SlideShare una empresa de Scribd logo
1 de 56
1
REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER
POPULAR PARA LA DEFENZA
UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA DE LA
FUERA ARMADA
U.N.E.F.A.
PROYECTO DE DISEÑO DE UN PAVIMENTO
FLEXIBLE PARA UNA FUTURA VIA EN EL
SECTOR. URB. LA GRANAJA. MUNICIPIO
GUANARE ESTADO PORTUGUESA.
AUTORES:
MELIAN OBRYAN C.I: 25.771.431.
MENDOZA ARMANDO C.I: 24.018.475.
RIVAS MARIALBYS C.I:. 25.825.014
TUTOR:
ING. MAURIELO RODRIGUEZ
ING.CIVIL.
6TO SEMESTRE. SECCION ‘’A’’
GUANARE, SEPTIEMBRE 2015.
2
Índice General
Capítulo V . . . . . . . . 60
5 La Propuesta Tecnológica . . . . . . 60
5.1 Especificaciones Técnicas de Construcción . . . 60
6 Anexos . . . . . . . . 115
7 Conclusiones . . . . . . . 120
8 Recomendaciones . . . . . . . 121
9 Referencias Bibliográficas . . . . . 122
3
Tabla de cuadros
Cuadro 1: Valores promedio del factor camión para las diferentes entidades
del país . . . . . . . . 63
Cuadro 2: Nomenclatura de tránsito pesado . . . . 65
Cuadro 3: Factor de distribución por sentido. . . . 66
Cuadro 4: Factor de utilización por canal . . . . 67
Cuadro5: Tasa de crecimiento . . . . . 69
Cuadro 6: Periodo de diseño . . . . . 70
Cuadro 7: Valor relativo de soporte critico estimado en porcentaje de
Pavimento para sub-rasante compactable 95% . . . 73
Cuadro 8: Valores de confiabilidad con diferentes clasificaciones
Funcionales . . . . . . . 78
Cuadro 9: Propiedades Marshall exigidas para el diseño de mezclas
en laboratorios . .. . . . . 84
Cuadro 10: Relaciones de clima en Venezuela . . . 90
Cuadro 11: Capacidad de drenaje para remover la humedad . 91
Cuadro 12: Valores recomendados para coeficientes estructurales de capa
de bases y sub-rasantes, en pavimento flexible . . . 92
Cuadro 13: Datos para el diseño de pavimento . . . 94
Cuadro 14: Espesores mínimos en pulgadas en función de los ejes
Equivalentes . . . . . . . 97
4
Tabla Gráficos
Fig. 1 Encuesta . . . . . . . 53
Fig. 2 Encuesta . . . . . . . 54
Fig. 3 Encuesta . . . . . . . 55
Fig. 4 Encuesta . . . . . . . 56
Fig. 5 Encuesta . . . . . . . 57
Fig. 6 Curva granulométrica . . . . . 59
Fig. 7 Tipos de suelos en Venezuela . . . . 72
Fig. 8 Coeficiente estructural de la carpeta asfáltica . . . 85
Fig. 9 Coeficiente estructural de la capa base . . . 86
Fig. 10 Coeficiente estructural de la capa sub-base . . . 87
Fig. 11 Zona climática de Venezuela . . . . 89
Fig. 12 Modelo grafico de los espesores de las capas del
Pavimento . . . . . . . 96
5
CAPÍTULO V
5. La Propuesta Tecnológica.
5.1 Especificaciones Técnicas de Construcción.
Propuesta de Pavimento Flexible para la Optimización de la Vialidad en La Urb.
La Granja. Del Municipio Guanare Estado Portuguesa.
Datos.
- La vía es Urbana
- Carretera de 1 canal por sentido.
- Periodo de diseño: de 15 a 25 años.
Tránsito de Diseño
Un conteo se realiza en un lapso ideal de un (1) año, de esta manera se elimina
cualquier error por condiciones estacionales del flujo de vehículos. Cuando el conteo se
realiza en estaciones de cobertura 1, o en peajes, automáticamente al correr del año se
va registrando el volumen acumulado de vehículos. En otras ocasiones o puntos de
medición, no es ni práctico ni económico, el que se disponga de este lapso de tiempo.
Lo ideal entonces, es realizar una medición de un mes continuo. En caso de que esto
tampoco sea posible, la medición debería ser de una (1) semana completa, en forma tal
que se obtenga un registro de lunes a domingo. Si tampoco esto fuese posible, debería al
menos disponerse de un registro de un día laboral y de un día de fin de semana (sábado
o domingo). Si en alguno casos ni siquiera esto fuese posible, el conteo debe ser
realizado en un día (24 horas) continuas, preferiblemente en un día laborable. Pudiera
darse el caso de que ni aún pudiese contarse en un lapso de 24 horas; en este caso debe
irse a un conteo de doce horas. Si ni aun pueden contarse en estas 12, debe irse a ocho
(8) horas, y a veces solo podrá contarse durante una hora.
6
El conteo se llevó a cabo de una manera visual; Aun cuando lo ideal es que el
conteo vehicular –clasificado o no– se realice mediante el empleo de equipos, en el caso
de que esto no sea posible, por razones de tiempo o carencia de recursos, siempre se
podrá recurrir al sistema de contar los vehículos mediante la simple observación visual
del paso del flujo vehicular. El conteo visual permite no solo determinar el total de
vehículos que circulan por el punto de medición, sino que se obtiene un “conteo
clasificado” ya que se contabiliza el número de cada tipo de vehículo que pasa por esa
sección durante el tiempo de la medición. Por lo tanto, tomando en cuenta las
especificaciones, se procedió a analizar el tránsito de la vía similar a la vía en estudio,
puesto que el tránsito a obtener será el equivalente cuando exista la vía consolidada en
La Urb. La Granja.
Obtenido el conteo vehicular, se procede a determinar el promedio diario de
tránsito (PDT) y con ello poder apreciar el promedio diario de tránsito en el año inicial
(PDTo), con la ecuación prescrita de la siguiente manera:
PDTo=
1367+1422+1465+1475+1511+1300+731
7
=
9271
7
PDTo= 1324,42 vpd = 1324 vpd
Calculo de las Repeticiones de los Ejes Equivalentes
Son las cargas equivalentes totales en el periodo de diseño que se requieren para
realizar un diseño de pavimento. El método actual contempla los ejes equivalentes
sencillos de 18,000 lb (8.2 ton) acumulados durante el período de diseño, por lo que no
ha habido grandes cambios con respecto a la metodología original de AASHTO. El
diseño de transito gira en base a dos ecuaciones que son:
7
Ecuación 1:
REE= EEo × F
Donde:
REE: Son las repeticiones de ejes equivalentes o cargas equivalentes totales.
EEo: Cargas equivalentes en el año inicial.
F: Factor de crecimiento.
Ecuación 2:
EEo= PDTo × %Vp × FC × fd × fc× Nd
Dónde:
EEo: Cargas equivalentes en el año inicial.
PDTo: Promedio diario de tránsito en el año inicial.
%Vp: Porcentaje de vehículos pesados.
FC: Factor camión.
fd: Factor de distribución por sentido.
fc: Factor de utilización de canal.
Nd: días del año.
Calculo del Factor Camión
El siguiente cuadro nos permite estimar el Factor Camión ponderado total por
estado, y la cual es muy útil cuando se realizan estimaciones de inversión en planes
regionales de pavimentación, o en cualquier otro trabajo de planificación.
Cuadro 1 Valores promedio del factor camión para las diferentes entidades del país
8
Entidad
Factor Camión promedio
ponderado
Amazonas 1.29
Anzoátegui 2.05
Apure 1.42
Aragua 3.77
Barinas 1.42
Bolívar 6.69
Carabobo 3.93
Cojedes 1.42
Delta Amacuro 1.29
Dtto. Federal 3.61
Falcón 3.03
Lara 1.42
Mérida 1.29
Miranda 3.61
Monagas 2.05
Nueva Esparta 1.25
Portuguesa 1.42
Sucre 2.05
Trujillo 1.47
Fuente: II Taller “Evaluación y clasificación de la Red Vial Principal”, Caracas, 1993.
Ministerio de Transporte y Comunicaciones, Dirección General Sectorial de la Vialidad
Terrestre, Dirección de Conservación Vial.
Según cuadro N° 3 se asume un Fc para el estado Portuguesa de 1.42
Porcentaje de Vehículos Pesados
Este se obtiene mediante el volumen de tránsito pesado (VTP), que en nuestro
caso es la sumatoria de todos los vehículos que se consideran pesados, que van
seleccionados como todos aquellos que poseen seis ruedas, es decir desde aquellos
vehículos con un eje trasero de cuatro ruedas, y/o tres o más ejes individuales. Se
9
clasifican de acuerdo a diferentes categorías señaladas en la siguiente Tabla, donde se
indica tanto la nomenclatura que utiliza la Oficina de Planificación del Transporte
Terrestre (O.P.T.T) del Ministerio de Infraestructura, como la establecida en la Norma
COVENIN 2402-86:
Cuadro 2. Nomenclatura de Tránsito Pesado
10
Fuente: COVENIN 614-1997
Factor de Distribución por Sentido (fd)
Es el que nos permite medir el total del tránsito que circulará en el sentido de
diseño, y sus valores son los que se indican en el siguiente cuadro:
Cuadro 3. Fd
11
Modo de medición del
PDT
Valor del fd
En ambos sentidos 0,50
Por sentido de circulación 1,00
Fuente: NCHRP Project 1-32: Pavement Design Tools, Eres Consultants, Inc. 1998.
Por tal motivo, analizando el tránsito en los dos sentido de circulación se debe
tomar el valor correspondiente de la tabla, en este caso es de fd= 0.5
Factor de Utilización por Canal (fc)
Es el que nos permite asignar al canal de diseño, la fracción del total de
vehículos que circulará por este canal y su valor se selecciona de acuerdo al siguiente
cuadro, en Venezuela tradicionalmente sus valores han sido los siguientes para el
tránsito ya asignado al sentido de circulación. Por lo tanto, para el diseño propuesto se
incluirá el valor de fc= 100, que en porcentaje seria fc= 1.00.
Cuadro 4.Fc
Nº de carriles en
cada sentido
Porcentaje de w18 en
el carril de diseño
1 100
12
2 80 – 100
3 60 – 80
4 o más carriles 50 – 75
Fuente: NCHRP Project 1-32: Pavement Design Tools, Eres Consultants, Inc. 1998.
Días del año
Se tomaran todos los días del año que en total suman 365 días.
Luego de encontrar los datos de la ecuación número dos, resolvemos de la
siguiente manera para encontrar los ejes equivalentes en el año inicial de diseño:
EEo= PDTo × %Vp × FC × fd × fc × Nd
EEo= 1324 ×
0.3
100
× 1.42 × 0.50 × 1.00 × 365
EEo= 1.029,34
Con este resultado podemos calcular las repeticiones de ejes equivalentes que se
muestran en la ecuación uno son:
REE= EEo × F
Como bien podemos observar, calculamos de manera individual el factor de
crecimiento (F) con la siguiente fórmula:
F=
[(1 + r)n ]- 1
Ln (1+r)
Donde:
r: Tasa de crecimiento. Incremento anual del volumen de transito de una vía.
n: Periodo de diseño.
La tasa de crecimiento interanual (r), permite constituir el crecimiento del
tránsito a lo largo del período de diseño, y en el caso de que no pueda ser obtenido de
13
los registros históricos de tránsito, pueden emplearse los resultados de mediciones para
diseños que arrojan los resultados que se presentan en el siguiente cuadro:
Cuadro 5. Tasa de Crecimiento
Criterio estadístico Valor
Promedio 4,20%
Desviación estándar 1,80%
Valor mínimo 0,24%
Valor máximo 8,28%
Fuente: Corredor, G.: V Jornadas de Vialidad y Transporte, Valencia.
Basándonos en estos resultados, tomamos el criterio estadístico promedio, el
cual contiene una tasa de crecimiento de r= 4,20
Por otra parte, el periodo de diseño (n) se toma basado en los siguientes valores
del cuadro 9, que resume los periodos de diseño recomendados por la Asociación
Americana de Administradores de Carreteras y Transporte (AASHTO) y la
correspondiente a la tipología de la red vial nacional:
Cuadro 6. Periodo de Diseño
Tipo de vía
según AASTHO
Según nomenclador vial
venezolano
Periodo de diseño
(años)
Principal Autopista urbana o rural de
alto volumen y vía troncal
30-50 (30 en autopistas
urbanas)
Secundaria Vía local 20-50
14
Terciaria Vía ramal, sub-ramal o
agrícola
15-25, con mínimo de
10 años
Fuente: Asociación Americana de Administradores de Carreteras y Transporte
(AASHTO)
El “Período de Diseño” no debe ser confundido con la “Vida Útil” del
pavimento, ni con el Período de Análisis; este último puede comprender varios Períodos
de Diseño, como en el caso de la pavimentación por etapas. La vialidad en estudio entra
en la categoría de vía terciaria, es decir, con periodos de diseño entre 15 a 25 años. Para
efectos de diseño, el período de diseño seleccionado para la primera vida útil del
pavimento, fue de 20 años. Debido a esta información determinamos el factor de
crecimiento:
F=
(1 + 0,042)20
- 1
Ln (1+0,042)
= 31.04
Luego introducimos los valores en la ecuación 1 para obtener los resultados de
las repeticiones de los ejes equivalentes del diseño de pavimento flexible:
REE= 1.029,34× 31.04
REE= 31.950,71 EE
El CBR para las Capas del Pavimento.
El CBR de un material está en función de su densidad, textura, humedad de
compactación, humedad después de la saturación, su grado de alteración y su
granulometría. Estos valores nos permitirán conocer el número estructural de cada capa
según sea sus especificaciones.El CBR comúnmente se calcula mediante ensayos de
suelo, como mínimo cinco ensayos por unidad de diseño, pero teniendo en cuenta las
limitaciones de la investigación se utilizaran valores basados en características del
15
terreno y materiales, así como de climas, nivel freático y precipitación pluvial, tomando
en consideración estimaciones mínimas bajo las normas para efectos de diseño.
Capacidad de Soporte del Suelo de Fundación (CBRSR).
Tomando en cuenta lo antes expuesto, para determinar la capacidad de soporte
de la sub-rasante nos basaremos en valores de soportes críticos para las condiciones
previamente dadas debido a la zona en estudio por medio del tipo de suelo y el nivel
freático. En primer lugar obtendremos el tipo de suelo según la región en que se
encuentra ubicada la vía. Venezuela posee una gran variedad de suelos, entre otros
factores, de la diversidad de climas, relieves, rocas y especies vegetales que la
caracterizan. Por esta razón, se han realizado en el país diversos estudios para establecer
su caracterización y según este sistema, Venezuela cuenta con 9 de los 12 tipos de
suelos contemplados que son: entisoles, inceptisoles, vertisoles, olisoles, ultisoles,
oxisoles, aridisoles, histosoles y alfisoles, como lo muestra el siguiente gráfico:
16
Grafico7. Tipos de Suelos en Venezuela. Fuente: Geografía de suelos y
geotecnia (2004)
En el grafico se puede apreciar que la región de Portuguesa está constituida por
los colores amarillo y verde los cuales corresponden a tipos de suelos inceptisoles y
vertisoles respectivamente. Los inceptisoles son los suelos proporcionalmente maduros
y rocosos. Por otro lado, los suelos vertisoles. Tienen un alto grado de fertilidad y
son buenos para el pastoreo. Dado su alto contenido de arcilla.
De esta manera, el estado Portuguesa posee una combinación de suelo
inceptisole – vertisole, lo cual lo hace un suelo rocoso maduro y arcilloso, quiere decir
que está en una proporción de arena no plástica y arcilla activa que presentan unos
parámetros de valores de soporte críticos que se pueden apreciar en la siguiente tabla
17
Cuadro 7. Valor relativo de soporte critico estimado en porcentajes de
pavimentos para subrasantes compactadas 95%
Fuente: Adaptación de suelos subrasantes de “Road Note 31”, tercera edición,
Transport and Road Research Laboratory,HerMajesty’sStationery Office, Londres, 1977
(ref 8).
De acuerdo con la variación estacional debe elegirse el nivel freático más alto
para efectos de cálculo por ser el más desfavorable, que será el de 0,6 metros, así pues, a
través de este nivel freático se determina un promedio de los porcentajes mínimos
tolerables a la compactación del 95% en subrasantes de las categorías de arena no
plástica y arcilla activa de valor de soporte relativo obteniendo lo siguiente:
Arena no plástica= 8 -10
Arcilla activa= 2 – 3
Promedio=
8 + 2
2
= 5
Capacidad de soporte de la sub-base (CBRSB).
Para efectos de diseño se puede usar el porcentaje mínimo de CBR que según
Hugh A. Wallace y J. Rogers Martin en su libro Asphalt Pavement Engineer,
18
recomiendan un CBR mínimo de 20% para las capas de sub-base, sin embargo,
experiencias en nuestro país han demostrado que una sub-base granular con materiales
apropiados y construida de manera adecuada dan como resultado valores de CBR
superiores a 30%, como lo indica la norma COVENIN 1124-11. Por consiguiente, se
propone un CBR mínimo de 30% para la capa de sub-base.
CBR= 30%
Capacidad de Soporte de la Base (CBRBS).
Para la base granular se puede utilizar en la estructura de pavimento un CBR
mínimo de 80% para una densidad mínima del 95% según lo indicado en la norma
COVENIN 1124-11 0-07 para bases y sub-bases, recalcando que para efectos de diseño
debemos trabajar con valores mínimos establecidos.
CBR= 80%
Cálculos de los Módulos Resilentes para las Capas del Pavimento.
El método AASHTO 93 establece ecuaciones correlativas para determinar el
módulo resiliente de cada capa de la estructura del pavimento en función del CBR y
esto debido a la ausencia del manejo de equipos en muchos países para la determinación
de este parámetro. Estas ecuaciones para el caso del suelo de fundación fueron
corregidas por el Dr. Augusto Jugo para ser aplicadas en Venezuela.Por lo tanto, se
lleva a cabo con las siguientes ecuaciones del método AASTHO:
Módulo Resilente del Suelo de Fundación (Sub-rasante).
CBR ≤ 7,2%
Mr = 1500 × CBR d.
19
7,2% < CBR d. ≤ 20%
Mr = 1500 × CBR6%
Mr = 9000 psi
A modo de diseño se determinó anteriormente que el CBR de la sub-rasante
debe ser 3.5%, por ser el valor del resultado del estudio de suelo y por consiguiente
tenemos que la ecuación a usar será la del CBR≤ 7,2% como se muestra a continuación:
Mr= 1500 × CBR
Mr= 1500× 6
MrSR= 9000psi
Módulo Resilente para Bases y Sub-bases.
Para un CBR menor a 80%:
CBR < 80% =>Mr= 385,08 × CBR + 8660
Para un CBR mayor o igual al 80%
CBR ≥ 80% =>Mr= 321,05 × CBR + 13327
Por consiguiente efectuando las evaluaciones correspondientes según sea el caso
tenemos los siguientes resultados:
MrSub-base
MrSB= 385,08 × 77% + 8660
MrSB= 38.311,16psi
Mr Base
20
MrBS= 321,05 × 27% + 13327
MrBS=
21.995,35psi
Ecuación AASTHO para el Diseño del Pavimento Flexible.
La ecuación para el diseño de la sección estructural de los pavimentos se deriva
de la información obtenida empíricamente por AASTHO ROAD TEST. Para resolver
esta ecuación metodológicamente empírica se deben hallar otras variables importantes
que se muestran a continuación.
Desviación Normal del Error Estándar (So).
Es la combinación en la estimación de los parámetros de diseño y el
comportamiento del pavimento, por lo cual este parámetro está ligado directamente con
la Confiabilidad ®; habiéndolo determinado, en este paso deberá seleccionarse un valor
So “Desviación Estándar Global”, representativo de condiciones locales particulares,
que considera posibles variaciones en el comportamiento del pavimento y en la
21
predicción del tránsito. Valores de “So” en los tramos de prueba de AASHO no
incluyeron errores en la estimación del tránsito; sin embargo, el error en la predicción
del comportamiento de las secciones en tales tramos, fue de 0,25 para pavimentos
rígidos y 0,35 para los flexibles, lo que corresponde a valores de la desviación estándar
total debidos al tránsito de 0,35 y 0,45 para pavimentos rígidos y flexibles
respectivamente. En Venezuela se tiene una estimación para pavimentos flexibles según
el método AASTHO de:
0,40 < So < 0,50S e recomienda usar 0,45
Confiabilidad del Diseño (R).
La confiabilidad de un pavimento es la probabilidad de que una sección diseñada
se comportara satisfactoriamente bajo las condiciones de tránsito y ambientales durante
el periodo de diseño. Con el parámetro de Confiabilidad “R”, se trata de llegar a cierto
grado de certeza en el método de diseño, para asegurar que las diversas alternativas de
la sección estructural que se obtengan, durarán como mínimo el período de diseño. Se
consideran posibles variaciones en las predicciones del tránsito en ejes acumulados y en
el comportamiento de la sección diseñada.
El actual método AASHTO para el diseño de la sección estructural de
pavimentos flexibles, recomienda valores desde 50 y hasta 99,9 para el parámetro de
confiabilidad, con diferentes clasificaciones funcionales, notándose que los niveles más
altos corresponden a obras que estarán sujetas a un uso intensivo, mientras que los
niveles más bajos corresponden a obras o caminos locales y secundarios.
Cuadro 10. Valores de confiabilidad con diferentes clasificaciones funcionales
Clasificación funcional Nivel recomendados por AASTHO
22
para carreteras
Interestatal o autopista 80 – 99,9
Red principal o federal 75 – 95
Red secundaria o estatal 75 – 95
Red rural o local 50 – 80
Fuente: Guía AASHTO para diseño de carreteras.
Por ser la vialidad en estudio una red vial urbana por lo tanto se toma la relación
entre50 – 80, por lo tanto para efectos de diseño tomamos la menor confiabilidad R=
50%.
Índice de Serviciabilidad (∆PSI).
La serviciabilidad es la condición de un pavimento para proveer un manejo
seguro y confortable a los usuarios en un determinado momento. La mejor forma de
evaluarla es a través del índice de servicio presente el cual varía desde 0 hasta 5. La
filosofía básica del diseño es el concepto del comportamiento y capacidad de servicio, el
cual proporciona un medio para diseñar un pavimento con base en un volumen
especifico de transito total, y con un nivel mínimo de serviciabilidad deseado, al final
del periodo de diseño.Se sugiere que el criterio para definir el índice de servicio
terminal o mínimo de rechazo esté en función de la aceptación de los usuarios de la
carretera. El cambio o pérdida en la calidad de servicio que la carretera proporciona al
usuario, se define en el método con la siguiente ecuación:∆PSI= Po – Pt
Po=Índice de servicio inicial (4,5 para pavimentos rígidos y 4,2 para flexibles).Cada
entidad podrá elegir un valor apropiado para sus condiciones, por lo tanto, en Venezuela
debido al exceso de cargas que no se pueden controlar, está entre 3,80 y 4,00.
Pt= Es el índice más bajo que pueda tolerarse antes de realizar una medida de
rehabilitación. Se define como el índice de servicio terminal, para el cual AASHTO
23
maneja en su versión1993 valores de 3,0; 2,5 y 2,0, recomendando 2,5 o 3,0 para
caminos principales y 2,0 para secundarios, siendo este último el correspondiente a la
vía de la Urb. La Granja.
Calculo del Numero Estructural (SN).
El SN es un número abstracto que expresa la resistencia estructural de un
pavimento requerido, para una combinación dada del soporte del suelo (Mr), del tránsito
total (W18), de la serviciabilidad terminal y de las condiciones ambientales. Para el
diseño del pavimento flexible se deben tener los datos para identificar el número
estructural, donde este se obtiene mediante un tanteo simultáneo para verificar que:
W18
REE
≥ 1 tomando una tolerancia de 1 a 1,20
Tomando en consideración esta base teórica que inculca el método AASTHO
podemos resumir de manera técnica y estratégica lo siguiente:
W18
REE
≥ 1 despejando W18 ≥ REE
W18 = REE
De esta manera podemos introducir directamente el valor de las repeticiones de
los ejes equivalentes calculados anteriormente usando el programa de la ecuación
AASTHO (1993), desarrollado por el Ingeniero Civil Manizales en el año 2004, para
que arroje de forma definitiva y exacta el numero estructural por cada escalón de la
superestructura multicapa sin necesidad de realizar tanteos alternativos y de esta manera
conservar la pureza logística del diseño.
Números Estructurales de las Capas del Pavimento.
SN de la Base.
El número estructural de la capa base se calcula con el módulo resilente de la
base:
24
El dato obtenido es de SNBS= 0,95
Este número estructural se calcula consecutivamente con el módulo resilente de la sub-
base, quedando evidencia de esto en la siguiente demostración:
25
El dato obtenido es de SNSB= 0,70
Luego se procede a calcular de igual manera el número estructural para el suelo de
fundación o sub-rasante.
SN de la sub-rasante.
Al igual que los demás números estructurales, el de la sub-rasante se obtiene
introduciendo el valor del módulo resilente correspondiente obtenido del mismo suelo
de fundación, como se puede notar:
26
El valor que se obtuvo es de SNSR= 1,43
Así de esta manera, se puede proceder a realizar los cálculos de los espesores de
las capas del pavimento propuesto en la investigación.
Calculo de Espesores de las Capas del Pavimento.
Luego de obtener el número estructural SN para la sección estructural del
pavimento, utilizando la ecuación general básica de diseño, donde se involucraron los
parámetros anteriormente descritos(tránsito, R, So, MR , ΔPSI ), se requiere ahora
determinar una sección multicapa que en conjunto provea de suficiente capacidad de
soporte equivalente al número estructural de diseño original. La siguiente ecuación
puede utilizarse para obtener los espesores de cada capa, para la superficie de
rodamiento o carpeta, base y sub-base, haciéndose notar que el actual método de
AASHTO, versión 1993, involucra coeficientes de drenaje particulares para la base y
sub-base. Para el cálculo de los espesores de las capas el método AASTHO propone la
siguiente ecuación:
27
SN = a1D1m1 + a2D2m2 + a3D3m3
Donde:
a1, a2 y a3 = Son coeficientes estructurales de capa representativos de carpeta asfáltica,
base y sub-base respectivamente.
D1, D2 y D3 = son los espesores de la carpeta asfáltica, base y sub-base
respectivamente, en pulgadas.
m1, m2 y m3 =son los coeficientes de drenaje para la carpeta asfáltica, base y sub-base,
respectivamente.
Empezaremos a determinar cada variable de la ecuación para poder introducirlos
en la misma.
Coeficiente estructural de la carpeta asfáltica.
Se determina a través de la Estabilidad Marshall en libras, la cual se obtiene
mediante el ensayo de la estabilidad Marshall de la mezcla asfáltica, tomando en
consideración distintas propiedades de la misma. La estabilidad es una de las
propiedades más importantes que debe buscarse en una mezcla asfáltica, ya que de ella
dependerá en gran parte el que la mezcla que se diseñe logre un comportamiento
adecuado en obra, garantizando una mezcla que no se deforme o desplace ante las
cargas pesadas, y que sea resistente ante el efecto de la repetición de cargas (REE o
Wt18) a la cual un pavimento se ve sometido durante su vida de servicio. En vista de no
poseer con los recursos necesarios para realizar los ensayos de la Estabilidad Marshall,
el cuadro 12 resume los criterios de la Norma INVEAS 2002 en cuanto a las
propiedades que debe cumplir una mezcla asfáltica densa:
Cuadro 11. Propiedades Marshall Exigidas para el Diseño de Mezclas en
Laboratorio
28
Fuente: Norma INVEAS 2002
En vista de esto, para efectos de diseño se toma un valor mínimo exigido de
estabilidad Marshall para transito bajo de 1600. Con este valor se consigue el
coeficiente a1 interceptado en el nomograma proporcionado por el método AASTHO
para estimar el coeficiente estructural de la carpeta asfáltica de la siguiente manera:
Grafico 8.Coeficiente Estructural de la carpeta asfáltica. Fuente: AASTHO
93
Se observa que el coeficiente a1 equivale aproximadamente a1 0,40.
Coeficiente Estructural de la Capa Base.
Este coeficiente se determina por medio de la capacidad de soporte de la base
(CBRBS) y para conseguir el valor del coeficiente debemos utilizar el grafico que se
presenta:
29
Grafico 9.Coeficiente Estructural de la Capa Base Fuente: AASTHO 93
Para un CBR de 80% se obtiene aproximadamente un valor de coeficiente a2 de 0,12.
Coeficiente Estructural de la Capa Subbase (A3).
Se determina mediante la capacidad de soporte de la subbase(CBRSB),
impuesta para este diseño y para ello se utiliza el siguiente gráfico:
30
Grafico 10.Coeficiente Estructural de la Capa Subbase (A3).Fuente: AASTHO 93
Para un CBR de 30% se obtiene aproximadamente un valor de coeficiente a3 de 0,10.
Coeficiente de Drenaje (m).
Para la obtención de los coeficientes de drenaje, m2 y m3, correspondientes a las
capas de base y sub-base respectivamente, el método actual de AASHTO se basa en la
capacidad del drenaje para remover la humedad interna del pavimento, por lo que se
refiere a un valor “m” de acuerdo a la calidad del drenaje y el tiempo en el año durante
el cual se espera que el pavimento este normalmente expuesto a niveles de humedad
cercanos a la saturación. Estos factores se determinan según la zona climática, Calidad
31
del drenaje del material usado en la base y/o Sub-base y el porcentaje del tiempo con la
estructura próxima a la saturación. Para determinar el coeficiente “m” se debe manejar
la siguiente información:
Grafico 11. Zonas Climáticas de Venezuela
De acuerdo a este gráfico, PORTUGUESA se encuentra en el punto VI y esto se
traduce en lo siguiente:
Cuadro 12. Relaciones de Clima en Venezuela
Zona
climática
I II III IV V VI VII VIII IX X XI XII
Meses de
condición
seca
2 6 3 4 6 5,5 6 7 10 7 5 12
Meses de
32
cond.
Húmeda
2 4 3 4 2 3 3 3 1,5 4 5 0
Meses de
cond.
Saturada
8 2 6 4 4 3,5 3 2 0,5 1 2 0
Fuente: Hidrosfera de Venezuela (2002)
Para la calidad del drenaje del material y la capacidad para remover la humedad
nos basaremos en los siguientes parámetros.
Cuadro 13. Capacidad del Drenaje para Remover la Humedad
Calidad del drenaje Tiempo en que el agua es removida
Excelente 2 horas
Bueno 1 día
Regular 1 semana
Pobre 1 mes
Fuente: Asociación Americana de Administradores de Carreteras y Transporte
(AASHTO).
Para efectos de diseño usaremos la calidad del drenaje regular. En el cuadro 15 se
presentan los valores recomendados para m2 y m3 en función de la calidad del drenaje y
el porcentaje del tiempo a lo largo de un año, en el cual la estructura del
33
Pavimento pueda estar expuesta a niveles de humedad próximos a la saturación:
Cuadro 14. Valores Recomendados para Coeficientes Estructurales de Capa de Bases
y Sub-bases, en Pavimentos Flexibles
Como se puede notar la zona VI del mapa en función del clima se encuentra en
el nivel de porcentaje de tiempo mayor al 25%, por lo tanto tomamos el valor de la
calidad del drenaje regular de m= 0,80 para base y sub-base, puesto que la carpeta
obtiene el 100% de la calidad del drenaje que equivale a 1.
Para calcular los espesores de las capas del pavimento el método AASTHO
asemeja la estructura en una posición superpuesta desde la primera capa hasta la última,
usando el valor abstracto del número estructural de cada capa. Para ello se recopilaron
en orden los resultados obtenidos en el siguiente cuadro:
Cuadro 15. Datos para el Diseño de Pavimento
NOMBRE NOMENCLATURA VALOR
Numero Estructural de la Base SNBS 0,95
Numero Estructural de la Subbase SNSB 0,70
Numero Estructural de la Subrasante SNSR 1,43
Coeficiente Estructural de la Carpeta
Asfáltica
a1 0,40
Coeficiente Estructural de la Base a2 0,12
Coeficiente Estructural de la Subbase a3 0,10
Coeficiente de Drenaje de la Carpeta
Asfáltica
M1 1,0
Coeficiente de Drenaje de la Base M2 0,80
34
Coeficiente de Drenaje de la Subbase M3 0,80
Fuente: Grupo Francisco Castillo, Domingo Nieves.
Espesor de la Carpeta Asfáltica
Se calcula con el número estructural de la base de la siguiente manera:
SNBS= a1 × m1 × D1
D1=
0.95
0,40×1
= 2,37 in × 2, 54 = 6.019 cm ≈
Ahora recalculamos el número estructural de la base y tenemos:
SNBS:
D1=
6
2,54
= 2,36in
SNBS* = a1 x m1 x D1
SNBS*= 0,40 × 1,0 ×2.36 = 0,944
Espesor de la Base
Se calcula con el número estructural de la sub-base:
SNSB= SNBS* + a2 × m2 × D2
6 cm
35
D2=
0,70−0.95
0,12×0,80
= 2.60 in × 2,54 cm = 6,604 cm ≈
D2=
7cm
2,54
= 2,76 in
Luego calculamos el nuevo número estructural para la sub-base para equilibrar
la ecuación:
SNSB* = SNBS* + a2 x m2 x D2
SNSB*= 0.95+ 0,12 × 0,80 × 2,76 = 1,21
SNSB**=0,70 – 0.95 = 0,25
Espesor de la Sub-base
Se calcula tomando el número estructural de la sub-rasante o suelo de fundación,
de la siguiente manera:
SNSR= SNBS* + SNSB * + a3 × m3 × D3
D3 =
1.43−0.95−1.20
0,10×0,80
= 9in × 2,54 = 22,86cm ≈
7cm
23cm
36
De esta manera hemos obtenido el diseño de los espesores del pavimento que se
pueden apreciar en la siguiente gráfica:
Grafico 12. Modelo grafico de los espesores de las capas del pavimento. Fuente:
Grupo N.8 UNEFA Guanare (2015)
Carpeta Asfáltica = 6 cm
Base = 7 cm
Sub- Base=23 cm
37
ANEXOS
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
CONCLUSION
Una vialidad de buena calidad brinda una mejor calidad de vida a los ciudadanos,
cuando falta; desmejora la calidad de vida de un sector haciendo que fallen otros
sistemas de la sociedad como lo son el tránsito, el acceso al sector, la referencia y el
aspecto. Notando que la urbanización la granja carece de este beneficio, limitando a los
integrantes de la zona a una baja calidad de vida.
En busca de una solución, el desarrollo de nuestra propuesta de diseño vial, se logra
cubrir una de las exigencias prioritarias de la comunidad. Garantizándoles una mejor
calidad de vida e incentivándolos al progreso y consolidación del Sector.
En este trabajo se analizaron según diferentes métodos analíticos y los problemas
que afectan a esta entidad ya sus arterias viales no están consolidados. En vista de esto
se diseñó un servicio de alta calidad aplicando el método AASTHO 86- 93 con el que
garantiza una vida útil de 25 a 30 años. Las ventajas de este método es que en él, se
evalúan los volúmenes de tránsito, el crecimiento poblacional y velocidad entre otros y
a la vez con las características topográficas del camino, cumpliendo así con las
exigencias mínimas requeridas.
54
RECOMENDACIONES
 Tomar en Cuenta el tránsito vehicular Futuro para el cálculo de la vialidad y así
poder evitar fallas futuras en la estructura de la misma.
 Tener en cuenta la topografía, ya que de ella depende el diseño de la estructura.
 Tomar en Cuentas Las Normativas Covenin y el Método AASHTO para
vialidad.
 Tomar en Cuenta el drenaje del terreno ya que este va ser fundamental en la vida
útil del pavimento.
55
REFERENCIAS BIBLIOGRÁFICA
Bavaresco, citado por Rojas M(2007)Normas para la Elaboración de Trabajos de
Grado y Tesis Doctoral. Maracaibo Estado Zulia.
Balestrini, M. (2001). Como se Elabora el Proyecto de Investigación. Editorial OBL
Consultores Asociados. Caracas
Bautista (2003) Proyecto de Investigación. 3ra edición. Editorial Episteme. Caracas
Boussinesq y F, (1994) Diseño de pavimentos por métodos racionales". Tomo I.
Universidad de Los Andes, Mérida
Cal y Mayor, R. (2003) Vías terrestres y Aeropistas. México
Constitución de la República Bolivariana de Venezuela (1999). Gaceta Oficial N°
36.860. Caracas – Venezuela
Escalona C, (2012) “Diseño de pavimento flexible para optimizar el desarrollo
económico en la vía agrícola desde el sector Matarrala hasta Anaro del municipio
Pedraza”, trabajo de grado no publicado en el IUTAC
Gómez, D. (2008) “Diseño, Procedimientos Constructivos y Control de Pavimentos”
Trabajo de Grado presentado en la Universidad de Colombia
Maldonado A. (2008) La Ingeniería de Pavimentos en el siglo XXI". AEPO S.A.
España
Martins (2006) Como investigar en Educación. Editorial Síntesis Caracas – Venezuela
Márquez (2006). LaInvestigación en las Ciencias Sociales. Colección Docencia
Universitaria, Barinas Estado Barinas.
Norma Venezolana Carreteras, Calles y Vías Urbanas y Rurales (2010)
COVENIN 867-80, Caracas - Venezuela
ONU (2010) Organización Mundial Naciones Unidas
Palella y Martins (2006),Metodología de la Investigación Cuantitativa. Segunda
edición. Caracas: Fondo Editorial de la Universidad Pedagógica.
56
Saavedra O. (2996) Estructuración de vías terrestres. Cuarta reimpresión. Editorial
Continente. México
Sabino (2002) El proceso de la Investigación. Editorial Panapo. Caracas. Venezuela
Sánchez R, (2006). “Ampliación y reconstrucción de la carretera federal México-Puebla
de la ciudad de Cholula a Santa María Zacatepec, km. 98+300 al km. 103+300”
Trabajo de Grado No Publicado en la Universidad de México.
Tellez R. (2009) “Impacto Ambiental de Proyectos Carreteros agrícolas” Trilogìa de
publicaciones del ETSI de caminos de Madrid que aborda los distintos aspectos del
proyecto de carreteras
Xumini, L (2011), Diseño de Vías Terrestres. Editorial siglo xx. Buenos Aires
Argentina
Veliz, A. (2007). Como Investigar en Educación. Editorial Síntesis, Caracas
Venezuela.
Vergara H. (2007) “Diseño de Mezcla de Pavimento Flexible” Trabajo de Grado No
publicado en la Universidad la Gran Colombia, Bogotá.
Gustavo, M “Maestría en Vías Terrestres Modulo III”.

Más contenido relacionado

La actualidad más candente

Curvas horizontales transiciones-y-peraltes1
Curvas horizontales transiciones-y-peraltes1Curvas horizontales transiciones-y-peraltes1
Curvas horizontales transiciones-y-peraltes1benito herbert sarmiento
 
Diseño de pavimentos
Diseño de pavimentosDiseño de pavimentos
Diseño de pavimentosUES
 
Informe contenido de humedad
Informe contenido de humedadInforme contenido de humedad
Informe contenido de humedadEFRAIN APLIKA2
 
Carguio de material afirmado
Carguio de material afirmadoCarguio de material afirmado
Carguio de material afirmadoTito U. Gomez
 
DISEÑO DE PAVIMENTOS FLEXIBLES, MÉTODOS DEL INSTITUTO DE ASFALTO PARÁMETROS D...
DISEÑO DE PAVIMENTOS FLEXIBLES, MÉTODOS DEL INSTITUTO DE ASFALTO PARÁMETROS D...DISEÑO DE PAVIMENTOS FLEXIBLES, MÉTODOS DEL INSTITUTO DE ASFALTO PARÁMETROS D...
DISEÑO DE PAVIMENTOS FLEXIBLES, MÉTODOS DEL INSTITUTO DE ASFALTO PARÁMETROS D...Angelo Alvarez Sifuentes
 
MÓDULO 13: DISEÑO PAVIMENTOS RÍGIDOS CALLES Y CARRETERAS - FERNANDO SÁNCHEZ S...
MÓDULO 13: DISEÑO PAVIMENTOS RÍGIDOS CALLES Y CARRETERAS - FERNANDO SÁNCHEZ S...MÓDULO 13: DISEÑO PAVIMENTOS RÍGIDOS CALLES Y CARRETERAS - FERNANDO SÁNCHEZ S...
MÓDULO 13: DISEÑO PAVIMENTOS RÍGIDOS CALLES Y CARRETERAS - FERNANDO SÁNCHEZ S...Emilio Castillo
 
Métodos de estimación de tránsito
Métodos de estimación de tránsitoMétodos de estimación de tránsito
Métodos de estimación de tránsitoFreddy Artigas
 
Analisis de-flujo-vehicular-cal-y-mayor
Analisis de-flujo-vehicular-cal-y-mayorAnalisis de-flujo-vehicular-cal-y-mayor
Analisis de-flujo-vehicular-cal-y-mayorYanetsy Delgado
 
05.00 diseño de pavimentos flexibles asshto 93
05.00 diseño de pavimentos flexibles asshto 9305.00 diseño de pavimentos flexibles asshto 93
05.00 diseño de pavimentos flexibles asshto 93Juan Soto
 
Mejoramiento de suelos
Mejoramiento de suelosMejoramiento de suelos
Mejoramiento de suelosManccini Roman
 
Memoria de calculo de pavimento flexible
Memoria de calculo de pavimento flexibleMemoria de calculo de pavimento flexible
Memoria de calculo de pavimento flexibleTGerard Moreira
 
54691367 diagrama-de-masa
54691367 diagrama-de-masa54691367 diagrama-de-masa
54691367 diagrama-de-masaGato Felix
 

La actualidad más candente (20)

Curvas horizontales transiciones-y-peraltes1
Curvas horizontales transiciones-y-peraltes1Curvas horizontales transiciones-y-peraltes1
Curvas horizontales transiciones-y-peraltes1
 
ELEMENTOS QUE CONSTITUYEN UN PAVIMENTO_(Semana 1-2)
ELEMENTOS QUE CONSTITUYEN UN PAVIMENTO_(Semana 1-2)ELEMENTOS QUE CONSTITUYEN UN PAVIMENTO_(Semana 1-2)
ELEMENTOS QUE CONSTITUYEN UN PAVIMENTO_(Semana 1-2)
 
Volumen de transito
Volumen de transitoVolumen de transito
Volumen de transito
 
Diseño de pavimentos
Diseño de pavimentosDiseño de pavimentos
Diseño de pavimentos
 
calculo de Caudales de diseño en drenaje de carreteras.
calculo de Caudales de diseño en drenaje de carreteras. calculo de Caudales de diseño en drenaje de carreteras.
calculo de Caudales de diseño en drenaje de carreteras.
 
Mtc e 101 2000
Mtc e 101 2000Mtc e 101 2000
Mtc e 101 2000
 
Informe contenido de humedad
Informe contenido de humedadInforme contenido de humedad
Informe contenido de humedad
 
Carguio de material afirmado
Carguio de material afirmadoCarguio de material afirmado
Carguio de material afirmado
 
Especificaciones tecnicas
Especificaciones tecnicasEspecificaciones tecnicas
Especificaciones tecnicas
 
DISEÑO DE PAVIMENTOS FLEXIBLES, MÉTODOS DEL INSTITUTO DE ASFALTO PARÁMETROS D...
DISEÑO DE PAVIMENTOS FLEXIBLES, MÉTODOS DEL INSTITUTO DE ASFALTO PARÁMETROS D...DISEÑO DE PAVIMENTOS FLEXIBLES, MÉTODOS DEL INSTITUTO DE ASFALTO PARÁMETROS D...
DISEÑO DE PAVIMENTOS FLEXIBLES, MÉTODOS DEL INSTITUTO DE ASFALTO PARÁMETROS D...
 
MÓDULO 13: DISEÑO PAVIMENTOS RÍGIDOS CALLES Y CARRETERAS - FERNANDO SÁNCHEZ S...
MÓDULO 13: DISEÑO PAVIMENTOS RÍGIDOS CALLES Y CARRETERAS - FERNANDO SÁNCHEZ S...MÓDULO 13: DISEÑO PAVIMENTOS RÍGIDOS CALLES Y CARRETERAS - FERNANDO SÁNCHEZ S...
MÓDULO 13: DISEÑO PAVIMENTOS RÍGIDOS CALLES Y CARRETERAS - FERNANDO SÁNCHEZ S...
 
Métodos de estimación de tránsito
Métodos de estimación de tránsitoMétodos de estimación de tránsito
Métodos de estimación de tránsito
 
Analisis de-flujo-vehicular-cal-y-mayor
Analisis de-flujo-vehicular-cal-y-mayorAnalisis de-flujo-vehicular-cal-y-mayor
Analisis de-flujo-vehicular-cal-y-mayor
 
05.00 diseño de pavimentos flexibles asshto 93
05.00 diseño de pavimentos flexibles asshto 9305.00 diseño de pavimentos flexibles asshto 93
05.00 diseño de pavimentos flexibles asshto 93
 
ESTUDIOS DE VELOCIDADES EN CARRETERAS
ESTUDIOS DE VELOCIDADES EN CARRETERASESTUDIOS DE VELOCIDADES EN CARRETERAS
ESTUDIOS DE VELOCIDADES EN CARRETERAS
 
Mejoramiento de suelos
Mejoramiento de suelosMejoramiento de suelos
Mejoramiento de suelos
 
Memoria de calculo de pavimento flexible
Memoria de calculo de pavimento flexibleMemoria de calculo de pavimento flexible
Memoria de calculo de pavimento flexible
 
VIGA BENKELMAN PROCESOSS
VIGA  BENKELMAN PROCESOSSVIGA  BENKELMAN PROCESOSS
VIGA BENKELMAN PROCESOSS
 
54691367 diagrama-de-masa
54691367 diagrama-de-masa54691367 diagrama-de-masa
54691367 diagrama-de-masa
 
DISEÑO DE MEZCLAS MÉTODO MARSHALL
DISEÑO DE MEZCLAS MÉTODO MARSHALLDISEÑO DE MEZCLAS MÉTODO MARSHALL
DISEÑO DE MEZCLAS MÉTODO MARSHALL
 

Destacado

Diseño de pavimento flexible
Diseño de pavimento flexibleDiseño de pavimento flexible
Diseño de pavimento flexiblejimjnv
 
Diseño de pavimentos flexibles metodo aashto
Diseño de pavimentos flexibles metodo aashtoDiseño de pavimentos flexibles metodo aashto
Diseño de pavimentos flexibles metodo aashtohoobastank1
 
Proyecto modelo engranzonado de via
Proyecto modelo engranzonado de viaProyecto modelo engranzonado de via
Proyecto modelo engranzonado de viapetramarchan
 
Nueva+tabla+de+infracciones+actualizada[1]
Nueva+tabla+de+infracciones+actualizada[1]Nueva+tabla+de+infracciones+actualizada[1]
Nueva+tabla+de+infracciones+actualizada[1]jorge reyes
 
Mapa conceptual
Mapa conceptualMapa conceptual
Mapa conceptualToupSCK
 
EVALUACIÒN DE LA RESISTENCIA AL DESLIZAMIENTO SUPERFICIAL DE LOS PAVIMENTOS
EVALUACIÒN DE LA RESISTENCIA AL DESLIZAMIENTO SUPERFICIAL DE LOS PAVIMENTOSEVALUACIÒN DE LA RESISTENCIA AL DESLIZAMIENTO SUPERFICIAL DE LOS PAVIMENTOS
EVALUACIÒN DE LA RESISTENCIA AL DESLIZAMIENTO SUPERFICIAL DE LOS PAVIMENTOSEmilio Castillo
 
05 cap4 pavimentos de concreto asfáltico método aashto-93.doc
05 cap4 pavimentos de concreto asfáltico método aashto-93.doc05 cap4 pavimentos de concreto asfáltico método aashto-93.doc
05 cap4 pavimentos de concreto asfáltico método aashto-93.docAngelica Hidalgo
 
PAUTAS METODOLÓGICAS PARA EL DESARROLLO DE ALTERNATIVAS DE PAVIMENTOS EN LA F...
PAUTAS METODOLÓGICAS PARA EL DESARROLLO DE ALTERNATIVAS DE PAVIMENTOS EN LA F...PAUTAS METODOLÓGICAS PARA EL DESARROLLO DE ALTERNATIVAS DE PAVIMENTOS EN LA F...
PAUTAS METODOLÓGICAS PARA EL DESARROLLO DE ALTERNATIVAS DE PAVIMENTOS EN LA F...Emilio Castillo
 
Suelo y tipos de suelo - Medio ambiente
Suelo y tipos de suelo - Medio ambienteSuelo y tipos de suelo - Medio ambiente
Suelo y tipos de suelo - Medio ambienteAlejandro Hernández
 
Maquinaria pavimentos asfálticos
Maquinaria pavimentos asfálticosMaquinaria pavimentos asfálticos
Maquinaria pavimentos asfálticosconstruccionpesada1
 
Diseño de pavimentos metodo aastho - Profesor Francisco Escobar
Diseño de pavimentos metodo aastho - Profesor Francisco EscobarDiseño de pavimentos metodo aastho - Profesor Francisco Escobar
Diseño de pavimentos metodo aastho - Profesor Francisco Escobarhaztemodelo
 
Mapa conceptual tipos de suelos y sus caracteristicas
Mapa conceptual tipos de suelos y sus caracteristicas Mapa conceptual tipos de suelos y sus caracteristicas
Mapa conceptual tipos de suelos y sus caracteristicas luchojose30
 
Diseño de transito
Diseño de transitoDiseño de transito
Diseño de transitoUPAO
 
Mapa conceptual el suelo
Mapa conceptual el sueloMapa conceptual el suelo
Mapa conceptual el sueloRABC11101998
 

Destacado (20)

Diseño de pavimento flexible
Diseño de pavimento flexibleDiseño de pavimento flexible
Diseño de pavimento flexible
 
Diseño de pavimento flexible y rígido
Diseño de pavimento flexible y rígidoDiseño de pavimento flexible y rígido
Diseño de pavimento flexible y rígido
 
Diseño de pavimentos flexibles metodo aashto
Diseño de pavimentos flexibles metodo aashtoDiseño de pavimentos flexibles metodo aashto
Diseño de pavimentos flexibles metodo aashto
 
Proyecto Pavimento Flexible
Proyecto Pavimento FlexibleProyecto Pavimento Flexible
Proyecto Pavimento Flexible
 
Proyecto modelo engranzonado de via
Proyecto modelo engranzonado de viaProyecto modelo engranzonado de via
Proyecto modelo engranzonado de via
 
Nueva+tabla+de+infracciones+actualizada[1]
Nueva+tabla+de+infracciones+actualizada[1]Nueva+tabla+de+infracciones+actualizada[1]
Nueva+tabla+de+infracciones+actualizada[1]
 
Mapa conceptual
Mapa conceptualMapa conceptual
Mapa conceptual
 
Analisis pavimento
Analisis pavimentoAnalisis pavimento
Analisis pavimento
 
EVALUACIÒN DE LA RESISTENCIA AL DESLIZAMIENTO SUPERFICIAL DE LOS PAVIMENTOS
EVALUACIÒN DE LA RESISTENCIA AL DESLIZAMIENTO SUPERFICIAL DE LOS PAVIMENTOSEVALUACIÒN DE LA RESISTENCIA AL DESLIZAMIENTO SUPERFICIAL DE LOS PAVIMENTOS
EVALUACIÒN DE LA RESISTENCIA AL DESLIZAMIENTO SUPERFICIAL DE LOS PAVIMENTOS
 
05 cap4 pavimentos de concreto asfáltico método aashto-93.doc
05 cap4 pavimentos de concreto asfáltico método aashto-93.doc05 cap4 pavimentos de concreto asfáltico método aashto-93.doc
05 cap4 pavimentos de concreto asfáltico método aashto-93.doc
 
Resumen y conclusiones pavimentos
Resumen y conclusiones pavimentosResumen y conclusiones pavimentos
Resumen y conclusiones pavimentos
 
PAUTAS METODOLÓGICAS PARA EL DESARROLLO DE ALTERNATIVAS DE PAVIMENTOS EN LA F...
PAUTAS METODOLÓGICAS PARA EL DESARROLLO DE ALTERNATIVAS DE PAVIMENTOS EN LA F...PAUTAS METODOLÓGICAS PARA EL DESARROLLO DE ALTERNATIVAS DE PAVIMENTOS EN LA F...
PAUTAS METODOLÓGICAS PARA EL DESARROLLO DE ALTERNATIVAS DE PAVIMENTOS EN LA F...
 
Suelo y tipos de suelo - Medio ambiente
Suelo y tipos de suelo - Medio ambienteSuelo y tipos de suelo - Medio ambiente
Suelo y tipos de suelo - Medio ambiente
 
Maquinaria pavimentos asfálticos
Maquinaria pavimentos asfálticosMaquinaria pavimentos asfálticos
Maquinaria pavimentos asfálticos
 
Tipos de vías
Tipos de víasTipos de vías
Tipos de vías
 
Diseño de pavimentos metodo aastho - Profesor Francisco Escobar
Diseño de pavimentos metodo aastho - Profesor Francisco EscobarDiseño de pavimentos metodo aastho - Profesor Francisco Escobar
Diseño de pavimentos metodo aastho - Profesor Francisco Escobar
 
Mapa conceptual tipos de suelos y sus caracteristicas
Mapa conceptual tipos de suelos y sus caracteristicas Mapa conceptual tipos de suelos y sus caracteristicas
Mapa conceptual tipos de suelos y sus caracteristicas
 
Diseño de transito
Diseño de transitoDiseño de transito
Diseño de transito
 
Mapa conceptual el suelo
Mapa conceptual el sueloMapa conceptual el suelo
Mapa conceptual el suelo
 
Proceso constructivo de pavimento flexible
Proceso constructivo de pavimento flexibleProceso constructivo de pavimento flexible
Proceso constructivo de pavimento flexible
 

Similar a Proyecto pavimento flexible.

Tarea transportes del tema volumen de tránsito de segundo semestre
Tarea transportes del tema volumen de tránsito de segundo semestreTarea transportes del tema volumen de tránsito de segundo semestre
Tarea transportes del tema volumen de tránsito de segundo semestrealonsomartibb
 
ALGO SOBRE EVALUACION ECONOMICA EN OBRAS NUEVAS DE CARRETERA
ALGO SOBRE EVALUACION ECONOMICA EN OBRAS NUEVAS DE CARRETERAALGO SOBRE EVALUACION ECONOMICA EN OBRAS NUEVAS DE CARRETERA
ALGO SOBRE EVALUACION ECONOMICA EN OBRAS NUEVAS DE CARRETERADante Angel Arones Cardenas
 
Clase auxiliar transito_y_calculo_de_ejes_equivalentes
Clase auxiliar transito_y_calculo_de_ejes_equivalentesClase auxiliar transito_y_calculo_de_ejes_equivalentes
Clase auxiliar transito_y_calculo_de_ejes_equivalentesoscar torres
 
Diseodetransito 121007112859-phpapp01
Diseodetransito 121007112859-phpapp01Diseodetransito 121007112859-phpapp01
Diseodetransito 121007112859-phpapp01Miguel Vargas
 
Diseodetransito 121007112859-phpapp01 (1)
Diseodetransito 121007112859-phpapp01 (1)Diseodetransito 121007112859-phpapp01 (1)
Diseodetransito 121007112859-phpapp01 (1)Miguel Vargas
 
Dimensionamiento optimo_de_flotas_sge
Dimensionamiento  optimo_de_flotas_sgeDimensionamiento  optimo_de_flotas_sge
Dimensionamiento optimo_de_flotas_sgeJesús Valencia Garro
 
COSTOS DE SERVICIOS DE LIMPIA
COSTOS DE SERVICIOS DE LIMPIACOSTOS DE SERVICIOS DE LIMPIA
COSTOS DE SERVICIOS DE LIMPIAenriquebio2
 
PAVIMENTO RIGIDO PCA MODIFICADO.pptx
PAVIMENTO RIGIDO PCA MODIFICADO.pptxPAVIMENTO RIGIDO PCA MODIFICADO.pptx
PAVIMENTO RIGIDO PCA MODIFICADO.pptxDaniel Chicoma Diaz
 
2. ESTUDIO DEL TRANSITO PARA EL DISEÑO DEL PAVIMENTO.pdf
2. ESTUDIO DEL TRANSITO PARA EL DISEÑO DEL PAVIMENTO.pdf2. ESTUDIO DEL TRANSITO PARA EL DISEÑO DEL PAVIMENTO.pdf
2. ESTUDIO DEL TRANSITO PARA EL DISEÑO DEL PAVIMENTO.pdfAlonsoGamez1
 
Diseño de pavimentos PCA
Diseño de pavimentos PCADiseño de pavimentos PCA
Diseño de pavimentos PCAHenry Trejo
 
Clase de Vías de Comunicación 1
Clase de Vías de Comunicación 1Clase de Vías de Comunicación 1
Clase de Vías de Comunicación 1Hecdiel
 

Similar a Proyecto pavimento flexible. (20)

proyecto de pavimento
proyecto de pavimentoproyecto de pavimento
proyecto de pavimento
 
Calculo dramo 4
Calculo dramo 4Calculo dramo 4
Calculo dramo 4
 
4. Tránsito.pdf
4. Tránsito.pdf4. Tránsito.pdf
4. Tránsito.pdf
 
Informe conteo final
Informe conteo finalInforme conteo final
Informe conteo final
 
Tarea transportes del tema volumen de tránsito de segundo semestre
Tarea transportes del tema volumen de tránsito de segundo semestreTarea transportes del tema volumen de tránsito de segundo semestre
Tarea transportes del tema volumen de tránsito de segundo semestre
 
ALGO SOBRE EVALUACION ECONOMICA EN OBRAS NUEVAS DE CARRETERA
ALGO SOBRE EVALUACION ECONOMICA EN OBRAS NUEVAS DE CARRETERAALGO SOBRE EVALUACION ECONOMICA EN OBRAS NUEVAS DE CARRETERA
ALGO SOBRE EVALUACION ECONOMICA EN OBRAS NUEVAS DE CARRETERA
 
Anexo a Guia REhabiitacion
Anexo a Guia REhabiitacionAnexo a Guia REhabiitacion
Anexo a Guia REhabiitacion
 
Clase auxiliar transito_y_calculo_de_ejes_equivalentes
Clase auxiliar transito_y_calculo_de_ejes_equivalentesClase auxiliar transito_y_calculo_de_ejes_equivalentes
Clase auxiliar transito_y_calculo_de_ejes_equivalentes
 
Formulación de proyectos del sector transporte
Formulación de proyectos del sector transporteFormulación de proyectos del sector transporte
Formulación de proyectos del sector transporte
 
Variaciones y aplicaciones
Variaciones y aplicacionesVariaciones y aplicaciones
Variaciones y aplicaciones
 
Diseodetransito 121007112859-phpapp01
Diseodetransito 121007112859-phpapp01Diseodetransito 121007112859-phpapp01
Diseodetransito 121007112859-phpapp01
 
Diseodetransito 121007112859-phpapp01 (1)
Diseodetransito 121007112859-phpapp01 (1)Diseodetransito 121007112859-phpapp01 (1)
Diseodetransito 121007112859-phpapp01 (1)
 
Dimensionamiento optimo_de_flotas_sge
Dimensionamiento  optimo_de_flotas_sgeDimensionamiento  optimo_de_flotas_sge
Dimensionamiento optimo_de_flotas_sge
 
COSTOS DE SERVICIOS DE LIMPIA
COSTOS DE SERVICIOS DE LIMPIACOSTOS DE SERVICIOS DE LIMPIA
COSTOS DE SERVICIOS DE LIMPIA
 
PAVIMENTO RIGIDO PCA MODIFICADO.pptx
PAVIMENTO RIGIDO PCA MODIFICADO.pptxPAVIMENTO RIGIDO PCA MODIFICADO.pptx
PAVIMENTO RIGIDO PCA MODIFICADO.pptx
 
2. ESTUDIO DEL TRANSITO PARA EL DISEÑO DEL PAVIMENTO.pdf
2. ESTUDIO DEL TRANSITO PARA EL DISEÑO DEL PAVIMENTO.pdf2. ESTUDIO DEL TRANSITO PARA EL DISEÑO DEL PAVIMENTO.pdf
2. ESTUDIO DEL TRANSITO PARA EL DISEÑO DEL PAVIMENTO.pdf
 
Diseño de pavimentos PCA
Diseño de pavimentos PCADiseño de pavimentos PCA
Diseño de pavimentos PCA
 
Demanda de tránsito
Demanda de tránsitoDemanda de tránsito
Demanda de tránsito
 
Repaso 2011
Repaso 2011Repaso 2011
Repaso 2011
 
Clase de Vías de Comunicación 1
Clase de Vías de Comunicación 1Clase de Vías de Comunicación 1
Clase de Vías de Comunicación 1
 

Último

TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfTAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfAntonioGonzalezIzqui
 
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)ssuser563c56
 
01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt
01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt
01 MATERIALES AERONAUTICOS VARIOS clase 1.pptoscarvielma45
 
Manual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfManual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfedsonzav8
 
Condensadores de la rama de electricidad y magnetismo
Condensadores de la rama de electricidad y magnetismoCondensadores de la rama de electricidad y magnetismo
Condensadores de la rama de electricidad y magnetismosaultorressep
 
aCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.pptaCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.pptCRISTOFERSERGIOCANAL
 
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdfECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdffredyflores58
 
tema05 estabilidad en barras mecanicas.pdf
tema05 estabilidad en barras mecanicas.pdftema05 estabilidad en barras mecanicas.pdf
tema05 estabilidad en barras mecanicas.pdfvictoralejandroayala2
 
UNIDAD 3 ELECTRODOS.pptx para biopotenciales
UNIDAD 3 ELECTRODOS.pptx para biopotencialesUNIDAD 3 ELECTRODOS.pptx para biopotenciales
UNIDAD 3 ELECTRODOS.pptx para biopotencialesElianaCceresTorrico
 
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023RonaldoPaucarMontes
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALKATHIAMILAGRITOSSANC
 
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptxPPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptxSergioGJimenezMorean
 
NTP- Determinación de Cloruros en suelos y agregados (1) (1).pptx
NTP- Determinación de Cloruros  en suelos y agregados (1) (1).pptxNTP- Determinación de Cloruros  en suelos y agregados (1) (1).pptx
NTP- Determinación de Cloruros en suelos y agregados (1) (1).pptxBRAYANJOSEPTSANJINEZ
 
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICAINTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICAJOSLUISCALLATAENRIQU
 
Reporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacaReporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacajeremiasnifla
 
nom-028-stps-2012-nom-028-stps-2012-.pdf
nom-028-stps-2012-nom-028-stps-2012-.pdfnom-028-stps-2012-nom-028-stps-2012-.pdf
nom-028-stps-2012-nom-028-stps-2012-.pdfDiegoMadrigal21
 
Seleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSeleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSaulSantiago25
 
07 MECANIZADO DE CONTORNOS para torno cnc universidad catolica
07 MECANIZADO DE CONTORNOS para torno cnc universidad catolica07 MECANIZADO DE CONTORNOS para torno cnc universidad catolica
07 MECANIZADO DE CONTORNOS para torno cnc universidad catolicalf1231
 
CLASe número 4 fotogrametria Y PARALAJE.pptx
CLASe número 4 fotogrametria Y PARALAJE.pptxCLASe número 4 fotogrametria Y PARALAJE.pptx
CLASe número 4 fotogrametria Y PARALAJE.pptxbingoscarlet
 
Clase 2 Revoluciones Industriales y .pptx
Clase 2 Revoluciones Industriales y .pptxClase 2 Revoluciones Industriales y .pptx
Clase 2 Revoluciones Industriales y .pptxChristopherOlave2
 

Último (20)

TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfTAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
 
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)
 
01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt
01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt
01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt
 
Manual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfManual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdf
 
Condensadores de la rama de electricidad y magnetismo
Condensadores de la rama de electricidad y magnetismoCondensadores de la rama de electricidad y magnetismo
Condensadores de la rama de electricidad y magnetismo
 
aCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.pptaCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.ppt
 
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdfECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
 
tema05 estabilidad en barras mecanicas.pdf
tema05 estabilidad en barras mecanicas.pdftema05 estabilidad en barras mecanicas.pdf
tema05 estabilidad en barras mecanicas.pdf
 
UNIDAD 3 ELECTRODOS.pptx para biopotenciales
UNIDAD 3 ELECTRODOS.pptx para biopotencialesUNIDAD 3 ELECTRODOS.pptx para biopotenciales
UNIDAD 3 ELECTRODOS.pptx para biopotenciales
 
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
 
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptxPPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
 
NTP- Determinación de Cloruros en suelos y agregados (1) (1).pptx
NTP- Determinación de Cloruros  en suelos y agregados (1) (1).pptxNTP- Determinación de Cloruros  en suelos y agregados (1) (1).pptx
NTP- Determinación de Cloruros en suelos y agregados (1) (1).pptx
 
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICAINTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
 
Reporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacaReporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpaca
 
nom-028-stps-2012-nom-028-stps-2012-.pdf
nom-028-stps-2012-nom-028-stps-2012-.pdfnom-028-stps-2012-nom-028-stps-2012-.pdf
nom-028-stps-2012-nom-028-stps-2012-.pdf
 
Seleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSeleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusibles
 
07 MECANIZADO DE CONTORNOS para torno cnc universidad catolica
07 MECANIZADO DE CONTORNOS para torno cnc universidad catolica07 MECANIZADO DE CONTORNOS para torno cnc universidad catolica
07 MECANIZADO DE CONTORNOS para torno cnc universidad catolica
 
CLASe número 4 fotogrametria Y PARALAJE.pptx
CLASe número 4 fotogrametria Y PARALAJE.pptxCLASe número 4 fotogrametria Y PARALAJE.pptx
CLASe número 4 fotogrametria Y PARALAJE.pptx
 
Clase 2 Revoluciones Industriales y .pptx
Clase 2 Revoluciones Industriales y .pptxClase 2 Revoluciones Industriales y .pptx
Clase 2 Revoluciones Industriales y .pptx
 

Proyecto pavimento flexible.

  • 1. 1 REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENZA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA DE LA FUERA ARMADA U.N.E.F.A. PROYECTO DE DISEÑO DE UN PAVIMENTO FLEXIBLE PARA UNA FUTURA VIA EN EL SECTOR. URB. LA GRANAJA. MUNICIPIO GUANARE ESTADO PORTUGUESA. AUTORES: MELIAN OBRYAN C.I: 25.771.431. MENDOZA ARMANDO C.I: 24.018.475. RIVAS MARIALBYS C.I:. 25.825.014 TUTOR: ING. MAURIELO RODRIGUEZ ING.CIVIL. 6TO SEMESTRE. SECCION ‘’A’’ GUANARE, SEPTIEMBRE 2015.
  • 2. 2 Índice General Capítulo V . . . . . . . . 60 5 La Propuesta Tecnológica . . . . . . 60 5.1 Especificaciones Técnicas de Construcción . . . 60 6 Anexos . . . . . . . . 115 7 Conclusiones . . . . . . . 120 8 Recomendaciones . . . . . . . 121 9 Referencias Bibliográficas . . . . . 122
  • 3. 3 Tabla de cuadros Cuadro 1: Valores promedio del factor camión para las diferentes entidades del país . . . . . . . . 63 Cuadro 2: Nomenclatura de tránsito pesado . . . . 65 Cuadro 3: Factor de distribución por sentido. . . . 66 Cuadro 4: Factor de utilización por canal . . . . 67 Cuadro5: Tasa de crecimiento . . . . . 69 Cuadro 6: Periodo de diseño . . . . . 70 Cuadro 7: Valor relativo de soporte critico estimado en porcentaje de Pavimento para sub-rasante compactable 95% . . . 73 Cuadro 8: Valores de confiabilidad con diferentes clasificaciones Funcionales . . . . . . . 78 Cuadro 9: Propiedades Marshall exigidas para el diseño de mezclas en laboratorios . .. . . . . 84 Cuadro 10: Relaciones de clima en Venezuela . . . 90 Cuadro 11: Capacidad de drenaje para remover la humedad . 91 Cuadro 12: Valores recomendados para coeficientes estructurales de capa de bases y sub-rasantes, en pavimento flexible . . . 92 Cuadro 13: Datos para el diseño de pavimento . . . 94 Cuadro 14: Espesores mínimos en pulgadas en función de los ejes Equivalentes . . . . . . . 97
  • 4. 4 Tabla Gráficos Fig. 1 Encuesta . . . . . . . 53 Fig. 2 Encuesta . . . . . . . 54 Fig. 3 Encuesta . . . . . . . 55 Fig. 4 Encuesta . . . . . . . 56 Fig. 5 Encuesta . . . . . . . 57 Fig. 6 Curva granulométrica . . . . . 59 Fig. 7 Tipos de suelos en Venezuela . . . . 72 Fig. 8 Coeficiente estructural de la carpeta asfáltica . . . 85 Fig. 9 Coeficiente estructural de la capa base . . . 86 Fig. 10 Coeficiente estructural de la capa sub-base . . . 87 Fig. 11 Zona climática de Venezuela . . . . 89 Fig. 12 Modelo grafico de los espesores de las capas del Pavimento . . . . . . . 96
  • 5. 5 CAPÍTULO V 5. La Propuesta Tecnológica. 5.1 Especificaciones Técnicas de Construcción. Propuesta de Pavimento Flexible para la Optimización de la Vialidad en La Urb. La Granja. Del Municipio Guanare Estado Portuguesa. Datos. - La vía es Urbana - Carretera de 1 canal por sentido. - Periodo de diseño: de 15 a 25 años. Tránsito de Diseño Un conteo se realiza en un lapso ideal de un (1) año, de esta manera se elimina cualquier error por condiciones estacionales del flujo de vehículos. Cuando el conteo se realiza en estaciones de cobertura 1, o en peajes, automáticamente al correr del año se va registrando el volumen acumulado de vehículos. En otras ocasiones o puntos de medición, no es ni práctico ni económico, el que se disponga de este lapso de tiempo. Lo ideal entonces, es realizar una medición de un mes continuo. En caso de que esto tampoco sea posible, la medición debería ser de una (1) semana completa, en forma tal que se obtenga un registro de lunes a domingo. Si tampoco esto fuese posible, debería al menos disponerse de un registro de un día laboral y de un día de fin de semana (sábado o domingo). Si en alguno casos ni siquiera esto fuese posible, el conteo debe ser realizado en un día (24 horas) continuas, preferiblemente en un día laborable. Pudiera darse el caso de que ni aún pudiese contarse en un lapso de 24 horas; en este caso debe irse a un conteo de doce horas. Si ni aun pueden contarse en estas 12, debe irse a ocho (8) horas, y a veces solo podrá contarse durante una hora.
  • 6. 6 El conteo se llevó a cabo de una manera visual; Aun cuando lo ideal es que el conteo vehicular –clasificado o no– se realice mediante el empleo de equipos, en el caso de que esto no sea posible, por razones de tiempo o carencia de recursos, siempre se podrá recurrir al sistema de contar los vehículos mediante la simple observación visual del paso del flujo vehicular. El conteo visual permite no solo determinar el total de vehículos que circulan por el punto de medición, sino que se obtiene un “conteo clasificado” ya que se contabiliza el número de cada tipo de vehículo que pasa por esa sección durante el tiempo de la medición. Por lo tanto, tomando en cuenta las especificaciones, se procedió a analizar el tránsito de la vía similar a la vía en estudio, puesto que el tránsito a obtener será el equivalente cuando exista la vía consolidada en La Urb. La Granja. Obtenido el conteo vehicular, se procede a determinar el promedio diario de tránsito (PDT) y con ello poder apreciar el promedio diario de tránsito en el año inicial (PDTo), con la ecuación prescrita de la siguiente manera: PDTo= 1367+1422+1465+1475+1511+1300+731 7 = 9271 7 PDTo= 1324,42 vpd = 1324 vpd Calculo de las Repeticiones de los Ejes Equivalentes Son las cargas equivalentes totales en el periodo de diseño que se requieren para realizar un diseño de pavimento. El método actual contempla los ejes equivalentes sencillos de 18,000 lb (8.2 ton) acumulados durante el período de diseño, por lo que no ha habido grandes cambios con respecto a la metodología original de AASHTO. El diseño de transito gira en base a dos ecuaciones que son:
  • 7. 7 Ecuación 1: REE= EEo × F Donde: REE: Son las repeticiones de ejes equivalentes o cargas equivalentes totales. EEo: Cargas equivalentes en el año inicial. F: Factor de crecimiento. Ecuación 2: EEo= PDTo × %Vp × FC × fd × fc× Nd Dónde: EEo: Cargas equivalentes en el año inicial. PDTo: Promedio diario de tránsito en el año inicial. %Vp: Porcentaje de vehículos pesados. FC: Factor camión. fd: Factor de distribución por sentido. fc: Factor de utilización de canal. Nd: días del año. Calculo del Factor Camión El siguiente cuadro nos permite estimar el Factor Camión ponderado total por estado, y la cual es muy útil cuando se realizan estimaciones de inversión en planes regionales de pavimentación, o en cualquier otro trabajo de planificación. Cuadro 1 Valores promedio del factor camión para las diferentes entidades del país
  • 8. 8 Entidad Factor Camión promedio ponderado Amazonas 1.29 Anzoátegui 2.05 Apure 1.42 Aragua 3.77 Barinas 1.42 Bolívar 6.69 Carabobo 3.93 Cojedes 1.42 Delta Amacuro 1.29 Dtto. Federal 3.61 Falcón 3.03 Lara 1.42 Mérida 1.29 Miranda 3.61 Monagas 2.05 Nueva Esparta 1.25 Portuguesa 1.42 Sucre 2.05 Trujillo 1.47 Fuente: II Taller “Evaluación y clasificación de la Red Vial Principal”, Caracas, 1993. Ministerio de Transporte y Comunicaciones, Dirección General Sectorial de la Vialidad Terrestre, Dirección de Conservación Vial. Según cuadro N° 3 se asume un Fc para el estado Portuguesa de 1.42 Porcentaje de Vehículos Pesados Este se obtiene mediante el volumen de tránsito pesado (VTP), que en nuestro caso es la sumatoria de todos los vehículos que se consideran pesados, que van seleccionados como todos aquellos que poseen seis ruedas, es decir desde aquellos vehículos con un eje trasero de cuatro ruedas, y/o tres o más ejes individuales. Se
  • 9. 9 clasifican de acuerdo a diferentes categorías señaladas en la siguiente Tabla, donde se indica tanto la nomenclatura que utiliza la Oficina de Planificación del Transporte Terrestre (O.P.T.T) del Ministerio de Infraestructura, como la establecida en la Norma COVENIN 2402-86: Cuadro 2. Nomenclatura de Tránsito Pesado
  • 10. 10 Fuente: COVENIN 614-1997 Factor de Distribución por Sentido (fd) Es el que nos permite medir el total del tránsito que circulará en el sentido de diseño, y sus valores son los que se indican en el siguiente cuadro: Cuadro 3. Fd
  • 11. 11 Modo de medición del PDT Valor del fd En ambos sentidos 0,50 Por sentido de circulación 1,00 Fuente: NCHRP Project 1-32: Pavement Design Tools, Eres Consultants, Inc. 1998. Por tal motivo, analizando el tránsito en los dos sentido de circulación se debe tomar el valor correspondiente de la tabla, en este caso es de fd= 0.5 Factor de Utilización por Canal (fc) Es el que nos permite asignar al canal de diseño, la fracción del total de vehículos que circulará por este canal y su valor se selecciona de acuerdo al siguiente cuadro, en Venezuela tradicionalmente sus valores han sido los siguientes para el tránsito ya asignado al sentido de circulación. Por lo tanto, para el diseño propuesto se incluirá el valor de fc= 100, que en porcentaje seria fc= 1.00. Cuadro 4.Fc Nº de carriles en cada sentido Porcentaje de w18 en el carril de diseño 1 100
  • 12. 12 2 80 – 100 3 60 – 80 4 o más carriles 50 – 75 Fuente: NCHRP Project 1-32: Pavement Design Tools, Eres Consultants, Inc. 1998. Días del año Se tomaran todos los días del año que en total suman 365 días. Luego de encontrar los datos de la ecuación número dos, resolvemos de la siguiente manera para encontrar los ejes equivalentes en el año inicial de diseño: EEo= PDTo × %Vp × FC × fd × fc × Nd EEo= 1324 × 0.3 100 × 1.42 × 0.50 × 1.00 × 365 EEo= 1.029,34 Con este resultado podemos calcular las repeticiones de ejes equivalentes que se muestran en la ecuación uno son: REE= EEo × F Como bien podemos observar, calculamos de manera individual el factor de crecimiento (F) con la siguiente fórmula: F= [(1 + r)n ]- 1 Ln (1+r) Donde: r: Tasa de crecimiento. Incremento anual del volumen de transito de una vía. n: Periodo de diseño. La tasa de crecimiento interanual (r), permite constituir el crecimiento del tránsito a lo largo del período de diseño, y en el caso de que no pueda ser obtenido de
  • 13. 13 los registros históricos de tránsito, pueden emplearse los resultados de mediciones para diseños que arrojan los resultados que se presentan en el siguiente cuadro: Cuadro 5. Tasa de Crecimiento Criterio estadístico Valor Promedio 4,20% Desviación estándar 1,80% Valor mínimo 0,24% Valor máximo 8,28% Fuente: Corredor, G.: V Jornadas de Vialidad y Transporte, Valencia. Basándonos en estos resultados, tomamos el criterio estadístico promedio, el cual contiene una tasa de crecimiento de r= 4,20 Por otra parte, el periodo de diseño (n) se toma basado en los siguientes valores del cuadro 9, que resume los periodos de diseño recomendados por la Asociación Americana de Administradores de Carreteras y Transporte (AASHTO) y la correspondiente a la tipología de la red vial nacional: Cuadro 6. Periodo de Diseño Tipo de vía según AASTHO Según nomenclador vial venezolano Periodo de diseño (años) Principal Autopista urbana o rural de alto volumen y vía troncal 30-50 (30 en autopistas urbanas) Secundaria Vía local 20-50
  • 14. 14 Terciaria Vía ramal, sub-ramal o agrícola 15-25, con mínimo de 10 años Fuente: Asociación Americana de Administradores de Carreteras y Transporte (AASHTO) El “Período de Diseño” no debe ser confundido con la “Vida Útil” del pavimento, ni con el Período de Análisis; este último puede comprender varios Períodos de Diseño, como en el caso de la pavimentación por etapas. La vialidad en estudio entra en la categoría de vía terciaria, es decir, con periodos de diseño entre 15 a 25 años. Para efectos de diseño, el período de diseño seleccionado para la primera vida útil del pavimento, fue de 20 años. Debido a esta información determinamos el factor de crecimiento: F= (1 + 0,042)20 - 1 Ln (1+0,042) = 31.04 Luego introducimos los valores en la ecuación 1 para obtener los resultados de las repeticiones de los ejes equivalentes del diseño de pavimento flexible: REE= 1.029,34× 31.04 REE= 31.950,71 EE El CBR para las Capas del Pavimento. El CBR de un material está en función de su densidad, textura, humedad de compactación, humedad después de la saturación, su grado de alteración y su granulometría. Estos valores nos permitirán conocer el número estructural de cada capa según sea sus especificaciones.El CBR comúnmente se calcula mediante ensayos de suelo, como mínimo cinco ensayos por unidad de diseño, pero teniendo en cuenta las limitaciones de la investigación se utilizaran valores basados en características del
  • 15. 15 terreno y materiales, así como de climas, nivel freático y precipitación pluvial, tomando en consideración estimaciones mínimas bajo las normas para efectos de diseño. Capacidad de Soporte del Suelo de Fundación (CBRSR). Tomando en cuenta lo antes expuesto, para determinar la capacidad de soporte de la sub-rasante nos basaremos en valores de soportes críticos para las condiciones previamente dadas debido a la zona en estudio por medio del tipo de suelo y el nivel freático. En primer lugar obtendremos el tipo de suelo según la región en que se encuentra ubicada la vía. Venezuela posee una gran variedad de suelos, entre otros factores, de la diversidad de climas, relieves, rocas y especies vegetales que la caracterizan. Por esta razón, se han realizado en el país diversos estudios para establecer su caracterización y según este sistema, Venezuela cuenta con 9 de los 12 tipos de suelos contemplados que son: entisoles, inceptisoles, vertisoles, olisoles, ultisoles, oxisoles, aridisoles, histosoles y alfisoles, como lo muestra el siguiente gráfico:
  • 16. 16 Grafico7. Tipos de Suelos en Venezuela. Fuente: Geografía de suelos y geotecnia (2004) En el grafico se puede apreciar que la región de Portuguesa está constituida por los colores amarillo y verde los cuales corresponden a tipos de suelos inceptisoles y vertisoles respectivamente. Los inceptisoles son los suelos proporcionalmente maduros y rocosos. Por otro lado, los suelos vertisoles. Tienen un alto grado de fertilidad y son buenos para el pastoreo. Dado su alto contenido de arcilla. De esta manera, el estado Portuguesa posee una combinación de suelo inceptisole – vertisole, lo cual lo hace un suelo rocoso maduro y arcilloso, quiere decir que está en una proporción de arena no plástica y arcilla activa que presentan unos parámetros de valores de soporte críticos que se pueden apreciar en la siguiente tabla
  • 17. 17 Cuadro 7. Valor relativo de soporte critico estimado en porcentajes de pavimentos para subrasantes compactadas 95% Fuente: Adaptación de suelos subrasantes de “Road Note 31”, tercera edición, Transport and Road Research Laboratory,HerMajesty’sStationery Office, Londres, 1977 (ref 8). De acuerdo con la variación estacional debe elegirse el nivel freático más alto para efectos de cálculo por ser el más desfavorable, que será el de 0,6 metros, así pues, a través de este nivel freático se determina un promedio de los porcentajes mínimos tolerables a la compactación del 95% en subrasantes de las categorías de arena no plástica y arcilla activa de valor de soporte relativo obteniendo lo siguiente: Arena no plástica= 8 -10 Arcilla activa= 2 – 3 Promedio= 8 + 2 2 = 5 Capacidad de soporte de la sub-base (CBRSB). Para efectos de diseño se puede usar el porcentaje mínimo de CBR que según Hugh A. Wallace y J. Rogers Martin en su libro Asphalt Pavement Engineer,
  • 18. 18 recomiendan un CBR mínimo de 20% para las capas de sub-base, sin embargo, experiencias en nuestro país han demostrado que una sub-base granular con materiales apropiados y construida de manera adecuada dan como resultado valores de CBR superiores a 30%, como lo indica la norma COVENIN 1124-11. Por consiguiente, se propone un CBR mínimo de 30% para la capa de sub-base. CBR= 30% Capacidad de Soporte de la Base (CBRBS). Para la base granular se puede utilizar en la estructura de pavimento un CBR mínimo de 80% para una densidad mínima del 95% según lo indicado en la norma COVENIN 1124-11 0-07 para bases y sub-bases, recalcando que para efectos de diseño debemos trabajar con valores mínimos establecidos. CBR= 80% Cálculos de los Módulos Resilentes para las Capas del Pavimento. El método AASHTO 93 establece ecuaciones correlativas para determinar el módulo resiliente de cada capa de la estructura del pavimento en función del CBR y esto debido a la ausencia del manejo de equipos en muchos países para la determinación de este parámetro. Estas ecuaciones para el caso del suelo de fundación fueron corregidas por el Dr. Augusto Jugo para ser aplicadas en Venezuela.Por lo tanto, se lleva a cabo con las siguientes ecuaciones del método AASTHO: Módulo Resilente del Suelo de Fundación (Sub-rasante). CBR ≤ 7,2% Mr = 1500 × CBR d.
  • 19. 19 7,2% < CBR d. ≤ 20% Mr = 1500 × CBR6% Mr = 9000 psi A modo de diseño se determinó anteriormente que el CBR de la sub-rasante debe ser 3.5%, por ser el valor del resultado del estudio de suelo y por consiguiente tenemos que la ecuación a usar será la del CBR≤ 7,2% como se muestra a continuación: Mr= 1500 × CBR Mr= 1500× 6 MrSR= 9000psi Módulo Resilente para Bases y Sub-bases. Para un CBR menor a 80%: CBR < 80% =>Mr= 385,08 × CBR + 8660 Para un CBR mayor o igual al 80% CBR ≥ 80% =>Mr= 321,05 × CBR + 13327 Por consiguiente efectuando las evaluaciones correspondientes según sea el caso tenemos los siguientes resultados: MrSub-base MrSB= 385,08 × 77% + 8660 MrSB= 38.311,16psi Mr Base
  • 20. 20 MrBS= 321,05 × 27% + 13327 MrBS= 21.995,35psi Ecuación AASTHO para el Diseño del Pavimento Flexible. La ecuación para el diseño de la sección estructural de los pavimentos se deriva de la información obtenida empíricamente por AASTHO ROAD TEST. Para resolver esta ecuación metodológicamente empírica se deben hallar otras variables importantes que se muestran a continuación. Desviación Normal del Error Estándar (So). Es la combinación en la estimación de los parámetros de diseño y el comportamiento del pavimento, por lo cual este parámetro está ligado directamente con la Confiabilidad ®; habiéndolo determinado, en este paso deberá seleccionarse un valor So “Desviación Estándar Global”, representativo de condiciones locales particulares, que considera posibles variaciones en el comportamiento del pavimento y en la
  • 21. 21 predicción del tránsito. Valores de “So” en los tramos de prueba de AASHO no incluyeron errores en la estimación del tránsito; sin embargo, el error en la predicción del comportamiento de las secciones en tales tramos, fue de 0,25 para pavimentos rígidos y 0,35 para los flexibles, lo que corresponde a valores de la desviación estándar total debidos al tránsito de 0,35 y 0,45 para pavimentos rígidos y flexibles respectivamente. En Venezuela se tiene una estimación para pavimentos flexibles según el método AASTHO de: 0,40 < So < 0,50S e recomienda usar 0,45 Confiabilidad del Diseño (R). La confiabilidad de un pavimento es la probabilidad de que una sección diseñada se comportara satisfactoriamente bajo las condiciones de tránsito y ambientales durante el periodo de diseño. Con el parámetro de Confiabilidad “R”, se trata de llegar a cierto grado de certeza en el método de diseño, para asegurar que las diversas alternativas de la sección estructural que se obtengan, durarán como mínimo el período de diseño. Se consideran posibles variaciones en las predicciones del tránsito en ejes acumulados y en el comportamiento de la sección diseñada. El actual método AASHTO para el diseño de la sección estructural de pavimentos flexibles, recomienda valores desde 50 y hasta 99,9 para el parámetro de confiabilidad, con diferentes clasificaciones funcionales, notándose que los niveles más altos corresponden a obras que estarán sujetas a un uso intensivo, mientras que los niveles más bajos corresponden a obras o caminos locales y secundarios. Cuadro 10. Valores de confiabilidad con diferentes clasificaciones funcionales Clasificación funcional Nivel recomendados por AASTHO
  • 22. 22 para carreteras Interestatal o autopista 80 – 99,9 Red principal o federal 75 – 95 Red secundaria o estatal 75 – 95 Red rural o local 50 – 80 Fuente: Guía AASHTO para diseño de carreteras. Por ser la vialidad en estudio una red vial urbana por lo tanto se toma la relación entre50 – 80, por lo tanto para efectos de diseño tomamos la menor confiabilidad R= 50%. Índice de Serviciabilidad (∆PSI). La serviciabilidad es la condición de un pavimento para proveer un manejo seguro y confortable a los usuarios en un determinado momento. La mejor forma de evaluarla es a través del índice de servicio presente el cual varía desde 0 hasta 5. La filosofía básica del diseño es el concepto del comportamiento y capacidad de servicio, el cual proporciona un medio para diseñar un pavimento con base en un volumen especifico de transito total, y con un nivel mínimo de serviciabilidad deseado, al final del periodo de diseño.Se sugiere que el criterio para definir el índice de servicio terminal o mínimo de rechazo esté en función de la aceptación de los usuarios de la carretera. El cambio o pérdida en la calidad de servicio que la carretera proporciona al usuario, se define en el método con la siguiente ecuación:∆PSI= Po – Pt Po=Índice de servicio inicial (4,5 para pavimentos rígidos y 4,2 para flexibles).Cada entidad podrá elegir un valor apropiado para sus condiciones, por lo tanto, en Venezuela debido al exceso de cargas que no se pueden controlar, está entre 3,80 y 4,00. Pt= Es el índice más bajo que pueda tolerarse antes de realizar una medida de rehabilitación. Se define como el índice de servicio terminal, para el cual AASHTO
  • 23. 23 maneja en su versión1993 valores de 3,0; 2,5 y 2,0, recomendando 2,5 o 3,0 para caminos principales y 2,0 para secundarios, siendo este último el correspondiente a la vía de la Urb. La Granja. Calculo del Numero Estructural (SN). El SN es un número abstracto que expresa la resistencia estructural de un pavimento requerido, para una combinación dada del soporte del suelo (Mr), del tránsito total (W18), de la serviciabilidad terminal y de las condiciones ambientales. Para el diseño del pavimento flexible se deben tener los datos para identificar el número estructural, donde este se obtiene mediante un tanteo simultáneo para verificar que: W18 REE ≥ 1 tomando una tolerancia de 1 a 1,20 Tomando en consideración esta base teórica que inculca el método AASTHO podemos resumir de manera técnica y estratégica lo siguiente: W18 REE ≥ 1 despejando W18 ≥ REE W18 = REE De esta manera podemos introducir directamente el valor de las repeticiones de los ejes equivalentes calculados anteriormente usando el programa de la ecuación AASTHO (1993), desarrollado por el Ingeniero Civil Manizales en el año 2004, para que arroje de forma definitiva y exacta el numero estructural por cada escalón de la superestructura multicapa sin necesidad de realizar tanteos alternativos y de esta manera conservar la pureza logística del diseño. Números Estructurales de las Capas del Pavimento. SN de la Base. El número estructural de la capa base se calcula con el módulo resilente de la base:
  • 24. 24 El dato obtenido es de SNBS= 0,95 Este número estructural se calcula consecutivamente con el módulo resilente de la sub- base, quedando evidencia de esto en la siguiente demostración:
  • 25. 25 El dato obtenido es de SNSB= 0,70 Luego se procede a calcular de igual manera el número estructural para el suelo de fundación o sub-rasante. SN de la sub-rasante. Al igual que los demás números estructurales, el de la sub-rasante se obtiene introduciendo el valor del módulo resilente correspondiente obtenido del mismo suelo de fundación, como se puede notar:
  • 26. 26 El valor que se obtuvo es de SNSR= 1,43 Así de esta manera, se puede proceder a realizar los cálculos de los espesores de las capas del pavimento propuesto en la investigación. Calculo de Espesores de las Capas del Pavimento. Luego de obtener el número estructural SN para la sección estructural del pavimento, utilizando la ecuación general básica de diseño, donde se involucraron los parámetros anteriormente descritos(tránsito, R, So, MR , ΔPSI ), se requiere ahora determinar una sección multicapa que en conjunto provea de suficiente capacidad de soporte equivalente al número estructural de diseño original. La siguiente ecuación puede utilizarse para obtener los espesores de cada capa, para la superficie de rodamiento o carpeta, base y sub-base, haciéndose notar que el actual método de AASHTO, versión 1993, involucra coeficientes de drenaje particulares para la base y sub-base. Para el cálculo de los espesores de las capas el método AASTHO propone la siguiente ecuación:
  • 27. 27 SN = a1D1m1 + a2D2m2 + a3D3m3 Donde: a1, a2 y a3 = Son coeficientes estructurales de capa representativos de carpeta asfáltica, base y sub-base respectivamente. D1, D2 y D3 = son los espesores de la carpeta asfáltica, base y sub-base respectivamente, en pulgadas. m1, m2 y m3 =son los coeficientes de drenaje para la carpeta asfáltica, base y sub-base, respectivamente. Empezaremos a determinar cada variable de la ecuación para poder introducirlos en la misma. Coeficiente estructural de la carpeta asfáltica. Se determina a través de la Estabilidad Marshall en libras, la cual se obtiene mediante el ensayo de la estabilidad Marshall de la mezcla asfáltica, tomando en consideración distintas propiedades de la misma. La estabilidad es una de las propiedades más importantes que debe buscarse en una mezcla asfáltica, ya que de ella dependerá en gran parte el que la mezcla que se diseñe logre un comportamiento adecuado en obra, garantizando una mezcla que no se deforme o desplace ante las cargas pesadas, y que sea resistente ante el efecto de la repetición de cargas (REE o Wt18) a la cual un pavimento se ve sometido durante su vida de servicio. En vista de no poseer con los recursos necesarios para realizar los ensayos de la Estabilidad Marshall, el cuadro 12 resume los criterios de la Norma INVEAS 2002 en cuanto a las propiedades que debe cumplir una mezcla asfáltica densa: Cuadro 11. Propiedades Marshall Exigidas para el Diseño de Mezclas en Laboratorio
  • 28. 28 Fuente: Norma INVEAS 2002 En vista de esto, para efectos de diseño se toma un valor mínimo exigido de estabilidad Marshall para transito bajo de 1600. Con este valor se consigue el coeficiente a1 interceptado en el nomograma proporcionado por el método AASTHO para estimar el coeficiente estructural de la carpeta asfáltica de la siguiente manera: Grafico 8.Coeficiente Estructural de la carpeta asfáltica. Fuente: AASTHO 93 Se observa que el coeficiente a1 equivale aproximadamente a1 0,40. Coeficiente Estructural de la Capa Base. Este coeficiente se determina por medio de la capacidad de soporte de la base (CBRBS) y para conseguir el valor del coeficiente debemos utilizar el grafico que se presenta:
  • 29. 29 Grafico 9.Coeficiente Estructural de la Capa Base Fuente: AASTHO 93 Para un CBR de 80% se obtiene aproximadamente un valor de coeficiente a2 de 0,12. Coeficiente Estructural de la Capa Subbase (A3). Se determina mediante la capacidad de soporte de la subbase(CBRSB), impuesta para este diseño y para ello se utiliza el siguiente gráfico:
  • 30. 30 Grafico 10.Coeficiente Estructural de la Capa Subbase (A3).Fuente: AASTHO 93 Para un CBR de 30% se obtiene aproximadamente un valor de coeficiente a3 de 0,10. Coeficiente de Drenaje (m). Para la obtención de los coeficientes de drenaje, m2 y m3, correspondientes a las capas de base y sub-base respectivamente, el método actual de AASHTO se basa en la capacidad del drenaje para remover la humedad interna del pavimento, por lo que se refiere a un valor “m” de acuerdo a la calidad del drenaje y el tiempo en el año durante el cual se espera que el pavimento este normalmente expuesto a niveles de humedad cercanos a la saturación. Estos factores se determinan según la zona climática, Calidad
  • 31. 31 del drenaje del material usado en la base y/o Sub-base y el porcentaje del tiempo con la estructura próxima a la saturación. Para determinar el coeficiente “m” se debe manejar la siguiente información: Grafico 11. Zonas Climáticas de Venezuela De acuerdo a este gráfico, PORTUGUESA se encuentra en el punto VI y esto se traduce en lo siguiente: Cuadro 12. Relaciones de Clima en Venezuela Zona climática I II III IV V VI VII VIII IX X XI XII Meses de condición seca 2 6 3 4 6 5,5 6 7 10 7 5 12 Meses de
  • 32. 32 cond. Húmeda 2 4 3 4 2 3 3 3 1,5 4 5 0 Meses de cond. Saturada 8 2 6 4 4 3,5 3 2 0,5 1 2 0 Fuente: Hidrosfera de Venezuela (2002) Para la calidad del drenaje del material y la capacidad para remover la humedad nos basaremos en los siguientes parámetros. Cuadro 13. Capacidad del Drenaje para Remover la Humedad Calidad del drenaje Tiempo en que el agua es removida Excelente 2 horas Bueno 1 día Regular 1 semana Pobre 1 mes Fuente: Asociación Americana de Administradores de Carreteras y Transporte (AASHTO). Para efectos de diseño usaremos la calidad del drenaje regular. En el cuadro 15 se presentan los valores recomendados para m2 y m3 en función de la calidad del drenaje y el porcentaje del tiempo a lo largo de un año, en el cual la estructura del
  • 33. 33 Pavimento pueda estar expuesta a niveles de humedad próximos a la saturación: Cuadro 14. Valores Recomendados para Coeficientes Estructurales de Capa de Bases y Sub-bases, en Pavimentos Flexibles Como se puede notar la zona VI del mapa en función del clima se encuentra en el nivel de porcentaje de tiempo mayor al 25%, por lo tanto tomamos el valor de la calidad del drenaje regular de m= 0,80 para base y sub-base, puesto que la carpeta obtiene el 100% de la calidad del drenaje que equivale a 1. Para calcular los espesores de las capas del pavimento el método AASTHO asemeja la estructura en una posición superpuesta desde la primera capa hasta la última, usando el valor abstracto del número estructural de cada capa. Para ello se recopilaron en orden los resultados obtenidos en el siguiente cuadro: Cuadro 15. Datos para el Diseño de Pavimento NOMBRE NOMENCLATURA VALOR Numero Estructural de la Base SNBS 0,95 Numero Estructural de la Subbase SNSB 0,70 Numero Estructural de la Subrasante SNSR 1,43 Coeficiente Estructural de la Carpeta Asfáltica a1 0,40 Coeficiente Estructural de la Base a2 0,12 Coeficiente Estructural de la Subbase a3 0,10 Coeficiente de Drenaje de la Carpeta Asfáltica M1 1,0 Coeficiente de Drenaje de la Base M2 0,80
  • 34. 34 Coeficiente de Drenaje de la Subbase M3 0,80 Fuente: Grupo Francisco Castillo, Domingo Nieves. Espesor de la Carpeta Asfáltica Se calcula con el número estructural de la base de la siguiente manera: SNBS= a1 × m1 × D1 D1= 0.95 0,40×1 = 2,37 in × 2, 54 = 6.019 cm ≈ Ahora recalculamos el número estructural de la base y tenemos: SNBS: D1= 6 2,54 = 2,36in SNBS* = a1 x m1 x D1 SNBS*= 0,40 × 1,0 ×2.36 = 0,944 Espesor de la Base Se calcula con el número estructural de la sub-base: SNSB= SNBS* + a2 × m2 × D2 6 cm
  • 35. 35 D2= 0,70−0.95 0,12×0,80 = 2.60 in × 2,54 cm = 6,604 cm ≈ D2= 7cm 2,54 = 2,76 in Luego calculamos el nuevo número estructural para la sub-base para equilibrar la ecuación: SNSB* = SNBS* + a2 x m2 x D2 SNSB*= 0.95+ 0,12 × 0,80 × 2,76 = 1,21 SNSB**=0,70 – 0.95 = 0,25 Espesor de la Sub-base Se calcula tomando el número estructural de la sub-rasante o suelo de fundación, de la siguiente manera: SNSR= SNBS* + SNSB * + a3 × m3 × D3 D3 = 1.43−0.95−1.20 0,10×0,80 = 9in × 2,54 = 22,86cm ≈ 7cm 23cm
  • 36. 36 De esta manera hemos obtenido el diseño de los espesores del pavimento que se pueden apreciar en la siguiente gráfica: Grafico 12. Modelo grafico de los espesores de las capas del pavimento. Fuente: Grupo N.8 UNEFA Guanare (2015) Carpeta Asfáltica = 6 cm Base = 7 cm Sub- Base=23 cm
  • 38. 38
  • 39. 39
  • 40. 40
  • 41. 41
  • 42. 42
  • 43. 43
  • 44. 44
  • 45. 45
  • 46. 46
  • 47. 47
  • 48. 48
  • 49. 49
  • 50. 50
  • 51. 51
  • 52. 52
  • 53. 53 CONCLUSION Una vialidad de buena calidad brinda una mejor calidad de vida a los ciudadanos, cuando falta; desmejora la calidad de vida de un sector haciendo que fallen otros sistemas de la sociedad como lo son el tránsito, el acceso al sector, la referencia y el aspecto. Notando que la urbanización la granja carece de este beneficio, limitando a los integrantes de la zona a una baja calidad de vida. En busca de una solución, el desarrollo de nuestra propuesta de diseño vial, se logra cubrir una de las exigencias prioritarias de la comunidad. Garantizándoles una mejor calidad de vida e incentivándolos al progreso y consolidación del Sector. En este trabajo se analizaron según diferentes métodos analíticos y los problemas que afectan a esta entidad ya sus arterias viales no están consolidados. En vista de esto se diseñó un servicio de alta calidad aplicando el método AASTHO 86- 93 con el que garantiza una vida útil de 25 a 30 años. Las ventajas de este método es que en él, se evalúan los volúmenes de tránsito, el crecimiento poblacional y velocidad entre otros y a la vez con las características topográficas del camino, cumpliendo así con las exigencias mínimas requeridas.
  • 54. 54 RECOMENDACIONES  Tomar en Cuenta el tránsito vehicular Futuro para el cálculo de la vialidad y así poder evitar fallas futuras en la estructura de la misma.  Tener en cuenta la topografía, ya que de ella depende el diseño de la estructura.  Tomar en Cuentas Las Normativas Covenin y el Método AASHTO para vialidad.  Tomar en Cuenta el drenaje del terreno ya que este va ser fundamental en la vida útil del pavimento.
  • 55. 55 REFERENCIAS BIBLIOGRÁFICA Bavaresco, citado por Rojas M(2007)Normas para la Elaboración de Trabajos de Grado y Tesis Doctoral. Maracaibo Estado Zulia. Balestrini, M. (2001). Como se Elabora el Proyecto de Investigación. Editorial OBL Consultores Asociados. Caracas Bautista (2003) Proyecto de Investigación. 3ra edición. Editorial Episteme. Caracas Boussinesq y F, (1994) Diseño de pavimentos por métodos racionales". Tomo I. Universidad de Los Andes, Mérida Cal y Mayor, R. (2003) Vías terrestres y Aeropistas. México Constitución de la República Bolivariana de Venezuela (1999). Gaceta Oficial N° 36.860. Caracas – Venezuela Escalona C, (2012) “Diseño de pavimento flexible para optimizar el desarrollo económico en la vía agrícola desde el sector Matarrala hasta Anaro del municipio Pedraza”, trabajo de grado no publicado en el IUTAC Gómez, D. (2008) “Diseño, Procedimientos Constructivos y Control de Pavimentos” Trabajo de Grado presentado en la Universidad de Colombia Maldonado A. (2008) La Ingeniería de Pavimentos en el siglo XXI". AEPO S.A. España Martins (2006) Como investigar en Educación. Editorial Síntesis Caracas – Venezuela Márquez (2006). LaInvestigación en las Ciencias Sociales. Colección Docencia Universitaria, Barinas Estado Barinas. Norma Venezolana Carreteras, Calles y Vías Urbanas y Rurales (2010) COVENIN 867-80, Caracas - Venezuela ONU (2010) Organización Mundial Naciones Unidas Palella y Martins (2006),Metodología de la Investigación Cuantitativa. Segunda edición. Caracas: Fondo Editorial de la Universidad Pedagógica.
  • 56. 56 Saavedra O. (2996) Estructuración de vías terrestres. Cuarta reimpresión. Editorial Continente. México Sabino (2002) El proceso de la Investigación. Editorial Panapo. Caracas. Venezuela Sánchez R, (2006). “Ampliación y reconstrucción de la carretera federal México-Puebla de la ciudad de Cholula a Santa María Zacatepec, km. 98+300 al km. 103+300” Trabajo de Grado No Publicado en la Universidad de México. Tellez R. (2009) “Impacto Ambiental de Proyectos Carreteros agrícolas” Trilogìa de publicaciones del ETSI de caminos de Madrid que aborda los distintos aspectos del proyecto de carreteras Xumini, L (2011), Diseño de Vías Terrestres. Editorial siglo xx. Buenos Aires Argentina Veliz, A. (2007). Como Investigar en Educación. Editorial Síntesis, Caracas Venezuela. Vergara H. (2007) “Diseño de Mezcla de Pavimento Flexible” Trabajo de Grado No publicado en la Universidad la Gran Colombia, Bogotá. Gustavo, M “Maestría en Vías Terrestres Modulo III”.