SlideShare una empresa de Scribd logo
1 de 18
Solución de
Sistemas de
Ecuaciones Lineales
Eliezer Pacheco CI
24537005
Métodos De Eliminación Gaussiana
En forma general este método propone la eliminación progresiva de
variables en el sistema de ecuaciones, hasta tener sólo una ecuación con
una incógnita. Una vez resuelta esta, se procede por sustitución regresiva
hasta obtener los valores de todas las variables. Sea por ejemplo el
siguiente sistema de ecuaciones:
Lo que buscamos son 3 números, que satisfagan a las tres ecuaciones.
El método de solución será simplificar las ecuaciones, de tal modo que las
soluciones se puedan identificar con facilidad. Se comienza dividiendo la
primera ecuación entre 2, obteniendo:
Se simplificará el sistema si multiplicamos por -4 ambos lados de la
primera ecuación y sumando esta a la segunda. Entonces:
sumándolas resulta :
Métodos De Eliminación Gaussiana
La nueva ecuación se puede sustituir por cualquiera de las dos. Ahora
tenemos:
Luego, la primera se multiplica por -3 y se le suma a la tercera,
obteniendo:
Acto seguido, la segunda ecuación se divide entre -3.
Ahora se multiplica por 5 y se le suma a la tercera:
En este momento ya tenemos el valor de x3, ahora simplemente se
procede a hacer la sustitución hacia atrás, y automáticamente se van
obteniendo los valores de las otras incógnitas. Se obtendrá:
Método de Gauss-Jordan
El Método de Gauss – Jordan o también llamado eliminación de Gauss
– Jordan, es un método por el cual pueden resolverse sistemas de
ecuaciones lineales con n números de variables, encontrar matrices y
matrices inversas, en este caso desarrollaremos la primera aplicación
mencionada.
Para resolver sistemas de ecuaciones lineales aplicando este método,
se debe en primer lugar anotar los coeficientes de las variables del
sistema de ecuaciones lineales en su notación matricial:
Entonces, anotando como matriz (también llamada matriz aumentada):
Método de Gauss-Jordan
Una vez hecho esto, a continuación se procede a convertir dicha matriz
en una matriz identidad, es decir una matriz equivalente a la original,
la cual es de la forma:
Esto se logra aplicando a las distintas filas y columnas de las matrices
simples operaciones de suma, resta, multiplicación y división; teniendo
en cuenta que una operación se aplicara a todos los elementos de la fila
o de la columna, sea el caso.
Obsérvese que en dicha matriz identidad no aparecen los términos
independientes, esto se debe a que cuando nuestra matriz original
alcance la forma de la matriz identidad, dichos términos resultaran ser la
solución del sistema y verificaran la igualdad para cada una de las
variables, correspondiéndose de la siguiente forma:
d1 = x
d2 = y
d3 = z
Descomposición LU
El método de descomposición LU para la solución de sistemas de
ecuaciones lineales debe su nombre a que se basa en la descomposición
de la matriz original de coeficientes (A) en el producto de dos matrices (L y
U).
Esto es:
Donde:
L - Matriz triangular inferior
U - Matriz triangular superior con todos los elementos de la diagonal
principal iguales a 1.
De lo anterior, para matrices de 3x3 se escribe:
Si efectuamos la multiplicación de L y U, igualando los elementos
de ese producto con los de la matriz A correspondientes, se
obtiene:
Descomposición LU
De aquí que los elementos de L y U son, en este caso:
Si el sistema de ecuaciones original se escribe como:
A x = b
lo cual resulta lo mismo escribir:
L U X = b
Definiendo a:
U X = Y
podemos escribir:
L Y = b
Resolviendo para Y, encontramos:
Descomposición LU
El algoritmo de solución, una vez conocidas L, U y b, consiste en encontrar
primeramente los valores de "Y" por sustitución progresiva sobre "L Y = b".
En segundo lugar se resuelve "U x = y " por sustitución regresiva para
encontrar los valores de "x", obteniendo:
La determinación de los elementos de las matrices L y U se realizan
eficientemente aplicando una forma modificada del método de eliminación
de Gauss.
Factorización De Cholesky
Una matriz simétrica es aquella donde Aij = Aji para toda i y j, En otras
palabras, [A] =[A] T. Tales sistemas ocurren comúnmente en problemas
de ambos contextos: el matemático y el de ingeniería. Ellos ofrecen
ventajas computacionales ya que sólo se necesita la mitad de
almacenamiento y, en la mayoría de los casos, sólo se requiere la
mitad del tiempo de cálculo para su solución. Al contrario de la
Descomposición LU, no requiere de pivoteo. El método de
Factorización de Cholesky se basa en demostrar que si una matriz A
es simétrica y definida positiva en lugar de factorizarse como LU,
puede ser factorizada como el producto de una matriz triangular
inferior y la traspuesta de la matriz triangular inferior, es decir los
factores triangulares resultantes son la traspuesta de cada uno.
Ejemplo:
Obtener la factorización de Cholesky de la siguiente matriz (entrar sólo
los elementos de U, la triangular superior)
5 7 −8
7 14 −14
−8 −14 24
Factorización De Cholesky
√5 7/5 √5 −8/5 √5
0 1/5 1051/2 −2/15 1051/2
0 0 2/3 211/2
Entrar el valor del determinante:
Resolver el sistema lineal Ax=b cuando b es el vector siguiente
51
84
−90
Factorización:
En cada etapa de la resolución se muestran los valores actuales de la
matriz.
Los nuevos elementos calculados aparecen con su valor definitivo en
color
diferente.
Calculando el elemento (1,1)
5^(1/2) 7 -8
7 14 -14
Factorización De Cholesky
Tratando la fila/columna 1
5^(1/2) 7/5*5^ (1/2) -8/5*5^(1/2)
7/5*5^ (1/2) 14 -14
-8/5*5^ (1/2) -14 24
Calculando el elemento (2,2)
5^(1/2) 7/5*5^(1/2) -8/5*5^(1/2)
7/5*5^(1/2) 1/5*105^(1/2) -14
-8/5*5^(1/2) -14 24
Tratando la fila/columna 2
5^(1/2) 7/5*5^(1/2) -8/5*5^(1/2)
7/5*5^(1/2) 1/5*105^(1/2) -2/15*105^(1/2)
-8/5*5^(1/2) -2/15*105^(1/2) 24
Factorización De Cholesky
Calculando el elemento (3,3)
5^(1/2) 7/5*5^(1/2) -8/5*5^(1/2)
7/5*5^(1/2) 1/5*105^(1/2) -2/15*105^(1/2)
-8/5*5^(1/2) -2/15*105^(1/2) 2/3*21^(1/2)
La factorización final es la siguiente, en la que aparecen las matrices UT y
U, y el vector de permutaciones:
√5 0 0
7/5 √5 1/5 1051/2 0
−8/5 √5 −2/15 1051/2 2/3 211/2
√5 7/5 √5 −8/5 √5
0 1/5 1051/2 −2/15 1051/2
0 0 2/3 211/
El valor del determinante viene dado por el producto de los elementos de la
diagonal principal de U y coincide con la diagonal principal de UT. Por tanto,
es:
196
Factorización de QR, Householder
Factorización de QR, Householder
El objetivo de esta matriz es usarla para producir ceros en la matriz que
queremos
factorizar. Para hacerlo, debemosconsiderar el problema:
Dados los vectores x y y, ¿cómo calculmos P tal que Px = y?
• Puesto que P realiza una reflexión, se debe cumplir que 𝑦 2 = 𝑥 2 para
poder calcular P.
• Hay que notar que P es invariante a la escala de v.
x - y tiene la dirección del vector que queremos.
Así, podemos definir v = x - y.
Solución De Sistemas Lineales Utilizando Métodos Iterativos
El método de Gauss y sus variantes son conocidos como métodos directos
para resolver el problema inicial Ax = b. Se ejecutan a través de un número
finito de pasos y generan una solución x que sería exacta sino fuera por los
errores de redondeo. En contraste, un método iterativo da lugar a una
sucesión de vectores que idealmente converge a la solución. El cálculo se
detiene cuando se cuenta con una solución aproximada con cierto grado
de precisión especificado de antemano o después de cierto número de
iteraciones. Los métodos indirectos son casi siempre iterativos.
Un método iterado de resolución del sistema Ax = b es aquel que genera, a
partir de un vector inicial x0, una sucesión de vectores x1, x2, . . . xn.. "Un
método iterado se dirá que es consistente con el sistema Ax = b, si el límite
x de la sucesión (xn), en caso de existir, es solución del sistema. Se dirá
que el método es convergente si la sucesión generada por cualquier vector
inicial x0 es convergente a la solución del sistema".Es evidente que si un
método es convergente es consistente, sin embargo, el recíproco no es
cierto
Método De Gauss Seidel
El Método de Gauss Seidel emplea valores iniciales y después itera para
obtener estimaciones refinadas de la solución; es particularmente adecuado
para un gran número de ecuaciones, lo cual en cierto modo lo hace un
método más comúnmente usado. La fórmula utilizada para hallar los xi viene
dada por el despeje de cada una de las xi en cada una de las ecuaciones y
se les da un valor inicial a cada xi de cero.
Observase que en el método de Gauss-Seidel los valores actualizados de xi
sustituyen de inmediato a los valores anteriores, mientras que en el método
de Jacobi todas las componentes nuevas del vector se calculan antes de
llevar a cabo la sustitución. Por contra, en el método de Gauss-Seidel los
cálculos deben llevarse a cabo por orden, ya que el nuevo valor xi depende
de los valores actualizados de x1, x2, ..., x i-1.
La desventaja del método de Gauss-Seidel es que no siempre converge a la
solución exacta o algunas veces los hace de manera muy lenta. Únicamente
es confiable para aquellos sistemas dominantes diagonalmente.
Método de Jacobi
El Método de Jacobi transforma una matriz simétrica en una matriz
diagonal al eliminar de forma simétrica los elementos que están fuera
de la diagonal. Desafortunadamente, el método requiere un número
infinito de operaciones, ya que la eliminación de cada elemento no cero
a menudo crea un nuevo valor no cero en el elemento cero anterior. Si
A es diagonalmente dominante, entonces la sucesión que resulta de la
iteración de Jacobi converge a la solución de Ax = b para cualquier
vector inicial Xo. Partimos de una aproximación inicial Xo para las
soluciones Xi al sistema de ecuaciones y sustituimos estos valores en
la ecuación:
Que es la expresión que nos proporciona las nuevas componentes del
vector x(k) en función de vector anterior x(k-1) en la iteración de Jacobi,
en su respectivo algoritmo; donde el a el método de Jacobi más que
usar el último valor disponible de , con base en un conjunto de las x
anteriores (). De esta forma, como se generan nuevos valores, no se
usan en forma inmediata sino que se retienen para la siguiente
iteración.
Unidad III de analisis numerico

Más contenido relacionado

La actualidad más candente

Método de gauss y gauss seidel
Método de gauss y gauss seidelMétodo de gauss y gauss seidel
Método de gauss y gauss seidelLilly Kwang
 
Metodos iterativos para reslver sistemas lineales
Metodos iterativos para reslver sistemas linealesMetodos iterativos para reslver sistemas lineales
Metodos iterativos para reslver sistemas linealesJUAN GABRIEL OCHOA BIJARRO
 
Metodos jacobi y gauss seidel
Metodos jacobi y gauss seidelMetodos jacobi y gauss seidel
Metodos jacobi y gauss seidelCesar Mendoza
 
Sistema de ecuaciones
Sistema de ecuacionesSistema de ecuaciones
Sistema de ecuacionesCarlita Vaca
 
Métodos directos para solución de sistemas ecuaciones lineales
Métodos directos para solución de sistemas ecuaciones linealesMétodos directos para solución de sistemas ecuaciones lineales
Métodos directos para solución de sistemas ecuaciones linealesCesar Mendoza
 
Ejercicios jacobi
Ejercicios jacobiEjercicios jacobi
Ejercicios jacobidjp951
 
METODO ELIMINACION GAUSSIANA UNIDAD III
METODO ELIMINACION GAUSSIANA UNIDAD IIIMETODO ELIMINACION GAUSSIANA UNIDAD III
METODO ELIMINACION GAUSSIANA UNIDAD IIIjoseimonteroc
 
Linealización de sistemas de primer orden
Linealización de sistemas de primer ordenLinealización de sistemas de primer orden
Linealización de sistemas de primer ordenAngel Vázquez Patiño
 
Resumen de la unidad iii (analisis numerico) Mirian Rodriguez
Resumen de la unidad iii (analisis numerico) Mirian RodriguezResumen de la unidad iii (analisis numerico) Mirian Rodriguez
Resumen de la unidad iii (analisis numerico) Mirian Rodriguezthaiz050681
 
Sistemas de Ecuaciones Lineales.
Sistemas de Ecuaciones Lineales.Sistemas de Ecuaciones Lineales.
Sistemas de Ecuaciones Lineales.christopheradan50
 
Solucion numerica de ecuaciones diferenciales ordinarias 2
Solucion numerica de ecuaciones diferenciales ordinarias 2Solucion numerica de ecuaciones diferenciales ordinarias 2
Solucion numerica de ecuaciones diferenciales ordinarias 2cesar91
 
Problemas que originan sistemas de ecuaciones
Problemas que originan sistemas de ecuacionesProblemas que originan sistemas de ecuaciones
Problemas que originan sistemas de ecuacionesAngel Vázquez Patiño
 
Sistemas de ecuaciones diferenciales de primer orden
Sistemas de ecuaciones diferenciales de primer ordenSistemas de ecuaciones diferenciales de primer orden
Sistemas de ecuaciones diferenciales de primer ordencesar91
 
Método de Gauss Jordan
Método de Gauss JordanMétodo de Gauss Jordan
Método de Gauss JordanKike Prieto
 

La actualidad más candente (20)

Sistemas de ecuaciones lineales
Sistemas de ecuaciones linealesSistemas de ecuaciones lineales
Sistemas de ecuaciones lineales
 
Sistema de ecuaciones lineales
Sistema de ecuaciones linealesSistema de ecuaciones lineales
Sistema de ecuaciones lineales
 
Método de gauss y gauss seidel
Método de gauss y gauss seidelMétodo de gauss y gauss seidel
Método de gauss y gauss seidel
 
El metodo doolittle
El metodo doolittleEl metodo doolittle
El metodo doolittle
 
Metodos iterativos para reslver sistemas lineales
Metodos iterativos para reslver sistemas linealesMetodos iterativos para reslver sistemas lineales
Metodos iterativos para reslver sistemas lineales
 
Ecuaciones def sistema
Ecuaciones def sistemaEcuaciones def sistema
Ecuaciones def sistema
 
Metodos jacobi y gauss seidel
Metodos jacobi y gauss seidelMetodos jacobi y gauss seidel
Metodos jacobi y gauss seidel
 
Sistema de ecuaciones
Sistema de ecuacionesSistema de ecuaciones
Sistema de ecuaciones
 
Métodos directos para solución de sistemas ecuaciones lineales
Métodos directos para solución de sistemas ecuaciones linealesMétodos directos para solución de sistemas ecuaciones lineales
Métodos directos para solución de sistemas ecuaciones lineales
 
Ejercicios jacobi
Ejercicios jacobiEjercicios jacobi
Ejercicios jacobi
 
METODO ELIMINACION GAUSSIANA UNIDAD III
METODO ELIMINACION GAUSSIANA UNIDAD IIIMETODO ELIMINACION GAUSSIANA UNIDAD III
METODO ELIMINACION GAUSSIANA UNIDAD III
 
Linealización de sistemas de primer orden
Linealización de sistemas de primer ordenLinealización de sistemas de primer orden
Linealización de sistemas de primer orden
 
Sistemas de EDOs
Sistemas de EDOsSistemas de EDOs
Sistemas de EDOs
 
Resumen de la unidad iii (analisis numerico) Mirian Rodriguez
Resumen de la unidad iii (analisis numerico) Mirian RodriguezResumen de la unidad iii (analisis numerico) Mirian Rodriguez
Resumen de la unidad iii (analisis numerico) Mirian Rodriguez
 
Sistemas de Ecuaciones Lineales.
Sistemas de Ecuaciones Lineales.Sistemas de Ecuaciones Lineales.
Sistemas de Ecuaciones Lineales.
 
Solucion numerica de ecuaciones diferenciales ordinarias 2
Solucion numerica de ecuaciones diferenciales ordinarias 2Solucion numerica de ecuaciones diferenciales ordinarias 2
Solucion numerica de ecuaciones diferenciales ordinarias 2
 
Problemas que originan sistemas de ecuaciones
Problemas que originan sistemas de ecuacionesProblemas que originan sistemas de ecuaciones
Problemas que originan sistemas de ecuaciones
 
Sistemas de ecuaciones diferenciales de primer orden
Sistemas de ecuaciones diferenciales de primer ordenSistemas de ecuaciones diferenciales de primer orden
Sistemas de ecuaciones diferenciales de primer orden
 
Método de Gauss Jordan
Método de Gauss JordanMétodo de Gauss Jordan
Método de Gauss Jordan
 
Sistemas de ecuaciones lineales
Sistemas de ecuaciones linealesSistemas de ecuaciones lineales
Sistemas de ecuaciones lineales
 

Similar a Unidad III de analisis numerico

Analisis Numerico... Jose Manzanilla
Analisis Numerico... Jose Manzanilla Analisis Numerico... Jose Manzanilla
Analisis Numerico... Jose Manzanilla jgmc251
 
Laura rodríguez
Laura rodríguezLaura rodríguez
Laura rodríguezLauramrb12
 
Análisis numérico (josé monsalve). (autoguardado)
Análisis numérico (josé monsalve). (autoguardado)Análisis numérico (josé monsalve). (autoguardado)
Análisis numérico (josé monsalve). (autoguardado)José Monsalve
 
Analisis numerico tema3
Analisis numerico tema3Analisis numerico tema3
Analisis numerico tema3claudiasofiahp
 
Yosel Eviez, Metodos de Solucion de Ecuaciones Lineales
Yosel Eviez, Metodos de Solucion de Ecuaciones LinealesYosel Eviez, Metodos de Solucion de Ecuaciones Lineales
Yosel Eviez, Metodos de Solucion de Ecuaciones LinealesYosel97
 
Analisis numerico
Analisis numericoAnalisis numerico
Analisis numericocesarjmm1
 
Análisis Numerico
Análisis NumericoAnálisis Numerico
Análisis Numericojulio perez
 
Sistema de ecuaciones lineales
Sistema de ecuaciones linealesSistema de ecuaciones lineales
Sistema de ecuaciones linealesyeliadan_16
 
Scrib 3 analisis numerico
Scrib 3 analisis numericoScrib 3 analisis numerico
Scrib 3 analisis numericoMaria Moreno
 
Ensayo de la unidad iii. analisis numerico
Ensayo de la unidad iii. analisis numericoEnsayo de la unidad iii. analisis numerico
Ensayo de la unidad iii. analisis numericodeivys pinto
 
Solución de sistemas de ecuaciones lineales
Solución de sistemas de ecuaciones linealesSolución de sistemas de ecuaciones lineales
Solución de sistemas de ecuaciones linealesdarwinxvb
 
Mapa mental analisis numerico
Mapa mental analisis numericoMapa mental analisis numerico
Mapa mental analisis numericoSergio Alarcón
 
Métodos de eliminación gaussiana tarea iii
Métodos de eliminación gaussiana tarea iiiMétodos de eliminación gaussiana tarea iii
Métodos de eliminación gaussiana tarea iiiluiguiiiii
 
Solución de Sistemas de Ecuaciones Lineales
Solución de Sistemas de Ecuaciones LinealesSolución de Sistemas de Ecuaciones Lineales
Solución de Sistemas de Ecuaciones LinealesJoshua M Noriega
 
Resumen de sistemas de ecuación lineales
Resumen de sistemas de ecuación linealesResumen de sistemas de ecuación lineales
Resumen de sistemas de ecuación linealesBCrist
 

Similar a Unidad III de analisis numerico (20)

Analisis Numerico... Jose Manzanilla
Analisis Numerico... Jose Manzanilla Analisis Numerico... Jose Manzanilla
Analisis Numerico... Jose Manzanilla
 
Metodos de resolucion
Metodos de resolucionMetodos de resolucion
Metodos de resolucion
 
Laura rodríguez
Laura rodríguezLaura rodríguez
Laura rodríguez
 
Análisis numérico (josé monsalve). (autoguardado)
Análisis numérico (josé monsalve). (autoguardado)Análisis numérico (josé monsalve). (autoguardado)
Análisis numérico (josé monsalve). (autoguardado)
 
Analisis numerico tema3
Analisis numerico tema3Analisis numerico tema3
Analisis numerico tema3
 
Yosel Eviez, Metodos de Solucion de Ecuaciones Lineales
Yosel Eviez, Metodos de Solucion de Ecuaciones LinealesYosel Eviez, Metodos de Solucion de Ecuaciones Lineales
Yosel Eviez, Metodos de Solucion de Ecuaciones Lineales
 
Analisis numerico
Analisis numericoAnalisis numerico
Analisis numerico
 
Análisis Numerico
Análisis NumericoAnálisis Numerico
Análisis Numerico
 
Sistema de ecuaciones lineales
Sistema de ecuaciones linealesSistema de ecuaciones lineales
Sistema de ecuaciones lineales
 
Scrib 3 analisis numerico
Scrib 3 analisis numericoScrib 3 analisis numerico
Scrib 3 analisis numerico
 
Unidad iii
Unidad iiiUnidad iii
Unidad iii
 
Ensayo de la unidad iii. analisis numerico
Ensayo de la unidad iii. analisis numericoEnsayo de la unidad iii. analisis numerico
Ensayo de la unidad iii. analisis numerico
 
Solución de sistemas de ecuaciones lineales
Solución de sistemas de ecuaciones linealesSolución de sistemas de ecuaciones lineales
Solución de sistemas de ecuaciones lineales
 
Metoodos numericos
Metoodos numericosMetoodos numericos
Metoodos numericos
 
Analisis Numerico
Analisis NumericoAnalisis Numerico
Analisis Numerico
 
Mapa mental analisis numerico
Mapa mental analisis numericoMapa mental analisis numerico
Mapa mental analisis numerico
 
Resumen unidad III
Resumen unidad IIIResumen unidad III
Resumen unidad III
 
Métodos de eliminación gaussiana tarea iii
Métodos de eliminación gaussiana tarea iiiMétodos de eliminación gaussiana tarea iii
Métodos de eliminación gaussiana tarea iii
 
Solución de Sistemas de Ecuaciones Lineales
Solución de Sistemas de Ecuaciones LinealesSolución de Sistemas de Ecuaciones Lineales
Solución de Sistemas de Ecuaciones Lineales
 
Resumen de sistemas de ecuación lineales
Resumen de sistemas de ecuación linealesResumen de sistemas de ecuación lineales
Resumen de sistemas de ecuación lineales
 

Más de Eliezer Pacheco

Unidad III analisis numerico
Unidad III analisis numericoUnidad III analisis numerico
Unidad III analisis numericoEliezer Pacheco
 
Analisis numerico, unidad i
Analisis numerico, unidad iAnalisis numerico, unidad i
Analisis numerico, unidad iEliezer Pacheco
 
Origen de la ingenieria moderna, ROMA
Origen de la ingenieria moderna, ROMAOrigen de la ingenieria moderna, ROMA
Origen de la ingenieria moderna, ROMAEliezer Pacheco
 
Paradigmas tecnoeconomicos
Paradigmas tecnoeconomicosParadigmas tecnoeconomicos
Paradigmas tecnoeconomicosEliezer Pacheco
 
Aprendizaje y pensamiento critico
Aprendizaje y pensamiento criticoAprendizaje y pensamiento critico
Aprendizaje y pensamiento criticoEliezer Pacheco
 

Más de Eliezer Pacheco (7)

Cambios climaticos
Cambios climaticosCambios climaticos
Cambios climaticos
 
Unidad III analisis numerico
Unidad III analisis numericoUnidad III analisis numerico
Unidad III analisis numerico
 
BIOMAS
 BIOMAS BIOMAS
BIOMAS
 
Analisis numerico, unidad i
Analisis numerico, unidad iAnalisis numerico, unidad i
Analisis numerico, unidad i
 
Origen de la ingenieria moderna, ROMA
Origen de la ingenieria moderna, ROMAOrigen de la ingenieria moderna, ROMA
Origen de la ingenieria moderna, ROMA
 
Paradigmas tecnoeconomicos
Paradigmas tecnoeconomicosParadigmas tecnoeconomicos
Paradigmas tecnoeconomicos
 
Aprendizaje y pensamiento critico
Aprendizaje y pensamiento criticoAprendizaje y pensamiento critico
Aprendizaje y pensamiento critico
 

Último

IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESAIPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESAJAMESDIAZ55
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALKATHIAMILAGRITOSSANC
 
SSOMA, seguridad y salud ocupacional. SST
SSOMA, seguridad y salud ocupacional. SSTSSOMA, seguridad y salud ocupacional. SST
SSOMA, seguridad y salud ocupacional. SSTGestorManpower
 
Unidad 3 Administracion de inventarios.pptx
Unidad 3 Administracion de inventarios.pptxUnidad 3 Administracion de inventarios.pptx
Unidad 3 Administracion de inventarios.pptxEverardoRuiz8
 
Presentación N° 1 INTRODUCCIÓN Y CONCEPTOS DE GESTIÓN AMBIENTAL.pdf
Presentación N° 1 INTRODUCCIÓN Y CONCEPTOS DE GESTIÓN AMBIENTAL.pdfPresentación N° 1 INTRODUCCIÓN Y CONCEPTOS DE GESTIÓN AMBIENTAL.pdf
Presentación N° 1 INTRODUCCIÓN Y CONCEPTOS DE GESTIÓN AMBIENTAL.pdfMIGUELANGELCONDORIMA4
 
Curso intensivo de soldadura electrónica en pdf
Curso intensivo de soldadura electrónica  en pdfCurso intensivo de soldadura electrónica  en pdf
Curso intensivo de soldadura electrónica en pdfFernandaGarca788912
 
Flujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxFlujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxEduardoSnchezHernnde5
 
Una estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NISTUna estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NISTFundación YOD YOD
 
Magnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principiosMagnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principiosMarceloQuisbert6
 
Tiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo IITiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo IILauraFernandaValdovi
 
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaProyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaXjoseantonio01jossed
 
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdfECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdffredyflores58
 
ECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdfECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdfmatepura
 
Caldera Recuperadora de químicos en celulosa tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa  tipos y funcionamientoCaldera Recuperadora de químicos en celulosa  tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa tipos y funcionamientoRobertoAlejandroCast6
 
Sesion 02 Patentes REGISTRO EN INDECOPI PERU
Sesion 02 Patentes REGISTRO EN INDECOPI PERUSesion 02 Patentes REGISTRO EN INDECOPI PERU
Sesion 02 Patentes REGISTRO EN INDECOPI PERUMarcosAlvarezSalinas
 
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfTAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfAntonioGonzalezIzqui
 
Linealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdfLinealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdfrolandolazartep
 
Reporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacaReporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacajeremiasnifla
 
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptxGARCIARAMIREZCESAR
 

Último (20)

IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESAIPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
 
VALORIZACION Y LIQUIDACION MIGUEL SALINAS.pdf
VALORIZACION Y LIQUIDACION MIGUEL SALINAS.pdfVALORIZACION Y LIQUIDACION MIGUEL SALINAS.pdf
VALORIZACION Y LIQUIDACION MIGUEL SALINAS.pdf
 
SSOMA, seguridad y salud ocupacional. SST
SSOMA, seguridad y salud ocupacional. SSTSSOMA, seguridad y salud ocupacional. SST
SSOMA, seguridad y salud ocupacional. SST
 
Unidad 3 Administracion de inventarios.pptx
Unidad 3 Administracion de inventarios.pptxUnidad 3 Administracion de inventarios.pptx
Unidad 3 Administracion de inventarios.pptx
 
Presentación N° 1 INTRODUCCIÓN Y CONCEPTOS DE GESTIÓN AMBIENTAL.pdf
Presentación N° 1 INTRODUCCIÓN Y CONCEPTOS DE GESTIÓN AMBIENTAL.pdfPresentación N° 1 INTRODUCCIÓN Y CONCEPTOS DE GESTIÓN AMBIENTAL.pdf
Presentación N° 1 INTRODUCCIÓN Y CONCEPTOS DE GESTIÓN AMBIENTAL.pdf
 
Curso intensivo de soldadura electrónica en pdf
Curso intensivo de soldadura electrónica  en pdfCurso intensivo de soldadura electrónica  en pdf
Curso intensivo de soldadura electrónica en pdf
 
Flujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxFlujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptx
 
Una estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NISTUna estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NIST
 
Magnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principiosMagnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principios
 
Tiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo IITiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo II
 
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaProyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
 
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdfECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
 
ECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdfECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdf
 
Caldera Recuperadora de químicos en celulosa tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa  tipos y funcionamientoCaldera Recuperadora de químicos en celulosa  tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa tipos y funcionamiento
 
Sesion 02 Patentes REGISTRO EN INDECOPI PERU
Sesion 02 Patentes REGISTRO EN INDECOPI PERUSesion 02 Patentes REGISTRO EN INDECOPI PERU
Sesion 02 Patentes REGISTRO EN INDECOPI PERU
 
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfTAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
 
Linealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdfLinealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdf
 
Reporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacaReporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpaca
 
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
 

Unidad III de analisis numerico

  • 1. Solución de Sistemas de Ecuaciones Lineales Eliezer Pacheco CI 24537005
  • 2. Métodos De Eliminación Gaussiana En forma general este método propone la eliminación progresiva de variables en el sistema de ecuaciones, hasta tener sólo una ecuación con una incógnita. Una vez resuelta esta, se procede por sustitución regresiva hasta obtener los valores de todas las variables. Sea por ejemplo el siguiente sistema de ecuaciones: Lo que buscamos son 3 números, que satisfagan a las tres ecuaciones. El método de solución será simplificar las ecuaciones, de tal modo que las soluciones se puedan identificar con facilidad. Se comienza dividiendo la primera ecuación entre 2, obteniendo: Se simplificará el sistema si multiplicamos por -4 ambos lados de la primera ecuación y sumando esta a la segunda. Entonces: sumándolas resulta :
  • 3. Métodos De Eliminación Gaussiana La nueva ecuación se puede sustituir por cualquiera de las dos. Ahora tenemos: Luego, la primera se multiplica por -3 y se le suma a la tercera, obteniendo: Acto seguido, la segunda ecuación se divide entre -3. Ahora se multiplica por 5 y se le suma a la tercera: En este momento ya tenemos el valor de x3, ahora simplemente se procede a hacer la sustitución hacia atrás, y automáticamente se van obteniendo los valores de las otras incógnitas. Se obtendrá:
  • 4. Método de Gauss-Jordan El Método de Gauss – Jordan o también llamado eliminación de Gauss – Jordan, es un método por el cual pueden resolverse sistemas de ecuaciones lineales con n números de variables, encontrar matrices y matrices inversas, en este caso desarrollaremos la primera aplicación mencionada. Para resolver sistemas de ecuaciones lineales aplicando este método, se debe en primer lugar anotar los coeficientes de las variables del sistema de ecuaciones lineales en su notación matricial: Entonces, anotando como matriz (también llamada matriz aumentada):
  • 5. Método de Gauss-Jordan Una vez hecho esto, a continuación se procede a convertir dicha matriz en una matriz identidad, es decir una matriz equivalente a la original, la cual es de la forma: Esto se logra aplicando a las distintas filas y columnas de las matrices simples operaciones de suma, resta, multiplicación y división; teniendo en cuenta que una operación se aplicara a todos los elementos de la fila o de la columna, sea el caso. Obsérvese que en dicha matriz identidad no aparecen los términos independientes, esto se debe a que cuando nuestra matriz original alcance la forma de la matriz identidad, dichos términos resultaran ser la solución del sistema y verificaran la igualdad para cada una de las variables, correspondiéndose de la siguiente forma: d1 = x d2 = y d3 = z
  • 6. Descomposición LU El método de descomposición LU para la solución de sistemas de ecuaciones lineales debe su nombre a que se basa en la descomposición de la matriz original de coeficientes (A) en el producto de dos matrices (L y U). Esto es: Donde: L - Matriz triangular inferior U - Matriz triangular superior con todos los elementos de la diagonal principal iguales a 1. De lo anterior, para matrices de 3x3 se escribe: Si efectuamos la multiplicación de L y U, igualando los elementos de ese producto con los de la matriz A correspondientes, se obtiene:
  • 7. Descomposición LU De aquí que los elementos de L y U son, en este caso: Si el sistema de ecuaciones original se escribe como: A x = b lo cual resulta lo mismo escribir: L U X = b Definiendo a: U X = Y podemos escribir: L Y = b Resolviendo para Y, encontramos:
  • 8. Descomposición LU El algoritmo de solución, una vez conocidas L, U y b, consiste en encontrar primeramente los valores de "Y" por sustitución progresiva sobre "L Y = b". En segundo lugar se resuelve "U x = y " por sustitución regresiva para encontrar los valores de "x", obteniendo: La determinación de los elementos de las matrices L y U se realizan eficientemente aplicando una forma modificada del método de eliminación de Gauss.
  • 9. Factorización De Cholesky Una matriz simétrica es aquella donde Aij = Aji para toda i y j, En otras palabras, [A] =[A] T. Tales sistemas ocurren comúnmente en problemas de ambos contextos: el matemático y el de ingeniería. Ellos ofrecen ventajas computacionales ya que sólo se necesita la mitad de almacenamiento y, en la mayoría de los casos, sólo se requiere la mitad del tiempo de cálculo para su solución. Al contrario de la Descomposición LU, no requiere de pivoteo. El método de Factorización de Cholesky se basa en demostrar que si una matriz A es simétrica y definida positiva en lugar de factorizarse como LU, puede ser factorizada como el producto de una matriz triangular inferior y la traspuesta de la matriz triangular inferior, es decir los factores triangulares resultantes son la traspuesta de cada uno. Ejemplo: Obtener la factorización de Cholesky de la siguiente matriz (entrar sólo los elementos de U, la triangular superior) 5 7 −8 7 14 −14 −8 −14 24
  • 10. Factorización De Cholesky √5 7/5 √5 −8/5 √5 0 1/5 1051/2 −2/15 1051/2 0 0 2/3 211/2 Entrar el valor del determinante: Resolver el sistema lineal Ax=b cuando b es el vector siguiente 51 84 −90 Factorización: En cada etapa de la resolución se muestran los valores actuales de la matriz. Los nuevos elementos calculados aparecen con su valor definitivo en color diferente. Calculando el elemento (1,1) 5^(1/2) 7 -8 7 14 -14
  • 11. Factorización De Cholesky Tratando la fila/columna 1 5^(1/2) 7/5*5^ (1/2) -8/5*5^(1/2) 7/5*5^ (1/2) 14 -14 -8/5*5^ (1/2) -14 24 Calculando el elemento (2,2) 5^(1/2) 7/5*5^(1/2) -8/5*5^(1/2) 7/5*5^(1/2) 1/5*105^(1/2) -14 -8/5*5^(1/2) -14 24 Tratando la fila/columna 2 5^(1/2) 7/5*5^(1/2) -8/5*5^(1/2) 7/5*5^(1/2) 1/5*105^(1/2) -2/15*105^(1/2) -8/5*5^(1/2) -2/15*105^(1/2) 24
  • 12. Factorización De Cholesky Calculando el elemento (3,3) 5^(1/2) 7/5*5^(1/2) -8/5*5^(1/2) 7/5*5^(1/2) 1/5*105^(1/2) -2/15*105^(1/2) -8/5*5^(1/2) -2/15*105^(1/2) 2/3*21^(1/2) La factorización final es la siguiente, en la que aparecen las matrices UT y U, y el vector de permutaciones: √5 0 0 7/5 √5 1/5 1051/2 0 −8/5 √5 −2/15 1051/2 2/3 211/2 √5 7/5 √5 −8/5 √5 0 1/5 1051/2 −2/15 1051/2 0 0 2/3 211/ El valor del determinante viene dado por el producto de los elementos de la diagonal principal de U y coincide con la diagonal principal de UT. Por tanto, es: 196
  • 13. Factorización de QR, Householder
  • 14. Factorización de QR, Householder El objetivo de esta matriz es usarla para producir ceros en la matriz que queremos factorizar. Para hacerlo, debemosconsiderar el problema: Dados los vectores x y y, ¿cómo calculmos P tal que Px = y? • Puesto que P realiza una reflexión, se debe cumplir que 𝑦 2 = 𝑥 2 para poder calcular P. • Hay que notar que P es invariante a la escala de v. x - y tiene la dirección del vector que queremos. Así, podemos definir v = x - y.
  • 15. Solución De Sistemas Lineales Utilizando Métodos Iterativos El método de Gauss y sus variantes son conocidos como métodos directos para resolver el problema inicial Ax = b. Se ejecutan a través de un número finito de pasos y generan una solución x que sería exacta sino fuera por los errores de redondeo. En contraste, un método iterativo da lugar a una sucesión de vectores que idealmente converge a la solución. El cálculo se detiene cuando se cuenta con una solución aproximada con cierto grado de precisión especificado de antemano o después de cierto número de iteraciones. Los métodos indirectos son casi siempre iterativos. Un método iterado de resolución del sistema Ax = b es aquel que genera, a partir de un vector inicial x0, una sucesión de vectores x1, x2, . . . xn.. "Un método iterado se dirá que es consistente con el sistema Ax = b, si el límite x de la sucesión (xn), en caso de existir, es solución del sistema. Se dirá que el método es convergente si la sucesión generada por cualquier vector inicial x0 es convergente a la solución del sistema".Es evidente que si un método es convergente es consistente, sin embargo, el recíproco no es cierto
  • 16. Método De Gauss Seidel El Método de Gauss Seidel emplea valores iniciales y después itera para obtener estimaciones refinadas de la solución; es particularmente adecuado para un gran número de ecuaciones, lo cual en cierto modo lo hace un método más comúnmente usado. La fórmula utilizada para hallar los xi viene dada por el despeje de cada una de las xi en cada una de las ecuaciones y se les da un valor inicial a cada xi de cero. Observase que en el método de Gauss-Seidel los valores actualizados de xi sustituyen de inmediato a los valores anteriores, mientras que en el método de Jacobi todas las componentes nuevas del vector se calculan antes de llevar a cabo la sustitución. Por contra, en el método de Gauss-Seidel los cálculos deben llevarse a cabo por orden, ya que el nuevo valor xi depende de los valores actualizados de x1, x2, ..., x i-1. La desventaja del método de Gauss-Seidel es que no siempre converge a la solución exacta o algunas veces los hace de manera muy lenta. Únicamente es confiable para aquellos sistemas dominantes diagonalmente.
  • 17. Método de Jacobi El Método de Jacobi transforma una matriz simétrica en una matriz diagonal al eliminar de forma simétrica los elementos que están fuera de la diagonal. Desafortunadamente, el método requiere un número infinito de operaciones, ya que la eliminación de cada elemento no cero a menudo crea un nuevo valor no cero en el elemento cero anterior. Si A es diagonalmente dominante, entonces la sucesión que resulta de la iteración de Jacobi converge a la solución de Ax = b para cualquier vector inicial Xo. Partimos de una aproximación inicial Xo para las soluciones Xi al sistema de ecuaciones y sustituimos estos valores en la ecuación: Que es la expresión que nos proporciona las nuevas componentes del vector x(k) en función de vector anterior x(k-1) en la iteración de Jacobi, en su respectivo algoritmo; donde el a el método de Jacobi más que usar el último valor disponible de , con base en un conjunto de las x anteriores (). De esta forma, como se generan nuevos valores, no se usan en forma inmediata sino que se retienen para la siguiente iteración.