminarlos y evitar la ocurrencia de riesgos como los que ya han sucedido. 
13. Diversas cosas salen mal en la operación de proceso, ¿por qué no se tuvieron en cuenta en la lista de 
problemas? ¿Qué se puede hacer al respecto? 
Realizar una evaluación total de todo el sistema (procesos y procedimientos), identificar todas las falencias, registrarlas y realizar medidas correctivas y preventivas para solucionar los problemas y evitar que vuelvan a ocurrir. 
14. Cuando el proceso por fin comienza a funcionar a la perfección, se recibe la orden de modificar las especificaciones del producto, ¿cómo podrá hacerse esto sin rediseñar todo el proceso? ¿Por qué no se 
pensó en esto antes de construir la planta? 
Evaluar a qué procesos y procedimientos afectan los nuevos requerimientos del producto, y si existe la necesidad de cambiar o mejorarlos, realizar un análisis económico para estimar el efecto en la economía de la empresa resultado de realizar dichos cambios para finalmente ejecutarlos. 
Porque la planta inicialmente se construyó teniendo otras especificaciones del producto, sin embargo se debe tener siempre en cuenta que las preferencias del mercado son muy variables por lo que el diseño de la planta debe acogerse a estos cambios.
UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 
2014 16 
REFERENCIAS  Libro de Consulta para Evaluación Ambiental (Volumen I; II y III). Trabajos Técnicos del Departamento de Medio Ambiente del Banco Mundial.  Tompkins, J.A., White, J.A., Bozer, Y.A. y Tanchoco, J.M.A. “Planeación de instalaciones”. Editorial Thomson, Tercera Edición, 2006.  Libro: Ingeniería de la Automatización Industrial, Ramón Piedrahita Moreno, 2000.  Catálogo: Bero Sensores para la automatización, 2002.  Manual: IBAU HAMBURG, Flow Control Gate Manual, Febrero 2000.  Manual: Wonderware Factory Suite, Protocols Guide, Noviembre 2002.  Manual: Wonderware Factory Suite, InTouch New Features User`s Guide, Abril 2004.

Más contenido relacionado

La actualidad más candente

Intercambiadores de calor sin cambio de fase
Intercambiadores de calor sin cambio de fase Intercambiadores de calor sin cambio de fase
Intercambiadores de calor sin cambio de fase Vicente Costa Segovia
 
Absorcion de gases 1
Absorcion de gases 1Absorcion de gases 1
Absorcion de gases 1lilyzzz
 
TRANSFERENCIA DE CALOR POR CONDUCCIÓN-CONDUCCIÓN LINEAL EN MULTIPLES CAPAS
TRANSFERENCIA DE CALOR POR CONDUCCIÓN-CONDUCCIÓN LINEAL EN MULTIPLES CAPASTRANSFERENCIA DE CALOR POR CONDUCCIÓN-CONDUCCIÓN LINEAL EN MULTIPLES CAPAS
TRANSFERENCIA DE CALOR POR CONDUCCIÓN-CONDUCCIÓN LINEAL EN MULTIPLES CAPASEdisson Paguatian
 
Tipos y equipos de evaporadores
Tipos y equipos de evaporadoresTipos y equipos de evaporadores
Tipos y equipos de evaporadoresKarina Chavez
 
Evaluación de Parámetros operacionales en sistemas de resinas de intercambio ...
Evaluación de Parámetros operacionales en sistemas de resinas de intercambio ...Evaluación de Parámetros operacionales en sistemas de resinas de intercambio ...
Evaluación de Parámetros operacionales en sistemas de resinas de intercambio ...Fondo Verde Internacional
 
Problemas desarrollados de balance de m y e
Problemas desarrollados de  balance de  m y eProblemas desarrollados de  balance de  m y e
Problemas desarrollados de balance de m y eHaydee Melo Javier
 
Transporte de fluidos "Tuberia"
Transporte de fluidos "Tuberia"Transporte de fluidos "Tuberia"
Transporte de fluidos "Tuberia"RobnelvicZabala
 
Sistemas de vapor - Distribución en lineas de vapor
Sistemas de vapor - Distribución en lineas de vaporSistemas de vapor - Distribución en lineas de vapor
Sistemas de vapor - Distribución en lineas de vaporAlexis Huamani Uriarte
 
Polimerización por suspensión
Polimerización por suspensiónPolimerización por suspensión
Polimerización por suspensiónch1l0
 
Presentación sobre evaporadores
Presentación sobre evaporadoresPresentación sobre evaporadores
Presentación sobre evaporadoresDaniel Santamaria
 
Problemas fluidos final
Problemas fluidos finalProblemas fluidos final
Problemas fluidos finalOswaldo Farro
 
Aplicación ecuaciones diferenciales de bernoulli
Aplicación ecuaciones diferenciales de bernoulliAplicación ecuaciones diferenciales de bernoulli
Aplicación ecuaciones diferenciales de bernoulliMayi Punk
 
Definicon de operaciones unitarias
Definicon de operaciones unitariasDefinicon de operaciones unitarias
Definicon de operaciones unitariasBelen Chiluisa
 

La actualidad más candente (20)

Intercambiadores de calor sin cambio de fase
Intercambiadores de calor sin cambio de fase Intercambiadores de calor sin cambio de fase
Intercambiadores de calor sin cambio de fase
 
2 ejercicios psicrometria
2 ejercicios psicrometria2 ejercicios psicrometria
2 ejercicios psicrometria
 
Guia de ti no 5
Guia de ti no 5Guia de ti no 5
Guia de ti no 5
 
Ciclo de Refrigeracion
Ciclo de RefrigeracionCiclo de Refrigeracion
Ciclo de Refrigeracion
 
Absorcion de gases 1
Absorcion de gases 1Absorcion de gases 1
Absorcion de gases 1
 
TRANSFERENCIA DE CALOR POR CONDUCCIÓN-CONDUCCIÓN LINEAL EN MULTIPLES CAPAS
TRANSFERENCIA DE CALOR POR CONDUCCIÓN-CONDUCCIÓN LINEAL EN MULTIPLES CAPASTRANSFERENCIA DE CALOR POR CONDUCCIÓN-CONDUCCIÓN LINEAL EN MULTIPLES CAPAS
TRANSFERENCIA DE CALOR POR CONDUCCIÓN-CONDUCCIÓN LINEAL EN MULTIPLES CAPAS
 
Tipos y equipos de evaporadores
Tipos y equipos de evaporadoresTipos y equipos de evaporadores
Tipos y equipos de evaporadores
 
Bombas rotatorias
Bombas rotatoriasBombas rotatorias
Bombas rotatorias
 
Evaluación de Parámetros operacionales en sistemas de resinas de intercambio ...
Evaluación de Parámetros operacionales en sistemas de resinas de intercambio ...Evaluación de Parámetros operacionales en sistemas de resinas de intercambio ...
Evaluación de Parámetros operacionales en sistemas de resinas de intercambio ...
 
Problemas desarrollados de balance de m y e
Problemas desarrollados de  balance de  m y eProblemas desarrollados de  balance de  m y e
Problemas desarrollados de balance de m y e
 
Transporte de fluidos "Tuberia"
Transporte de fluidos "Tuberia"Transporte de fluidos "Tuberia"
Transporte de fluidos "Tuberia"
 
Compresores
CompresoresCompresores
Compresores
 
Mezcla aire vapor de agua
Mezcla aire vapor de aguaMezcla aire vapor de agua
Mezcla aire vapor de agua
 
Sistemas de vapor - Distribución en lineas de vapor
Sistemas de vapor - Distribución en lineas de vaporSistemas de vapor - Distribución en lineas de vapor
Sistemas de vapor - Distribución en lineas de vapor
 
Polimerización por suspensión
Polimerización por suspensiónPolimerización por suspensión
Polimerización por suspensión
 
Presentación sobre evaporadores
Presentación sobre evaporadoresPresentación sobre evaporadores
Presentación sobre evaporadores
 
Problemas fluidos final
Problemas fluidos finalProblemas fluidos final
Problemas fluidos final
 
Aplicación ecuaciones diferenciales de bernoulli
Aplicación ecuaciones diferenciales de bernoulliAplicación ecuaciones diferenciales de bernoulli
Aplicación ecuaciones diferenciales de bernoulli
 
Definicon de operaciones unitarias
Definicon de operaciones unitariasDefinicon de operaciones unitarias
Definicon de operaciones unitarias
 
Balance de Materia y Energia - Ing. Quimica
Balance de Materia y Energia - Ing. Quimica Balance de Materia y Energia - Ing. Quimica
Balance de Materia y Energia - Ing. Quimica
 

Destacado

Analisis Industria Cemento Chilena
Analisis Industria Cemento ChilenaAnalisis Industria Cemento Chilena
Analisis Industria Cemento Chilenajpverar
 
Presentacion dhtic
Presentacion dhticPresentacion dhtic
Presentacion dhticblack_zayko
 
La industria y sus tipos
La industria y sus tipos La industria y sus tipos
La industria y sus tipos Ledy Cabrera
 
Funcionamiento De Una Empresa Productora De Cemento Y Nuevos Materiales De Co...
Funcionamiento De Una Empresa Productora De Cemento Y Nuevos Materiales De Co...Funcionamiento De Una Empresa Productora De Cemento Y Nuevos Materiales De Co...
Funcionamiento De Una Empresa Productora De Cemento Y Nuevos Materiales De Co...Javiz Chama
 
Conceptos de intercambio térmico y másico
Conceptos de intercambio térmico y másicoConceptos de intercambio térmico y másico
Conceptos de intercambio térmico y másicoingmecandres
 
Industria manufacturera
Industria manufactureraIndustria manufacturera
Industria manufacturerabizelt02
 
Industrias siderúrgicas
Industrias siderúrgicasIndustrias siderúrgicas
Industrias siderúrgicasTatianaValencia
 
Industria pesada en venezuela
Industria pesada en venezuelaIndustria pesada en venezuela
Industria pesada en venezuelabriansandreaa
 
Sena
SenaSena
Senajhoan
 
Industrias pesadas fh
Industrias pesadas fhIndustrias pesadas fh
Industrias pesadas fhfarukelh
 

Destacado (20)

Fabricas de cemento en el peru
Fabricas de cemento en el peruFabricas de cemento en el peru
Fabricas de cemento en el peru
 
Analisis Industria Cemento Chilena
Analisis Industria Cemento ChilenaAnalisis Industria Cemento Chilena
Analisis Industria Cemento Chilena
 
Presentacion dhtic
Presentacion dhticPresentacion dhtic
Presentacion dhtic
 
Leccion20.cementos.horno rotatorio
Leccion20.cementos.horno rotatorioLeccion20.cementos.horno rotatorio
Leccion20.cementos.horno rotatorio
 
El Cemento
El CementoEl Cemento
El Cemento
 
La industria y sus tipos
La industria y sus tipos La industria y sus tipos
La industria y sus tipos
 
Funcionamiento De Una Empresa Productora De Cemento Y Nuevos Materiales De Co...
Funcionamiento De Una Empresa Productora De Cemento Y Nuevos Materiales De Co...Funcionamiento De Una Empresa Productora De Cemento Y Nuevos Materiales De Co...
Funcionamiento De Una Empresa Productora De Cemento Y Nuevos Materiales De Co...
 
Cementos
CementosCementos
Cementos
 
Conceptos de intercambio térmico y másico
Conceptos de intercambio térmico y másicoConceptos de intercambio térmico y másico
Conceptos de intercambio térmico y másico
 
Diseño de planta de cal
Diseño de planta de calDiseño de planta de cal
Diseño de planta de cal
 
Industria manufacturera
Industria manufactureraIndustria manufacturera
Industria manufacturera
 
Industrias siderúrgicas
Industrias siderúrgicasIndustrias siderúrgicas
Industrias siderúrgicas
 
Industria pesada en venezuela
Industria pesada en venezuelaIndustria pesada en venezuela
Industria pesada en venezuela
 
Curtiembre
CurtiembreCurtiembre
Curtiembre
 
Cobre oxidado
Cobre oxidadoCobre oxidado
Cobre oxidado
 
Sena
SenaSena
Sena
 
El cobre
El cobreEl cobre
El cobre
 
Industrias pesadas fh
Industrias pesadas fhIndustrias pesadas fh
Industrias pesadas fh
 
Curtiembres
Curtiembres Curtiembres
Curtiembres
 
El cobre
El cobreEl cobre
El cobre
 

Similar a INDUSTRIA: FÁBRICA DE CEMENTO

Alternativas tratamiento de residuos hospitalarios
Alternativas tratamiento de residuos hospitalariosAlternativas tratamiento de residuos hospitalarios
Alternativas tratamiento de residuos hospitalariosFrank Celis
 
Uso obligatorio de lentes de seguridad
Uso obligatorio de lentes de seguridadUso obligatorio de lentes de seguridad
Uso obligatorio de lentes de seguridadEscuela de TA UCR
 
Almacenaje fluidos en plantas de procesos
Almacenaje fluidos en plantas de procesosAlmacenaje fluidos en plantas de procesos
Almacenaje fluidos en plantas de procesosCarlos Alderetes
 
Planta de chatarra
Planta de chatarraPlanta de chatarra
Planta de chatarrajavi6725
 
evaluación, entrenamiento, física,matemática, math, química, ingeniería, habi...
evaluación, entrenamiento, física,matemática, math, química, ingeniería, habi...evaluación, entrenamiento, física,matemática, math, química, ingeniería, habi...
evaluación, entrenamiento, física,matemática, math, química, ingeniería, habi...Maxwell Altamirano
 
máquinas, mecanismos, filtros, clarificación, jugo, sacarato, ajuste, calidad
máquinas, mecanismos, filtros, clarificación, jugo, sacarato, ajuste, calidadmáquinas, mecanismos, filtros, clarificación, jugo, sacarato, ajuste, calidad
máquinas, mecanismos, filtros, clarificación, jugo, sacarato, ajuste, calidadMaxwell Altamirano
 
cálculo, matemática, balance, soldadura, trazado,carburo de silicio, cono, in...
cálculo, matemática, balance, soldadura, trazado,carburo de silicio, cono, in...cálculo, matemática, balance, soldadura, trazado,carburo de silicio, cono, in...
cálculo, matemática, balance, soldadura, trazado,carburo de silicio, cono, in...Maxwell Altamirano
 
jugo, azúcar, meladura, melaza, evaporador, reactor, farmacia, laboratorio, b...
jugo, azúcar, meladura, melaza, evaporador, reactor, farmacia, laboratorio, b...jugo, azúcar, meladura, melaza, evaporador, reactor, farmacia, laboratorio, b...
jugo, azúcar, meladura, melaza, evaporador, reactor, farmacia, laboratorio, b...Maxwell Altamirano
 
tachos, evaporadors, cristalizadores, secadores,palntas de tratamiento de agu...
tachos, evaporadors, cristalizadores, secadores,palntas de tratamiento de agu...tachos, evaporadors, cristalizadores, secadores,palntas de tratamiento de agu...
tachos, evaporadors, cristalizadores, secadores,palntas de tratamiento de agu...Maxwell Altamirano
 
intercambiadores de calor, evaporadores, cristlización, gelatina, fertilizant...
intercambiadores de calor, evaporadores, cristlización, gelatina, fertilizant...intercambiadores de calor, evaporadores, cristlización, gelatina, fertilizant...
intercambiadores de calor, evaporadores, cristlización, gelatina, fertilizant...Maxwell Altamirano
 
Presentacion maxwell 20. Motor elementos partes usos turbinas vapor 21. Olo...
Presentacion maxwell  20.	Motor elementos partes usos turbinas vapor  21.	Olo...Presentacion maxwell  20.	Motor elementos partes usos turbinas vapor  21.	Olo...
Presentacion maxwell 20. Motor elementos partes usos turbinas vapor 21. Olo...Maxwell Altamirano
 

Similar a INDUSTRIA: FÁBRICA DE CEMENTO (20)

Alternativas tratamiento de residuos hospitalarios
Alternativas tratamiento de residuos hospitalariosAlternativas tratamiento de residuos hospitalarios
Alternativas tratamiento de residuos hospitalarios
 
Incineracion
IncineracionIncineracion
Incineracion
 
Uso obligatorio de lentes de seguridad
Uso obligatorio de lentes de seguridadUso obligatorio de lentes de seguridad
Uso obligatorio de lentes de seguridad
 
Almacenaje fluidos en plantas de procesos
Almacenaje fluidos en plantas de procesosAlmacenaje fluidos en plantas de procesos
Almacenaje fluidos en plantas de procesos
 
Planta de chatarra
Planta de chatarraPlanta de chatarra
Planta de chatarra
 
Alfredo caldera 234
Alfredo caldera 234Alfredo caldera 234
Alfredo caldera 234
 
Perladoras de Inducción Serie F
Perladoras de Inducción Serie FPerladoras de Inducción Serie F
Perladoras de Inducción Serie F
 
evaluación, entrenamiento, física,matemática, math, química, ingeniería, habi...
evaluación, entrenamiento, física,matemática, math, química, ingeniería, habi...evaluación, entrenamiento, física,matemática, math, química, ingeniería, habi...
evaluación, entrenamiento, física,matemática, math, química, ingeniería, habi...
 
máquinas, mecanismos, filtros, clarificación, jugo, sacarato, ajuste, calidad
máquinas, mecanismos, filtros, clarificación, jugo, sacarato, ajuste, calidadmáquinas, mecanismos, filtros, clarificación, jugo, sacarato, ajuste, calidad
máquinas, mecanismos, filtros, clarificación, jugo, sacarato, ajuste, calidad
 
cálculo, matemática, balance, soldadura, trazado,carburo de silicio, cono, in...
cálculo, matemática, balance, soldadura, trazado,carburo de silicio, cono, in...cálculo, matemática, balance, soldadura, trazado,carburo de silicio, cono, in...
cálculo, matemática, balance, soldadura, trazado,carburo de silicio, cono, in...
 
jugo, azúcar, meladura, melaza, evaporador, reactor, farmacia, laboratorio, b...
jugo, azúcar, meladura, melaza, evaporador, reactor, farmacia, laboratorio, b...jugo, azúcar, meladura, melaza, evaporador, reactor, farmacia, laboratorio, b...
jugo, azúcar, meladura, melaza, evaporador, reactor, farmacia, laboratorio, b...
 
tachos, evaporadors, cristalizadores, secadores,palntas de tratamiento de agu...
tachos, evaporadors, cristalizadores, secadores,palntas de tratamiento de agu...tachos, evaporadors, cristalizadores, secadores,palntas de tratamiento de agu...
tachos, evaporadors, cristalizadores, secadores,palntas de tratamiento de agu...
 
intercambiadores de calor, evaporadores, cristlización, gelatina, fertilizant...
intercambiadores de calor, evaporadores, cristlización, gelatina, fertilizant...intercambiadores de calor, evaporadores, cristlización, gelatina, fertilizant...
intercambiadores de calor, evaporadores, cristlización, gelatina, fertilizant...
 
Presentacion maxwell
Presentacion maxwellPresentacion maxwell
Presentacion maxwell
 
Presentacion maxwell
Presentacion maxwellPresentacion maxwell
Presentacion maxwell
 
asesor
asesorasesor
asesor
 
Presentacion maxwell 20. Motor elementos partes usos turbinas vapor 21. Olo...
Presentacion maxwell  20.	Motor elementos partes usos turbinas vapor  21.	Olo...Presentacion maxwell  20.	Motor elementos partes usos turbinas vapor  21.	Olo...
Presentacion maxwell 20. Motor elementos partes usos turbinas vapor 21. Olo...
 
asesor independiente
asesor independienteasesor independiente
asesor independiente
 
Presentacion maxwell
Presentacion maxwellPresentacion maxwell
Presentacion maxwell
 
Presentacion maxwell
Presentacion maxwellPresentacion maxwell
Presentacion maxwell
 

Último

Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaSesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaXimenaFallaLecca1
 
estadisticasII Metodo-de-la-gran-M.pdf
estadisticasII   Metodo-de-la-gran-M.pdfestadisticasII   Metodo-de-la-gran-M.pdf
estadisticasII Metodo-de-la-gran-M.pdfFlorenciopeaortiz
 
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptxGARCIARAMIREZCESAR
 
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...SuannNeyraChongShing
 
sistema de construcción Drywall semana 7
sistema de construcción Drywall semana 7sistema de construcción Drywall semana 7
sistema de construcción Drywall semana 7luisanthonycarrascos
 
Linealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdfLinealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdfrolandolazartep
 
Comite Operativo Ciberseguridad 012020.pptx
Comite Operativo Ciberseguridad 012020.pptxComite Operativo Ciberseguridad 012020.pptx
Comite Operativo Ciberseguridad 012020.pptxClaudiaPerez86192
 
MANIOBRA Y CONTROL INNOVATIVO LOGO PLC SIEMENS
MANIOBRA Y CONTROL INNOVATIVO LOGO PLC  SIEMENSMANIOBRA Y CONTROL INNOVATIVO LOGO PLC  SIEMENS
MANIOBRA Y CONTROL INNOVATIVO LOGO PLC SIEMENSLuisLobatoingaruca
 
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdfAnthonyTiclia
 
Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfPresentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfMirthaFernandez12
 
CICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresaCICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresaSHERELYNSAMANTHAPALO1
 
Caldera Recuperadora de químicos en celulosa tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa  tipos y funcionamientoCaldera Recuperadora de químicos en celulosa  tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa tipos y funcionamientoRobertoAlejandroCast6
 
Seleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSeleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSaulSantiago25
 
SSOMA, seguridad y salud ocupacional. SST
SSOMA, seguridad y salud ocupacional. SSTSSOMA, seguridad y salud ocupacional. SST
SSOMA, seguridad y salud ocupacional. SSTGestorManpower
 
Residente de obra y sus funciones que realiza .pdf
Residente de obra y sus funciones que realiza  .pdfResidente de obra y sus funciones que realiza  .pdf
Residente de obra y sus funciones que realiza .pdfevin1703e
 
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptxPPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptxSergioGJimenezMorean
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.ALEJANDROLEONGALICIA
 
Elaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfElaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfKEVINYOICIAQUINOSORI
 
clases de dinamica ejercicios preuniversitarios.pdf
clases de dinamica ejercicios preuniversitarios.pdfclases de dinamica ejercicios preuniversitarios.pdf
clases de dinamica ejercicios preuniversitarios.pdfDanielaVelasquez553560
 

Último (20)

Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaSesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
 
estadisticasII Metodo-de-la-gran-M.pdf
estadisticasII   Metodo-de-la-gran-M.pdfestadisticasII   Metodo-de-la-gran-M.pdf
estadisticasII Metodo-de-la-gran-M.pdf
 
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
 
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
 
sistema de construcción Drywall semana 7
sistema de construcción Drywall semana 7sistema de construcción Drywall semana 7
sistema de construcción Drywall semana 7
 
Linealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdfLinealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdf
 
Comite Operativo Ciberseguridad 012020.pptx
Comite Operativo Ciberseguridad 012020.pptxComite Operativo Ciberseguridad 012020.pptx
Comite Operativo Ciberseguridad 012020.pptx
 
MANIOBRA Y CONTROL INNOVATIVO LOGO PLC SIEMENS
MANIOBRA Y CONTROL INNOVATIVO LOGO PLC  SIEMENSMANIOBRA Y CONTROL INNOVATIVO LOGO PLC  SIEMENS
MANIOBRA Y CONTROL INNOVATIVO LOGO PLC SIEMENS
 
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
 
Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfPresentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
 
VALORIZACION Y LIQUIDACION MIGUEL SALINAS.pdf
VALORIZACION Y LIQUIDACION MIGUEL SALINAS.pdfVALORIZACION Y LIQUIDACION MIGUEL SALINAS.pdf
VALORIZACION Y LIQUIDACION MIGUEL SALINAS.pdf
 
CICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresaCICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresa
 
Caldera Recuperadora de químicos en celulosa tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa  tipos y funcionamientoCaldera Recuperadora de químicos en celulosa  tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa tipos y funcionamiento
 
Seleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSeleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusibles
 
SSOMA, seguridad y salud ocupacional. SST
SSOMA, seguridad y salud ocupacional. SSTSSOMA, seguridad y salud ocupacional. SST
SSOMA, seguridad y salud ocupacional. SST
 
Residente de obra y sus funciones que realiza .pdf
Residente de obra y sus funciones que realiza  .pdfResidente de obra y sus funciones que realiza  .pdf
Residente de obra y sus funciones que realiza .pdf
 
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptxPPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.
 
Elaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfElaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdf
 
clases de dinamica ejercicios preuniversitarios.pdf
clases de dinamica ejercicios preuniversitarios.pdfclases de dinamica ejercicios preuniversitarios.pdf
clases de dinamica ejercicios preuniversitarios.pdf
 

INDUSTRIA: FÁBRICA DE CEMENTO

  • 1. UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 2014 1 INDUSTRIA: FÁBRICA DE CEMENTO Un químico de la división de desarrollo e investigación de una compañía descubrió que al mezclar dos reactivos en determinada proporción y temperatura elevada, obtiene un producto de un valor mucho mayor que el de los reactivos. La compañía considera la fabricación del producto empleando un proceso basado en dicha reacción. Ahora el asunto se convierte en un problema de ingeniería o de manera más preciso, en cientos de problemas de ingeniería Se asume que la compañía es una fábrica de Cemento y el producto que se obtuvo de la mezcla de los dos reactivos es un aditivo que mejora de manera sustancial las propiedades del Cemento. Los dos reactivos se introducen junto con la materia prima (caliza, sílice, alúmina, óxido de hierro) al horno rotario para la sinterización y formación del Clinker. Mediante un método seco. 1. ¿Qué tipo de reactor debe emplear? ¿Un tubo largo? ¿Un tanque grande? ¿Varios tanques pequeños? ¿Un tubo de ensayo gigantesco? ¿De qué material? ¿Será necesario calentarlo? En caso afirmativo, ¿a qué temperatura y cuánto tiempo? ¿Con un calentador eléctrico en el interior del reactor o fuera de él? ¿Haciendo pasar un fluido caliente a través de un serpentín de calentamiento en el interior del reactor? ¿Calentando los reactivos antes de introducirlos al reactor? ¿Aportará la reacción su propio calor, de manera que sólo se requiera calentamiento en la etapa inicial? Si es así ¿será posible que el reactor se salga de control y que llegue a explotar? ¿Deben aplicarse medidas de control para evitar esto? ¿De qué tipo? El reactor es un horno rotatorio horizontal. Debe ser previamente calentado con un pre calentador y trabaja a una temperatura de 1500 °C. Los reactivos deben ser homogenizados juntos con las materias primas en el molino de bolas. Y esa mezcla ingresa al horno rotatorio. 2. ¿Dónde se obtendrán los reactivos? Será mejor comprarlos o fabricarlos? ¿En qué proporción se alimentarán el reactor? Debido a que la cantidad que se utiliza de los reactivos es inferior al de las materias primas, no justifica que sean fabricados por la compañía por lo que deben comprarse. Se alimenta al reactor junto con el resto de materias primas para la producción del Clinker. 3. ¿Convendrá vender como tal el efluente del reactor, mismo que contiene el producto y los reactivos no consumidos, o será mejor separar el producto de los reactivos y recircular estos últimos? Si es deseable una separación, ¿cómo podría llevarse a cabo? ¿calentando la mezcla y retirando y condensando el vapor, el cual tendrá una mayor concentración de las sustancias volátiles que la mezcla original? ¿Añadiendo otra sustancia que extraiga el producto y sea inmiscible con los reactivos, para después separar ambas fases en forma mecánica? Si todos los materiales del proceso son gases a la temperatura de reacción, ¿se podrá enfriar la mezcla a una temperatura a la cual se condense el producto pero no
  • 2. UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 2014 2 los reactivos, o viceversa? En caso de que sean líquidos, ¿se podrá enfriar la mezcla a una temperatura a la cual cristalice el producto? Si se elige alguna de estas alternativas, ¿qué tipo de equipo se requerirá? ¿De qué dimensiones? ¿Qué material será necesario? ¿Cuáles son los requisitos de calentamiento o enfriamiento? ¿Se necesitan controles para mantener la operación del proceso dentro de límites bien definidos? ¿Qué tipo de controles? ¿Deberán ser manuales o automáticos? Debido a las mismas condiciones de trabajo en el horno (temperatura promedio de 1400°C), todos los reactivos se transforman en productos, la calidad de éste, depende principalmente de las características del crudo (reactivos) y a las condiciones de operación. 4. ¿Cómo se desplazarán las corrientes de reactivos y productos y los equipos de calentamiento, enfriamiento y separación requeridos por el proceso, hasta y desde el reactor? ¿Quizá por gravedad partiendo de una tanque de alimentación elevado? ¿Con bombas, sopladores, compresoras o bandas de transmisión? ¿De qué tipo? ¿Cuáles serán sus dimensiones? ¿Cuál es el material de las tuberías? El desplazamiento de los reactivos o materias primas así como del producto será mediante la utilización de fajas transportadoras, de bombas neumáticas tipo Fuller tipo M con diámetro de 350 mm (con capacidad de 600 toneladas métricas por hora de cemento Portland), de ventiladores así como de tuberías de acero. 5. ¿Se sabe lo suficiente con respecto al sistema de reacción como para responder a todas estas preguntas, o será necesario llevar a cabo estudios de laboratorio adicionales? ¿Qué tipo de estudios? ¿Podrán emplearse de manera directa los datos de laboratorio para diseñar la planta industrial, o será preciso construir una planta piloto más pequeña para probar el diseño? ¿Qué tan pequeña? Si se conoce lo suficiente respecto al sistema de reacción, donde la reacción está dada por la siguiente ecuación química: CaCO3 + Al2O3 · 2SiO2 · H2O + SiO2  C3S + C2S + C3A + C4AF Donde: C3S: 3CaOSiO2 C2S: 2CaOSiO2
  • 3. UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 2014 3 C3A: 3CaOAl2O3 C4AF: 4CaOAl2O3Fe2O3 No es necesario llevar a cabo estudios de laboratorios adicionales ni construir uma planta piloto más pequeña a fin de probar el diseño. 6. ¿Qué podría salir mal durante el proceso y que se podría hacer cuando esto ocurra?  En el caso de que haya vibraciones en el molino, se realizará inmediatamente acciones correctivas reduciendo la alimentación del molino, consiguiendo un grosor óptimo del lecho. Si se declara inválida la medición de un proceso (por ejemplo, por un fallo en el equipo), el controlador sustituirá automáticamente las mediciones con señales de prioridad secundarias o valores estimados para continuar las operaciones. Esta sustitución provisional de las mediciones también la puede seleccionar manual mente el operador si se extrae un dispositivo manualmente para su mantenimiento.  En el caso de atasco en el horno, la aplicación asegura una acción rápida para conseguir una recuperación óptima, reduciendo la alimentación y supervisando el molino hasta que se restauren las condiciones normales. Si se declara inválida la medición de un proceso (por ejemplo, por un fallo en el equipo), el controlador sustituirá automáticamente las mediciones con señales de prioridad secundarias o valores estimados para continuar las operaciones. Esta sustitución provisional de las mediciones también la puede seleccionar manual mente el operador si se extrae un dispositivo manualmente para su mantenimiento.  En el caso de problemas como la caída de revestimientos en el horno, se reduce la alimentación y velocidad del horno, a la vez que controla las condiciones del horno para asegurar una recuperación rápida y controlada. Una detención del molino de crudo es otro de los problemas, para ello se debe gestionar los cambios en la presión de los gases cambiando la velocidad de los ventiladores de tiro inducido y EP.  Otros ejemplos de problemas gestionados incluyen un alto nivel de salida de CO del precalentador, una acumulación de lecho en el enfriador y una detención del molino de carbón que afecte a la alimentación de carbón al horno. 7. ¿genera productos de desecho el proceso? ¿En qué cantidades? ¿Son potencialmente dañinos si se liberan al medio sin tratar? En caso afirmativo, ¿Qué daños provocarán? ¿Qué se debe hacer para reducir los riesgos de contaminación? ¿Dar tratamiento químico a los desechos? ¿Se podrán envasar los desechos sólidos y líquidos en contenedores, sellarlos y lanzarlos al mar? ¿Se podrán dispersar los gases en la atmósfera con una chimenea alta? ¿Será posible precipitar los sólidos de los gases por un método electrostático?
  • 4. UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 2014 4 Los principales productos de desecho que caracterizan a esta industria son:  Emisiones de NOx, SO2 y partículas, asociadas al funcionamiento del horno de Clinker. Del mismo modo, la descarbonatación de la caliza entrante en el proceso, genera la emisión de CO2, vapor de agua y oxígeno.  Adicionalmente, se pueden producir emisiones de CO y COV durante la combustión. La cantidad liberada por el horno dependerá del contenido en materia orgánica del combustible, así como de las condiciones de la combustión.  El eventual uso de residuos orgánicos, como combustibles alternativos, podría aportar un riesgo adicional, como es la posible generación de emisiones de dioxinas y furanos, asociadas a la presencia de cloro y compuestos orgánicos durante la combustión.  Emisiones de partículas durante las operaciones de manipulación, transporte y almacenamiento de materias primas y combustibles sólidos.  Emisiones de metales y sus compuestos, presentes tanto en las materias primas como en los combustibles utilizados en el horno.  Residuos procedentes de la depuración de las materias primas durante el proceso de preparación del crudo.  Residuos compuestos por las partículas acumuladas en los filtros, que no puedan ser recirculadas.  Residuos originados en la instalación como consecuencia del mantenimiento mecánico de los equipos (aceites, filtros, baterías, material contaminado por Hidrocarburos). Igualmente, el mantenimiento eléctrico supone la generación de residuos peligrosos como fluorescentes, baterías, plásticos, ó material contaminado con PCB's.  Contaminación de aguas pluviales por arrastre de los combustibles (carbón, coque), y ciertos aditivos, normalmente acumulados en acopios exteriores ubicados a la intemperie. En el siguiente cuadro se detalla el volumen aproximado de los residuos sólidos generados:
  • 5. UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 2014 5 Unidad operativa Origen del efluente m3 descargados m3 descargados m3 descargados Cementos Pacasmayo Proceso de enfriamiento de equipos 406,450 381,950 502,020 Cementos Selva Proceso industrial 96,000 91,000 285,490.6 El polvo, especialmente la sílice libre, constituye un riesgo importante para la salud de los empleados de la planta cuya exposición provoca la silicosis. Algunos de los impactos mencionados pueden ser evitados completamente, o atenuados más exitosamente, si se escoge el sitio de la planta con cuidado. Las emisiones liberadas a la atmósfera, son el principal riesgo de la industria cementera. SOLUCIÓN AL PROBLEMA: El coprocesado en la producción de cemento es una forma óptima de recuperación de la energía y la materia de los residuos. Ofrece una solución sólida y segura para la sociedad, el medio ambiente y la industria cementera, sustituyendo los recursos no renovables por residuos bajo estrictas medidas de control. La utilización de residuos como combustibles alternativos, también llamada coprocesado, disminuye la dependencia energética de los combustibles fósiles o tradicionales y, al mismo tiempo, reduce las emisiones. Por otra parte, su uso como materias primas alternativas tiene un gran número de beneficios, entre los que podemos destacar la menor necesidad de explotación de las canteras y una mejora en la huella medioambiental de tales actividades. La sustitución del Clinker en la producción del cemento es otro ejemplo de la contribución positiva del sector a la gestión de los recursos. El uso de materiales alternativos en la industria cementera reduce las emisiones globales de CO2 y no tiene un impacto negativo en el proceso de producción, ni en las emisiones o la calidad técnica del producto final.
  • 6. UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 2014 6 Además, el coprocesado en la industria cementera se realiza de una manera fiable sin que afecte a la seguridad y salud de sus trabajadores y vecinos. El coprocesado de residuos en la industria cementera facilita la posibilidad de alcanzar un máximo de sustitución de materiales no renovables. Los tipos de residuos que pueden usarse en una planta cementera varían en función de cada instalación. Como regla básica, los residuos aceptados como combustible y/o materia prima alternativa deben aportar un valor añadido al horno de cemento en términos de poder calorífico de la parte orgánica y/o valor material de la parte mineral. Algunos combustibles alternativos cumplirán a la vez ambos requisitos, haciendo difícil formular un criterio general en relación a los materiales que son coprocesador en la industria cementera. Según las características del proceso de producción, la industria cementera puede coprocesar:  Combustibles alternativos que tengan un importante poder calorífico (por ejemplo: aceites usados).  Materias primas alternativas que contengan componentes minerales adecuados para la producción de Clinker o cemento (por ejemplo: suelos contaminados).  Materiales que aporten poder calorífico y proporcionen, al mismo tiempo, componentes minerales (por ejemplo: lodos de la industria papelera y neumáticos usados).
  • 7. UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 2014 7
  • 8. UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 2014 8 La fabricación de cemento incluye el transporte de materiales polvorientos o pulverizados desde la cantera de piedra caliza, hasta el embarque del producto terminado para envío. Las partículas son la causa más importante del impacto ambiental negativo. Los precipitadores electrostáticos, o los filtros de bolsa, constituyen un requerimiento rutinario para controlar las emisiones de partículas de los hornos. El control del polvo que resulta del transporte de los materiales es uno de los desafíos más difíciles; las bandas transportadoras, pilas de acopio, y caminos de la planta, pueden ser causas más importantes de degradación de la calidad del aire, que las emisiones del molino y el horno. Se deben emplear recolectores mecánicos de polvo donde sea práctico, por ejemplo, en los trituradores, transportadores y el sistema de carga. En la mayoría de los casos, el polvo recolectado puede ser reciclado, reduciendo el costo y disminuyendo la producción de desechos sólidos. Se puede mantener limpios los camiones de la planta con aspiradoras y/o rociadores, a fin de eliminar el polvo atmosférico causado por el tráfico y el viento. Deben ser cubiertas las pilas de acopio tanto como sea posible. Los camiones que transportan materiales a la planta y fuera de ésta deben tener carpas y límites de velocidad. Control de emisiones de NOx  Instalación de un quemador de bajo NOx, en este tipo de equipos es menor la cantidad de aire requerido para la combustión, y por tanto se genera una atmósfera con menor contenido en oxígeno.  Combustión por etapas, mediante un sistema de ciclones y precalcinador.  Reducción no catalítica-selectiva, esta técnica utiliza amoníaco o sustancias similares, como reductor, a fin de transformar los óxidos de nitrógeno en nitrógeno atmosférico. Esta técnica tiene asociado el riesgo de emisiones o derrames de los productos utilizados para la reducción de los óxidos de nitrógeno. Actualmente esta técnica se encuentra en fase de desarrollo. Control de emisiones de SOx La concentración de oxígeno en el horno, es un parámetro crítico en las emisiones de óxidos de azufre. Al contrario de lo ocurrido con los óxidos de nitrógeno (NOx), una atmósfera oxidante favorece la minimización
  • 9. UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 2014 9 de emisiones de éstos compuestos. La adición de absorbente en hornos de vía seca, es una medida adicional para el control de emisiones de SOx. El material absorbente (cal viva, cal apagada ó cenizas volantes con alto contenido de cal) es inyectado al gas de salida del horno, o bien se añade cal al crudo entrante en el precalentador. Este procedimiento es muy costoso, por lo que sólo será recomendable en el caso de ser insuficiente la implantación de medidas primarias para el control de SO 2 , como la disminución de la temperatura de llama, el aumento de contenido en O 2 y el control de la estabilidad en el funcionamiento del horno. Control Emisiones de fuentes difusas  Cerramiento total o parcial de las instalaciones que alberguen acopios de sustancias pulverulentas.  Sistemas de inyección de agua y supresores químicos de polvo en los acopios de material almacenado.  Construcción de barreras que reduzcan la acción del viento sobre zonas de manipulación de materiales.  Sistemas fijos o móviles, de aspiración y desempolvamiento de instalaciones de carga de cemento a granel.  Ventilación y recogida de partículas en filtros de mangas.  Almacenamiento del cemento en silos, con sistema de manipulación automática. Éstos equipos, disponen de filtros, en los que quedan retenidas las partículas liberadas en operaciones de carga y descarga.  Precipitadores electrostáticos: estos captadores generan un campo electrostático que carga las partículas positivamente. Éstas, son atraídas y retenidas por las placas que se sitúan dentro del precipitador, con carga negativa. La limpieza periódica de las placas es necesaria para asegurar el buen funcionamiento del equipo. Para mantener la eficacia del precipitador, es conveniente evitar las subidas bruscas en la concentración de CO. 8. ¿Qué partes del proceso podrán automatizarse y cómo se hará la automatización? La automatización permitirá a la empresa una operación más veloz y estable del transporte del producto, así como registrar, vigilar y monitorear de una manera rápida, en tiempo real e histórico los parámetros principales del proceso.
  • 10. UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 2014 10 El control avanzado de procesos asegura un mejor funcionamiento de las plantas de cemento, incrementando la estabilidad y aumentando su rentabilidad. Beneficios directos  Hasta un 8% más de producción.  Hasta un 6% menos de consumo de combustible/energía.  Hasta un 30% menos de desviación estándar de la calidad.  Recuperación de la inversión en menos de un año (dependiendo de las aplicaciones específicas). Beneficios indirectos  Estabilidad a largo plazo.  Menos desgaste de los equipos.  Menos tiempo de parada.  Menos costes de mantenimiento Con un control avanzado de los procesos y optimización de la planta de cemento se consigue la máxima eficiencia y una mayor rentabilidad. Con la estabilización de la planta, se optimiza la producción, gestiona y corrige las interrupciones en el proceso y reduce al mínimo el desgaste de los equipos de la planta, todo con el fin de asegurar un rendimiento óptimo de la planta. Mejorando la disponibilidad y utilización de los equipos, el sistema ayuda a reducir los costes operativos y de mantenimiento. Con el uso de una caja de herramientas sofisticada y módulos de aplicación especializados, se realizará continuamente complejos análisis de las condiciones de los procesos de una planta. Eso permite realizar ajustes en el proceso con más frecuencia y fiabilidad de lo que lo haría solo el operador humano. Si se instala en un ordenador estándar, el sistema cuenta con una interfaz gráfica fácil de interpretar y capacidades de tendencia y alarma avanzadas fáciles de usar y utilizar, y es compatible con la mayoría de sistemas de control de plantas. Aplicación en horno y enfriador Un horno y enfriador inestables llevan a una producción no eficiente y a una calidad del Clinker inconsistente. Estabilizar el horno y el enfriador utilizando un control avanzado de procesos, que incrementa la producción, reduce los bloqueos de los ciclones y las formaciones en el anillo del horno a la vez que ofrece una calidad consistente de clínker. Ventajas  Incremento de hasta un 4% en la producción.
  • 11. UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 2014 11  Menos bloqueos de los ciclones y formaciones en el anillo del horno.  Calidad consistente con una reducción en la desviación estándar de hasta el 30%.  Funcionamiento más estable. Retos de control: Controlar un horno de cemento siempre ha sido una tarea difícil para los operadores de las plantas de cemento. Hoy en día no solo está bien tener un sistema de control de cocción basado en ordenador, es una necesidad práctica. Tanto la complejidad inherente del proceso de cocción como las consecuencias de largo alcance del clínker que no cumple las especificaciones, las malas condiciones de funcionamiento y las paradas de la producción hacen que un sistema de control automatizado sea indispensable. El control de procesos del horno se divide en tres estrategias: normal, optimización y control de problemas: a) Control normal En el control normal se estabiliza el proceso. La estabilización es un requisito previo para el control de optimización y un elemento clave, por lo tanto, para la estrategia de control general. La estrategia de control normal estabiliza el precalentador, el horno y el enfriador con una serie de índices de rendimiento clave calculados. Estos índices incluyen el Índice de temperatura en la zona de quemado, el Índice de estabilidad en el funcionamiento del horno y el Índice de consumo de calor del horno. Entre las acciones de corrección se suelen incluir una combinación de cambios en la inyección del combustible, la alimentación del horno y la velocidad, así como en la velocidad del ventilador. El resultado es un control estable de la temperatura en el calcinador, un grado de llenado estable en el horno, un funcionamiento del enfriador estable y una calidad de clínker consistente. b) Control de optimización Una vez el proceso se ha estabilizado, se optimiza el proceso operando lo más cerca posible de los límites. En el control de optimización, se mantiene la cantidad de cal libre cerca del objetivo permitiendo incrementar ese objetivo. Además, se controla el factor de saturación de la cal (LSF) en la alimentación del horno y ajusta automáticamente el objetivo de cal libre para evitar un quemado excesivo del clínker. Se asegura consecuentemente un menor consumo de combustible y reduce al mínimo el riesgo de obtener un clínker que no cumple las especificaciones. El horno y el enfriador pueden optimizarse aún más con una aplicación de ampliación para múltiples combustibles. c) Problemas y control personalizado En el caso de problemas como la caída de revestimientos en el horno, se reduce la alimentación y velocidad del horno, a la vez que controla las condiciones del horno para asegurar una recuperación rápida y controlada. Una detención del molino de crudo es otro de los problemas, para ello se debe gestionar los cambios en la presión de los gases cambiando la velocidad de los ventiladores de tiro inducido y EP. Otros ejemplos de problemas gestionados incluyen un alto nivel de salida de CO del precalentador, una acumulación de lecho en el enfriador y una detención del molino de carbón que afecte a la alimentación de carbón al horno. Parámetros controlados  Alimentación, velocidad y combustible del horno.  Combustible del calcinador.  Velocidad del ventilador de tiro inducido.
  • 12. UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 2014 12  Parrilla del enfriador y velocidad de los ventiladores. Parámetros supervisados  Mediciones del analizador de gases de la entrada del horno.  Temperaturas y presión del horno.  Par del horno.  Presión y temperaturas del enfriador. 9. ¿Cuánto costará todo esto? ¿A qué precio podrá venderse el producto, y a quién? ¿Qué utilidades dejara el proceso cada año? ¿Vale la pena llevarlo a cabo? Si es así, ¿dónde convendría construir la planta? Con la estabilización, el horno y el enfriador, utilizando un control avanzado de procesos, implementar esto en la planta de producción de cementó no será muy costoso, ya que a la ves también reduce las emisiones que se producen en la planta. Para poder proceder de manera realista en este aspecto de precios, es necesario primero hacer un recuento de las clases y tipos de cementos que efectivamente se producen, o pueden producirse, En este caso se producirá el cemento portland tipo I, incluyendo sus respectivas características, usos indicados y normas aplicables.
  • 13. UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 2014 13 Se venderá a 20 soles la bolsa de 42.5 kg de cemento Tipo I, Y Se venderá a la industria de la construcción que se dediquen a la Construcción general como: pavimento, puentes, trabajos de mampostería, edificios de concreto reforzado, columnas y placas. Etc. Utilidades que dejara el proceso cada año:  Se producirán 200,266 TM / año (supuesto).  El ingreso por ventas seria: 200,266 TM*(1000Kg/TM)*20 soles/42.5kg = 94, 242,823.5 millones.  Costo de inversión: 36, 801,266.7 millones.  Utilidad neta: 94, 242,823.5 - 36, 801,266.7 = s/. 57, 441,556.8 millones/ año Si vale la pena llevarla a cabo, y se construirá en lugares que permiten una racional distribución del producto, de manera que los costos de transporte no gravan exageradamente al usuario. Las fábricas de cemento comprenden dentro de un radio de 300 km. a las más importantes colectividades urbanas y rurales de un país permitiendo el transporte eficiente, es recomendable que se ubiquen cerca a los valles 10. Una vez construida la planta, ¿qué procedimiento deberá seguir para el arranque de la misma? Como la planta será automatizado Para el arranque requieren de la colaboración entre los diversos departamentos de una empresa (gestión, logística, automatización, distribución, etc.). En esta sección se enfoca el problema en concreto en la parte de automatización, desde el punto de vista del trabajo que debe realizar el ingeniero/ingeniera técnica. El marco metodológico consta de las fases siguientes, que el operario debe realizar:  Automatización  Supervisión  Interacción  Implementación  Pruebas
  • 14. UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 2014 14 11. Trascurrido seis meses del arranque de la planta, ¿porque el producto no es igual al que se construía en el laboratorio? ¿Es una falla del equipo, o se modificaron las condiciones en alguna parte entre el proceso de laboratorio y el industrial? ¿Cómo investigarlo? ¿Cómo se puede corregir el problema? ¿Será necesario detener la operación para hacer las modificaciones? No es igual, porque a nivel de laboratorio se producía en cantidades pequeñas y a nivel industrial la cantidad varia y son muy grandes, también puede ser que haya habido algún cambio en el proceso, o que haya una falla en algún equipo, se tiene que hacer una revisión técnica tanto en el proceso como en la maquinaria. Para investigar cual es la causa se debe aplicar un Programa de Detección y Análisis de Fallas. El programa de Detección analítica de Fallas DAF, proporciona las habilidades y destrezas para la solución y prevención de problemas en ambientes productivos, acompañando los esfuerzos de mejoramiento continuo. Beneficios:  Reducción del tiempo de reparación.  Minimización de tiempo de preparación y arranque de equipos.  Disminución de fallas repetitivas.  Aumento en la disponibilidad de equipos.  Reducción de retrabajos y desperdicio.  Reducción en la frecuencia de fallas.  Mejora del mantenimiento preventivo.  Reducción de costos por fallas de calidad.  Mayor eficiencia en el trabajo en equipo. Para corregir el problema se debe identificar las causas de las fallas, para luego corregirlas. Causas comunes de falla (la lista no es exhaustiva):  Mal uso o abuso de los equipos.  Errores de montaje.  Errores de fabricación.  Mantenimiento inadecuado.
  • 15. UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 2014 15  Errores de Diseño.  Material inadecuado.  Tratamientos térmicos incorrectos.  Condiciones no previstas de operación.  Inadecuado control o protección ambiental.  Defectos de soldadura.  Defectos de forja. No es necesario detener el proceso de operación ya que el sistema de transporte de cemento está diseñado para operar de forma continua, evitando paradas innecesarias de proceso por alguna posible falla de cualquier equipo involucrado, ya que el mismo cuenta con alarmas que anuncian la alerta directa proveniente de alguna variable de campo permitiendo reconocer rápidamente la alarma generada y así continuar con el proceso si la misma no reviste mayor atención. 12. El hecho de que se hayan producido tres explosiones y cuatro incendios en un lapso de seis meses en el reactor, ¿es significativo de una serie de coincidencias? En cualquier caso, ¿cómo evitar que vuelva a ocurrir? No son incidencias ya que la ocurrencia de estos acontecimientos es muy seguida, de inmediato se debe instalar un sistema de seguridad y salud en el trabajo, evaluando todos los peligros potenciales para poder eliminarlos y evitar la ocurrencia de riesgos como los que ya han sucedido. 13. Diversas cosas salen mal en la operación de proceso, ¿por qué no se tuvieron en cuenta en la lista de problemas? ¿Qué se puede hacer al respecto? Realizar una evaluación total de todo el sistema (procesos y procedimientos), identificar todas las falencias, registrarlas y realizar medidas correctivas y preventivas para solucionar los problemas y evitar que vuelvan a ocurrir. 14. Cuando el proceso por fin comienza a funcionar a la perfección, se recibe la orden de modificar las especificaciones del producto, ¿cómo podrá hacerse esto sin rediseñar todo el proceso? ¿Por qué no se pensó en esto antes de construir la planta? Evaluar a qué procesos y procedimientos afectan los nuevos requerimientos del producto, y si existe la necesidad de cambiar o mejorarlos, realizar un análisis económico para estimar el efecto en la economía de la empresa resultado de realizar dichos cambios para finalmente ejecutarlos. Porque la planta inicialmente se construyó teniendo otras especificaciones del producto, sin embargo se debe tener siempre en cuenta que las preferencias del mercado son muy variables por lo que el diseño de la planta debe acogerse a estos cambios.
  • 16. UNIVERSIDAD NACIONAL DE TRUJILLO DISEÑO DE PLANTAS INDUSTRIALES 2014 16 REFERENCIAS  Libro de Consulta para Evaluación Ambiental (Volumen I; II y III). Trabajos Técnicos del Departamento de Medio Ambiente del Banco Mundial.  Tompkins, J.A., White, J.A., Bozer, Y.A. y Tanchoco, J.M.A. “Planeación de instalaciones”. Editorial Thomson, Tercera Edición, 2006.  Libro: Ingeniería de la Automatización Industrial, Ramón Piedrahita Moreno, 2000.  Catálogo: Bero Sensores para la automatización, 2002.  Manual: IBAU HAMBURG, Flow Control Gate Manual, Febrero 2000.  Manual: Wonderware Factory Suite, Protocols Guide, Noviembre 2002.  Manual: Wonderware Factory Suite, InTouch New Features User`s Guide, Abril 2004.