SlideShare una empresa de Scribd logo
1 de 33
UNIDAD VI Redes de propagación hacia delante  y aprendizaje supervisado 6.2 RED ADALINE 6.2.1 Adaline simple. 6.2.2 Algoritmo  LMS .
Introducción ,[object Object]
[object Object],Introducción
[object Object],[object Object],Introducción
[object Object],[object Object],Diferencias Entre La Regla Del Perceptron Y El Algoritmo LMS
Diferencias entre . . . ,[object Object],[object Object]
Diferencias entre . . . PERCEPTRON ADALINE Función de Transferencia ESCALON LINEAL Resolución de problemas Linealmente Separables Linealmente Separables Comportamiento con respecto al RUIDO Sensible al Ruido Minimiza el Ruido Algoritmo de aprendizaje Regla de aprendizaje Del Perceptron LMS
6.2.1 Red  ADALINE a p u r e l i n W p b +   W p b + = = a i p u r e l i n n i   p u r e l i n w T i p b i +   w T i p b i + = = =  w i w i 1  w i 2  w i R  =
ADALINE de dos entradas a p u r e l i n n   p u r e l i n w T 1 p b +   w T 1 p b + = = = a w T 1 p b + w 1 1  p 1 w 1 2  p 2 b + + = =
6.2.2 Mínimo Error Cuadrático p 1 t 1 { , } p 2 t 2 { , }  p Q t Q { , }    Conjunto Entrenamiento: p q t q Entrada: Objetivo: x w 1 b = z p 1 = a w T 1 p b + = a x T z = F x   E e 2   = E t a –   2   E t x T z –   2   = = Notación: Mean Square Error: Donde:  E  es un valor esperado
Ecuaciones Importantes en el Algoritmo LMS W k 1 +   W k   2  e k   p T k   + = b k 1 +   b k   2  e k   + = En forma de Matriz: Donde:    es el parámetro de aprendizaje máximo w i k 1 +   w i k   2  e i k   p k   + = b i k 1 +   b i k   2  e i k   + =
Condiciones para la Estabilidad e i g I 2  R –     1 2   i – 1  = Resumiendo, las condiciones de estabilidad son:  i 0  Ya que , 1 2   i – 1  .  1   i para toda  i  0  1  m a x    (donde   i  es un  eigenvalor  de  R ) 1 2   i – 1 – 
MATLAB Neural Network Toolbox
Modelo de una neurona lineal en MATLAB p(1) p(2) p(3) p(R) W(1,1) W(1,R) 1 b n a  a = purelin(w*p+b) a = w*p+b 0 0 1 -1 a a b/w b/w p n a = purelin(n)
INICIALIZACIÓN Y DISEÑO La función  initlin  es usada para inicializar los pesos y los bias de la capa lineal con valores positivos y negativos. [W,b]=initlin(P,T) Las redes lineales pueden ser diseñadas directamente si se conocen sus vectores de entrada y objetivo por medio de la función  solvelin,  la cual encuentra los valores de los pesos y el bias sin necesidad de entrenamiento . [W,b]=solvelin(P,T); W=solvelin(P,T);
Regla de Aprendizaje en ADALINE · ADALINE utiliza un aprendizaje OFF LINE con supervisión.  · Este aprendizaje es la llamada  Regla de Widrow-Hoff  ( Regla Delta  o  Regla del Mínimo Error Cuadrático Medio   LMS Least Mean Square)
Regla de Widrow-Hoff Consiste en hallar el vector de pesos W deseado, único, que deberá asociar cada vector de entrada con su correspondiente valor de salida correcto o deseado. La regla minimiza el  error cuadrático medio  definido como: donde: es la función de error R R R a t       p R R R p 1 2 2 1  
Esta función de error está definida en el espacio de pesos multidimensional para un conjunto de entradas, y la regla de Widrow-Hoff busca el punto de este  espacio donde se encuentra el mínimo global.   Con función de activación lineal  Con función de activación sigmoidal
Se utiliza el método de gradiente decreciente para saber en qué dirección se encuentra el mínimo global de dicha superficie. Las modificaciones que se realizan a los pesos son proporcionales al gradiente decreciente de la función de error, por lo que cada nuevo punto calculado está más próximo al punto mínimo.             j R j w lr w 2 
a) ADALINE     b) PERCEPTRÓN
La regla de Widrow-Hoff es implementada realizando cambios a los pesos en la dirección opuesta en la que el error está incrementando y absorbiendo la constante -2 en  lr . En forma de matriz:  Transformando a la expresión del bias (considerando que el bias son pesos con entradas de 1): ) ( ) ( ) , ( j p j e lr j i W     T Ep lr W    E lr b   
Algoritmo de aprendizaje en ADALINE 1.   Se aplica un vector o patrón de entrada  P R  en las entradas del ADALINE. 2.   Se obtiene la salida lineal a R  = WP R  y se calcula la diferencia con respecto a la salida deseada: E R  =T R -a R 3.   Se actualizan los pesos: W( t+1 ) = W(t) + lrE R P R 4.   Se repiten los pasos 1 al 3 con todos los vectores de entrada. 5.   Si el error cuadrático  medio  es un valor reducido aceptable, termina el proceso de aprendizaje, sino, se repite otra vez desde el paso 1 con todos los patrones.    p R R R p 1 2 2 1  
ENTRENAMIENTO ADALINE ,[object Object],[object Object]
ENTRENAMIENTO ADALINE ,[object Object],[object Object]
ENTRENAMIENTO ADALINE ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
En  MATLAB:     E = T - A;     [ dW, db ] = learnwh( P, E, lr ) lr  es la  tasa de aprendizaje . Si es grande, el aprendizaje es rápido, pero si es demasiado grande, el aprendizaje es inestable y puede incrementarse el error.   lr = maxlinlr( P );   % si no se utiliza bias   lr = maxlinlr( P, ‘bias’ );   %si se utiliza bias   W = W + dW;   b = b + db;
ENTRENAMIENTO ADALINE ,[object Object]
ENTRENAMIENTO ADALINE ,[object Object],[object Object],[object Object]
ENTRENAMIENTO ADALINE ,[object Object],[object Object],[object Object],[object Object],[object Object]
Ejercicio:  1 1.0  2 0.0  3 2.0 =  =  = R E p p T   1 2 - - - p 1 p 1 T 1 2 - - - p 2 p 2 T + = = R 1 2 - - - 1 – 1 1 – 1 – 1 1 – 1 2 - - - 1 1 1 – 1 1 1 – + 1 0 0 0 1 1 – 0 1 – 1 = =  1  m a x - - - - - - - - - - - -  1 2.0 - - - - - - - 0.5 = = p 1 1 – 1 1 – t 1  1 – = =           p 2 1 1 1 – t 2  1 = =           Plátano Manzana
Iteración: 1 e 0   t 0   a 0   t 1 a 0   1 – 0 1 – = – = – = – = W 1   W 0   2  e 0   p T 0   + = W 1   0 0 0 2 0.2   1 –   1 – 1 1 – T 0.4 0.4 – 0.4 = + = a 0   W 0   p 0   W 0   p 1 0 0 0 1 – 1 1 – 0 = = = = Plátano
Iteración:  2 Manzana a 1   W 1   p 1   W 1   p 2 0.4 0.4 – 0.4 1 1 1 – 0.4 – = = = = e 1   t 1   a 1   t 2 a 1   1 0.4 –   1.4 = – = – = – = W 2   0.4 0.4 – 0.4 2 0.2   1.4   1 1 1 – T 0.96 0.16 0.16 – = + =
Iteración:  3 e 2   t 2   a 2   t 1 a 2   1 – 0.64 –   0.36 – = – = – = – = W 3   W 2   2  e 2   p T 2   + 1.1040 0.0160 0.0160 – = = W    1 0 0 = a 2   W 2   p 2   W 2   p 1 0.96 0.16 0.16 – 1 – 1 1 – 0.64 – = = = =

Más contenido relacionado

La actualidad más candente

Lab 01 - Análisis de señales - UNTECS
Lab 01 - Análisis de señales - UNTECSLab 01 - Análisis de señales - UNTECS
Lab 01 - Análisis de señales - UNTECSIng. Electrónica xD
 
Prácticas identificación de sistemas
Prácticas identificación de sistemasPrácticas identificación de sistemas
Prácticas identificación de sistemasJaime Martínez Verdú
 
Cuantización de coeficientes de canal basados en teoría de números algebraicos
Cuantización de coeficientes de canal basados en teoría de números algebraicosCuantización de coeficientes de canal basados en teoría de números algebraicos
Cuantización de coeficientes de canal basados en teoría de números algebraicosTELCON UNI
 
Solucion de Ecuaciones Diferenciales Ordinarias de Segundo Orden por Métodos ...
Solucion de Ecuaciones Diferenciales Ordinarias de Segundo Orden por Métodos ...Solucion de Ecuaciones Diferenciales Ordinarias de Segundo Orden por Métodos ...
Solucion de Ecuaciones Diferenciales Ordinarias de Segundo Orden por Métodos ...Carlos Aguilar
 
Lecture 17 probabilidad de error para señales en awgn parte 2
Lecture 17 probabilidad de error para señales en awgn parte 2Lecture 17 probabilidad de error para señales en awgn parte 2
Lecture 17 probabilidad de error para señales en awgn parte 2nica2009
 
transformada de fourier- análisis de señales
transformada de fourier- análisis de señalestransformada de fourier- análisis de señales
transformada de fourier- análisis de señalesVeronica Montilla
 
sistema de ecuaciones con transformada de Laplace MG
sistema de ecuaciones con transformada de Laplace MGsistema de ecuaciones con transformada de Laplace MG
sistema de ecuaciones con transformada de Laplace MGmaiyelingh
 
Respuesta en Frecuencia, se presentan los métodos del Diagrama de Bode y del...
 Respuesta en Frecuencia, se presentan los métodos del Diagrama de Bode y del... Respuesta en Frecuencia, se presentan los métodos del Diagrama de Bode y del...
Respuesta en Frecuencia, se presentan los métodos del Diagrama de Bode y del...Elias1306
 
Aplicaciones de la Transformada de Laplace. 3 ejercicios resueltos por Ing. R...
Aplicaciones de la Transformada de Laplace. 3 ejercicios resueltos por Ing. R...Aplicaciones de la Transformada de Laplace. 3 ejercicios resueltos por Ing. R...
Aplicaciones de la Transformada de Laplace. 3 ejercicios resueltos por Ing. R...roscoro
 
Respuesta en Frecuencia, se presentan los métodos del Diagrama de Bode y del...
 Respuesta en Frecuencia, se presentan los métodos del Diagrama de Bode y del... Respuesta en Frecuencia, se presentan los métodos del Diagrama de Bode y del...
Respuesta en Frecuencia, se presentan los métodos del Diagrama de Bode y del...Elias1306
 
Modelado de circuitos con ED de orden superior
Modelado de circuitos con ED de orden superiorModelado de circuitos con ED de orden superior
Modelado de circuitos con ED de orden superiorJuan Camilo Sacanamboy
 
Utp ia_2014-2_s5_adaline
 Utp ia_2014-2_s5_adaline Utp ia_2014-2_s5_adaline
Utp ia_2014-2_s5_adalinejcbp_peru
 

La actualidad más candente (20)

Lab 01 - Análisis de señales - UNTECS
Lab 01 - Análisis de señales - UNTECSLab 01 - Análisis de señales - UNTECS
Lab 01 - Análisis de señales - UNTECS
 
Prácticas identificación de sistemas
Prácticas identificación de sistemasPrácticas identificación de sistemas
Prácticas identificación de sistemas
 
SSLL-PE-2009-2S
SSLL-PE-2009-2SSSLL-PE-2009-2S
SSLL-PE-2009-2S
 
211 matlab senales
211 matlab senales211 matlab senales
211 matlab senales
 
Cuantización de coeficientes de canal basados en teoría de números algebraicos
Cuantización de coeficientes de canal basados en teoría de números algebraicosCuantización de coeficientes de canal basados en teoría de números algebraicos
Cuantización de coeficientes de canal basados en teoría de números algebraicos
 
TE1-PE-2010-2S
TE1-PE-2010-2STE1-PE-2010-2S
TE1-PE-2010-2S
 
Transformadas de Laplace
Transformadas de LaplaceTransformadas de Laplace
Transformadas de Laplace
 
Solucion de Ecuaciones Diferenciales Ordinarias de Segundo Orden por Métodos ...
Solucion de Ecuaciones Diferenciales Ordinarias de Segundo Orden por Métodos ...Solucion de Ecuaciones Diferenciales Ordinarias de Segundo Orden por Métodos ...
Solucion de Ecuaciones Diferenciales Ordinarias de Segundo Orden por Métodos ...
 
Lecture 17 probabilidad de error para señales en awgn parte 2
Lecture 17 probabilidad de error para señales en awgn parte 2Lecture 17 probabilidad de error para señales en awgn parte 2
Lecture 17 probabilidad de error para señales en awgn parte 2
 
transformada de fourier- análisis de señales
transformada de fourier- análisis de señalestransformada de fourier- análisis de señales
transformada de fourier- análisis de señales
 
sistema de ecuaciones con transformada de Laplace MG
sistema de ecuaciones con transformada de Laplace MGsistema de ecuaciones con transformada de Laplace MG
sistema de ecuaciones con transformada de Laplace MG
 
SSLL-TE-2014-1S
SSLL-TE-2014-1SSSLL-TE-2014-1S
SSLL-TE-2014-1S
 
Trabajo Range-Kutta
Trabajo Range-KuttaTrabajo Range-Kutta
Trabajo Range-Kutta
 
Respuesta en Frecuencia, se presentan los métodos del Diagrama de Bode y del...
 Respuesta en Frecuencia, se presentan los métodos del Diagrama de Bode y del... Respuesta en Frecuencia, se presentan los métodos del Diagrama de Bode y del...
Respuesta en Frecuencia, se presentan los métodos del Diagrama de Bode y del...
 
Aplicaciones de la Transformada de Laplace. 3 ejercicios resueltos por Ing. R...
Aplicaciones de la Transformada de Laplace. 3 ejercicios resueltos por Ing. R...Aplicaciones de la Transformada de Laplace. 3 ejercicios resueltos por Ing. R...
Aplicaciones de la Transformada de Laplace. 3 ejercicios resueltos por Ing. R...
 
Respuesta en Frecuencia, se presentan los métodos del Diagrama de Bode y del...
 Respuesta en Frecuencia, se presentan los métodos del Diagrama de Bode y del... Respuesta en Frecuencia, se presentan los métodos del Diagrama de Bode y del...
Respuesta en Frecuencia, se presentan los métodos del Diagrama de Bode y del...
 
SSLL-TE-2010-2S
SSLL-TE-2010-2SSSLL-TE-2010-2S
SSLL-TE-2010-2S
 
Modelado de circuitos con ED de orden superior
Modelado de circuitos con ED de orden superiorModelado de circuitos con ED de orden superior
Modelado de circuitos con ED de orden superior
 
Utp ia_2014-2_s5_adaline
 Utp ia_2014-2_s5_adaline Utp ia_2014-2_s5_adaline
Utp ia_2014-2_s5_adaline
 
SSLL-PE-2010-2S
SSLL-PE-2010-2SSSLL-PE-2010-2S
SSLL-PE-2010-2S
 

Destacado

2010 Addy Awards Presentation
2010 Addy Awards Presentation2010 Addy Awards Presentation
2010 Addy Awards PresentationAAF ECI
 
Nel Photos Superb
Nel Photos SuperbNel Photos Superb
Nel Photos SuperbAdalberto
 
Conferencia. ev de los apren
Conferencia. ev de los aprenConferencia. ev de los apren
Conferencia. ev de los aprenAdalberto
 
Adan Y Eva
Adan Y EvaAdan Y Eva
Adan Y EvaMAZUCA
 

Destacado (7)

2010 Addy Awards Presentation
2010 Addy Awards Presentation2010 Addy Awards Presentation
2010 Addy Awards Presentation
 
Adda politiken
Adda politikenAdda politiken
Adda politiken
 
Nel Photos Superb
Nel Photos SuperbNel Photos Superb
Nel Photos Superb
 
Conferencia. ev de los apren
Conferencia. ev de los aprenConferencia. ev de los apren
Conferencia. ev de los apren
 
ADDIE Model
ADDIE ModelADDIE Model
ADDIE Model
 
Addy
AddyAddy
Addy
 
Adan Y Eva
Adan Y EvaAdan Y Eva
Adan Y Eva
 

Similar a Red Neuronal Adaline

RED NERONAL ADALINE
RED NERONAL ADALINERED NERONAL ADALINE
RED NERONAL ADALINEESCOM
 
Regla de aprendizaje del perceptrón simple
Regla de aprendizaje del perceptrón simpleRegla de aprendizaje del perceptrón simple
Regla de aprendizaje del perceptrón simpleAndrea Lezcano
 
Algoritmo de Retropropagación
Algoritmo de RetropropagaciónAlgoritmo de Retropropagación
Algoritmo de RetropropagaciónESCOM
 
Utp 2015-2_sirn_s6_adaline y backpropagation
 Utp 2015-2_sirn_s6_adaline y backpropagation Utp 2015-2_sirn_s6_adaline y backpropagation
Utp 2015-2_sirn_s6_adaline y backpropagationjcbenitezp
 
Utp sirn_s6_adaline y backpropagation
 Utp sirn_s6_adaline y backpropagation Utp sirn_s6_adaline y backpropagation
Utp sirn_s6_adaline y backpropagationjcbp_peru
 
redes neuronales con Levenberg-Marquardt lmbp
redes neuronales con Levenberg-Marquardt lmbpredes neuronales con Levenberg-Marquardt lmbp
redes neuronales con Levenberg-Marquardt lmbpESCOM
 
Perceptron y Adaline
Perceptron y AdalinePerceptron y Adaline
Perceptron y AdalineSpacetoshare
 
RED NEURONAL Backpropagation
RED NEURONAL BackpropagationRED NEURONAL Backpropagation
RED NEURONAL BackpropagationESCOM
 
jesu bairstow metodos numeicos.pptx
jesu bairstow metodos numeicos.pptxjesu bairstow metodos numeicos.pptx
jesu bairstow metodos numeicos.pptxJessRivasCastro
 
Utp ia_s5_adaline
 Utp ia_s5_adaline Utp ia_s5_adaline
Utp ia_s5_adalinec09271
 
Razón de Aprendizaje Variable lvbp
Razón de Aprendizaje  Variable lvbpRazón de Aprendizaje  Variable lvbp
Razón de Aprendizaje Variable lvbpESCOM
 
Variantes de BACKPROPAGATION
Variantes de BACKPROPAGATIONVariantes de BACKPROPAGATION
Variantes de BACKPROPAGATIONESCOM
 
Presentación metodos numericos (metodo rigido y metodo multipasos)
Presentación metodos numericos (metodo rigido y metodo multipasos)Presentación metodos numericos (metodo rigido y metodo multipasos)
Presentación metodos numericos (metodo rigido y metodo multipasos)Eleazar Merida
 
Redes Neuronales
Redes NeuronalesRedes Neuronales
Redes Neuronalesgueste7b261
 
Utp 2015-2_sirn lab2
 Utp 2015-2_sirn lab2 Utp 2015-2_sirn lab2
Utp 2015-2_sirn lab2jcbp_peru
 
Redes de propagación hacia delante y aprendizaje supervisado
Redes de propagación hacia delante   y aprendizaje supervisadoRedes de propagación hacia delante   y aprendizaje supervisado
Redes de propagación hacia delante y aprendizaje supervisadoESCOM
 
Utp 2015-2_ia lab2
 Utp 2015-2_ia lab2 Utp 2015-2_ia lab2
Utp 2015-2_ia lab2jcbp_peru
 
Utp 2015-2_sirn lab2
 Utp 2015-2_sirn lab2 Utp 2015-2_sirn lab2
Utp 2015-2_sirn lab2jcbp_peru
 

Similar a Red Neuronal Adaline (20)

RED NERONAL ADALINE
RED NERONAL ADALINERED NERONAL ADALINE
RED NERONAL ADALINE
 
Regla de aprendizaje del perceptrón simple
Regla de aprendizaje del perceptrón simpleRegla de aprendizaje del perceptrón simple
Regla de aprendizaje del perceptrón simple
 
Algoritmo de Retropropagación
Algoritmo de RetropropagaciónAlgoritmo de Retropropagación
Algoritmo de Retropropagación
 
Utp 2015-2_sirn_s6_adaline y backpropagation
 Utp 2015-2_sirn_s6_adaline y backpropagation Utp 2015-2_sirn_s6_adaline y backpropagation
Utp 2015-2_sirn_s6_adaline y backpropagation
 
Utp sirn_s6_adaline y backpropagation
 Utp sirn_s6_adaline y backpropagation Utp sirn_s6_adaline y backpropagation
Utp sirn_s6_adaline y backpropagation
 
redes neuronales con Levenberg-Marquardt lmbp
redes neuronales con Levenberg-Marquardt lmbpredes neuronales con Levenberg-Marquardt lmbp
redes neuronales con Levenberg-Marquardt lmbp
 
Perceptron y Adaline
Perceptron y AdalinePerceptron y Adaline
Perceptron y Adaline
 
RED NEURONAL Backpropagation
RED NEURONAL BackpropagationRED NEURONAL Backpropagation
RED NEURONAL Backpropagation
 
Metodos iterativos
Metodos iterativosMetodos iterativos
Metodos iterativos
 
Perceptron parte 2
Perceptron parte 2Perceptron parte 2
Perceptron parte 2
 
jesu bairstow metodos numeicos.pptx
jesu bairstow metodos numeicos.pptxjesu bairstow metodos numeicos.pptx
jesu bairstow metodos numeicos.pptx
 
Utp ia_s5_adaline
 Utp ia_s5_adaline Utp ia_s5_adaline
Utp ia_s5_adaline
 
Razón de Aprendizaje Variable lvbp
Razón de Aprendizaje  Variable lvbpRazón de Aprendizaje  Variable lvbp
Razón de Aprendizaje Variable lvbp
 
Variantes de BACKPROPAGATION
Variantes de BACKPROPAGATIONVariantes de BACKPROPAGATION
Variantes de BACKPROPAGATION
 
Presentación metodos numericos (metodo rigido y metodo multipasos)
Presentación metodos numericos (metodo rigido y metodo multipasos)Presentación metodos numericos (metodo rigido y metodo multipasos)
Presentación metodos numericos (metodo rigido y metodo multipasos)
 
Redes Neuronales
Redes NeuronalesRedes Neuronales
Redes Neuronales
 
Utp 2015-2_sirn lab2
 Utp 2015-2_sirn lab2 Utp 2015-2_sirn lab2
Utp 2015-2_sirn lab2
 
Redes de propagación hacia delante y aprendizaje supervisado
Redes de propagación hacia delante   y aprendizaje supervisadoRedes de propagación hacia delante   y aprendizaje supervisado
Redes de propagación hacia delante y aprendizaje supervisado
 
Utp 2015-2_ia lab2
 Utp 2015-2_ia lab2 Utp 2015-2_ia lab2
Utp 2015-2_ia lab2
 
Utp 2015-2_sirn lab2
 Utp 2015-2_sirn lab2 Utp 2015-2_sirn lab2
Utp 2015-2_sirn lab2
 

Último

Plan de aula informatica segundo periodo.docx
Plan de aula informatica segundo periodo.docxPlan de aula informatica segundo periodo.docx
Plan de aula informatica segundo periodo.docxpabonheidy28
 
9egb-lengua y Literatura.pdf_texto del estudiante
9egb-lengua y Literatura.pdf_texto del estudiante9egb-lengua y Literatura.pdf_texto del estudiante
9egb-lengua y Literatura.pdf_texto del estudianteAndreaHuertas24
 
KELA Presentacion Costa Rica 2024 - evento Protégeles
KELA Presentacion Costa Rica 2024 - evento ProtégelesKELA Presentacion Costa Rica 2024 - evento Protégeles
KELA Presentacion Costa Rica 2024 - evento ProtégelesFundación YOD YOD
 
International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)GDGSucre
 
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE  DE TECNOLOGIA E INFORMATICA PRIMARIACLASE  DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIAWilbisVega
 
guía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Josephguía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan JosephBRAYANJOSEPHPEREZGOM
 
Proyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptxProyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptx241521559
 
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricGlobal Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricKeyla Dolores Méndez
 
Trabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíaTrabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíassuserf18419
 
Redes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdfRedes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdfsoporteupcology
 
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...silviayucra2
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveFagnerLisboa3
 
trabajotecologiaisabella-240424003133-8f126965.pdf
trabajotecologiaisabella-240424003133-8f126965.pdftrabajotecologiaisabella-240424003133-8f126965.pdf
trabajotecologiaisabella-240424003133-8f126965.pdfIsabellaMontaomurill
 
Cortes-24-de-abril-Tungurahua-3 año 2024
Cortes-24-de-abril-Tungurahua-3 año 2024Cortes-24-de-abril-Tungurahua-3 año 2024
Cortes-24-de-abril-Tungurahua-3 año 2024GiovanniJavierHidalg
 
La era de la educación digital y sus desafios
La era de la educación digital y sus desafiosLa era de la educación digital y sus desafios
La era de la educación digital y sus desafiosFundación YOD YOD
 
Hernandez_Hernandez_Practica web de la sesion 12.pptx
Hernandez_Hernandez_Practica web de la sesion 12.pptxHernandez_Hernandez_Practica web de la sesion 12.pptx
Hernandez_Hernandez_Practica web de la sesion 12.pptxJOSEMANUELHERNANDEZH11
 

Último (16)

Plan de aula informatica segundo periodo.docx
Plan de aula informatica segundo periodo.docxPlan de aula informatica segundo periodo.docx
Plan de aula informatica segundo periodo.docx
 
9egb-lengua y Literatura.pdf_texto del estudiante
9egb-lengua y Literatura.pdf_texto del estudiante9egb-lengua y Literatura.pdf_texto del estudiante
9egb-lengua y Literatura.pdf_texto del estudiante
 
KELA Presentacion Costa Rica 2024 - evento Protégeles
KELA Presentacion Costa Rica 2024 - evento ProtégelesKELA Presentacion Costa Rica 2024 - evento Protégeles
KELA Presentacion Costa Rica 2024 - evento Protégeles
 
International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)
 
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE  DE TECNOLOGIA E INFORMATICA PRIMARIACLASE  DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIA
 
guía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Josephguía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Joseph
 
Proyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptxProyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptx
 
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricGlobal Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
 
Trabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíaTrabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnología
 
Redes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdfRedes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdf
 
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial Uninove
 
trabajotecologiaisabella-240424003133-8f126965.pdf
trabajotecologiaisabella-240424003133-8f126965.pdftrabajotecologiaisabella-240424003133-8f126965.pdf
trabajotecologiaisabella-240424003133-8f126965.pdf
 
Cortes-24-de-abril-Tungurahua-3 año 2024
Cortes-24-de-abril-Tungurahua-3 año 2024Cortes-24-de-abril-Tungurahua-3 año 2024
Cortes-24-de-abril-Tungurahua-3 año 2024
 
La era de la educación digital y sus desafios
La era de la educación digital y sus desafiosLa era de la educación digital y sus desafios
La era de la educación digital y sus desafios
 
Hernandez_Hernandez_Practica web de la sesion 12.pptx
Hernandez_Hernandez_Practica web de la sesion 12.pptxHernandez_Hernandez_Practica web de la sesion 12.pptx
Hernandez_Hernandez_Practica web de la sesion 12.pptx
 

Red Neuronal Adaline

  • 1. UNIDAD VI Redes de propagación hacia delante y aprendizaje supervisado 6.2 RED ADALINE 6.2.1 Adaline simple. 6.2.2 Algoritmo LMS .
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7. Diferencias entre . . . PERCEPTRON ADALINE Función de Transferencia ESCALON LINEAL Resolución de problemas Linealmente Separables Linealmente Separables Comportamiento con respecto al RUIDO Sensible al Ruido Minimiza el Ruido Algoritmo de aprendizaje Regla de aprendizaje Del Perceptron LMS
  • 8. 6.2.1 Red ADALINE a p u r e l i n W p b +   W p b + = = a i p u r e l i n n i   p u r e l i n w T i p b i +   w T i p b i + = = =  w i w i 1  w i 2  w i R  =
  • 9. ADALINE de dos entradas a p u r e l i n n   p u r e l i n w T 1 p b +   w T 1 p b + = = = a w T 1 p b + w 1 1  p 1 w 1 2  p 2 b + + = =
  • 10. 6.2.2 Mínimo Error Cuadrático p 1 t 1 { , } p 2 t 2 { , }  p Q t Q { , }    Conjunto Entrenamiento: p q t q Entrada: Objetivo: x w 1 b = z p 1 = a w T 1 p b + = a x T z = F x   E e 2   = E t a –   2   E t x T z –   2   = = Notación: Mean Square Error: Donde: E es un valor esperado
  • 11. Ecuaciones Importantes en el Algoritmo LMS W k 1 +   W k   2  e k   p T k   + = b k 1 +   b k   2  e k   + = En forma de Matriz: Donde:  es el parámetro de aprendizaje máximo w i k 1 +   w i k   2  e i k   p k   + = b i k 1 +   b i k   2  e i k   + =
  • 12. Condiciones para la Estabilidad e i g I 2  R –     1 2   i – 1  = Resumiendo, las condiciones de estabilidad son:  i 0  Ya que , 1 2   i – 1  .  1   i para toda i  0  1  m a x    (donde  i es un eigenvalor de R ) 1 2   i – 1 – 
  • 14. Modelo de una neurona lineal en MATLAB p(1) p(2) p(3) p(R) W(1,1) W(1,R) 1 b n a  a = purelin(w*p+b) a = w*p+b 0 0 1 -1 a a b/w b/w p n a = purelin(n)
  • 15. INICIALIZACIÓN Y DISEÑO La función initlin es usada para inicializar los pesos y los bias de la capa lineal con valores positivos y negativos. [W,b]=initlin(P,T) Las redes lineales pueden ser diseñadas directamente si se conocen sus vectores de entrada y objetivo por medio de la función solvelin, la cual encuentra los valores de los pesos y el bias sin necesidad de entrenamiento . [W,b]=solvelin(P,T); W=solvelin(P,T);
  • 16. Regla de Aprendizaje en ADALINE · ADALINE utiliza un aprendizaje OFF LINE con supervisión. · Este aprendizaje es la llamada Regla de Widrow-Hoff ( Regla Delta o Regla del Mínimo Error Cuadrático Medio LMS Least Mean Square)
  • 17. Regla de Widrow-Hoff Consiste en hallar el vector de pesos W deseado, único, que deberá asociar cada vector de entrada con su correspondiente valor de salida correcto o deseado. La regla minimiza el error cuadrático medio definido como: donde: es la función de error R R R a t       p R R R p 1 2 2 1  
  • 18. Esta función de error está definida en el espacio de pesos multidimensional para un conjunto de entradas, y la regla de Widrow-Hoff busca el punto de este espacio donde se encuentra el mínimo global. Con función de activación lineal Con función de activación sigmoidal
  • 19. Se utiliza el método de gradiente decreciente para saber en qué dirección se encuentra el mínimo global de dicha superficie. Las modificaciones que se realizan a los pesos son proporcionales al gradiente decreciente de la función de error, por lo que cada nuevo punto calculado está más próximo al punto mínimo.             j R j w lr w 2 
  • 20. a) ADALINE b) PERCEPTRÓN
  • 21. La regla de Widrow-Hoff es implementada realizando cambios a los pesos en la dirección opuesta en la que el error está incrementando y absorbiendo la constante -2 en lr . En forma de matriz: Transformando a la expresión del bias (considerando que el bias son pesos con entradas de 1): ) ( ) ( ) , ( j p j e lr j i W     T Ep lr W    E lr b   
  • 22. Algoritmo de aprendizaje en ADALINE 1. Se aplica un vector o patrón de entrada P R en las entradas del ADALINE. 2. Se obtiene la salida lineal a R = WP R y se calcula la diferencia con respecto a la salida deseada: E R =T R -a R 3. Se actualizan los pesos: W( t+1 ) = W(t) + lrE R P R 4. Se repiten los pasos 1 al 3 con todos los vectores de entrada. 5. Si el error cuadrático medio es un valor reducido aceptable, termina el proceso de aprendizaje, sino, se repite otra vez desde el paso 1 con todos los patrones.    p R R R p 1 2 2 1  
  • 23.
  • 24.
  • 25.
  • 26. En MATLAB: E = T - A; [ dW, db ] = learnwh( P, E, lr ) lr es la tasa de aprendizaje . Si es grande, el aprendizaje es rápido, pero si es demasiado grande, el aprendizaje es inestable y puede incrementarse el error. lr = maxlinlr( P ); % si no se utiliza bias lr = maxlinlr( P, ‘bias’ ); %si se utiliza bias W = W + dW; b = b + db;
  • 27.
  • 28.
  • 29.
  • 30. Ejercicio:  1 1.0  2 0.0  3 2.0 =  =  = R E p p T   1 2 - - - p 1 p 1 T 1 2 - - - p 2 p 2 T + = = R 1 2 - - - 1 – 1 1 – 1 – 1 1 – 1 2 - - - 1 1 1 – 1 1 1 – + 1 0 0 0 1 1 – 0 1 – 1 = =  1  m a x - - - - - - - - - - - -  1 2.0 - - - - - - - 0.5 = = p 1 1 – 1 1 – t 1  1 – = =           p 2 1 1 1 – t 2  1 = =           Plátano Manzana
  • 31. Iteración: 1 e 0   t 0   a 0   t 1 a 0   1 – 0 1 – = – = – = – = W 1   W 0   2  e 0   p T 0   + = W 1   0 0 0 2 0.2   1 –   1 – 1 1 – T 0.4 0.4 – 0.4 = + = a 0   W 0   p 0   W 0   p 1 0 0 0 1 – 1 1 – 0 = = = = Plátano
  • 32. Iteración: 2 Manzana a 1   W 1   p 1   W 1   p 2 0.4 0.4 – 0.4 1 1 1 – 0.4 – = = = = e 1   t 1   a 1   t 2 a 1   1 0.4 –   1.4 = – = – = – = W 2   0.4 0.4 – 0.4 2 0.2   1.4   1 1 1 – T 0.96 0.16 0.16 – = + =
  • 33. Iteración: 3 e 2   t 2   a 2   t 1 a 2   1 – 0.64 –   0.36 – = – = – = – = W 3   W 2   2  e 2   p T 2   + 1.1040 0.0160 0.0160 – = = W    1 0 0 = a 2   W 2   p 2   W 2   p 1 0.96 0.16 0.16 – 1 – 1 1 – 0.64 – = = = =