SlideShare una empresa de Scribd logo
1 de 24
Descargar para leer sin conexión
I bloque
Tartaglia
(1499/1500-1557)
Cardano(1501-1576)
Viète (1540-1603)
Descartes(1596-1650)
Maclaurin(1698-1746)
Cramer (1704-1752)
Euler (1707-1783)
Laplace(1749-1827)
Gauss (1777-1855)
Tartaglia desarrolla fórmulas para la búsqueda de
ecuaciones de tercer grado (1535).
Viète crea un sistema único de símbolos algebrai-
cos organizados con el que puede expresarse una
ecuación y sus propiedades mediante fórmulas
(1591).
Descartes inicia la geometría analítica y se centra
en la aplicación del álgebra para ciertos proble-
mas geométricos (1637).
Euler resuelve el problema conocido como pro-
blema de los puentes de Königsberg (1736).
Gauss prueba rigurosamente el teorema funda-
mental del Álgebra (1799).
Jacobi establece la teoría de los determinantes fun-
cionales –jacobianos– (1840).
Sylvesterusaporprimeravezeltérmino«matriz»(1850).
•1453• Caída de Constantinopla.
•1517• Reforma protestante.
•1558• Subida de Isabel I de Inglaterra al trono.
•1609• Telescopio de Galileo.
•1660• Restauración monarquía en Inglaterra.
•1702• Comienzo de la guerra de la reina Ana.
•1859• Darwin: El origen de las especies.
Neumann es considerado el padre de la teoría de
juegos.Publica Teoría de juegos y comportamiento
económico (1944).
•1936• Sublevación contra el gobierno legítimo
de la Segunda República Española.
Cardano introduce un método regular para
resolver ecuaciones de tercer grado (1545).
MaclaurinestableceloquedespuéspopularizóGa-
briel Cramer como regla de Cramer (1748).
Grassmann inicia el análisis vectorial (1844).
Cayley define de forma abstracta la suma y la mul-
tiplicación de matrices (1858).
Frobenius define «rango de una matriz» (1878).
Dantzig presenta el problema de la programación
lineal y el método del simplex (1947).
•1718• Termómetro de Fahrenheit.
•1742• Termómetro centígrado.
•1767• Máquina vapor perfeccionada de Watt.
•1776• Declaración de Independencia de
los Estados Unidos.
•1789• La Revolución Francesa.
•1804• Napoleón es coronado emperador.
•1815• Batalla de Waterloo.
•1869• Apertura del canal de Suez.
•1939• Estalla la II guerra mundial.
1500
1550
1600
1650
1700
1750
1800
1850
1900
1. Sistemas lineales
2. Matrices
3. Determinantes
4. Sistemas lineales con parámetros
5. Programación lineal
El álgebra lineal es una parte de las matemáticas de gran utilidad hoy en día
gracias a sus modelos matemáticos. Las matrices son una herramienta pode-
rosa para construir modelos que nos permiten resolver problemas de muy distin-
ta índole. Por ejemplo:
– Modelos matemáticos algebraicos que se utilizan para estudiar la inversión de
un capital y diversificar el riesgo de dicha inversión.
– Modelos matriciales que estudian la evolución de una población.
– Modelos para estudiar la producción de distintos sectores.
– Modelos con matrices utilizadas en informática para la búsqueda de páginas.
Los buscadores que se utilizan a diario en Internet están basados en un mode-
lo de estas características.
– Modelos con matrices de grafos –itinerarios– para ordenar y optimizar los trans-
portes de aviones, barcos, trenes, etcétera.
Como se puede ver, son muchos los ámbitos en los que el álgebra lineal es una
herramienta básica en nuestros días.
ÁlgebraÁlgebra
Cauchy (1789-1857)
Jacobi (1804-1851)
Hamilton(1805-1865)
Grassmann (1809-1877)
Sylvester(1814-1897)
Cayley (1821-1895)
Frobenius(1849-1917)
Neumann(1903-1957)
Dantzig (1914-2005)
1 Sistemas lineales
Álgebra
Introducción
Un sistema de ecuaciones lineales es un conjunto de ecuaciones linea-
les. Los sistemas lineales son una herramienta poderosa para traducir si-
tuaciones problemáticas al lenguaje algebraico y resolverlas fácilmen-
te. Para resolver los sistemas lineales se utiliza el método de Gauss.
Las ecuaciones se pueden interpretar en el plano y en el espacio. Un sis-
tema de dos ecuaciones lineales con dos incógnitas son dos rectas en
el plano. Tres ecuaciones lineales con tres incógnitas son tres planos
en el espacio.
En la fotografía se observan dos edificios cuyas fachadas pueden ase-
mejarse a planos en el espacio que se cortan dando origen a rectas.
Organiza tus ideas
el método de Gaussel método de Gauss
heterogéneos homogéneos
(compatibles)
incompatibles compatibles
determinados indeterminados
se resuelven por
y se clasifican en
gráficamente
plano espacio
se interpretan
en el
Sistemas lineales
13
Álgebra
14
■ Piensa y calcula
Resuelve mentalmente el siguiente sistema:
°
§
¢
§
£
2x + y – z = 0
y + z = 6
z = 2
1. Sistemas de ecuaciones lineales
1.1. Clasificación de los sistemas
Los sistemas pueden ser:
Sistema escalonado
Un sistema escalonado es aquel que no tiene términos debajo de la diagonal de
las incógnitas.
Ejemplo
1.2. El método de Gauss
El método de Gauss consiste en transformar un sistema de ecuaciones en
otro equivalente y escalonado:
a) Se eliminan las ecuaciones que sean combinación lineal de las otras.
b) Se intercambian las ecuaciones y las incógnitas, de forma que el primer
coeficiente de la primera incógnita de la primera ecuación sea el número
más sencillo, a poder ser 1 o –1
c) Se hacen las transformaciones que permiten conseguir un sistema equiva-
lente escalonado, y se resuelve.
d) Si quedan más incógnitas que ecuaciones, se pasan las incógnitas sobrantes
al 2º miembro y se resuelve en función de ellas.
°
§
¢
§
£
3x + y – 2z + t = 4
y + 5z – t = 9
4z + 2t = 6
°
§
¢
§
£
2x + y – z = 7
y + 2z = 5
z = 2
a) Sistema compatible: sistema que tiene solución.
• Sistema compatible determinado: sistema que tiene una única solución.
• Sistema compatible indeterminado: sistema que tiene un número infi-
nito de soluciones.
b) Sistema incompatible: sistema que no tiene solución.
Sistema lineal heterogéneo
Un sistema lineal heterogéneo es aquel en el que no todos los términos in-
dependientes son nulos.
Sistema lineal homogéneo
Un sistema lineal homogéneo es aquel en el que todos los términos inde-
pendientes son nulos.
Ejemplo
Sistema heterogéneo
Sistema homogéneo
°
§
¢
§
£
x + y – z = 0
2x – 3y + z = 0
3x + y + 2z = 0
°
§
¢
§
£
x + 2y – z = 2
3x – 4y + z = 0
x – y + 2z = 8
Sistemas equivalentes
Dos sistemas son equivalentes si
tienen las mismas soluciones.
Las transformaciones que permi-
ten obtener sistemas equivalen-
tes son:
a) Multiplicar o dividir todos los
términos de una ecuación por
un mismo número distinto de
cero.
b) Eliminar ecuaciones que sean
combinaciones lineales de las
otras ecuaciones.
c) Sustituir una ecuación por otra
que sea combinación lineal de
ella con las restantes.
Tema 1. Sistemas lineales
15
Ejercicio resuelto
Resuelve el siguiente sistema por el método de Gauss y clasifícalo:
Se permuta la 1ª fila con la 2ª, y se escriben a la derecha las operaciones que
hay que realizar:
ò ò
ò ò ò
ò
La solución del sistema es x = 2, y = 3, z = 1
El sistema es heterogéneo compatible determinado.
x = 2
y = 3
z = 1
°
§
¢
§
£
x + 7 = 9
y = 3
z = 1
y = 3
°
§
¢
§
£
x + 2y + 1 = 9
5y + 4 = 19
z = 1z = 1
°
§
¢
§
£
x + 2y + z = 9
5y + 4z = 19
5z = 5
2ª – 3ª
°
§
¢
§
£
x + 2y + z = 9
5y + 4z = 19
5y – z = 14
3 · 1ª – 2ª
2 · 1ª – 2ª
°
§
¢
§
£
x + 2y + z = 9
3x + y – z = 8
2x – y + 3z = 4
°
§
¢
§
£
3x + y – z = 8
x + 2y + z = 9
2x – y + 3z = 4
1
1. Resuelve los siguientes sistemas por el método de Gauss
y clasifícalos:
a) b)
2. Resuelve los siguientes sistemas por el método de Gauss
y clasifícalos:
a) b)
3. Resuelve los siguientes sistemas por el método de Gauss
y clasifícalos:
a) b)
4. Resuelve los siguientes sistemas por el método de Gauss
y clasifícalos:
a)
b) °
§
§
¢
§
§
£
x + 2z = 3
3x + y + z = –1
2y – z = –2
x – y – 2z = –5
°
§
¢
§
£
–x – y = 0
3x + 2y = 0
y + z = 0
°
§
¢
§
£
8x + 3y + 2z = 4
2x – y = 0
2x + 2z = 1
°
§
¢
§
£
2x + y + 4z = 1
–x + 2y – 2z = 1
y + z = 2
°
§
¢
§
£
2x + y + z = 1
x + 2y + z = 2
x + y + 2z = 4
°
§
¢
§
£
x + y + 2z = 3
2x – y + z = 9
x – y – 6z = 5
°
§
¢
§
£
x – y + z = 1
3x + y – 2z = 5
x – 2y + z = 0
°
§
¢
§
£
x + 2z = 0
x + y + 2z = –1
2x + 3y = 1
● Aplica la teoría
Consejo práctico
Poner en cada paso, a la derecha
de la ecuación, la combinación
lineal que se realiza,mejora los cál-
culos y ayuda al repasar las ope-
raciones.
Evitar errores
Cada ecuación solo se puede ope-
rar con las anteriores.
El valor z = 1 se sustituye en la
1ª y 2ª ecuación y se calcula el
valor de y en la 2ª ecuación.
El valor y = 3 se sustitu-
ye en la 1ª ecuación, para
poder calcular x
Álgebra
16
■ Piensa y calcula
Indica el número de soluciones que tienen los siguientes sistemas y clasifícalos:
a) b) c) °
¢
£
x + y = 1
x – y = 1
°
¢
£
x + y = 1
2x + 2y = 5
°
¢
£
x + y = 1
2x + 2y = 2
2. Estudio de los sistemas
2.1. Discusión de los sistemas
Ejercicio resuelto
Resuelve y discute el siguiente sistema:
Se escriben a la derecha las operaciones que hay que realizar:
ò ò
ò ò
La solución del sistema es x = z/2, y = z/2
El sistema es homogéneo compatible indeterminado.
x = z/2°
¢
£
x + z/2 = z
y = z/2y = z/2
°
¢
£
x + y = z
2y = z
°
¢
£
x + y – z = 0
2y – z = 0
°
§
¢
§
£
x + y – z = 0
2y – z = 0
2y – z = 0
4 · 1ª – 2ª
3ª – 3 · 1ª
°
§
¢
§
£
x + y – z = 0
4x + 2y – 3z = 0
3x + 5y – 4z = 0
°
§
¢
§
£
x + y – z = 0
4x + 2y – 3z = 0
3x + 5y – 4z = 0
2
Discutir un sistema consiste en clasificarlo:
Determinado
Compatible
Heterogéneo Indeterminado
Sistema Incompatible
Homogéneo Determinado
(Compatible) Indeterminado
Al resolver un sistema por el método de Gauss, éste se clasifica según se ob-
tenga:
a) Una solución ò Compatible determinado.
b) Menos ecuaciones que incógnitas ò Compatible indeterminado.
c) 0 = N siendo N é‫,ޒ‬ N ? 0 ò Incompatible.
Se pasan los términos de la
z al 2º miembro.
Se elimina la 3ª ecuación por-
que es igual que la 2ª
°
¢
£
°
¢
£
°
¢
£
°
§
§
§
¢
§
§
§
£
Solución trivial
Un sistema homogéneo es siem-
pre compatible porque tiene la so-
lucióntrivial,queesaquellaenlaque
todas las variables son ceros.
Tema 1. Sistemas lineales
17
En la solución del sistema, las incógnitas están en función de z. Si se le da a z
un valor variable, z = l, la solución se expresa en función de ese valor, obte-
niéndose las ecuaciones paramétricas:
x = l/2, y = l/2, z = l con l é‫ޒ‬
Si se le dan a l distintos valores, se obtienen las soluciones particulares del
sistema:
Si l = 0 ò x = 0, y = 0, z = 0, que es la solución trivial.
Si l = 1 ò x = 1/2, y = 1/2, z = 1
Si l = 2 ò x = 1, y = 1, z = 2
……………………………
Ejercicio resuelto
Resuelve y discute el siguiente sistema:
Se escriben a la derecha las operaciones que hay que realizar:
ò ò
ò
Se observa que se ha llegado a una contradicción, 0 = 3, que es imposible.
El sistema no tiene solución.
El sistema es heterogéneo incompatible.
°
§
¢
§
£
x + y + z = 1
2y – 4z = 5
0 = 3
2ª – 2 · 3ª
°
§
¢
§
£
x + y + z = 1
2y – 4z = 5
y – 2z = 1
2ª – 3 · 1ª
3ª – 1ª
°
§
¢
§
£
x + y + z = 1
3x + 5y – z = 8
x + 2y – z = 2
°
§
¢
§
£
x + y + z = 1
3x + 5y – z = 8
x + 2y – z = 2
3
5. Discute los siguientes sistemas y clasifícalos:
a) b)
6. Discute los siguientes sistemas y clasifícalos:
a) b)
7. Discute los siguientes sistemas y clasifícalos:
a) b)
8. Discute los siguientes sistemas y clasifícalos:
a)
b)
9. Discute los siguientes sistemas y clasifícalos:
a) b)
10. Discute los siguientes sistemas y clasifícalos:
a) b) °
§
¢
§
£
x – y = z
x + z = y
y – z = x
°
§
¢
§
£
2x + y – z = 0
x – y – z = 0
3x – 2z = 0
°
§
¢
§
£
3x + y – 2z = –8
x + 2y + z = –1
2x – 3y + z = –3
°
§
¢
§
£
3x – y + 2z = 1
x + 4y + z = 1
2x – 5y + z = –2
°
§
¢
§
£
x + 2y – 2z = 1
–x – 3y + z = 6
3x + y + z = 2
°
¢
£
x + y + z = 0
2x + y + 2z = 0
°
§
¢
§
£
4x + y + 2z = 0
2x + y = 0
x + z = 0
°
§
¢
§
£
–3x + y + 4z = 1
–x – 3y – 2z = 1
y + z = –3
°
§
¢
§
£
x – 3y + z = 1
2x – y – 3z = 2
x + y – 3z = 3
°
§
¢
§
£
x + y + 4z = 1
–x + y – 2z = 1
y + z = 1
°
§
¢
§
£
x + z = –1
x + y = 0
x + z = –1
°
§
¢
§
£
x + 2y – z = 6
x + y + 2z = 7
2x – y – z = 3
● Aplica la teoría
Solución en ecuaciones
paramétricas
La solución de un sistema en
ecuaciones paramétricas se ob-
tiene al escribir las incógnitas en
función de unos parámetros.
Los parámetros se suelen repre-
sentar con las letras griegas l
(lambda) y µ (mu).
Álgebra
18
■ Piensa y calcula
Representa en el plano las rectas del siguiente sistema e interprétalo gráficamente:
°
¢
£
x + y = 0
x – y = 0
3. Interpretación gráfica
3.1. Sistemas lineales de dos ecuaciones con dos incógnitas
Ejercicio resuelto
Resuelve gráficamente, clasifica e interpreta el siguiente sistema:
Se representan las rectas y se observa que el sistema es compatible determina-
do. La solución es x = – 1, y = 2
3.2. Sistemas lineales de tres ecuaciones con tres incógnitas
Una ecuación lineal con tres incógnitas representa un plano en el espacio.
°
¢
£
x + 2y = 3
4x + y = –2
4
Una ecuación lineal con dos incógnitas representa una recta en el plano.
Y
X
P(–1, 2) x + 2y = 3
4x + y = –2
Clasificación
Sistema compatible
determinado
Interpretación
gráfica
Rectas secantes
Y
P(–1, 3)
X
Sistema incompatible
Rectas paralelas
Y
X
Sistema compatible
indeterminado
Rectas coincidentes
Y
X
Clasificación
Sistema compatible
determinado
Interpretación
gráfica
Los tres planos se cortan en
un punto que es la solu-
ción.
P
Sistema compatible
indeterminado
El sistema se reduce a dos
ecuaciones o a una.
a) La solución es una recta.
b) La solución es un plano.
recta
Sistema incompatible
Los tres planos no tienen
ningún punto en común.
Por ejemplo:
Tema 1. Sistemas lineales
19
Ejercicio resuelto
Resuelve por el método de Gauss, clasifica e interpreta gráficamente el si-
guiente sistema:
Se elimina la 2ª ecuación porque es 4 · 1ª
Se elimina la 3ª ecuación porque es –3 · 1ª
El sistema se reduce a una ecuación:
2x – y + z = 3 ò z = 3 – 2x + y
La solución en función de parámetros es:
x = l, y = µ, z = 3 –2l + µ; l, µ é‫ޒ‬
Al dar valores a l y m se obtienen los infinitos puntos de un plano. El sistema
es heterogéneo compatible indeterminado.
Ejercicio resuelto
Resuelve por el método de Gauss, clasifica e interpreta gráficamente el si-
guiente sistema:
Se escriben a la derecha las operaciones que hay que realizar:
ò ò
Se observa que se ha llegado a una contradicción, 0 = 11, que es imposible.
El sistema no tiene solución. Es un sistema heterogéneo incompatible.
°
§
¢
§
£
x – y + z = 2
2y – 4z = 2
0 = 112ª – 3ª
°
§
¢
§
£
x – y + z = 2
2y – 4z = 2
2y – 4z = –9
2ª – 1ª
3ª – 3 · 1ª
°
§
¢
§
£
x – y + z = 2
x + y – 3z = 4
3x – y – z = –3
°
§
¢
§
£
x – y + z = 2
x + y – 3z = 4
3x – y – z = –3
6
°
§
¢
§
£
2x – y + z = 3
8x – 4y + 4z = 12
–6x + 3y – 3z = –9
5
11. Resuelve por el método de Gauss, clasifica e interpre-
ta gráficamente los siguientes sistemas:
a) b)
12. Resuelve por el método de Gauss, clasifica e interpre-
ta gráficamente los siguientes sistemas:
13. Resuelve por el método de Gauss, clasifica e interpre-
ta gráficamente los siguientes sistemas:
14. Resuelve por el método de Gauss, clasifica e interpre-
ta gráficamente los siguientes sistemas:
°
§
¢
§
£
3x + 2y + 2z = 15
3x – 2y – 2z = –1
–x + 3y + 3z = 3
°
§
¢
§
£
2x – y + 3z = 1
x + 2y – z = 1
x + y – 6z = –10
°
§
¢
§
£
x + y + z = 3
x + y – z = 3
z = 0
°
¢
£
2x – y = 3
4x + y = 3
°
¢
£
3x + y = 4
3x + y = 2
● Aplica la teoría
Interpretación
gráfica
Las tres ecuaciones representan
el mismo plano.
Interpretación
gráfica
Los tres planos no tienen ningún
punto en común. Forman una su-
perficie prismática.
Álgebra
20
■ Piensa y calcula
Plantea un sistema de ecuaciones para resolver el siguiente enunciado:
«Encuentra dos números cuya suma sea 14 y el doble del mayor menos el menor sea 10»
4. Resolución de problemas
4.1. Procedimiento de resolución de problemas
Ejercicio resuelto
Encuentra dos números cuya suma sea 35 y que sean proporcionales a 2 y 3
a) Entérate: incógnitas, datos y preguntas
1er número: x
2º número: y
Los números suman 35
Los números son proporcionales a 2 y 3
Hay que hallar los números.
b)Manos a la obra
ò
Resolviendo el sistema por sustitución:
Si x = 14 ò y = 35 – x ò y = 35 – 14 = 21 ò x = 14, y = 21
c) Solución y comprobación
Los números son 14 y 21
°
§
¢
§
£
14 + 21 = 35
14 21
— = —
2 3
3x – 2(35 – x) = 0 ò
ò 3x – 70 + 2x = 0 ò
ò 5x = 70 ò
ò x = 14
y = 35 – x°
¢
£
x + y = 35
3x – 2y = 0
°
¢
£
x + y = 35
3x = 2y
°
§
¢
§
£
x + y = 35
x y
— = —
2 3
7
Para resolver un problema, se debe leer el enunciado tantas veces como sea ne-
cesario, hasta identificar cuáles son las incógnitas, los datos, las relaciones y
las preguntas.
En los problemas geométricos se debe hacer siempre un dibujo, y en todos
ellos, un esquema.
El procedimiento se puede dividir en los siguientes pasos:
a) Entérate: se escriben las incógnitas, los datos y las preguntas.
b) Manos a la obra: se plantean las relaciones, se transforman en un sistema
y se resuelve.
c) Solución y comprobación: se escriben las respuestas a las preguntas que
hace el problema y se comprueba que cumplen las relaciones dadas.
Datos:
Incógnitas:
x = 1er número
y = 2º número
con los
Suman 35
forman un
Sistema:
°
¢
£
x + y = 35
x y
— = —
2 3
x + y = 35ò
=
y
3
x
2ò
Proporcionales
a 2 y 3
Tema 1. Sistemas lineales
21
Ejercicio resuelto
Hemos comprado un disco, un libro y una agenda. El precio del libro es el
doble del precio del disco, y también es el triple de la diferencia del precio de
la agenda y el disco. Considerando que hemos pagado 140 €, calcula los pre-
cios de los tres artículos.
a) Entérate: incógnitas, datos y preguntas
Precio del disco: x
Precio del libro: y
Precio de la agenda: z
Se han pagado 140 € por los 3 artículos.
Hay que calcular el precio de cada artículo.
b)Manos a la obra
Ordenando las ecuaciones y resolviendo el sistema:
ò
c) Solución y comprobación
Se comprueba:
ò
Los precios son:
disco: 30 €, libro: 60 € y agenda: 50 €
°
§
¢
§
£
60 = 60
60 = 60
140 = 140
°
§
¢
§
£
60 = 2 · 30
60= 3 (50 – 30)
30 + 60 + 50 = 140
°
§
¢
§
£
x = 30
y = 60
z = 50
°
§
¢
§
£
x + y + z = 140
2x – y = 0
3x + y – 3z = 0
°
§
¢
§
£
y = 2x
y = 3(z – x)
x + y + z = 140
8
15. Si la altura de Carlos aumentase el triple de la dife-
rencia entre las alturas de Toni y de Juan, Carlos sería
igual de alto que Juan. Las alturas de los tres suman
515 cm. Ocho veces la altura deToni es igual que nue-
ve veces la de Carlos. Halla las tres alturas.
16. Si se mezclan 60 litros de vino blanco con 20 litros
de vino tinto, se obtiene un vino de 10 grados (10%
de alcohol). Si, por el contrario, se mezclan 20 litros
de blanco con 60 litros de tinto, se obtiene un vino
de 11 grados. ¿Qué graduación tendrá una mezcla de
40 litros de vino blanco con 40 litros de vino tinto?
17. La edad de una madre es en la actualidad el triple de
la de su hijo. Las edades del padre, la madre y el hijo
suman 80 años, y dentro de 5 años, la suma de las
edades de la madre y del hijo será 5 años más que la
del padre. ¿Cuántos años tienen en la actualidad el pa-
dre, la madre y el hijo?
18. Alba compra tres pantalones, dos camisas y un som-
brero por 135 €. Natalia compra un pantalón, tres ca-
misas y un sombrero por 100 €. Javier compra dos
pantalones, tres camisas y dos sombreros por 155 €.
Si todos los artículos se han comprado al mismo pre-
cio, ¿cuál es el precio de cada una de las prendas?
● Aplica la teoría
Datos:
con los
El precio del libro
es el doble del
precio del disco
forman un
Sistema:
°
§
¢
§
£
y = 2x
y = 3(z – x)
x + y + z = 140
El precio del
libro es el triple
de la diferencia
entre el precio
de la agenda y
del disco
Se han pagado
140 €
Incógnitas:
x = precio del disco
y = precio del libro
z = precio de la agenda
y = 2x
y = 3(z – x)
ò
x + y + z = 140
ò
ò
Ejercicios y problemasEjercicios y problemas resueltos
9. Clasifica y resuelve el siguiente
sistema:
°
§
¢
§
£
x – 3y + 2z = 0
–2x + y – z = 0
x – 8y + 5z = 0
10. Clasifica y obtén todas las so-
luciones del siguiente sistema
de ecuaciones lineales:
°
§
¢
§
£
x + y + z = –1
2x – y + z = 0
–2x + 7y + z = –4
11. Un sistema de tres ecuaciones
con dos incógnitas, ¿puede
ser compatible determinado?
En caso afirmativo, pon un
ejemplo.
ò ò
ò
La solución es x = –z/5, y = 3z/5
El sistema es homogéneo compatible indeterminado.
La solución en ecuaciones paramétricas es:
x = –l/5, y = 3l/5, z = l con l é‫ޒ‬
x = –z/5°
¢
£
x – 9z/5 = –2z
y = 3z/5y = 3z/5
°
¢
£
x – 3y = –2z
–5y = –3z
°
§
¢
§
£
x – 3y + 2z = 0
–5y + 3z = 0
–5y + 3z = 0
2 · 1ª + 2ª
3ª – 1ª
°
§
¢
§
£
x – 3y + 2z = 0
–2x + y – z = 0
x – 8y + 5z = 0
ò ò
ò ò
ò ò
x = –1 – z + = =
La solución es: x = , y =
El sistema es heterogéneo compatible indeterminado.
La solución en ecuaciones paramétricas es:
x = , y = , z = l con l é‫ޒ‬–2 – l
3
–1 – 2l
3
–2 – z
3
–1 – 2z
3
–1 – 2z
3
–3 – 3z + 2 + z
3
2 + z
3
°
§
§
¢
§
§
£
–2 – zx + — = –1 – z
3
–2 – zy = —
3
y = (–2 – z)/3
°
¢
£
x + y = –1 – z
3y = –2 – z
°
§
¢
§
£
x + y + z = –1
3y + z = –2
3y + z = –2
3ª/3
°
§
¢
§
£
x + y + z = –1
3y + z = –2
9y + 3z = –6
2 · 1ª – 2ª
2 · 1ª + 3ª
°
§
¢
§
£
x + y + z = –1
2x – y + z = 0
–2x + 7y + z = –4
Sí puede ser compatible determinado.
Para poner un ejemplo es suficiente con escribir un sistema de dos ecuaciones
con dos incógnitas que sea compatible determinado y que la tercera ecuación
sea combinación lineal de las otras dos. Por ejemplo, en el siguiente sistema la
3ª ecuación es la suma de las dos primeras.
La solución del sistema es: x = 3, y = 2
El sistema es compatible determinado.
°
§
¢
§
£
x – y = 1
x + 2y = 7
2x + y = 8
Clasificación y resolución de sistemas lineales
22
Ejercicios y problemas
12. Un agricultor tiene reparti-
das sus 10 hectáreas de te-
rreno entre barbecho,cultivo
de trigo y cultivo de cebada.
La superficie dedicada al trigo
ocupa 2 hectáreas más que la
dedicada a la cebada, mien-
tras que en barbecho tiene
6 hectáreas menos que la su-
perficie total dedicada al cul-
tivo de trigo y cebada.¿Cuán-
tas hectáreas tiene dedicadas
a cada uno de los cultivos y
cuántas están en barbecho?
13. Una empresa instala casas pre-
fabricadas de tres tipos,A,B y
C. Cada casa de tipo A nece-
sita 10 horas de albañilería,2 de
fontanería y 2 de electricista.
Cada casa de tipo B necesita
15 horas de albañilería, 4 de
fontanería y 3 de electricista.
Cada casa de tipo C necesita
20 horas de albañilería, 6 de
fontanería y 5 de electricista.
La empresa emplea exacta-
mente 270 horas de trabajo
al mes de albañilería,68 de fon-
tanería y 58 de electricista.
¿Cuántas casas de cada tipo
instala la empresa en un mes?
a) Incógnitas, datos y preguntas
Nº de hectáreas de barbecho: x
Nº de hectáreas de cultivo de trigo: y
Nº de hectáreas de cultivo de cebada: z
Área total de 10 hectáreas.
¿Cuántas hectáreas de cada cultivo y de barbecho hay?
b) Manos a la obra
ò ò
ò ò
ò ò x = 2
La solución del sistema es: x = 2, y = 5, z = 3
c) Solución
Dedica 2 hectáreas a barbecho, 5 hectáreas a cultivo de trigo y 3 hectáreas
al cultivo de cebada.
y = 5
°
¢
£
x + y = 10 – 3
y = 2 + 3
z = 3
°
§
¢
§
£
x + y + z = 10
y – z = 2
2z = 6
3ª – 2ª
°
§
¢
§
£
x + y + z = 10
y – z = 2
y + z = 83ª/2
°
§
¢
§
£
x + y + z = 10
y – z = 2
2y + 2z = 16
1ª – 3ª
°
§
¢
§
£
x + y + z = 10
y – z = 2
x – y – z = –6
°
§
¢
§
£
x + y + z = 10
y = 2 + z
x = y + z – 6
a) Incógnitas, datos y preguntas
Nº de casas tipo A: x
Nº de de casas tipo B: y
Nº de de casas tipo C: z
¿Cuántas casas de cada tipo instala?
b) Manos a la obra
ò ò
ò ò x = 10
La solución es: x = 10, y = 6, z = 4
c) Solución
Se instalan 10 casas del tipo A, 6 del B y 4 del C
y = 6
°
¢
£
2x + 3y = 54 – 16
y = 14 – 8
°
§
¢
§
£
2x + 3y + 4z = 54
y + 2z = 14
z = 4
2ª – 1ª
3ª – 2ª
°
§
¢
§
£
2x + 3y + 4z = 54
2x + 4y + 6z = 68
2x + 3y + 5z = 58
1ª/5°
§
¢
§
£
10x + 15y + 20z = 270
2x + 4y + 6z = 68
2x + 3y + 5z = 58
Problemas con enunciado
23
Tema1.Sistemaslineales
PAU
Ejercicios y problemasEjercicios y problemas resueltos
14. En la XXI Olimpiada Nacio-
nal de Química se contrataron
5 autobuses de 54 plazas cada
uno,incluida la del conductor,
para el transporte de alumnos,
profesores y acompañantes.La
suma del 10% del número de
profesores y del 20% del nú-
mero de acompañantes exce-
de en una unidad al 10% del
número de alumnos.El núme-
ro de alumnos duplicaría al de
profesores en el caso de que
hubieran asistido 5 profesores
menos.Determina el número
de alumnos,de profesores y de
acompañantes.
15. La suma de las edades actua-
les de los tres hijos de un ma-
trimonio es 59 años.Hace cin-
co años,la edad del menor era
un tercio de la suma de las eda-
des que tenían los otros dos.
Dentro de cinco años, el do-
ble de la edad del hermano me-
diano excederá en una uni-
dad a la suma de las edades que
tendrán los otros dos.Halla las
edades actuales de cada uno
de los hijos.
a) Incógnitas, datos y preguntas
Nº de alumnos: x
Nº de profesores: y
Nº de acompañantes: z
5 autobuses a 54 plazas para alumnos, profesores y acompañantes.
b)Manos a la obra
ò ò
ò ò
ò x = 150
La solución es: x = 150, y = 80, z = 40
c) Solución
Viajan 150 alumnos, 80 profesores y 40 acompañantes.
y = 80
°
¢
£
–x + y + 2z = 10
y = 2z
y = 40
°
§
¢
§
£
–x + y + 2z = 10
–y + 2z = 0
7z = 2803ª + 2 · 2ª
°
§
¢
§
£
–x + y + 2z = 10
–y + 2z = 0
2y + 3z = 280
2ª + 1ª
3ª + 1ª
°
§
¢
§
£
–x + y + 2z = 10
x – 2y = –10
x + y + z = 270
10 · 1ª°
§
¢
§
£
0,1y + 0,2z = 0,1x + 1
x + 0,0y + 0,0z = 2(y – 5)
x + 0,0y + 0,0z = 270
a) Incógnitas, datos y preguntas
b)Manos a la obra
ò ò
ò x = 23
La solución es: x = 23, y = 20, z = 16
c) Solución
El hermano mayor tiene 23 años; el mediano, 20, y el pequeño, 16
z = 16
y = 20
°
§
¢
§
£
x + y + z = 59
4z = 64
3y = 60
1ª – 2ª
1ª – 3ª
°
§
¢
§
£
x + y + z = 59
x + y – 3z = –5
x – 2y + z = –1
°
§
¢
§
£
x + y + z = 59
x – 5 + y – 5 = 3(z – 5)
x + 5 + z + 5 + 1 = 2(y + 5)
Edad actual
Hijo mayor
Hijo mediano
Hijo menor
x
y
z
Hace 5 años
x – 5
y – 5
z – 5
Dentro de 5 años
x + 5
y + 5
z + 5
Problemas con enunciado
24
25
Tema1.Sistemaslineales
Ejercicios y problemasEjercicios y problemas
Preguntas tipo test
PAU
El siguiente sistema es:
heterogéneo.
homogéneo.
No se puede clasificar porque tiene más ecua-
ciones que incógnitas.
Ninguna de las anteriores.
Se llama sistemas equivalentes a:
los que tienen el mismo número de ecuaciones.
los que tienen las mismas soluciones.
los que tienen el mismo número de incógnitas.
Ninguna de las respuestas anteriores.
¿Cuál de estas transformaciones no produce un sis-
tema equivalente?
Suprimir ecuaciones que sean combinación li-
neal de las restantes.
Cambiar de orden las ecuaciones.
Sumar a una ecuación una combinación lineal de
las restantes.
Suprimir una incógnita que tenga el mismo coefi-
ciente en todas las ecuaciones.
En un sistema compatible determinado:
existen infinitas soluciones.
no existe solución.
existe una solución.
Ninguna de las respuestas anteriores.
Un sistema homogéneo:
es siempre compatible indeterminado.
es incompatible.
es siempre compatible.
es siempre compatible determinado.
La solución del siguiente sistema es:
x = 2/3, y = 1/3, z = 1
x = –16z/15, y –11z/15
x = 2/3 – 16l/15, y = 1/3 – 11l/15, z = l; l é‫ޒ‬
No tiene solución.
Una inmobiliaria ha vendido un total de 65 plazas de
garaje en tres urbanizaciones diferentes. Las ganan-
cias obtenidas por la venta de una plaza de garaje en
la urbanización A son de 2000 €, 4000 € por una
en la urbanización B y 6000 € por una en la urbani-
zación C. Se sabe que se ha vendido un 50% más de
plazas en la urbanización A que en la urbanización
C. Calcula el número de plazas de garaje vendidas
en cada urbanización sabiendo que el beneficio ob-
tenido por las vendidas en la urbanización C es igual
a la suma de los beneficios obtenidos por las vendi-
das en las urbanizaciones A y B.
Plazas en A, 38; en B, 8; en C, 19
Plazas en A, 30; en B, 15; en C, 20
Plazas en A, 40; en B, 5; en C, 20
No tiene solución.
En una fábrica de artículos deportivos se dispone de
10 cajas de diferente tamaño: grandes, medianas y
pequeñas para envasar las camisetas de atletismo
producidas, con capacidad para 50, 30 y 25 camise-
tas, respectivamente. Si una caja grande fuera media-
na, entonces habría el mismo número de grandes y
de medianas. En total se envasan 390 camisetas. De-
termina el número de cajas que hay de cada clase.
Hay 4 grandes, 2 medianas y 4 pequeñas.
Hay 5 grandes, 4 medianas y 1 pequeña.
No tiene solución.
Hay 5 grandes, 3 medianas y 2 pequeñas.
Raquel, Paula y Sara salen de compras y cada una ad-
quiere una camiseta. El precio medio de las prendas
es de 14 €. La diferencia entre el precio de la cami-
seta de Sara y el de la de Paula es el doble de la dife-
rencia entre el precio de la camiseta de Paula y el de
la de Raquel. Si a Raquel le hubiera costado su cami-
seta el doble, sobrepasaría en un euro el precio de
la de Sara. El precio de las camisetas de Raquel, Sara
y Paula es, respectivamente:
19 €, 13 € y 10 € 4 €, 5 € y 6 €
10 €, 13 € y 19 € 9 €, 15 € y 18 €
En el ejercicio anterior, ¿es posible saber el precio
de las camisetas si la última condición se cambia por
«Si a Paula le hubiera costado su camiseta el cuádruple,
sobrepasaría en 42 euros el precio de la de Raquel»?
No. Es un sistema compatible indeterminado.
Sí.
No. Es un sistema incompatible.
Sí, la solución es la misma.
10
9
8
7
°
§
¢
§
£
3x – 3y + z = 1
x + 4y + 4z = 2
5x – 10y – 2z = 0
6
5
4
3
2
°
§
¢
§
£
2x + y = 0
x + y = 1
x – 2y = 2
1
Contesta en tu cuaderno:
26
Ejercicios y problemasEjercicios y problemas propuestos
1. Sistemas de ecuaciones lineales
19. Resuelve los siguientes sistemas por el método de Gauss
y clasifícalos:
a) b)
20. Resuelve los siguientes sistemas por el método de Gauss
y clasifícalos:
a) b)
21. Discute los siguientes sistemas y clasifícalos:
a) b)
2. Estudio de los sistemas
22. Discute los siguientes sistemas y clasifícalos:
a) b)
23. Discute el siguiente sistema y clasifícalo para el valor
a = 0:
24. Discute los siguientes sistemas y clasifícalos:
a) b)
25. Discute los siguientes sistemas y clasifícalos:
a) b)
26. Discute los siguientes sistemas y clasifícalos:
a) b)
27. Discute el siguiente sistema y clasifícalo para los va-
lores:
a) l = –1
b) l = 2
28. Discute el siguiente sistema y clasifícalo para los va-
lores:
a) a = 1
b) a = 2
3. Interpretación gráfica
29. Resuelve por el método de Gauss, clasifica e interpreta
gráficamente los siguientes sistemas:
a) b)
30. Resuelve por el método de Gauss, clasifica e interpreta
gráficamente los siguientes sistemas:
a) b)
31. Resuelve por el método de Gauss, clasifica e interpreta
gráficamente los siguientes sistemas:
32. Resuelve por el método de Gauss, clasifica e interpreta
gráficamente los siguientes sistemas:
33. Resuelve por el método de Gauss, clasifica e interpreta
gráficamente los siguientes sistemas:
°
§
¢
§
£
2x – y + 3z = 1
x + 2y – z = –3
x + 7y – 6z = –10
°
§
¢
§
£
2x + 3y – z = 3
x + y – z = 2
x – 2z = 3
°
§
¢
§
£
x + y + z = 3
2x – y + z = 2
x – y + z = 1
°
¢
£
3x – y = 1
x – y = –3
°
¢
£
2x + y = 3
8x + 4y = 12
°
¢
£
–x + y = 4
x – y = –2
°
¢
£
x + y = 2
2x + y = 6
°
§
¢
§
£
x + z = 1
y + (a – 1)z = 0
x + (a – 1)y + az = a
°
§
¢
§
£
x – y + lz = 2
lx + ly – z = 5
(l + 1)x + ly – z = l
°
§
¢
§
£
2x + 3y – 4z = 1
4x + 6y – z = 2
x + y + z = 10
°
§
¢
§
£
x + y – z = 1
2x – y + 3z = 4
x + 4y – 6z = 0
°
¢
£
x + y + 2z = 1
2x + 2y + z = 2
°
¢
£
2x + 2y – 2z = 1
2x + y – 2z = 1
°
§
¢
§
£
x – z = 0
x – y + z = 0
x + y + z = 0
°
§
¢
§
£
2x – 3y + z = 0
x + 2y – z = 0
4x + y – z = 0
°
§
¢
§
£
x + 2y + z = a
x + y – az = a
2x + 3y + z = a
°
§
¢
§
£
–x + y – 3z = –2
4x + 2y – z = 5
2x + 4y – 7z = 1
°
§
¢
§
£
x + 2y – z = 2
x + z = –2
x – y = 1
°
§
¢
§
£
x + 2y + z = 9
2x – y + 2z = –2
x + y + 2z = 8
°
§
¢
§
£
x + y + 2z = 2
2x – y + 3z = 2
5x – y + z = 6
°
§
¢
§
£
3x + y + z = 6
x + 3y + z = –10
x + y + 3z = 4
°
§
¢
§
£
x + y + z = 2
x – y + 2z = 1
2x + y + 2z = 0
°
§
¢
§
£
x + z = 2
x + y = 3
x + y + z = 0
°
§
¢
§
£
5x + 2y + 3z = 4
2x + 2y + z = 3
x – 2y + 2z = –3
27
Tema1.Sistemaslineales
Ejercicios y problemas
34. Resuelve por el método de Gauss, clasifica e interpreta
gráficamente los siguientes sistemas:
35. Resuelve por el método de Gauss, clasifica e interpreta
gráficamente los siguientes sistemas:
4. Resolución de problemas
36. Sonia ha comprado unos bolígrafos de 2 €, unos cua-
dernos de 1 € y unas cajas de 3 €. Entre bolígrafos
y cuadernos hay el triple que cajas. Considerando que
ha comprado 12 objetos y ha pagado 22 €, calcula el
número de bolígrafos, cuadernos y cajas que ha com-
prado.
37. Calcula las edades actuales de una madre y sus dos hi-
jos sabiendo que hace 14 años la edad de la madre era
5 veces la suma de las edades de los hijos en aquel mo-
mento; que dentro de 10 años la edad de la madre será
la suma de las edades que los hijos tendrán en ese mo-
mento; y que cuando el hijo mayor tenga la edad actual
de la madre, el hijo menor tendrá 42 años.
38. Un bodeguero compra vinos de dos regiones diferen-
tes A y B. Si se mezclan dos partes del vino de la región
A con tres partes de la región B, cada litro cuesta
3,3 €. Si se mezclan tres partes del vino de la región A
con dos partes de la región B, cada litro de esta mezcla
cuesta 3,2 €. Halla cuánto le ha costado al bodeguero
el litro de cada vino adquirido.
39. Un tren transporta 470 viajeros, y la recaudación del
importe de sus billetes asciende a 4250 €. Calcula
cuántos viajeros han pagado el importe total del bille-
te, que asciende a 10 €, cuántos han pagado el 80% del
billete y cuántos han pagado el 50%, sabiendo que el
número de viajeros que han pagado el 50% es la mitad
del número de viajeros que pagaron el 80%
°
§
¢
§
£
3x + y = 0
4y + z = 0
3x + 2y + z = 1
°
§
¢
§
£
x + y + z = 3
x + y – z = 3
2x + 2y = 5
40. Resuelve y clasifica los siguientes sistemas:
a)
b)
41. Resuelve y clasifica los siguientes sistemas:
a)
b)
42. Resuelve y clasifica el siguiente sistema para el valor de
m = 3:
43. Resuelve y clasifica el sistema para los siguientes valo-
res de a:
a) a = –1
b) a = 2
44. Discute los siguientes sistemas y clasifícalos:
a) b)
45. Discute el sistema y clasifícalo para los siguiente valo-
res de l:
a) l = 2
b) l = –1
°
§
¢
§
£
–x + ly + 2z = l
2x + ly – z = 2
lx – y + 2z = l
°
§
¢
§
£
x + y + 5z = 0
2x – 3y = 0
x – y + z = 0
°
§
¢
§
£
–3x + y + 4z = 1
–x – 3y – 2z = 1
y + z = –3
°
§
¢
§
£
x – y = 2
ax + y + 2z = 0
x – y + az = 1
°
§
¢
§
£
2x + y – z = 2
x + y + 2z = 5
– x + (m + 2)z = 3
°
§
¢
§
£
x – y + z = 3
2x + y – 3z = 1
8x – 5y + 3z = 19
°
§
¢
§
£
2x + y + z = 6
x + y + 2z = 4
x + y + z = 1
°
§
¢
§
£
2x – y = 4
–2x + y = –4
x + 2y = 2
°
§
¢
§
£
2x + y – z = –1
x – 2y + 2z = 2
3x – y + 2z = 4
Para ampliar
28
Ejercicios y problemasEjercicios y problemas propuestos
46. Discute los siguientes sistemas y clasifícalos:
a) b)
47. Resuelve por Gauss, clasifica e interpreta gráficamente
los siguientes sistemas:
a) b)
48. Discute el siguiente sistema y clasifícalo para los valo-
res de l:
a) l = 0
b) l = 3
49. Discute el siguiente sistema y clasifícalo para a = 2:
50. Discute los siguientes sistemas y clasifícalos:
a) b)
51. Discute el siguiente sistema y clasifícalo para los valo-
res de a:
a) a = –1
b) a = 1
°
§
¢
§
£
(a + 1)x + 2y + z = a + 3
ax + y = a
ax + 3y + z = a + 2
°
§
¢
§
£
3x – y = 0
3x + 4y = 0
y + 4z = 0
°
§
¢
§
£
–x – y = 0
3x + 2y = 0
y + z = 0
°
§
¢
§
£
ax + 2y + 6z = 0
2x + ay + 4z = 2
2x + ay + 6z = a – 2
°
§
¢
§
£
y + z = 1
(l – 1)x + y + z = l
x + (l – 1)y – z = 0
°
§
¢
§
£
x – y + z = 6
x + y = –7
x + y + 2z = 11
°
§
¢
§
£
x + 2y – z = 1
– y + z = 0
x + z = 1
°
§
¢
§
£
2x + y – z = –1
x – 2y + 2z = 1
3x – y + z = 4
°
§
¢
§
£
x – y = 3
x + 9z = 7
x – y + 6z = 6
52. Juan compró 4 entradas de adulto y 6 de niño por
56 €, y Sara abonó 48 € por 5 entradas de adulto y
2 de niño. ¿Cuánto valen las entradas de adulto y de
niño?
53. Un hipermercado inicia una campaña de ofertas. En la
primera de ellas descuenta un 4% en un cierto producto
A, un 6% en el producto B y un 5% en el producto C.
A las dos semanas pone en marcha la segunda oferta,
descontando un 8% sobre el precio inicial de A, un 10%
sobre el precio inicial de B y un 6% sobre el precio ini-
cial de C.
Se sabe que si un cliente compra durante la primera
oferta un producto A, dos B y tres C, se ahorra 16 €
respecto del precio inicial; si compra en la segunda
oferta tres productos A, uno B y cinco C, el ahorro es
de 29 €; y si compra un producto A, uno B y uno C, sin
ningún tipo de descuento, debe abonar 135 €.
Calcula el precio de cada producto antes de las ofertas.
54. Un cliente ha gastado 90 € en la compra de 12 artícu-
los entre discos, libros y carpetas en una tienda. Cada
disco le ha costado 12 €; cada libro, 9 €; y cada carpe-
ta, 3 €. Se sabe que entre discos y carpetas hay el triple
que de libros. Calcula cuántos artículos ha comprado
de cada tipo.
55. En una competición deportiva celebrada en un centro
escolar participaron 50 atletas distribuidos, según la
edad, en tres categorías: infantiles, cadetes y juveniles.
El doble del número de atletas infantiles, por una par-
te, excede en una unidad al número de atletas cadetes
y, por otra parte, coincide con el quíntuplo del número
de atletas juveniles. Determina el número de atletas
que hubo en cada categoría.
56. Una empresa desea disponer de dinero en efectivo en
euros, dólares y libras esterlinas. El valor total entre las
tres monedas ha de ser igual a 264000 €. Se quiere
que el valor del dinero disponible en euros sea el do-
ble del valor del dinero en dólares, y que el valor del
dinero en libras esterlinas sea la décima parte del valor
del dinero en euros. Si se supone que una libra esterli-
na es igual a 1,5 € y un dólar es igual a 1,1 €, ¿cuál es
la cantidad de euros, dólares y libras esterlinas que la
empresa ha de tener disponible?
57. Una tienda tiene tres tipos de conservas, A, B y C. El
precio medio de las tres conservas es de 1 €. Un
cliente compra 30 unidades de A, 20 de B y 10 de C, y
abona 58 €. Otro compra 20 unidades de A, y 30 de
C, y abona 51 €. Calcula el precio de cada unidad de
A, B y C.
Problemas
29
Tema1.Sistemaslineales
Ejercicios y problemas
58. Una heladería prepara helados de tres tamaños;
125 gramos, 250 gramos y 500 gramos cuyos precios
son 1 €, 2 € y 3 €, respectivamente. Un cliente com-
pra 10 helados, con un peso total de 2,5 kg, y paga por
ellos 18 €
Halla el número de helados que ha comprado de cada
tipo.
59. Una editorial va a lanzar al mercado tres libros de bol-
sillo, L1, L2 y L3. El importe total de la edición es
24500 €. Los costes en euros, por unidad, son 5 €,
3 € y 4 €, respectivamente. Se sabe que el número de
ejemplares de L3 es igual a los dos séptimos de los del
tipo L2, y que si al triple del número de ejemplares de
L1 se le suma el número de ejemplares de L3, se obtie-
ne el doble de ejemplares de L2.
Averigua cuántos libros se han editado de cada tipo.
60. En una reunión hay 60 personas entre deportistas, ar-
tistas y enseñantes. Se sabe que los enseñantes y los
artistas duplican el número de deportistas.También se
sabe que los deportistas y el doble de los artistas son
el doble de los enseñantes.
¿Cuál es el número de personas deportistas, artistas y
enseñantes?
61. El señor García deja a sus hijos herederos de todo su
dinero, con las siguientes condiciones: al mayor le deja
la media de la cantidad que les deja a los otros dos más
30000 €; al mediano, exactamente la media de la can-
tidad de los otros dos;y al pequeño,la media de la canti-
dad de los otros dos menos 30000 €.
Conociendo estas condiciones solamente, ¿pueden sa-
ber los hijos cuánto dinero ha heredado cada uno? Jus-
tifica la respuesta.
Para profundizar
62. Resuelve y clasifica el siguiente sistema:
63. Discute el siguiente sistema y clasifícalo:
64. Resuelve y clasifica el sistema para los siguiente valores
de m:
a) m = –3
b) m = 1
65. Un comerciante ha vendido 600 camisetas por un total
de 5320 €. El precio original era de 10 € por camise-
ta, pero ha vendido en las rebajas una parte de ellas
con un descuento del 30% del precio original, y otra
parte con un descuento del 40%. Sabiendo que el nú-
mero total de camisetas rebajadas fue la mitad del nú-
mero de las que vendió a 10 €, calcula cuántas camise-
tas se vendieron a cada precio.
66. Una compañía fabricó tres tipos de muebles: sillas, me-
cedoras y sofás. Para la fabricación de estos tipos, se ne-
cesitó la utilización de unidades de madera, plástico y
aluminio, tal y como se indica en la siguiente tabla:
La compañía tenía en existencia 400 unidades de ma-
dera, 600 unidades de plástico y 1500 unidades de alu-
minio.
Si la compañía utilizó todas sus existencias, ¿cuántas si-
llas, mecedoras y sofás fabricó?
67. Un banco invirtió 2 millones de euros en tres empre-
sas diferentes, A, B y C. Lo que invirtió en A era el do-
ble de lo que invirtió en B. Al cabo de un año, la renta-
bilidad de la operación ha sido del 10%. Las acciones
de la empresa A han aumentado su valor un 10%, y las
de B, en un 30%. Si las acciones de la empresa C han
perdido un 10% de su valor, ¿qué cantidad se invirtió
en cada empresa?
68. En una librería hubo la semana pasada una promoción
de tres libros: una novela, un libro de poesía y un cuen-
to. Se vendieron 200 ejemplares de la novela, 100 de
poesía y 150 de cuentos. Sabiendo que la librería ingre-
só por dicha promoción 8600 €, que el precio de un
ejemplar de novela es el doble del precio de un cuento
y que el triple de la diferencia entre el precio del ejem-
plar de poesía y del cuento es igual al precio de una
novela, calcula el precio al que se vendió cada libro.
Silla
Mecedora
Sofá
Madera Plástico Aluminio
1 unidad
1 unidad
1 unidad
1 unidad
1 unidad
2 unidades
2 unidades
3 unidades
5 unidades
°
§
§
¢
§
§
£
x + y + z = m
x + y + mz = 1
x + my + z = 1
mx + y + z = 1
°
§
§
¢
§
§
£
x – 2y – 2z + t = 4
x + y + z – t = 5
x – y – z + t = 6
6x – 3y – 3z + 2t = 32
°
§
§
¢
§
§
£
x + z = 11
x + y = 3
y + z = 13
x + y + z = 13
30
69. Resuelve el sistema siguiente. Clasifícalo e inter-
prétalo gráficamente:
Solución:
a) Para escribir cada línea de comentario en rojo,
en elige Comentar(Ctrl+T). Escri-
be en un solo bloque el número y el título del
tema, el nombre de los dos alumnos y Paso a
paso. Para pasar de una línea a la siguiente, sin
cambiar de bloque, pulsa [Intro]
b) Haz clic en Calcular para crear nuevo blo-
que.
c) Elige Comentar(Ctrl+T) y escribe:
Ejercicio 69
d) Pulsa [Intro] para cambiar de línea dentro del
mismo bloque.
e) Para resolver el sistema, en elige
y escribe las ecuaciones.
f) Dibuja las dos rectas.
70. Resuelve el sistema siguiente. Clasifícalo e inter-
prétalo gráficamente:
Solución:
Haz clic sobre los controles de la parte inferior iz-
quierda para ver la imagen en distinta posición y
tamaño.
Plantea el siguiente problema y resuélvelo con ayuda de
Wiris:
71. Encuentra dos números cuya suma sea 35 y sean
proporcionales a 2 y 3
Solución:
72. Internet. Abre: www.editorial-bruno.es y elige
Matemáticas, curso y tema.
°
§
¢
§
£
x – y + z = 2
x + y – 3z = 4
3x – y – z = –3
°
¢
£
x + 2y = 3
4x + y = –2
Paso a paso
Tema 1. Sistemas lineales
31
Tema1.Sistemaslineales
Resuelve algebraicamente los siguientes sistemas y, a la
vista del resultado, clasifícalos:
73. 74.
75. 76.
77. 78.
Resuelve los sistemas siguientes. Clasifícalos e interpré-
talos gráficamente:
79. 80.
81. 82.
83. 84.
Plantea los siguientes problemas y resuélvelos con ayuda
de Wiris:
85. Hemos comprado un disco, un libro y una agenda.
El precio del libro es el doble del precio del disco, y
también es el triple de la diferencia del precio de la
agenda y el disco. Considerando que hemos paga-
do 140 €, calcula los precios de los tres artículos.
86. Un agricultor tiene repartidas sus 10 hectáreas de
terreno en barbecho, cultivo de trigo y cultivo de
cebada. La superficie dedicada al trigo ocupa 2 hec-
táreas más que la dedicada a cebada, mientras que
en barbecho tiene 6 hectáreas menos que la superfi-
cie dedicada al cultivo de trigo y cebada. ¿Cuántas
hectáreas tiene dedicadas a cada uno de los cultivos
y cuántas están en barbecho?
87. En un teatro, hay localidades de tres clases, A, B y C,
cuyos precios son 3 €, 6 € y 12 €, respectivamente.
Cierto día, la recaudación total fue de 6600 €. Si se
sabe, además, que de la clase A se vendieron tantas
localidades como de las clases B y C juntas, y que de
la B se vendió el doble que de la C, ¿cuántas locali-
dades de cada clase se vendieron ese día?
°
§
¢
§
£
–5x + 2y – 2z = 7
x + 2y + z = 3
5x – 2y + 2z = 8
°
§
¢
§
£
2x – y + z = 3
8x – 4y + 4z = 12
–6x + 3y – 3z = –9
°
§
¢
§
£
x + y + z = 3
2x – y + z = 2
x – y + z = 1
°
¢
£
x + 2y = 2
2x + 4y = 4
°
¢
£
x – 2y = 2
x – 2y = –2
°
¢
£
x – y = –4
2x + y = 1
°
§
¢
§
£
x + y + z = 1
3x + 5y – z = 8
x + 2y – z = 2
°
§
¢
§
£
x + y – z = 0
4x + 2y – 3z = 0
3x + 5y – 4z = 0
°
§
¢
§
£
3x + y – z = 8
x + 2y + z = 9
2x – y + 3z = 4
°
¢
£
2x – y = 3
–6x + 3y = –9
°
¢
£
3x + y = 4
3x + y = 2
°
¢
£
2x – y = 3
4x + y = 3
Así funciona
Representar una función
En se elige
Para ponerle color y ancho de línea, a continuación de la expresión de la función se escribe:
, {color = rojo, anchura_línea = 2}
Los colores disponibles son: negro, blanco, rojo, verde, azul, cian, magenta, amarillo, marrón, naranja, rosa y gris.
Los anchos de línea son cualquier número.
Resolver sistema
En se elige y se introduce el número de ecuaciones.
Se escriben las ecuaciones y se pulsa el botón Calcular.
Se pueden presentar 3 casos:
a) Si el sistema es compatible determinado, escribe la solución.
b) Si el sistema es incompatible, escribe [ ]
c) Si el sistema es compatible indeterminado, despeja las primeras variables en función de las últimas.
Linux/Windows
Practica
32
69. Resuelve el sistema siguiente. Clasifícalo e inter-
prétalo gráficamente:
Solución:
Haz clic en Insertar Texto, escribe el título del
tema, el nombre de los dos alumnos, Paso a paso
y el número del ejercicio.
1. Sistemas lineales
Alba Maza Sánchez
Óscar Arias López
Paso a paso
Ejercicio 69
a) En la barra de menús elige Resolver/Siste-
ma…, en el número de ecuaciones escribe 2 y
pulsa el botón Sí.
b) Introduce las ecuaciones, una en cada cuadro
de texto, y pulsa el botón Resolver.
[x = –1 ì y = 2]
Gráficamente
a) En la ventana Álgebra elige Ventana 2D
b) Selecciona en la barra de menús
Ventana/Mosaico Vertical
c) Escoge en la barra de menús
Opciones/Pantalla…/Rejilla
• Mostrar/Líneas color azul claro.
• En Intervalos escribe en Horizontal: 12 y en
Vertical: 12
c) Selecciona, con el ratón, en la ventana Álgebra
la 1ª ecuación haciendo 3 veces clic sobre ella.
d) Activa la ventana Gráficas-2D y haz clic en
Representar Expresión.
e) Representa de igual forma la 2ª ecuación.
f) Elige Archivo/Incrustar.
El sistema es compatible determinado.
La solución es x = –1, y = 2
70. Resuelve el sistema siguiente. Clasifícalo e inter-
prétalo gráficamente:
Solución:
Algebraicamente
a) En la barra de menús de la ventana Álgebra eli-
ge Resolver/Sistema…, en el número de ecua-
ciones escribe 3 y pulsa el botón Sí.
b) Introduce las ecuaciones, una en cada cuadro
de texto, y pulsa el botón Resolver.
[ ]
El sistema es incompatible.
Gráficamente
a) Cierra la Gráficas-2D
b) Haz clic en Ventana 3D
c) Selecciona en la barra de menús
Ventana/Mosaico Vertical
d) Selecciona, con el ratón, en la ventana Álgebra
la 1ª ecuación haciendo 3 veces clic sobre ella.
e) Activa la ventana Gráficas-3D y haz clic en
Representar Expresión.
f) Representa los otros dos planos.
g) Haz clic en Girar las gráficas.
h) Elige Archivar/Incrustar.
Los tres planos forman una superficie prismática y
no tienen ningún punto en común.
Plantea el siguiente problema y resuélvelo con ayuda de
DERIVE:
71. Encuentra dos números cuya suma sea 35 y sean
proporcionales a 2 y 3
Solución:
Planteamiento:
°
§
¢
§
£
x + y = 35
x y
— = —
2 3
°
§
¢
§
£
x – y + z = 2
x + y – 3z = 4
3x – y – z = –3
°
¢
£
x + 2y = 3
4x + y = –2
Paso a paso
Tema 1. Sistemas lineales
33
Tema1.Sistemaslineales
Así funciona
Resolución algebraica de un sistema
En la barra de menús se elige Resolver/Sistema…, en el número de ecuaciones se escribe 2, 3 o el número de ecua-
ciones que tenga el sistema y se pulsa el botón Sí.
Se introducen las ecuaciones, una en cada cuadro de texto y se pulsa el botón Resolver.
Se pueden presentar 3 casos:
a) Si el sistema es compatible determinado, escribe la solución.
b) Si el sistema es incompatible, escribe [ ]
c) Si el sistema es compatible indeterminado, elimina las ecuaciones dependientes. Después se tiene que elegir
Resolver o despejar, en el cuadro Variables se selecciona la variable o variables que se quieran despejar y se hace
clic en el botón Resolver.
Borrar gráficas en el espacio
Se selecciona haciendo clic con el ratón y luego se pulsa la tecla [Supr]
Windows Derive
Elige Resolver/Sistema…, introduce las ecuacio-
nes y pulsa el botón Resolver.
[x = 14 ì y = 21]
Los números son 14 y 21
72. Internet. Abre: www.editorial-bruno.es y elige
Matemáticas, curso y tema.
Resuelve algebraicamente los siguientes sistemas y, a la
vista del resultado, clasifícalos:
73. 74.
75. 76.
77. 78.
Resuelve los sistemas siguientes. Clasifícalos e interpré-
talos gráficamente:
79. 80.
81. 82.
83. 84.
Plantea los siguientes problemas y resuélvelos con ayuda
de DERIVE:
85. Hemos comprado un disco, un libro y una agen-
da. El precio del libro es el doble del precio del
disco, y también es el triple de la diferencia del pre-
cio de la agenda y el disco. Considerando que he-
mos pagado 140 €, calcula los precios de los tres
artículos.
86. Un agricultor tiene repartidas sus 10 hectáreas de
terreno en barbecho, cultivo de trigo y cultivo de
cebada. La superficie dedicada al trigo ocupa 2 hec-
táreas más que la dedicada a cebada, mientras que
en barbecho tiene 6 hectáreas menos que la superfi-
cie dedicada al cultivo de trigo y cebada. ¿Cuántas
hectáreas tiene dedicadas a cada uno de los cultivos
y cuántas están en barbecho?
87. En un teatro, hay localidades de tres clases, A, B y C,
cuyos precios son 3 €, 6 € y 12 €, respectivamente.
Cierto día, la recaudación total fue de 6600 €. Si se
sabe, además, que de la clase A se vendieron tantas
localidades como de las clases B y C juntas, y que de
la B se vendió el doble que de la C, ¿cuántas locali-
dades de cada clase se vendieron ese día?
°
§
¢
§
£
–5x + 2y – 2z = 7
x + 2y + z = 3
5x – 2y + 2z = 8
°
§
¢
§
£
2x – y + z = 3
8x – 4y + 4z = 12
–6x + 3y – 3z = –9
°
§
¢
§
£
x + y + z = 3
2x – y + z = 2
x – y + z = 1
°
¢
£
x + 2y = 2
2x + 4y = 4
°
¢
£
x – 2y = 2
x – 2y = –2
°
¢
£
x – y = –4
2x + y = 1
°
§
¢
§
£
x + y + z = 1
3x + 5y – z = 8
x + 2y – z = 2
°
§
¢
§
£
x + y – z = 0
4x + 2y – 3z = 0
3x + 5y – 4z = 0
°
§
¢
§
£
3x + y – z = 8
x + 2y + z = 9
2x – y + 3z = 4
°
¢
£
2x – y = 3
–6x + 3y = –9
°
¢
£
3x + y = 4
3x + y = 2
°
¢
£
2x – y = 3
4x + y = 3
Practica

Más contenido relacionado

La actualidad más candente

Cinemática
CinemáticaCinemática
Cinemáticaicano7
 
Representación matricial
Representación matricialRepresentación matricial
Representación matricialSam Rdgz
 
METODO DE CRAMER
METODO DE CRAMER METODO DE CRAMER
METODO DE CRAMER Julio Lopez
 
Budnick (2007) cap 20
Budnick (2007) cap 20Budnick (2007) cap 20
Budnick (2007) cap 20JORGE MENDOZA
 
Grupo 5 trabajo y energia-ejercicios
Grupo 5 trabajo y energia-ejerciciosGrupo 5 trabajo y energia-ejercicios
Grupo 5 trabajo y energia-ejerciciosetubay
 
Solucion refuerzo 2
Solucion refuerzo 2Solucion refuerzo 2
Solucion refuerzo 2admin90
 
Fuerza ejercicios soluciones
Fuerza ejercicios solucionesFuerza ejercicios soluciones
Fuerza ejercicios solucionesroberto902
 
(Semana 11 12 y 13 energia y energía mecánica unac 2009 b)
(Semana 11 12 y 13 energia y energía mecánica unac 2009 b)(Semana 11 12 y 13 energia y energía mecánica unac 2009 b)
(Semana 11 12 y 13 energia y energía mecánica unac 2009 b)Walter Perez Terrel
 
Ejercicios resueltos Trabajo, Potencia y Energía
Ejercicios resueltos Trabajo, Potencia y EnergíaEjercicios resueltos Trabajo, Potencia y Energía
Ejercicios resueltos Trabajo, Potencia y EnergíaJoe Arroyo Suárez
 
Productos y cocientes notables
Productos y cocientes notablesProductos y cocientes notables
Productos y cocientes notablesmatbasuts1
 
Tiro horizontal y parabolico apuntes abril 2015
Tiro horizontal y parabolico apuntes abril 2015Tiro horizontal y parabolico apuntes abril 2015
Tiro horizontal y parabolico apuntes abril 2015FERNANDO TOVAR OLIVARES
 

La actualidad más candente (20)

Producto entre vectores
Producto entre vectoresProducto entre vectores
Producto entre vectores
 
Teorema del seno y coseno
Teorema del  seno y cosenoTeorema del  seno y coseno
Teorema del seno y coseno
 
Cinemática
CinemáticaCinemática
Cinemática
 
Representación matricial
Representación matricialRepresentación matricial
Representación matricial
 
METODO DE CRAMER
METODO DE CRAMER METODO DE CRAMER
METODO DE CRAMER
 
Movimiento Armónico Simple
Movimiento Armónico Simple Movimiento Armónico Simple
Movimiento Armónico Simple
 
Budnick (2007) cap 20
Budnick (2007) cap 20Budnick (2007) cap 20
Budnick (2007) cap 20
 
100 problemas de física resueltos
100 problemas de física resueltos100 problemas de física resueltos
100 problemas de física resueltos
 
Ley de hooke
Ley de hookeLey de hooke
Ley de hooke
 
Ley de seno y coseno
Ley de seno y cosenoLey de seno y coseno
Ley de seno y coseno
 
Fuerza conservativa
Fuerza conservativaFuerza conservativa
Fuerza conservativa
 
Problemas mru
Problemas mruProblemas mru
Problemas mru
 
Grupo 5 trabajo y energia-ejercicios
Grupo 5 trabajo y energia-ejerciciosGrupo 5 trabajo y energia-ejercicios
Grupo 5 trabajo y energia-ejercicios
 
Solucion refuerzo 2
Solucion refuerzo 2Solucion refuerzo 2
Solucion refuerzo 2
 
Fuerza ejercicios soluciones
Fuerza ejercicios solucionesFuerza ejercicios soluciones
Fuerza ejercicios soluciones
 
(Semana 11 12 y 13 energia y energía mecánica unac 2009 b)
(Semana 11 12 y 13 energia y energía mecánica unac 2009 b)(Semana 11 12 y 13 energia y energía mecánica unac 2009 b)
(Semana 11 12 y 13 energia y energía mecánica unac 2009 b)
 
Ejercicios resueltos Trabajo, Potencia y Energía
Ejercicios resueltos Trabajo, Potencia y EnergíaEjercicios resueltos Trabajo, Potencia y Energía
Ejercicios resueltos Trabajo, Potencia y Energía
 
Productos y cocientes notables
Productos y cocientes notablesProductos y cocientes notables
Productos y cocientes notables
 
Ejercicio 2 1 2
Ejercicio 2 1 2Ejercicio 2 1 2
Ejercicio 2 1 2
 
Tiro horizontal y parabolico apuntes abril 2015
Tiro horizontal y parabolico apuntes abril 2015Tiro horizontal y parabolico apuntes abril 2015
Tiro horizontal y parabolico apuntes abril 2015
 

Destacado

Programa de estudio para algebra lineal
Programa de estudio para algebra linealPrograma de estudio para algebra lineal
Programa de estudio para algebra linealHector Román
 
Determinantes - Ejercicios
Determinantes - EjerciciosDeterminantes - Ejercicios
Determinantes - EjerciciosHector Román
 
Determinantes - Wiris
Determinantes - WirisDeterminantes - Wiris
Determinantes - WirisHector Román
 
Sistemas lineales - Ejercicios
Sistemas lineales - EjerciciosSistemas lineales - Ejercicios
Sistemas lineales - EjerciciosHector Román
 
Determinantes
DeterminantesDeterminantes
Determinantesalgebra
 
Determinantes de Matrices Álgebra Lineal. Presentación diseñada por el MTRO. ...
Determinantes de Matrices Álgebra Lineal. Presentación diseñada por el MTRO. ...Determinantes de Matrices Álgebra Lineal. Presentación diseñada por el MTRO. ...
Determinantes de Matrices Álgebra Lineal. Presentación diseñada por el MTRO. ...JAVIER SOLIS NOYOLA
 
2015 Upload Campaigns Calendar - SlideShare
2015 Upload Campaigns Calendar - SlideShare2015 Upload Campaigns Calendar - SlideShare
2015 Upload Campaigns Calendar - SlideShareSlideShare
 
What to Upload to SlideShare
What to Upload to SlideShareWhat to Upload to SlideShare
What to Upload to SlideShareSlideShare
 
Getting Started With SlideShare
Getting Started With SlideShareGetting Started With SlideShare
Getting Started With SlideShareSlideShare
 

Destacado (15)

Programa de estudio para algebra lineal
Programa de estudio para algebra linealPrograma de estudio para algebra lineal
Programa de estudio para algebra lineal
 
Determinantes - Ejercicios
Determinantes - EjerciciosDeterminantes - Ejercicios
Determinantes - Ejercicios
 
Determinantes - Wiris
Determinantes - WirisDeterminantes - Wiris
Determinantes - Wiris
 
Matrices
MatricesMatrices
Matrices
 
Sistemas lineales - Ejercicios
Sistemas lineales - EjerciciosSistemas lineales - Ejercicios
Sistemas lineales - Ejercicios
 
Determinantes
DeterminantesDeterminantes
Determinantes
 
Programa analítico
Programa analíticoPrograma analítico
Programa analítico
 
Matrices
MatricesMatrices
Matrices
 
Determinantes
DeterminantesDeterminantes
Determinantes
 
Tipos de matrices
Tipos de matricesTipos de matrices
Tipos de matrices
 
Determinantes
DeterminantesDeterminantes
Determinantes
 
Determinantes de Matrices Álgebra Lineal. Presentación diseñada por el MTRO. ...
Determinantes de Matrices Álgebra Lineal. Presentación diseñada por el MTRO. ...Determinantes de Matrices Álgebra Lineal. Presentación diseñada por el MTRO. ...
Determinantes de Matrices Álgebra Lineal. Presentación diseñada por el MTRO. ...
 
2015 Upload Campaigns Calendar - SlideShare
2015 Upload Campaigns Calendar - SlideShare2015 Upload Campaigns Calendar - SlideShare
2015 Upload Campaigns Calendar - SlideShare
 
What to Upload to SlideShare
What to Upload to SlideShareWhat to Upload to SlideShare
What to Upload to SlideShare
 
Getting Started With SlideShare
Getting Started With SlideShareGetting Started With SlideShare
Getting Started With SlideShare
 

Similar a Historia del álgebra lineal

Un breve resumen de álgebra lineal - Juan Álvarez (incompleto)
Un breve resumen de álgebra lineal - Juan Álvarez (incompleto)Un breve resumen de álgebra lineal - Juan Álvarez (incompleto)
Un breve resumen de álgebra lineal - Juan Álvarez (incompleto)Juan Alejandro Alvarez Agudelo
 
Sistemas de ecuaciones lineales
Sistemas de ecuaciones linealesSistemas de ecuaciones lineales
Sistemas de ecuaciones linealesRicardo Lome
 
Sistema de ecuaciones lineales
Sistema de ecuaciones linealesSistema de ecuaciones lineales
Sistema de ecuaciones linealesonofeg
 
Sistemas de ecuaciones lineales
Sistemas de ecuaciones linealesSistemas de ecuaciones lineales
Sistemas de ecuaciones linealesCarlos Morales
 
Sistemas de ecuaciones lineales
Sistemas de ecuaciones linealesSistemas de ecuaciones lineales
Sistemas de ecuaciones linealesCarlos Iza
 
XSistemas de ecuaciones
XSistemas de ecuacionesXSistemas de ecuaciones
XSistemas de ecuacionesJose VS
 
Marlon ernesto melara
Marlon ernesto melaraMarlon ernesto melara
Marlon ernesto melaraMarlon Melara
 
7. sistemas de ecuaciones y aplicaciones
7. sistemas de ecuaciones y aplicaciones7. sistemas de ecuaciones y aplicaciones
7. sistemas de ecuaciones y aplicacionesJacquelineSantos10
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4monica
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4monica
 
00675591402IA02S11079323Semana1dealgebraLineal2022-2.pdf
00675591402IA02S11079323Semana1dealgebraLineal2022-2.pdf00675591402IA02S11079323Semana1dealgebraLineal2022-2.pdf
00675591402IA02S11079323Semana1dealgebraLineal2022-2.pdfronaldofernandezhuam1
 
Confessssssssssssssssssssss_sis_ecu.pptx
Confessssssssssssssssssssss_sis_ecu.pptxConfessssssssssssssssssssss_sis_ecu.pptx
Confessssssssssssssssssssss_sis_ecu.pptxZuriJimnez1
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4monica
 
Metodo-Gaussadasdasfasfasfdgfgfhgfhgjhj.pptx
Metodo-Gaussadasdasfasfasfdgfgfhgfhgjhj.pptxMetodo-Gaussadasdasfasfasfdgfgfhgfhgjhj.pptx
Metodo-Gaussadasdasfasfasfdgfgfhgfhgjhj.pptxSANTOS400018
 

Similar a Historia del álgebra lineal (20)

Un breve resumen de álgebra lineal - Juan Álvarez (incompleto)
Un breve resumen de álgebra lineal - Juan Álvarez (incompleto)Un breve resumen de álgebra lineal - Juan Álvarez (incompleto)
Un breve resumen de álgebra lineal - Juan Álvarez (incompleto)
 
Sistemas de ecuaciones lineales
Sistemas de ecuaciones linealesSistemas de ecuaciones lineales
Sistemas de ecuaciones lineales
 
Sistema de ecuaciones lineales
Sistema de ecuaciones linealesSistema de ecuaciones lineales
Sistema de ecuaciones lineales
 
Sistemas de ecuaciones lineales
Sistemas de ecuaciones linealesSistemas de ecuaciones lineales
Sistemas de ecuaciones lineales
 
T07
T07T07
T07
 
Sistemas de ecuaciones lineales
Sistemas de ecuaciones linealesSistemas de ecuaciones lineales
Sistemas de ecuaciones lineales
 
Ver04 pca1
Ver04 pca1Ver04 pca1
Ver04 pca1
 
XSistemas de ecuaciones
XSistemas de ecuacionesXSistemas de ecuaciones
XSistemas de ecuaciones
 
Marlon ernesto melara
Marlon ernesto melaraMarlon ernesto melara
Marlon ernesto melara
 
Marlon ernesto
Marlon ernestoMarlon ernesto
Marlon ernesto
 
7. sistemas de ecuaciones y aplicaciones
7. sistemas de ecuaciones y aplicaciones7. sistemas de ecuaciones y aplicaciones
7. sistemas de ecuaciones y aplicaciones
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4
 
00675591402IA02S11079323Semana1dealgebraLineal2022-2.pdf
00675591402IA02S11079323Semana1dealgebraLineal2022-2.pdf00675591402IA02S11079323Semana1dealgebraLineal2022-2.pdf
00675591402IA02S11079323Semana1dealgebraLineal2022-2.pdf
 
Confessssssssssssssssssssss_sis_ecu.pptx
Confessssssssssssssssssssss_sis_ecu.pptxConfessssssssssssssssssssss_sis_ecu.pptx
Confessssssssssssssssssssss_sis_ecu.pptx
 
Mate
MateMate
Mate
 
Sistemas de ecuaciones Lineales
Sistemas de ecuaciones Lineales Sistemas de ecuaciones Lineales
Sistemas de ecuaciones Lineales
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4
 
Metodo-Gaussadasdasfasfasfdgfgfhgfhgjhj.pptx
Metodo-Gaussadasdasfasfasfdgfgfhgfhgjhj.pptxMetodo-Gaussadasdasfasfasfdgfgfhgfhgjhj.pptx
Metodo-Gaussadasdasfasfasfdgfgfhgfhgjhj.pptx
 
Ecuaciones de matrices (INFORME)
Ecuaciones de matrices (INFORME)Ecuaciones de matrices (INFORME)
Ecuaciones de matrices (INFORME)
 

Último

DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADOJosé Luis Palma
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PCCesarFernandez937857
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxlclcarmen
 
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxPRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxinformacionasapespu
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleJonathanCovena1
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónLourdes Feria
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSjlorentemartos
 
Herramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfHerramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfMARIAPAULAMAHECHAMOR
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptxFelicitasAsuncionDia
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFAROJosé Luis Palma
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.José Luis Palma
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxjosetrinidadchavez
 
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptxEXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptxPryhaSalam
 
Manual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfManual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfMaryRotonda1
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdfBaker Publishing Company
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdfgimenanahuel
 

Último (20)

DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PC
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
 
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxPRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo Sostenible
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
 
Herramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfHerramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdf
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptx
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
 
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptxEXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
 
Manual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfManual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdf
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 

Historia del álgebra lineal

  • 1. I bloque Tartaglia (1499/1500-1557) Cardano(1501-1576) Viète (1540-1603) Descartes(1596-1650) Maclaurin(1698-1746) Cramer (1704-1752) Euler (1707-1783) Laplace(1749-1827) Gauss (1777-1855) Tartaglia desarrolla fórmulas para la búsqueda de ecuaciones de tercer grado (1535). Viète crea un sistema único de símbolos algebrai- cos organizados con el que puede expresarse una ecuación y sus propiedades mediante fórmulas (1591). Descartes inicia la geometría analítica y se centra en la aplicación del álgebra para ciertos proble- mas geométricos (1637). Euler resuelve el problema conocido como pro- blema de los puentes de Königsberg (1736). Gauss prueba rigurosamente el teorema funda- mental del Álgebra (1799). Jacobi establece la teoría de los determinantes fun- cionales –jacobianos– (1840). Sylvesterusaporprimeravezeltérmino«matriz»(1850). •1453• Caída de Constantinopla. •1517• Reforma protestante. •1558• Subida de Isabel I de Inglaterra al trono. •1609• Telescopio de Galileo. •1660• Restauración monarquía en Inglaterra. •1702• Comienzo de la guerra de la reina Ana. •1859• Darwin: El origen de las especies. Neumann es considerado el padre de la teoría de juegos.Publica Teoría de juegos y comportamiento económico (1944). •1936• Sublevación contra el gobierno legítimo de la Segunda República Española. Cardano introduce un método regular para resolver ecuaciones de tercer grado (1545). MaclaurinestableceloquedespuéspopularizóGa- briel Cramer como regla de Cramer (1748). Grassmann inicia el análisis vectorial (1844). Cayley define de forma abstracta la suma y la mul- tiplicación de matrices (1858). Frobenius define «rango de una matriz» (1878). Dantzig presenta el problema de la programación lineal y el método del simplex (1947). •1718• Termómetro de Fahrenheit. •1742• Termómetro centígrado. •1767• Máquina vapor perfeccionada de Watt. •1776• Declaración de Independencia de los Estados Unidos. •1789• La Revolución Francesa. •1804• Napoleón es coronado emperador. •1815• Batalla de Waterloo. •1869• Apertura del canal de Suez. •1939• Estalla la II guerra mundial. 1500 1550 1600 1650 1700 1750 1800 1850 1900
  • 2. 1. Sistemas lineales 2. Matrices 3. Determinantes 4. Sistemas lineales con parámetros 5. Programación lineal El álgebra lineal es una parte de las matemáticas de gran utilidad hoy en día gracias a sus modelos matemáticos. Las matrices son una herramienta pode- rosa para construir modelos que nos permiten resolver problemas de muy distin- ta índole. Por ejemplo: – Modelos matemáticos algebraicos que se utilizan para estudiar la inversión de un capital y diversificar el riesgo de dicha inversión. – Modelos matriciales que estudian la evolución de una población. – Modelos para estudiar la producción de distintos sectores. – Modelos con matrices utilizadas en informática para la búsqueda de páginas. Los buscadores que se utilizan a diario en Internet están basados en un mode- lo de estas características. – Modelos con matrices de grafos –itinerarios– para ordenar y optimizar los trans- portes de aviones, barcos, trenes, etcétera. Como se puede ver, son muchos los ámbitos en los que el álgebra lineal es una herramienta básica en nuestros días. ÁlgebraÁlgebra Cauchy (1789-1857) Jacobi (1804-1851) Hamilton(1805-1865) Grassmann (1809-1877) Sylvester(1814-1897) Cayley (1821-1895) Frobenius(1849-1917) Neumann(1903-1957) Dantzig (1914-2005)
  • 4. Introducción Un sistema de ecuaciones lineales es un conjunto de ecuaciones linea- les. Los sistemas lineales son una herramienta poderosa para traducir si- tuaciones problemáticas al lenguaje algebraico y resolverlas fácilmen- te. Para resolver los sistemas lineales se utiliza el método de Gauss. Las ecuaciones se pueden interpretar en el plano y en el espacio. Un sis- tema de dos ecuaciones lineales con dos incógnitas son dos rectas en el plano. Tres ecuaciones lineales con tres incógnitas son tres planos en el espacio. En la fotografía se observan dos edificios cuyas fachadas pueden ase- mejarse a planos en el espacio que se cortan dando origen a rectas. Organiza tus ideas el método de Gaussel método de Gauss heterogéneos homogéneos (compatibles) incompatibles compatibles determinados indeterminados se resuelven por y se clasifican en gráficamente plano espacio se interpretan en el Sistemas lineales 13
  • 5. Álgebra 14 ■ Piensa y calcula Resuelve mentalmente el siguiente sistema: ° § ¢ § £ 2x + y – z = 0 y + z = 6 z = 2 1. Sistemas de ecuaciones lineales 1.1. Clasificación de los sistemas Los sistemas pueden ser: Sistema escalonado Un sistema escalonado es aquel que no tiene términos debajo de la diagonal de las incógnitas. Ejemplo 1.2. El método de Gauss El método de Gauss consiste en transformar un sistema de ecuaciones en otro equivalente y escalonado: a) Se eliminan las ecuaciones que sean combinación lineal de las otras. b) Se intercambian las ecuaciones y las incógnitas, de forma que el primer coeficiente de la primera incógnita de la primera ecuación sea el número más sencillo, a poder ser 1 o –1 c) Se hacen las transformaciones que permiten conseguir un sistema equiva- lente escalonado, y se resuelve. d) Si quedan más incógnitas que ecuaciones, se pasan las incógnitas sobrantes al 2º miembro y se resuelve en función de ellas. ° § ¢ § £ 3x + y – 2z + t = 4 y + 5z – t = 9 4z + 2t = 6 ° § ¢ § £ 2x + y – z = 7 y + 2z = 5 z = 2 a) Sistema compatible: sistema que tiene solución. • Sistema compatible determinado: sistema que tiene una única solución. • Sistema compatible indeterminado: sistema que tiene un número infi- nito de soluciones. b) Sistema incompatible: sistema que no tiene solución. Sistema lineal heterogéneo Un sistema lineal heterogéneo es aquel en el que no todos los términos in- dependientes son nulos. Sistema lineal homogéneo Un sistema lineal homogéneo es aquel en el que todos los términos inde- pendientes son nulos. Ejemplo Sistema heterogéneo Sistema homogéneo ° § ¢ § £ x + y – z = 0 2x – 3y + z = 0 3x + y + 2z = 0 ° § ¢ § £ x + 2y – z = 2 3x – 4y + z = 0 x – y + 2z = 8 Sistemas equivalentes Dos sistemas son equivalentes si tienen las mismas soluciones. Las transformaciones que permi- ten obtener sistemas equivalen- tes son: a) Multiplicar o dividir todos los términos de una ecuación por un mismo número distinto de cero. b) Eliminar ecuaciones que sean combinaciones lineales de las otras ecuaciones. c) Sustituir una ecuación por otra que sea combinación lineal de ella con las restantes.
  • 6. Tema 1. Sistemas lineales 15 Ejercicio resuelto Resuelve el siguiente sistema por el método de Gauss y clasifícalo: Se permuta la 1ª fila con la 2ª, y se escriben a la derecha las operaciones que hay que realizar: ò ò ò ò ò ò La solución del sistema es x = 2, y = 3, z = 1 El sistema es heterogéneo compatible determinado. x = 2 y = 3 z = 1 ° § ¢ § £ x + 7 = 9 y = 3 z = 1 y = 3 ° § ¢ § £ x + 2y + 1 = 9 5y + 4 = 19 z = 1z = 1 ° § ¢ § £ x + 2y + z = 9 5y + 4z = 19 5z = 5 2ª – 3ª ° § ¢ § £ x + 2y + z = 9 5y + 4z = 19 5y – z = 14 3 · 1ª – 2ª 2 · 1ª – 2ª ° § ¢ § £ x + 2y + z = 9 3x + y – z = 8 2x – y + 3z = 4 ° § ¢ § £ 3x + y – z = 8 x + 2y + z = 9 2x – y + 3z = 4 1 1. Resuelve los siguientes sistemas por el método de Gauss y clasifícalos: a) b) 2. Resuelve los siguientes sistemas por el método de Gauss y clasifícalos: a) b) 3. Resuelve los siguientes sistemas por el método de Gauss y clasifícalos: a) b) 4. Resuelve los siguientes sistemas por el método de Gauss y clasifícalos: a) b) ° § § ¢ § § £ x + 2z = 3 3x + y + z = –1 2y – z = –2 x – y – 2z = –5 ° § ¢ § £ –x – y = 0 3x + 2y = 0 y + z = 0 ° § ¢ § £ 8x + 3y + 2z = 4 2x – y = 0 2x + 2z = 1 ° § ¢ § £ 2x + y + 4z = 1 –x + 2y – 2z = 1 y + z = 2 ° § ¢ § £ 2x + y + z = 1 x + 2y + z = 2 x + y + 2z = 4 ° § ¢ § £ x + y + 2z = 3 2x – y + z = 9 x – y – 6z = 5 ° § ¢ § £ x – y + z = 1 3x + y – 2z = 5 x – 2y + z = 0 ° § ¢ § £ x + 2z = 0 x + y + 2z = –1 2x + 3y = 1 ● Aplica la teoría Consejo práctico Poner en cada paso, a la derecha de la ecuación, la combinación lineal que se realiza,mejora los cál- culos y ayuda al repasar las ope- raciones. Evitar errores Cada ecuación solo se puede ope- rar con las anteriores. El valor z = 1 se sustituye en la 1ª y 2ª ecuación y se calcula el valor de y en la 2ª ecuación. El valor y = 3 se sustitu- ye en la 1ª ecuación, para poder calcular x
  • 7. Álgebra 16 ■ Piensa y calcula Indica el número de soluciones que tienen los siguientes sistemas y clasifícalos: a) b) c) ° ¢ £ x + y = 1 x – y = 1 ° ¢ £ x + y = 1 2x + 2y = 5 ° ¢ £ x + y = 1 2x + 2y = 2 2. Estudio de los sistemas 2.1. Discusión de los sistemas Ejercicio resuelto Resuelve y discute el siguiente sistema: Se escriben a la derecha las operaciones que hay que realizar: ò ò ò ò La solución del sistema es x = z/2, y = z/2 El sistema es homogéneo compatible indeterminado. x = z/2° ¢ £ x + z/2 = z y = z/2y = z/2 ° ¢ £ x + y = z 2y = z ° ¢ £ x + y – z = 0 2y – z = 0 ° § ¢ § £ x + y – z = 0 2y – z = 0 2y – z = 0 4 · 1ª – 2ª 3ª – 3 · 1ª ° § ¢ § £ x + y – z = 0 4x + 2y – 3z = 0 3x + 5y – 4z = 0 ° § ¢ § £ x + y – z = 0 4x + 2y – 3z = 0 3x + 5y – 4z = 0 2 Discutir un sistema consiste en clasificarlo: Determinado Compatible Heterogéneo Indeterminado Sistema Incompatible Homogéneo Determinado (Compatible) Indeterminado Al resolver un sistema por el método de Gauss, éste se clasifica según se ob- tenga: a) Una solución ò Compatible determinado. b) Menos ecuaciones que incógnitas ò Compatible indeterminado. c) 0 = N siendo N é‫,ޒ‬ N ? 0 ò Incompatible. Se pasan los términos de la z al 2º miembro. Se elimina la 3ª ecuación por- que es igual que la 2ª ° ¢ £ ° ¢ £ ° ¢ £ ° § § § ¢ § § § £ Solución trivial Un sistema homogéneo es siem- pre compatible porque tiene la so- lucióntrivial,queesaquellaenlaque todas las variables son ceros.
  • 8. Tema 1. Sistemas lineales 17 En la solución del sistema, las incógnitas están en función de z. Si se le da a z un valor variable, z = l, la solución se expresa en función de ese valor, obte- niéndose las ecuaciones paramétricas: x = l/2, y = l/2, z = l con l é‫ޒ‬ Si se le dan a l distintos valores, se obtienen las soluciones particulares del sistema: Si l = 0 ò x = 0, y = 0, z = 0, que es la solución trivial. Si l = 1 ò x = 1/2, y = 1/2, z = 1 Si l = 2 ò x = 1, y = 1, z = 2 …………………………… Ejercicio resuelto Resuelve y discute el siguiente sistema: Se escriben a la derecha las operaciones que hay que realizar: ò ò ò Se observa que se ha llegado a una contradicción, 0 = 3, que es imposible. El sistema no tiene solución. El sistema es heterogéneo incompatible. ° § ¢ § £ x + y + z = 1 2y – 4z = 5 0 = 3 2ª – 2 · 3ª ° § ¢ § £ x + y + z = 1 2y – 4z = 5 y – 2z = 1 2ª – 3 · 1ª 3ª – 1ª ° § ¢ § £ x + y + z = 1 3x + 5y – z = 8 x + 2y – z = 2 ° § ¢ § £ x + y + z = 1 3x + 5y – z = 8 x + 2y – z = 2 3 5. Discute los siguientes sistemas y clasifícalos: a) b) 6. Discute los siguientes sistemas y clasifícalos: a) b) 7. Discute los siguientes sistemas y clasifícalos: a) b) 8. Discute los siguientes sistemas y clasifícalos: a) b) 9. Discute los siguientes sistemas y clasifícalos: a) b) 10. Discute los siguientes sistemas y clasifícalos: a) b) ° § ¢ § £ x – y = z x + z = y y – z = x ° § ¢ § £ 2x + y – z = 0 x – y – z = 0 3x – 2z = 0 ° § ¢ § £ 3x + y – 2z = –8 x + 2y + z = –1 2x – 3y + z = –3 ° § ¢ § £ 3x – y + 2z = 1 x + 4y + z = 1 2x – 5y + z = –2 ° § ¢ § £ x + 2y – 2z = 1 –x – 3y + z = 6 3x + y + z = 2 ° ¢ £ x + y + z = 0 2x + y + 2z = 0 ° § ¢ § £ 4x + y + 2z = 0 2x + y = 0 x + z = 0 ° § ¢ § £ –3x + y + 4z = 1 –x – 3y – 2z = 1 y + z = –3 ° § ¢ § £ x – 3y + z = 1 2x – y – 3z = 2 x + y – 3z = 3 ° § ¢ § £ x + y + 4z = 1 –x + y – 2z = 1 y + z = 1 ° § ¢ § £ x + z = –1 x + y = 0 x + z = –1 ° § ¢ § £ x + 2y – z = 6 x + y + 2z = 7 2x – y – z = 3 ● Aplica la teoría Solución en ecuaciones paramétricas La solución de un sistema en ecuaciones paramétricas se ob- tiene al escribir las incógnitas en función de unos parámetros. Los parámetros se suelen repre- sentar con las letras griegas l (lambda) y µ (mu).
  • 9. Álgebra 18 ■ Piensa y calcula Representa en el plano las rectas del siguiente sistema e interprétalo gráficamente: ° ¢ £ x + y = 0 x – y = 0 3. Interpretación gráfica 3.1. Sistemas lineales de dos ecuaciones con dos incógnitas Ejercicio resuelto Resuelve gráficamente, clasifica e interpreta el siguiente sistema: Se representan las rectas y se observa que el sistema es compatible determina- do. La solución es x = – 1, y = 2 3.2. Sistemas lineales de tres ecuaciones con tres incógnitas Una ecuación lineal con tres incógnitas representa un plano en el espacio. ° ¢ £ x + 2y = 3 4x + y = –2 4 Una ecuación lineal con dos incógnitas representa una recta en el plano. Y X P(–1, 2) x + 2y = 3 4x + y = –2 Clasificación Sistema compatible determinado Interpretación gráfica Rectas secantes Y P(–1, 3) X Sistema incompatible Rectas paralelas Y X Sistema compatible indeterminado Rectas coincidentes Y X Clasificación Sistema compatible determinado Interpretación gráfica Los tres planos se cortan en un punto que es la solu- ción. P Sistema compatible indeterminado El sistema se reduce a dos ecuaciones o a una. a) La solución es una recta. b) La solución es un plano. recta Sistema incompatible Los tres planos no tienen ningún punto en común. Por ejemplo:
  • 10. Tema 1. Sistemas lineales 19 Ejercicio resuelto Resuelve por el método de Gauss, clasifica e interpreta gráficamente el si- guiente sistema: Se elimina la 2ª ecuación porque es 4 · 1ª Se elimina la 3ª ecuación porque es –3 · 1ª El sistema se reduce a una ecuación: 2x – y + z = 3 ò z = 3 – 2x + y La solución en función de parámetros es: x = l, y = µ, z = 3 –2l + µ; l, µ é‫ޒ‬ Al dar valores a l y m se obtienen los infinitos puntos de un plano. El sistema es heterogéneo compatible indeterminado. Ejercicio resuelto Resuelve por el método de Gauss, clasifica e interpreta gráficamente el si- guiente sistema: Se escriben a la derecha las operaciones que hay que realizar: ò ò Se observa que se ha llegado a una contradicción, 0 = 11, que es imposible. El sistema no tiene solución. Es un sistema heterogéneo incompatible. ° § ¢ § £ x – y + z = 2 2y – 4z = 2 0 = 112ª – 3ª ° § ¢ § £ x – y + z = 2 2y – 4z = 2 2y – 4z = –9 2ª – 1ª 3ª – 3 · 1ª ° § ¢ § £ x – y + z = 2 x + y – 3z = 4 3x – y – z = –3 ° § ¢ § £ x – y + z = 2 x + y – 3z = 4 3x – y – z = –3 6 ° § ¢ § £ 2x – y + z = 3 8x – 4y + 4z = 12 –6x + 3y – 3z = –9 5 11. Resuelve por el método de Gauss, clasifica e interpre- ta gráficamente los siguientes sistemas: a) b) 12. Resuelve por el método de Gauss, clasifica e interpre- ta gráficamente los siguientes sistemas: 13. Resuelve por el método de Gauss, clasifica e interpre- ta gráficamente los siguientes sistemas: 14. Resuelve por el método de Gauss, clasifica e interpre- ta gráficamente los siguientes sistemas: ° § ¢ § £ 3x + 2y + 2z = 15 3x – 2y – 2z = –1 –x + 3y + 3z = 3 ° § ¢ § £ 2x – y + 3z = 1 x + 2y – z = 1 x + y – 6z = –10 ° § ¢ § £ x + y + z = 3 x + y – z = 3 z = 0 ° ¢ £ 2x – y = 3 4x + y = 3 ° ¢ £ 3x + y = 4 3x + y = 2 ● Aplica la teoría Interpretación gráfica Las tres ecuaciones representan el mismo plano. Interpretación gráfica Los tres planos no tienen ningún punto en común. Forman una su- perficie prismática.
  • 11. Álgebra 20 ■ Piensa y calcula Plantea un sistema de ecuaciones para resolver el siguiente enunciado: «Encuentra dos números cuya suma sea 14 y el doble del mayor menos el menor sea 10» 4. Resolución de problemas 4.1. Procedimiento de resolución de problemas Ejercicio resuelto Encuentra dos números cuya suma sea 35 y que sean proporcionales a 2 y 3 a) Entérate: incógnitas, datos y preguntas 1er número: x 2º número: y Los números suman 35 Los números son proporcionales a 2 y 3 Hay que hallar los números. b)Manos a la obra ò Resolviendo el sistema por sustitución: Si x = 14 ò y = 35 – x ò y = 35 – 14 = 21 ò x = 14, y = 21 c) Solución y comprobación Los números son 14 y 21 ° § ¢ § £ 14 + 21 = 35 14 21 — = — 2 3 3x – 2(35 – x) = 0 ò ò 3x – 70 + 2x = 0 ò ò 5x = 70 ò ò x = 14 y = 35 – x° ¢ £ x + y = 35 3x – 2y = 0 ° ¢ £ x + y = 35 3x = 2y ° § ¢ § £ x + y = 35 x y — = — 2 3 7 Para resolver un problema, se debe leer el enunciado tantas veces como sea ne- cesario, hasta identificar cuáles son las incógnitas, los datos, las relaciones y las preguntas. En los problemas geométricos se debe hacer siempre un dibujo, y en todos ellos, un esquema. El procedimiento se puede dividir en los siguientes pasos: a) Entérate: se escriben las incógnitas, los datos y las preguntas. b) Manos a la obra: se plantean las relaciones, se transforman en un sistema y se resuelve. c) Solución y comprobación: se escriben las respuestas a las preguntas que hace el problema y se comprueba que cumplen las relaciones dadas. Datos: Incógnitas: x = 1er número y = 2º número con los Suman 35 forman un Sistema: ° ¢ £ x + y = 35 x y — = — 2 3 x + y = 35ò = y 3 x 2ò Proporcionales a 2 y 3
  • 12. Tema 1. Sistemas lineales 21 Ejercicio resuelto Hemos comprado un disco, un libro y una agenda. El precio del libro es el doble del precio del disco, y también es el triple de la diferencia del precio de la agenda y el disco. Considerando que hemos pagado 140 €, calcula los pre- cios de los tres artículos. a) Entérate: incógnitas, datos y preguntas Precio del disco: x Precio del libro: y Precio de la agenda: z Se han pagado 140 € por los 3 artículos. Hay que calcular el precio de cada artículo. b)Manos a la obra Ordenando las ecuaciones y resolviendo el sistema: ò c) Solución y comprobación Se comprueba: ò Los precios son: disco: 30 €, libro: 60 € y agenda: 50 € ° § ¢ § £ 60 = 60 60 = 60 140 = 140 ° § ¢ § £ 60 = 2 · 30 60= 3 (50 – 30) 30 + 60 + 50 = 140 ° § ¢ § £ x = 30 y = 60 z = 50 ° § ¢ § £ x + y + z = 140 2x – y = 0 3x + y – 3z = 0 ° § ¢ § £ y = 2x y = 3(z – x) x + y + z = 140 8 15. Si la altura de Carlos aumentase el triple de la dife- rencia entre las alturas de Toni y de Juan, Carlos sería igual de alto que Juan. Las alturas de los tres suman 515 cm. Ocho veces la altura deToni es igual que nue- ve veces la de Carlos. Halla las tres alturas. 16. Si se mezclan 60 litros de vino blanco con 20 litros de vino tinto, se obtiene un vino de 10 grados (10% de alcohol). Si, por el contrario, se mezclan 20 litros de blanco con 60 litros de tinto, se obtiene un vino de 11 grados. ¿Qué graduación tendrá una mezcla de 40 litros de vino blanco con 40 litros de vino tinto? 17. La edad de una madre es en la actualidad el triple de la de su hijo. Las edades del padre, la madre y el hijo suman 80 años, y dentro de 5 años, la suma de las edades de la madre y del hijo será 5 años más que la del padre. ¿Cuántos años tienen en la actualidad el pa- dre, la madre y el hijo? 18. Alba compra tres pantalones, dos camisas y un som- brero por 135 €. Natalia compra un pantalón, tres ca- misas y un sombrero por 100 €. Javier compra dos pantalones, tres camisas y dos sombreros por 155 €. Si todos los artículos se han comprado al mismo pre- cio, ¿cuál es el precio de cada una de las prendas? ● Aplica la teoría Datos: con los El precio del libro es el doble del precio del disco forman un Sistema: ° § ¢ § £ y = 2x y = 3(z – x) x + y + z = 140 El precio del libro es el triple de la diferencia entre el precio de la agenda y del disco Se han pagado 140 € Incógnitas: x = precio del disco y = precio del libro z = precio de la agenda y = 2x y = 3(z – x) ò x + y + z = 140 ò ò
  • 13. Ejercicios y problemasEjercicios y problemas resueltos 9. Clasifica y resuelve el siguiente sistema: ° § ¢ § £ x – 3y + 2z = 0 –2x + y – z = 0 x – 8y + 5z = 0 10. Clasifica y obtén todas las so- luciones del siguiente sistema de ecuaciones lineales: ° § ¢ § £ x + y + z = –1 2x – y + z = 0 –2x + 7y + z = –4 11. Un sistema de tres ecuaciones con dos incógnitas, ¿puede ser compatible determinado? En caso afirmativo, pon un ejemplo. ò ò ò La solución es x = –z/5, y = 3z/5 El sistema es homogéneo compatible indeterminado. La solución en ecuaciones paramétricas es: x = –l/5, y = 3l/5, z = l con l é‫ޒ‬ x = –z/5° ¢ £ x – 9z/5 = –2z y = 3z/5y = 3z/5 ° ¢ £ x – 3y = –2z –5y = –3z ° § ¢ § £ x – 3y + 2z = 0 –5y + 3z = 0 –5y + 3z = 0 2 · 1ª + 2ª 3ª – 1ª ° § ¢ § £ x – 3y + 2z = 0 –2x + y – z = 0 x – 8y + 5z = 0 ò ò ò ò ò ò x = –1 – z + = = La solución es: x = , y = El sistema es heterogéneo compatible indeterminado. La solución en ecuaciones paramétricas es: x = , y = , z = l con l é‫ޒ‬–2 – l 3 –1 – 2l 3 –2 – z 3 –1 – 2z 3 –1 – 2z 3 –3 – 3z + 2 + z 3 2 + z 3 ° § § ¢ § § £ –2 – zx + — = –1 – z 3 –2 – zy = — 3 y = (–2 – z)/3 ° ¢ £ x + y = –1 – z 3y = –2 – z ° § ¢ § £ x + y + z = –1 3y + z = –2 3y + z = –2 3ª/3 ° § ¢ § £ x + y + z = –1 3y + z = –2 9y + 3z = –6 2 · 1ª – 2ª 2 · 1ª + 3ª ° § ¢ § £ x + y + z = –1 2x – y + z = 0 –2x + 7y + z = –4 Sí puede ser compatible determinado. Para poner un ejemplo es suficiente con escribir un sistema de dos ecuaciones con dos incógnitas que sea compatible determinado y que la tercera ecuación sea combinación lineal de las otras dos. Por ejemplo, en el siguiente sistema la 3ª ecuación es la suma de las dos primeras. La solución del sistema es: x = 3, y = 2 El sistema es compatible determinado. ° § ¢ § £ x – y = 1 x + 2y = 7 2x + y = 8 Clasificación y resolución de sistemas lineales 22
  • 14. Ejercicios y problemas 12. Un agricultor tiene reparti- das sus 10 hectáreas de te- rreno entre barbecho,cultivo de trigo y cultivo de cebada. La superficie dedicada al trigo ocupa 2 hectáreas más que la dedicada a la cebada, mien- tras que en barbecho tiene 6 hectáreas menos que la su- perficie total dedicada al cul- tivo de trigo y cebada.¿Cuán- tas hectáreas tiene dedicadas a cada uno de los cultivos y cuántas están en barbecho? 13. Una empresa instala casas pre- fabricadas de tres tipos,A,B y C. Cada casa de tipo A nece- sita 10 horas de albañilería,2 de fontanería y 2 de electricista. Cada casa de tipo B necesita 15 horas de albañilería, 4 de fontanería y 3 de electricista. Cada casa de tipo C necesita 20 horas de albañilería, 6 de fontanería y 5 de electricista. La empresa emplea exacta- mente 270 horas de trabajo al mes de albañilería,68 de fon- tanería y 58 de electricista. ¿Cuántas casas de cada tipo instala la empresa en un mes? a) Incógnitas, datos y preguntas Nº de hectáreas de barbecho: x Nº de hectáreas de cultivo de trigo: y Nº de hectáreas de cultivo de cebada: z Área total de 10 hectáreas. ¿Cuántas hectáreas de cada cultivo y de barbecho hay? b) Manos a la obra ò ò ò ò ò ò x = 2 La solución del sistema es: x = 2, y = 5, z = 3 c) Solución Dedica 2 hectáreas a barbecho, 5 hectáreas a cultivo de trigo y 3 hectáreas al cultivo de cebada. y = 5 ° ¢ £ x + y = 10 – 3 y = 2 + 3 z = 3 ° § ¢ § £ x + y + z = 10 y – z = 2 2z = 6 3ª – 2ª ° § ¢ § £ x + y + z = 10 y – z = 2 y + z = 83ª/2 ° § ¢ § £ x + y + z = 10 y – z = 2 2y + 2z = 16 1ª – 3ª ° § ¢ § £ x + y + z = 10 y – z = 2 x – y – z = –6 ° § ¢ § £ x + y + z = 10 y = 2 + z x = y + z – 6 a) Incógnitas, datos y preguntas Nº de casas tipo A: x Nº de de casas tipo B: y Nº de de casas tipo C: z ¿Cuántas casas de cada tipo instala? b) Manos a la obra ò ò ò ò x = 10 La solución es: x = 10, y = 6, z = 4 c) Solución Se instalan 10 casas del tipo A, 6 del B y 4 del C y = 6 ° ¢ £ 2x + 3y = 54 – 16 y = 14 – 8 ° § ¢ § £ 2x + 3y + 4z = 54 y + 2z = 14 z = 4 2ª – 1ª 3ª – 2ª ° § ¢ § £ 2x + 3y + 4z = 54 2x + 4y + 6z = 68 2x + 3y + 5z = 58 1ª/5° § ¢ § £ 10x + 15y + 20z = 270 2x + 4y + 6z = 68 2x + 3y + 5z = 58 Problemas con enunciado 23 Tema1.Sistemaslineales PAU
  • 15. Ejercicios y problemasEjercicios y problemas resueltos 14. En la XXI Olimpiada Nacio- nal de Química se contrataron 5 autobuses de 54 plazas cada uno,incluida la del conductor, para el transporte de alumnos, profesores y acompañantes.La suma del 10% del número de profesores y del 20% del nú- mero de acompañantes exce- de en una unidad al 10% del número de alumnos.El núme- ro de alumnos duplicaría al de profesores en el caso de que hubieran asistido 5 profesores menos.Determina el número de alumnos,de profesores y de acompañantes. 15. La suma de las edades actua- les de los tres hijos de un ma- trimonio es 59 años.Hace cin- co años,la edad del menor era un tercio de la suma de las eda- des que tenían los otros dos. Dentro de cinco años, el do- ble de la edad del hermano me- diano excederá en una uni- dad a la suma de las edades que tendrán los otros dos.Halla las edades actuales de cada uno de los hijos. a) Incógnitas, datos y preguntas Nº de alumnos: x Nº de profesores: y Nº de acompañantes: z 5 autobuses a 54 plazas para alumnos, profesores y acompañantes. b)Manos a la obra ò ò ò ò ò x = 150 La solución es: x = 150, y = 80, z = 40 c) Solución Viajan 150 alumnos, 80 profesores y 40 acompañantes. y = 80 ° ¢ £ –x + y + 2z = 10 y = 2z y = 40 ° § ¢ § £ –x + y + 2z = 10 –y + 2z = 0 7z = 2803ª + 2 · 2ª ° § ¢ § £ –x + y + 2z = 10 –y + 2z = 0 2y + 3z = 280 2ª + 1ª 3ª + 1ª ° § ¢ § £ –x + y + 2z = 10 x – 2y = –10 x + y + z = 270 10 · 1ª° § ¢ § £ 0,1y + 0,2z = 0,1x + 1 x + 0,0y + 0,0z = 2(y – 5) x + 0,0y + 0,0z = 270 a) Incógnitas, datos y preguntas b)Manos a la obra ò ò ò x = 23 La solución es: x = 23, y = 20, z = 16 c) Solución El hermano mayor tiene 23 años; el mediano, 20, y el pequeño, 16 z = 16 y = 20 ° § ¢ § £ x + y + z = 59 4z = 64 3y = 60 1ª – 2ª 1ª – 3ª ° § ¢ § £ x + y + z = 59 x + y – 3z = –5 x – 2y + z = –1 ° § ¢ § £ x + y + z = 59 x – 5 + y – 5 = 3(z – 5) x + 5 + z + 5 + 1 = 2(y + 5) Edad actual Hijo mayor Hijo mediano Hijo menor x y z Hace 5 años x – 5 y – 5 z – 5 Dentro de 5 años x + 5 y + 5 z + 5 Problemas con enunciado 24
  • 16. 25 Tema1.Sistemaslineales Ejercicios y problemasEjercicios y problemas Preguntas tipo test PAU El siguiente sistema es: heterogéneo. homogéneo. No se puede clasificar porque tiene más ecua- ciones que incógnitas. Ninguna de las anteriores. Se llama sistemas equivalentes a: los que tienen el mismo número de ecuaciones. los que tienen las mismas soluciones. los que tienen el mismo número de incógnitas. Ninguna de las respuestas anteriores. ¿Cuál de estas transformaciones no produce un sis- tema equivalente? Suprimir ecuaciones que sean combinación li- neal de las restantes. Cambiar de orden las ecuaciones. Sumar a una ecuación una combinación lineal de las restantes. Suprimir una incógnita que tenga el mismo coefi- ciente en todas las ecuaciones. En un sistema compatible determinado: existen infinitas soluciones. no existe solución. existe una solución. Ninguna de las respuestas anteriores. Un sistema homogéneo: es siempre compatible indeterminado. es incompatible. es siempre compatible. es siempre compatible determinado. La solución del siguiente sistema es: x = 2/3, y = 1/3, z = 1 x = –16z/15, y –11z/15 x = 2/3 – 16l/15, y = 1/3 – 11l/15, z = l; l é‫ޒ‬ No tiene solución. Una inmobiliaria ha vendido un total de 65 plazas de garaje en tres urbanizaciones diferentes. Las ganan- cias obtenidas por la venta de una plaza de garaje en la urbanización A son de 2000 €, 4000 € por una en la urbanización B y 6000 € por una en la urbani- zación C. Se sabe que se ha vendido un 50% más de plazas en la urbanización A que en la urbanización C. Calcula el número de plazas de garaje vendidas en cada urbanización sabiendo que el beneficio ob- tenido por las vendidas en la urbanización C es igual a la suma de los beneficios obtenidos por las vendi- das en las urbanizaciones A y B. Plazas en A, 38; en B, 8; en C, 19 Plazas en A, 30; en B, 15; en C, 20 Plazas en A, 40; en B, 5; en C, 20 No tiene solución. En una fábrica de artículos deportivos se dispone de 10 cajas de diferente tamaño: grandes, medianas y pequeñas para envasar las camisetas de atletismo producidas, con capacidad para 50, 30 y 25 camise- tas, respectivamente. Si una caja grande fuera media- na, entonces habría el mismo número de grandes y de medianas. En total se envasan 390 camisetas. De- termina el número de cajas que hay de cada clase. Hay 4 grandes, 2 medianas y 4 pequeñas. Hay 5 grandes, 4 medianas y 1 pequeña. No tiene solución. Hay 5 grandes, 3 medianas y 2 pequeñas. Raquel, Paula y Sara salen de compras y cada una ad- quiere una camiseta. El precio medio de las prendas es de 14 €. La diferencia entre el precio de la cami- seta de Sara y el de la de Paula es el doble de la dife- rencia entre el precio de la camiseta de Paula y el de la de Raquel. Si a Raquel le hubiera costado su cami- seta el doble, sobrepasaría en un euro el precio de la de Sara. El precio de las camisetas de Raquel, Sara y Paula es, respectivamente: 19 €, 13 € y 10 € 4 €, 5 € y 6 € 10 €, 13 € y 19 € 9 €, 15 € y 18 € En el ejercicio anterior, ¿es posible saber el precio de las camisetas si la última condición se cambia por «Si a Paula le hubiera costado su camiseta el cuádruple, sobrepasaría en 42 euros el precio de la de Raquel»? No. Es un sistema compatible indeterminado. Sí. No. Es un sistema incompatible. Sí, la solución es la misma. 10 9 8 7 ° § ¢ § £ 3x – 3y + z = 1 x + 4y + 4z = 2 5x – 10y – 2z = 0 6 5 4 3 2 ° § ¢ § £ 2x + y = 0 x + y = 1 x – 2y = 2 1 Contesta en tu cuaderno:
  • 17. 26 Ejercicios y problemasEjercicios y problemas propuestos 1. Sistemas de ecuaciones lineales 19. Resuelve los siguientes sistemas por el método de Gauss y clasifícalos: a) b) 20. Resuelve los siguientes sistemas por el método de Gauss y clasifícalos: a) b) 21. Discute los siguientes sistemas y clasifícalos: a) b) 2. Estudio de los sistemas 22. Discute los siguientes sistemas y clasifícalos: a) b) 23. Discute el siguiente sistema y clasifícalo para el valor a = 0: 24. Discute los siguientes sistemas y clasifícalos: a) b) 25. Discute los siguientes sistemas y clasifícalos: a) b) 26. Discute los siguientes sistemas y clasifícalos: a) b) 27. Discute el siguiente sistema y clasifícalo para los va- lores: a) l = –1 b) l = 2 28. Discute el siguiente sistema y clasifícalo para los va- lores: a) a = 1 b) a = 2 3. Interpretación gráfica 29. Resuelve por el método de Gauss, clasifica e interpreta gráficamente los siguientes sistemas: a) b) 30. Resuelve por el método de Gauss, clasifica e interpreta gráficamente los siguientes sistemas: a) b) 31. Resuelve por el método de Gauss, clasifica e interpreta gráficamente los siguientes sistemas: 32. Resuelve por el método de Gauss, clasifica e interpreta gráficamente los siguientes sistemas: 33. Resuelve por el método de Gauss, clasifica e interpreta gráficamente los siguientes sistemas: ° § ¢ § £ 2x – y + 3z = 1 x + 2y – z = –3 x + 7y – 6z = –10 ° § ¢ § £ 2x + 3y – z = 3 x + y – z = 2 x – 2z = 3 ° § ¢ § £ x + y + z = 3 2x – y + z = 2 x – y + z = 1 ° ¢ £ 3x – y = 1 x – y = –3 ° ¢ £ 2x + y = 3 8x + 4y = 12 ° ¢ £ –x + y = 4 x – y = –2 ° ¢ £ x + y = 2 2x + y = 6 ° § ¢ § £ x + z = 1 y + (a – 1)z = 0 x + (a – 1)y + az = a ° § ¢ § £ x – y + lz = 2 lx + ly – z = 5 (l + 1)x + ly – z = l ° § ¢ § £ 2x + 3y – 4z = 1 4x + 6y – z = 2 x + y + z = 10 ° § ¢ § £ x + y – z = 1 2x – y + 3z = 4 x + 4y – 6z = 0 ° ¢ £ x + y + 2z = 1 2x + 2y + z = 2 ° ¢ £ 2x + 2y – 2z = 1 2x + y – 2z = 1 ° § ¢ § £ x – z = 0 x – y + z = 0 x + y + z = 0 ° § ¢ § £ 2x – 3y + z = 0 x + 2y – z = 0 4x + y – z = 0 ° § ¢ § £ x + 2y + z = a x + y – az = a 2x + 3y + z = a ° § ¢ § £ –x + y – 3z = –2 4x + 2y – z = 5 2x + 4y – 7z = 1 ° § ¢ § £ x + 2y – z = 2 x + z = –2 x – y = 1 ° § ¢ § £ x + 2y + z = 9 2x – y + 2z = –2 x + y + 2z = 8 ° § ¢ § £ x + y + 2z = 2 2x – y + 3z = 2 5x – y + z = 6 ° § ¢ § £ 3x + y + z = 6 x + 3y + z = –10 x + y + 3z = 4 ° § ¢ § £ x + y + z = 2 x – y + 2z = 1 2x + y + 2z = 0 ° § ¢ § £ x + z = 2 x + y = 3 x + y + z = 0 ° § ¢ § £ 5x + 2y + 3z = 4 2x + 2y + z = 3 x – 2y + 2z = –3
  • 18. 27 Tema1.Sistemaslineales Ejercicios y problemas 34. Resuelve por el método de Gauss, clasifica e interpreta gráficamente los siguientes sistemas: 35. Resuelve por el método de Gauss, clasifica e interpreta gráficamente los siguientes sistemas: 4. Resolución de problemas 36. Sonia ha comprado unos bolígrafos de 2 €, unos cua- dernos de 1 € y unas cajas de 3 €. Entre bolígrafos y cuadernos hay el triple que cajas. Considerando que ha comprado 12 objetos y ha pagado 22 €, calcula el número de bolígrafos, cuadernos y cajas que ha com- prado. 37. Calcula las edades actuales de una madre y sus dos hi- jos sabiendo que hace 14 años la edad de la madre era 5 veces la suma de las edades de los hijos en aquel mo- mento; que dentro de 10 años la edad de la madre será la suma de las edades que los hijos tendrán en ese mo- mento; y que cuando el hijo mayor tenga la edad actual de la madre, el hijo menor tendrá 42 años. 38. Un bodeguero compra vinos de dos regiones diferen- tes A y B. Si se mezclan dos partes del vino de la región A con tres partes de la región B, cada litro cuesta 3,3 €. Si se mezclan tres partes del vino de la región A con dos partes de la región B, cada litro de esta mezcla cuesta 3,2 €. Halla cuánto le ha costado al bodeguero el litro de cada vino adquirido. 39. Un tren transporta 470 viajeros, y la recaudación del importe de sus billetes asciende a 4250 €. Calcula cuántos viajeros han pagado el importe total del bille- te, que asciende a 10 €, cuántos han pagado el 80% del billete y cuántos han pagado el 50%, sabiendo que el número de viajeros que han pagado el 50% es la mitad del número de viajeros que pagaron el 80% ° § ¢ § £ 3x + y = 0 4y + z = 0 3x + 2y + z = 1 ° § ¢ § £ x + y + z = 3 x + y – z = 3 2x + 2y = 5 40. Resuelve y clasifica los siguientes sistemas: a) b) 41. Resuelve y clasifica los siguientes sistemas: a) b) 42. Resuelve y clasifica el siguiente sistema para el valor de m = 3: 43. Resuelve y clasifica el sistema para los siguientes valo- res de a: a) a = –1 b) a = 2 44. Discute los siguientes sistemas y clasifícalos: a) b) 45. Discute el sistema y clasifícalo para los siguiente valo- res de l: a) l = 2 b) l = –1 ° § ¢ § £ –x + ly + 2z = l 2x + ly – z = 2 lx – y + 2z = l ° § ¢ § £ x + y + 5z = 0 2x – 3y = 0 x – y + z = 0 ° § ¢ § £ –3x + y + 4z = 1 –x – 3y – 2z = 1 y + z = –3 ° § ¢ § £ x – y = 2 ax + y + 2z = 0 x – y + az = 1 ° § ¢ § £ 2x + y – z = 2 x + y + 2z = 5 – x + (m + 2)z = 3 ° § ¢ § £ x – y + z = 3 2x + y – 3z = 1 8x – 5y + 3z = 19 ° § ¢ § £ 2x + y + z = 6 x + y + 2z = 4 x + y + z = 1 ° § ¢ § £ 2x – y = 4 –2x + y = –4 x + 2y = 2 ° § ¢ § £ 2x + y – z = –1 x – 2y + 2z = 2 3x – y + 2z = 4 Para ampliar
  • 19. 28 Ejercicios y problemasEjercicios y problemas propuestos 46. Discute los siguientes sistemas y clasifícalos: a) b) 47. Resuelve por Gauss, clasifica e interpreta gráficamente los siguientes sistemas: a) b) 48. Discute el siguiente sistema y clasifícalo para los valo- res de l: a) l = 0 b) l = 3 49. Discute el siguiente sistema y clasifícalo para a = 2: 50. Discute los siguientes sistemas y clasifícalos: a) b) 51. Discute el siguiente sistema y clasifícalo para los valo- res de a: a) a = –1 b) a = 1 ° § ¢ § £ (a + 1)x + 2y + z = a + 3 ax + y = a ax + 3y + z = a + 2 ° § ¢ § £ 3x – y = 0 3x + 4y = 0 y + 4z = 0 ° § ¢ § £ –x – y = 0 3x + 2y = 0 y + z = 0 ° § ¢ § £ ax + 2y + 6z = 0 2x + ay + 4z = 2 2x + ay + 6z = a – 2 ° § ¢ § £ y + z = 1 (l – 1)x + y + z = l x + (l – 1)y – z = 0 ° § ¢ § £ x – y + z = 6 x + y = –7 x + y + 2z = 11 ° § ¢ § £ x + 2y – z = 1 – y + z = 0 x + z = 1 ° § ¢ § £ 2x + y – z = –1 x – 2y + 2z = 1 3x – y + z = 4 ° § ¢ § £ x – y = 3 x + 9z = 7 x – y + 6z = 6 52. Juan compró 4 entradas de adulto y 6 de niño por 56 €, y Sara abonó 48 € por 5 entradas de adulto y 2 de niño. ¿Cuánto valen las entradas de adulto y de niño? 53. Un hipermercado inicia una campaña de ofertas. En la primera de ellas descuenta un 4% en un cierto producto A, un 6% en el producto B y un 5% en el producto C. A las dos semanas pone en marcha la segunda oferta, descontando un 8% sobre el precio inicial de A, un 10% sobre el precio inicial de B y un 6% sobre el precio ini- cial de C. Se sabe que si un cliente compra durante la primera oferta un producto A, dos B y tres C, se ahorra 16 € respecto del precio inicial; si compra en la segunda oferta tres productos A, uno B y cinco C, el ahorro es de 29 €; y si compra un producto A, uno B y uno C, sin ningún tipo de descuento, debe abonar 135 €. Calcula el precio de cada producto antes de las ofertas. 54. Un cliente ha gastado 90 € en la compra de 12 artícu- los entre discos, libros y carpetas en una tienda. Cada disco le ha costado 12 €; cada libro, 9 €; y cada carpe- ta, 3 €. Se sabe que entre discos y carpetas hay el triple que de libros. Calcula cuántos artículos ha comprado de cada tipo. 55. En una competición deportiva celebrada en un centro escolar participaron 50 atletas distribuidos, según la edad, en tres categorías: infantiles, cadetes y juveniles. El doble del número de atletas infantiles, por una par- te, excede en una unidad al número de atletas cadetes y, por otra parte, coincide con el quíntuplo del número de atletas juveniles. Determina el número de atletas que hubo en cada categoría. 56. Una empresa desea disponer de dinero en efectivo en euros, dólares y libras esterlinas. El valor total entre las tres monedas ha de ser igual a 264000 €. Se quiere que el valor del dinero disponible en euros sea el do- ble del valor del dinero en dólares, y que el valor del dinero en libras esterlinas sea la décima parte del valor del dinero en euros. Si se supone que una libra esterli- na es igual a 1,5 € y un dólar es igual a 1,1 €, ¿cuál es la cantidad de euros, dólares y libras esterlinas que la empresa ha de tener disponible? 57. Una tienda tiene tres tipos de conservas, A, B y C. El precio medio de las tres conservas es de 1 €. Un cliente compra 30 unidades de A, 20 de B y 10 de C, y abona 58 €. Otro compra 20 unidades de A, y 30 de C, y abona 51 €. Calcula el precio de cada unidad de A, B y C. Problemas
  • 20. 29 Tema1.Sistemaslineales Ejercicios y problemas 58. Una heladería prepara helados de tres tamaños; 125 gramos, 250 gramos y 500 gramos cuyos precios son 1 €, 2 € y 3 €, respectivamente. Un cliente com- pra 10 helados, con un peso total de 2,5 kg, y paga por ellos 18 € Halla el número de helados que ha comprado de cada tipo. 59. Una editorial va a lanzar al mercado tres libros de bol- sillo, L1, L2 y L3. El importe total de la edición es 24500 €. Los costes en euros, por unidad, son 5 €, 3 € y 4 €, respectivamente. Se sabe que el número de ejemplares de L3 es igual a los dos séptimos de los del tipo L2, y que si al triple del número de ejemplares de L1 se le suma el número de ejemplares de L3, se obtie- ne el doble de ejemplares de L2. Averigua cuántos libros se han editado de cada tipo. 60. En una reunión hay 60 personas entre deportistas, ar- tistas y enseñantes. Se sabe que los enseñantes y los artistas duplican el número de deportistas.También se sabe que los deportistas y el doble de los artistas son el doble de los enseñantes. ¿Cuál es el número de personas deportistas, artistas y enseñantes? 61. El señor García deja a sus hijos herederos de todo su dinero, con las siguientes condiciones: al mayor le deja la media de la cantidad que les deja a los otros dos más 30000 €; al mediano, exactamente la media de la can- tidad de los otros dos;y al pequeño,la media de la canti- dad de los otros dos menos 30000 €. Conociendo estas condiciones solamente, ¿pueden sa- ber los hijos cuánto dinero ha heredado cada uno? Jus- tifica la respuesta. Para profundizar 62. Resuelve y clasifica el siguiente sistema: 63. Discute el siguiente sistema y clasifícalo: 64. Resuelve y clasifica el sistema para los siguiente valores de m: a) m = –3 b) m = 1 65. Un comerciante ha vendido 600 camisetas por un total de 5320 €. El precio original era de 10 € por camise- ta, pero ha vendido en las rebajas una parte de ellas con un descuento del 30% del precio original, y otra parte con un descuento del 40%. Sabiendo que el nú- mero total de camisetas rebajadas fue la mitad del nú- mero de las que vendió a 10 €, calcula cuántas camise- tas se vendieron a cada precio. 66. Una compañía fabricó tres tipos de muebles: sillas, me- cedoras y sofás. Para la fabricación de estos tipos, se ne- cesitó la utilización de unidades de madera, plástico y aluminio, tal y como se indica en la siguiente tabla: La compañía tenía en existencia 400 unidades de ma- dera, 600 unidades de plástico y 1500 unidades de alu- minio. Si la compañía utilizó todas sus existencias, ¿cuántas si- llas, mecedoras y sofás fabricó? 67. Un banco invirtió 2 millones de euros en tres empre- sas diferentes, A, B y C. Lo que invirtió en A era el do- ble de lo que invirtió en B. Al cabo de un año, la renta- bilidad de la operación ha sido del 10%. Las acciones de la empresa A han aumentado su valor un 10%, y las de B, en un 30%. Si las acciones de la empresa C han perdido un 10% de su valor, ¿qué cantidad se invirtió en cada empresa? 68. En una librería hubo la semana pasada una promoción de tres libros: una novela, un libro de poesía y un cuen- to. Se vendieron 200 ejemplares de la novela, 100 de poesía y 150 de cuentos. Sabiendo que la librería ingre- só por dicha promoción 8600 €, que el precio de un ejemplar de novela es el doble del precio de un cuento y que el triple de la diferencia entre el precio del ejem- plar de poesía y del cuento es igual al precio de una novela, calcula el precio al que se vendió cada libro. Silla Mecedora Sofá Madera Plástico Aluminio 1 unidad 1 unidad 1 unidad 1 unidad 1 unidad 2 unidades 2 unidades 3 unidades 5 unidades ° § § ¢ § § £ x + y + z = m x + y + mz = 1 x + my + z = 1 mx + y + z = 1 ° § § ¢ § § £ x – 2y – 2z + t = 4 x + y + z – t = 5 x – y – z + t = 6 6x – 3y – 3z + 2t = 32 ° § § ¢ § § £ x + z = 11 x + y = 3 y + z = 13 x + y + z = 13
  • 21. 30 69. Resuelve el sistema siguiente. Clasifícalo e inter- prétalo gráficamente: Solución: a) Para escribir cada línea de comentario en rojo, en elige Comentar(Ctrl+T). Escri- be en un solo bloque el número y el título del tema, el nombre de los dos alumnos y Paso a paso. Para pasar de una línea a la siguiente, sin cambiar de bloque, pulsa [Intro] b) Haz clic en Calcular para crear nuevo blo- que. c) Elige Comentar(Ctrl+T) y escribe: Ejercicio 69 d) Pulsa [Intro] para cambiar de línea dentro del mismo bloque. e) Para resolver el sistema, en elige y escribe las ecuaciones. f) Dibuja las dos rectas. 70. Resuelve el sistema siguiente. Clasifícalo e inter- prétalo gráficamente: Solución: Haz clic sobre los controles de la parte inferior iz- quierda para ver la imagen en distinta posición y tamaño. Plantea el siguiente problema y resuélvelo con ayuda de Wiris: 71. Encuentra dos números cuya suma sea 35 y sean proporcionales a 2 y 3 Solución: 72. Internet. Abre: www.editorial-bruno.es y elige Matemáticas, curso y tema. ° § ¢ § £ x – y + z = 2 x + y – 3z = 4 3x – y – z = –3 ° ¢ £ x + 2y = 3 4x + y = –2 Paso a paso Tema 1. Sistemas lineales
  • 22. 31 Tema1.Sistemaslineales Resuelve algebraicamente los siguientes sistemas y, a la vista del resultado, clasifícalos: 73. 74. 75. 76. 77. 78. Resuelve los sistemas siguientes. Clasifícalos e interpré- talos gráficamente: 79. 80. 81. 82. 83. 84. Plantea los siguientes problemas y resuélvelos con ayuda de Wiris: 85. Hemos comprado un disco, un libro y una agenda. El precio del libro es el doble del precio del disco, y también es el triple de la diferencia del precio de la agenda y el disco. Considerando que hemos paga- do 140 €, calcula los precios de los tres artículos. 86. Un agricultor tiene repartidas sus 10 hectáreas de terreno en barbecho, cultivo de trigo y cultivo de cebada. La superficie dedicada al trigo ocupa 2 hec- táreas más que la dedicada a cebada, mientras que en barbecho tiene 6 hectáreas menos que la superfi- cie dedicada al cultivo de trigo y cebada. ¿Cuántas hectáreas tiene dedicadas a cada uno de los cultivos y cuántas están en barbecho? 87. En un teatro, hay localidades de tres clases, A, B y C, cuyos precios son 3 €, 6 € y 12 €, respectivamente. Cierto día, la recaudación total fue de 6600 €. Si se sabe, además, que de la clase A se vendieron tantas localidades como de las clases B y C juntas, y que de la B se vendió el doble que de la C, ¿cuántas locali- dades de cada clase se vendieron ese día? ° § ¢ § £ –5x + 2y – 2z = 7 x + 2y + z = 3 5x – 2y + 2z = 8 ° § ¢ § £ 2x – y + z = 3 8x – 4y + 4z = 12 –6x + 3y – 3z = –9 ° § ¢ § £ x + y + z = 3 2x – y + z = 2 x – y + z = 1 ° ¢ £ x + 2y = 2 2x + 4y = 4 ° ¢ £ x – 2y = 2 x – 2y = –2 ° ¢ £ x – y = –4 2x + y = 1 ° § ¢ § £ x + y + z = 1 3x + 5y – z = 8 x + 2y – z = 2 ° § ¢ § £ x + y – z = 0 4x + 2y – 3z = 0 3x + 5y – 4z = 0 ° § ¢ § £ 3x + y – z = 8 x + 2y + z = 9 2x – y + 3z = 4 ° ¢ £ 2x – y = 3 –6x + 3y = –9 ° ¢ £ 3x + y = 4 3x + y = 2 ° ¢ £ 2x – y = 3 4x + y = 3 Así funciona Representar una función En se elige Para ponerle color y ancho de línea, a continuación de la expresión de la función se escribe: , {color = rojo, anchura_línea = 2} Los colores disponibles son: negro, blanco, rojo, verde, azul, cian, magenta, amarillo, marrón, naranja, rosa y gris. Los anchos de línea son cualquier número. Resolver sistema En se elige y se introduce el número de ecuaciones. Se escriben las ecuaciones y se pulsa el botón Calcular. Se pueden presentar 3 casos: a) Si el sistema es compatible determinado, escribe la solución. b) Si el sistema es incompatible, escribe [ ] c) Si el sistema es compatible indeterminado, despeja las primeras variables en función de las últimas. Linux/Windows Practica
  • 23. 32 69. Resuelve el sistema siguiente. Clasifícalo e inter- prétalo gráficamente: Solución: Haz clic en Insertar Texto, escribe el título del tema, el nombre de los dos alumnos, Paso a paso y el número del ejercicio. 1. Sistemas lineales Alba Maza Sánchez Óscar Arias López Paso a paso Ejercicio 69 a) En la barra de menús elige Resolver/Siste- ma…, en el número de ecuaciones escribe 2 y pulsa el botón Sí. b) Introduce las ecuaciones, una en cada cuadro de texto, y pulsa el botón Resolver. [x = –1 ì y = 2] Gráficamente a) En la ventana Álgebra elige Ventana 2D b) Selecciona en la barra de menús Ventana/Mosaico Vertical c) Escoge en la barra de menús Opciones/Pantalla…/Rejilla • Mostrar/Líneas color azul claro. • En Intervalos escribe en Horizontal: 12 y en Vertical: 12 c) Selecciona, con el ratón, en la ventana Álgebra la 1ª ecuación haciendo 3 veces clic sobre ella. d) Activa la ventana Gráficas-2D y haz clic en Representar Expresión. e) Representa de igual forma la 2ª ecuación. f) Elige Archivo/Incrustar. El sistema es compatible determinado. La solución es x = –1, y = 2 70. Resuelve el sistema siguiente. Clasifícalo e inter- prétalo gráficamente: Solución: Algebraicamente a) En la barra de menús de la ventana Álgebra eli- ge Resolver/Sistema…, en el número de ecua- ciones escribe 3 y pulsa el botón Sí. b) Introduce las ecuaciones, una en cada cuadro de texto, y pulsa el botón Resolver. [ ] El sistema es incompatible. Gráficamente a) Cierra la Gráficas-2D b) Haz clic en Ventana 3D c) Selecciona en la barra de menús Ventana/Mosaico Vertical d) Selecciona, con el ratón, en la ventana Álgebra la 1ª ecuación haciendo 3 veces clic sobre ella. e) Activa la ventana Gráficas-3D y haz clic en Representar Expresión. f) Representa los otros dos planos. g) Haz clic en Girar las gráficas. h) Elige Archivar/Incrustar. Los tres planos forman una superficie prismática y no tienen ningún punto en común. Plantea el siguiente problema y resuélvelo con ayuda de DERIVE: 71. Encuentra dos números cuya suma sea 35 y sean proporcionales a 2 y 3 Solución: Planteamiento: ° § ¢ § £ x + y = 35 x y — = — 2 3 ° § ¢ § £ x – y + z = 2 x + y – 3z = 4 3x – y – z = –3 ° ¢ £ x + 2y = 3 4x + y = –2 Paso a paso Tema 1. Sistemas lineales
  • 24. 33 Tema1.Sistemaslineales Así funciona Resolución algebraica de un sistema En la barra de menús se elige Resolver/Sistema…, en el número de ecuaciones se escribe 2, 3 o el número de ecua- ciones que tenga el sistema y se pulsa el botón Sí. Se introducen las ecuaciones, una en cada cuadro de texto y se pulsa el botón Resolver. Se pueden presentar 3 casos: a) Si el sistema es compatible determinado, escribe la solución. b) Si el sistema es incompatible, escribe [ ] c) Si el sistema es compatible indeterminado, elimina las ecuaciones dependientes. Después se tiene que elegir Resolver o despejar, en el cuadro Variables se selecciona la variable o variables que se quieran despejar y se hace clic en el botón Resolver. Borrar gráficas en el espacio Se selecciona haciendo clic con el ratón y luego se pulsa la tecla [Supr] Windows Derive Elige Resolver/Sistema…, introduce las ecuacio- nes y pulsa el botón Resolver. [x = 14 ì y = 21] Los números son 14 y 21 72. Internet. Abre: www.editorial-bruno.es y elige Matemáticas, curso y tema. Resuelve algebraicamente los siguientes sistemas y, a la vista del resultado, clasifícalos: 73. 74. 75. 76. 77. 78. Resuelve los sistemas siguientes. Clasifícalos e interpré- talos gráficamente: 79. 80. 81. 82. 83. 84. Plantea los siguientes problemas y resuélvelos con ayuda de DERIVE: 85. Hemos comprado un disco, un libro y una agen- da. El precio del libro es el doble del precio del disco, y también es el triple de la diferencia del pre- cio de la agenda y el disco. Considerando que he- mos pagado 140 €, calcula los precios de los tres artículos. 86. Un agricultor tiene repartidas sus 10 hectáreas de terreno en barbecho, cultivo de trigo y cultivo de cebada. La superficie dedicada al trigo ocupa 2 hec- táreas más que la dedicada a cebada, mientras que en barbecho tiene 6 hectáreas menos que la superfi- cie dedicada al cultivo de trigo y cebada. ¿Cuántas hectáreas tiene dedicadas a cada uno de los cultivos y cuántas están en barbecho? 87. En un teatro, hay localidades de tres clases, A, B y C, cuyos precios son 3 €, 6 € y 12 €, respectivamente. Cierto día, la recaudación total fue de 6600 €. Si se sabe, además, que de la clase A se vendieron tantas localidades como de las clases B y C juntas, y que de la B se vendió el doble que de la C, ¿cuántas locali- dades de cada clase se vendieron ese día? ° § ¢ § £ –5x + 2y – 2z = 7 x + 2y + z = 3 5x – 2y + 2z = 8 ° § ¢ § £ 2x – y + z = 3 8x – 4y + 4z = 12 –6x + 3y – 3z = –9 ° § ¢ § £ x + y + z = 3 2x – y + z = 2 x – y + z = 1 ° ¢ £ x + 2y = 2 2x + 4y = 4 ° ¢ £ x – 2y = 2 x – 2y = –2 ° ¢ £ x – y = –4 2x + y = 1 ° § ¢ § £ x + y + z = 1 3x + 5y – z = 8 x + 2y – z = 2 ° § ¢ § £ x + y – z = 0 4x + 2y – 3z = 0 3x + 5y – 4z = 0 ° § ¢ § £ 3x + y – z = 8 x + 2y + z = 9 2x – y + 3z = 4 ° ¢ £ 2x – y = 3 –6x + 3y = –9 ° ¢ £ 3x + y = 4 3x + y = 2 ° ¢ £ 2x – y = 3 4x + y = 3 Practica