SlideShare una empresa de Scribd logo
1 de 21
Unidad de Aprendizaje II
Límites y Derivación
Bloque Temático VI
Concepto Límite y Notación
Límites laterales
Existencia del Límite
Facilitador: Saúl Olaf Loaiza Meléndez
Apertura: Evaluación Diagnóstica
Esta evaluación te servirá a ti y a tu profesor para identificar los
aprendizajes adquiridos hasta el momento, así como los necesarios
para el estudio de los contenidos de este bloque temático.
APERTURA: Evaluación Diagnóstica
Si 𝑓 𝑥 = 3𝑥2
− 2𝑥 + 5, hallar:
Ejercicio #1 𝒇 𝟐 =
Ejercicio #2 𝒇 𝟐 =
Ejercicio #3 𝒇
𝒂
𝟓
=
Ejercicio #4 En la siguiente función, realice la
gráfica cuando x=-4,-3,-2,1,6: h 𝑥 = − 𝑥 + 3
5 Trace la gráfica de la función, donde se observen
las intersecciones de x, es decir cuando g 𝑥 = 0
𝒈 𝒙 = 𝒙 𝟐 + 𝟐𝒙 − 𝟐
Competencia Específica
Utilizar la definición de límite de funciones para
determinar analíticamente la continuidad de una función
en un punto o en un intervalo y muestra gráficamente los
diferentes tipos de discontinuidad.
Introducción
Las dos grandes áreas del cálculo, denominadas cálculo
diferencial y cálculo integral, se basan en el concepto
fundamental de límite. En este bloque, el enfoque que
haremos a este importante concepto será intuitivo,
centrado en la compresión de qué es un límite mediante
el uso de ejemplos numéricos y gráficos.
Idea intuitiva del límite
Sea la función definida por la ecuación 𝑓 𝑥 =
2𝑥2−3𝑥−2
𝑥−2
para
toda 𝐱 ∈ ℝ, 𝒙 ≠ 𝟐
Verificar el comportamiento de la función cuando x tiende a 2
X f(x)
1.25
1.5
1.75
1.9
1.99
1.999
1.9999
X f(x)
2.75
2.5
2.25
2.1
2.01
2.001
2.0001
Idea intuitiva del límite
De la gráfica puede observarse que, aunque la función 𝑓 no esta
definida para 𝑥 = 2, cuando x toma valores muy cercano a 2 la
función se aproxima a 5, lo que escribimos como:
lim
𝑥→2
𝑓 𝑥 = 5
Definición 1
Escriba
lim
𝑥→𝑎
𝑓 𝑥 = 𝐿
Que se expresa como: “el límite de 𝒇(𝒙) cuando 𝒙
tiende 𝐚, es igual a 𝑳”
Si podemos acercar arbitrariamente los valores de
𝒇(𝒙) a 𝑳 (tanto como desee) escogiendo una 𝒙 lo
bastante cerca de 𝒂, pero no igual a 𝒂
Definición 2
Definición informal
lim
𝑥→𝑎
𝑓 𝑥 = 𝐿
Si 𝒇(𝒙) puede hacerse arbitrariamente próximo al
número 𝐿 al tomar 𝑥 suficientemente cerca de,
pero diferente de un número 𝒂, por la izquierda y
por la derecha de 𝒂, entonces el límite de 𝒇(𝒙)
cuando 𝑥 tiende a a es 𝑳.
Notación
El análisis del concepto de límite se facilita al
usar una notación especial. Si el símbolo de
flecha → representa la palabra tiende, entonces
el simbolismo
𝑥 → 𝑎−
Indica que x tiende al número a por la izquierda
𝑥 → 𝑎+
Significa que x tiende a a por la derecha
Límites Laterales
Límites por dos lados
Si tanto el límite por la
izquierda como el límite
por la derecha existen y
tienen un valor común.
lim
𝑥→𝑎−
𝑓(𝑥) = 𝐿
lim
𝑥→𝑎+
𝑓(𝑥) = 𝐿
Entonces:
lim
𝑥→𝑎
𝑓(𝑥) = 𝐿
Existencia o no existencia
La existencia de un límite de una función f cuando x
tiende a a, no depende de si f está definida en a, sino
sólo de si está definida para x cerca del número a.
Por ejemplo:
Se observa aunque
𝑓 −4 = 5
lim
𝑥→−4
16 − 𝑥2
4 + 𝑥
= 8
Límite no existe
En general, el límite por los lados no existe cuando:
Caso 1:
Si alguno de los dos límites laterales
lim
𝑥→𝑎−
𝑓(𝑥) o lim
𝑥→𝑎+
𝑓(𝑥) no existe.
Caso 2:
Si lim
𝑥→𝑎−
𝑓(𝑥) = 𝐿1 y lim
𝑥→𝑎+
𝑓(𝑥) = 𝐿2, pero 𝐿1 ≠ 𝐿2
ActividadDeterminar los siguientes límites, utilizando
para ello la representación gráfica de la
función g, que se da a continuación:
Actividad
La gráfica de la función definida por partes
𝒇 𝒙 =
𝒙 𝟐,
−𝒙 + 𝟔,
𝒙 < 𝟐
𝒙 > 𝟐
lim
𝒙→𝟐
𝒇(𝒙) =
𝒙 → 𝟐− 1.9 1.99 1.999
𝑓(𝑥)
𝒙 → 𝟐+ 2.1 2.01 2.001
𝑓(𝑥)
Actividad
La gráfica de la función definida por partes
𝒇 𝒙 =
𝒙 + 𝟐,
−𝒙 + 𝟏𝟎,
𝒙 ≤ 𝟓
𝒙 > 𝟓
lim
𝒙→𝟓
𝒇(𝒙) =
𝒙 → 𝟓− 4.9 4.99 4.999
𝑓(𝑥)
𝒙 → 𝟓+ 5.1 5.01 5.001
𝑓(𝑥)
Actividad
Una forma indeterminada
𝒇 𝒙 =
𝒙
𝒙
𝟏,
−𝟏,
𝒙 > 𝟎
𝒙 < 𝟎
lim
𝒙→𝟎−
𝒇(𝒙) =
lim
𝒙→𝟎+
𝒇(𝒙) =
Se concluye:
lim
𝒙→𝟎
𝒇(𝒙) =
Actividad
Un límite trigonométrico importante
𝒇 𝒙 =
sin 𝒙
𝒙
Se concluye:
lim
𝒙→𝟎
𝒇(𝒙) =
𝒙 → 𝟎− ‒0.1 ‒0.01 ‒0.001
𝑓(𝑥)
𝒙 → 𝟎+ 0.1 0.01 0.001
𝑓(𝑥)
Actividad
Un límite por la derecha
𝒇 𝒙 = 𝒙
Se concluye:
lim
𝒙→𝟎+
𝒇(𝒙) =
𝒙 → 𝟎− ‒0.1 ‒0.01 ‒0.001
𝑓(𝑥)
𝒙 → 𝟎+ 0.1 0.01 0.001
𝑓(𝑥)
Actividad
Límite trigonométrico
𝒇 𝒙 =
𝟏 − 𝒄𝒐𝒔 𝒙
𝒙
Se concluye:
lim
𝒙→𝟎
𝒇(𝒙) =
𝒙 → 𝟎− ‒0.1 ‒0.01 ‒0.001
𝑓(𝑥)
𝒙 → 𝟎+ 0.1 0.01 0.001
𝑓(𝑥)

Más contenido relacionado

La actualidad más candente

Presentación historia del concepto de limite
Presentación historia del concepto de limitePresentación historia del concepto de limite
Presentación historia del concepto de limite
izumorin
 
Aplicaciones de los limites de funciones en problemas de la vida cotidiana cc...
Aplicaciones de los limites de funciones en problemas de la vida cotidiana cc...Aplicaciones de los limites de funciones en problemas de la vida cotidiana cc...
Aplicaciones de los limites de funciones en problemas de la vida cotidiana cc...
Demetrio Ccesa Rayme
 
Función Compuesta y Función Inversa
Función Compuesta y Función InversaFunción Compuesta y Función Inversa
Función Compuesta y Función Inversa
José
 
4.1 definición del espacio vectorial y sus propiedades
4.1 definición del espacio vectorial y sus propiedades4.1 definición del espacio vectorial y sus propiedades
4.1 definición del espacio vectorial y sus propiedades
breerico
 

La actualidad más candente (20)

Limites: problemas resueltos
Limites: problemas resueltosLimites: problemas resueltos
Limites: problemas resueltos
 
Concepto geométrico de la derivada
Concepto geométrico de la derivadaConcepto geométrico de la derivada
Concepto geométrico de la derivada
 
Asintotas - FIEE UNI 2014 II
Asintotas - FIEE UNI 2014 IIAsintotas - FIEE UNI 2014 II
Asintotas - FIEE UNI 2014 II
 
Teorema de chebyshev
Teorema de chebyshevTeorema de chebyshev
Teorema de chebyshev
 
Teoria numeros complejos
Teoria numeros complejosTeoria numeros complejos
Teoria numeros complejos
 
Limites laterales
Limites lateralesLimites laterales
Limites laterales
 
Apuntes transformaciones lineales - UTFSM
Apuntes transformaciones lineales - UTFSMApuntes transformaciones lineales - UTFSM
Apuntes transformaciones lineales - UTFSM
 
SUMAS DE RIEMANN
SUMAS DE RIEMANNSUMAS DE RIEMANN
SUMAS DE RIEMANN
 
Funciones trascendentes
Funciones trascendentesFunciones trascendentes
Funciones trascendentes
 
Presentación historia del concepto de limite
Presentación historia del concepto de limitePresentación historia del concepto de limite
Presentación historia del concepto de limite
 
Aplicaciones de los limites de funciones en problemas de la vida cotidiana cc...
Aplicaciones de los limites de funciones en problemas de la vida cotidiana cc...Aplicaciones de los limites de funciones en problemas de la vida cotidiana cc...
Aplicaciones de los limites de funciones en problemas de la vida cotidiana cc...
 
Identidades trigonometricas
Identidades trigonometricasIdentidades trigonometricas
Identidades trigonometricas
 
Funciones Polinomiales grado 3 y 4. Matemática
 Funciones Polinomiales grado 3 y 4. Matemática  Funciones Polinomiales grado 3 y 4. Matemática
Funciones Polinomiales grado 3 y 4. Matemática
 
Problemas resueltos de derivadas
Problemas resueltos de derivadasProblemas resueltos de derivadas
Problemas resueltos de derivadas
 
Ecuaciones Diferenciales
Ecuaciones DiferencialesEcuaciones Diferenciales
Ecuaciones Diferenciales
 
Fun. inyectivas, sobreyectivas, biyectivas, identidad y constante
Fun. inyectivas, sobreyectivas, biyectivas, identidad  y constanteFun. inyectivas, sobreyectivas, biyectivas, identidad  y constante
Fun. inyectivas, sobreyectivas, biyectivas, identidad y constante
 
Función Compuesta y Función Inversa
Función Compuesta y Función InversaFunción Compuesta y Función Inversa
Función Compuesta y Función Inversa
 
4.1 definición del espacio vectorial y sus propiedades
4.1 definición del espacio vectorial y sus propiedades4.1 definición del espacio vectorial y sus propiedades
4.1 definición del espacio vectorial y sus propiedades
 
Aplicación función inversa.
Aplicación función inversa.Aplicación función inversa.
Aplicación función inversa.
 
Funciones exponenciales
Funciones exponencialesFunciones exponenciales
Funciones exponenciales
 

Similar a Concepto: Límite, notación, límites laterales y existencia

Clase 5 - UNIT 2 - Definición intuitiva y geométrica de Límite - Teoremas.docx
Clase 5 - UNIT 2 - Definición intuitiva y geométrica de Límite - Teoremas.docxClase 5 - UNIT 2 - Definición intuitiva y geométrica de Límite - Teoremas.docx
Clase 5 - UNIT 2 - Definición intuitiva y geométrica de Límite - Teoremas.docx
Manuel Ortiz
 
Clase1.docx
Clase1.docxClase1.docx
Clase1.docx
favalenc
 

Similar a Concepto: Límite, notación, límites laterales y existencia (20)

Límite y Continuidad
Límite y ContinuidadLímite y Continuidad
Límite y Continuidad
 
calculo diferencial
 calculo diferencial   calculo diferencial
calculo diferencial
 
Limites teoria y trabajo de grado 11
Limites teoria y trabajo de grado 11Limites teoria y trabajo de grado 11
Limites teoria y trabajo de grado 11
 
Análisis matemático I - Límites y Continuidad de funciones
Análisis matemático I - Límites y Continuidad de funcionesAnálisis matemático I - Límites y Continuidad de funciones
Análisis matemático I - Límites y Continuidad de funciones
 
Representación de limites
Representación de limitesRepresentación de limites
Representación de limites
 
Clase1
Clase1Clase1
Clase1
 
Unidad # 3 continuidad y limite
Unidad # 3 continuidad y limiteUnidad # 3 continuidad y limite
Unidad # 3 continuidad y limite
 
U1 Tema1 Límite de una Función
U1 Tema1 Límite de una FunciónU1 Tema1 Límite de una Función
U1 Tema1 Límite de una Función
 
Limites blog
Limites blogLimites blog
Limites blog
 
LÍMITES -1 be.pdf
LÍMITES -1 be.pdfLÍMITES -1 be.pdf
LÍMITES -1 be.pdf
 
Continuidad
ContinuidadContinuidad
Continuidad
 
El concepto del limite (Cálculo I)
El concepto del limite (Cálculo I)El concepto del limite (Cálculo I)
El concepto del limite (Cálculo I)
 
Limites
LimitesLimites
Limites
 
Limites (2)
Limites (2)Limites (2)
Limites (2)
 
Clase 5 - UNIT 2 - Definición intuitiva y geométrica de Límite - Teoremas.docx
Clase 5 - UNIT 2 - Definición intuitiva y geométrica de Límite - Teoremas.docxClase 5 - UNIT 2 - Definición intuitiva y geométrica de Límite - Teoremas.docx
Clase 5 - UNIT 2 - Definición intuitiva y geométrica de Límite - Teoremas.docx
 
Cal
CalCal
Cal
 
Matematica Derivadas Bachillerato.pdf
Matematica Derivadas Bachillerato.pdfMatematica Derivadas Bachillerato.pdf
Matematica Derivadas Bachillerato.pdf
 
Tema no. 2 semana 5
Tema no. 2 semana 5Tema no. 2 semana 5
Tema no. 2 semana 5
 
Clase1.docx
Clase1.docxClase1.docx
Clase1.docx
 
Limites infinitos y limites en el infinito
Limites infinitos y limites en el infinitoLimites infinitos y limites en el infinito
Limites infinitos y limites en el infinito
 

Más de Saul Olaf Loaiza Meléndez

Más de Saul Olaf Loaiza Meléndez (20)

Ejercicio 207 ht
Ejercicio 207 htEjercicio 207 ht
Ejercicio 207 ht
 
Fundamentos de Física: Vectores
Fundamentos de Física: VectoresFundamentos de Física: Vectores
Fundamentos de Física: Vectores
 
Ley Homogeneidad
Ley HomogeneidadLey Homogeneidad
Ley Homogeneidad
 
Introducción a la Física
Introducción a la FísicaIntroducción a la Física
Introducción a la Física
 
Bloque temático I,límite infinito
Bloque temático I,límite infinitoBloque temático I,límite infinito
Bloque temático I,límite infinito
 
U1 Introducción a las Ecuaciones Diferenciales
U1 Introducción a las Ecuaciones DiferencialesU1 Introducción a las Ecuaciones Diferenciales
U1 Introducción a las Ecuaciones Diferenciales
 
Examen Cálculo Diferencial Unidad 4 Fase 1
Examen Cálculo Diferencial Unidad 4 Fase 1Examen Cálculo Diferencial Unidad 4 Fase 1
Examen Cálculo Diferencial Unidad 4 Fase 1
 
Ttransformada de Laplace
Ttransformada de LaplaceTtransformada de Laplace
Ttransformada de Laplace
 
Ecuaciones Diferenciales Ordinarias, Ecuación Exacta
Ecuaciones Diferenciales Ordinarias, Ecuación ExactaEcuaciones Diferenciales Ordinarias, Ecuación Exacta
Ecuaciones Diferenciales Ordinarias, Ecuación Exacta
 
U2 CDI EV1 Continuidad y Límite de funciones
U2 CDI EV1 Continuidad y Límite de funcionesU2 CDI EV1 Continuidad y Límite de funciones
U2 CDI EV1 Continuidad y Límite de funciones
 
bloque II Cinemática MRU
bloque II Cinemática MRUbloque II Cinemática MRU
bloque II Cinemática MRU
 
Producto Matrices
Producto MatricesProducto Matrices
Producto Matrices
 
Producto y Propiedades de Matrices
Producto y Propiedades de MatricesProducto y Propiedades de Matrices
Producto y Propiedades de Matrices
 
Solución de Sistema Lineal de Ecuaciones por Métodos Iterativos
Solución  de Sistema Lineal de Ecuaciones por Métodos IterativosSolución  de Sistema Lineal de Ecuaciones por Métodos Iterativos
Solución de Sistema Lineal de Ecuaciones por Métodos Iterativos
 
ALL U2 Balance de Masa
ALL U2 Balance de MasaALL U2 Balance de Masa
ALL U2 Balance de Masa
 
Guia Matriz Escalonada Reducina
Guia Matriz Escalonada ReducinaGuia Matriz Escalonada Reducina
Guia Matriz Escalonada Reducina
 
Evidencia de Conocimiento
Evidencia de Conocimiento Evidencia de Conocimiento
Evidencia de Conocimiento
 
Unidad I Matrices
Unidad I MatricesUnidad I Matrices
Unidad I Matrices
 
Análisis: Evaluación Diagnóstica
Análisis:  Evaluación DiagnósticaAnálisis:  Evaluación Diagnóstica
Análisis: Evaluación Diagnóstica
 
Encuadre2015
Encuadre2015Encuadre2015
Encuadre2015
 

Último

Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Fernando Solis
 
Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdf
patriciaines1993
 

Último (20)

Linea del tiempo - Filosofos Cristianos.docx
Linea del tiempo - Filosofos Cristianos.docxLinea del tiempo - Filosofos Cristianos.docx
Linea del tiempo - Filosofos Cristianos.docx
 
Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024
 
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptxLA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
 
PP_Comunicacion en Salud: Objetivación de signos y síntomas
PP_Comunicacion en Salud: Objetivación de signos y síntomasPP_Comunicacion en Salud: Objetivación de signos y síntomas
PP_Comunicacion en Salud: Objetivación de signos y síntomas
 
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIASISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
 
activ4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdfactiv4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdf
 
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPCTRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
 
AEC 2. Aventura en el Antiguo Egipto.pptx
AEC 2. Aventura en el Antiguo Egipto.pptxAEC 2. Aventura en el Antiguo Egipto.pptx
AEC 2. Aventura en el Antiguo Egipto.pptx
 
Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdf
 
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
 
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICABIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
 
TIENDAS MASS MINIMARKET ESTUDIO DE MERCADO
TIENDAS MASS MINIMARKET ESTUDIO DE MERCADOTIENDAS MASS MINIMARKET ESTUDIO DE MERCADO
TIENDAS MASS MINIMARKET ESTUDIO DE MERCADO
 
1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...
1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...
1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...
 
Posición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptxPosición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptx
 
Revista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdfRevista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdf
 
Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024
 
Novena de Pentecostés con textos de san Juan Eudes
Novena de Pentecostés con textos de san Juan EudesNovena de Pentecostés con textos de san Juan Eudes
Novena de Pentecostés con textos de san Juan Eudes
 

Concepto: Límite, notación, límites laterales y existencia

  • 1. Unidad de Aprendizaje II Límites y Derivación Bloque Temático VI Concepto Límite y Notación Límites laterales Existencia del Límite Facilitador: Saúl Olaf Loaiza Meléndez
  • 2. Apertura: Evaluación Diagnóstica Esta evaluación te servirá a ti y a tu profesor para identificar los aprendizajes adquiridos hasta el momento, así como los necesarios para el estudio de los contenidos de este bloque temático.
  • 3. APERTURA: Evaluación Diagnóstica Si 𝑓 𝑥 = 3𝑥2 − 2𝑥 + 5, hallar: Ejercicio #1 𝒇 𝟐 = Ejercicio #2 𝒇 𝟐 = Ejercicio #3 𝒇 𝒂 𝟓 = Ejercicio #4 En la siguiente función, realice la gráfica cuando x=-4,-3,-2,1,6: h 𝑥 = − 𝑥 + 3 5 Trace la gráfica de la función, donde se observen las intersecciones de x, es decir cuando g 𝑥 = 0 𝒈 𝒙 = 𝒙 𝟐 + 𝟐𝒙 − 𝟐
  • 4. Competencia Específica Utilizar la definición de límite de funciones para determinar analíticamente la continuidad de una función en un punto o en un intervalo y muestra gráficamente los diferentes tipos de discontinuidad.
  • 5. Introducción Las dos grandes áreas del cálculo, denominadas cálculo diferencial y cálculo integral, se basan en el concepto fundamental de límite. En este bloque, el enfoque que haremos a este importante concepto será intuitivo, centrado en la compresión de qué es un límite mediante el uso de ejemplos numéricos y gráficos.
  • 6. Idea intuitiva del límite Sea la función definida por la ecuación 𝑓 𝑥 = 2𝑥2−3𝑥−2 𝑥−2 para toda 𝐱 ∈ ℝ, 𝒙 ≠ 𝟐 Verificar el comportamiento de la función cuando x tiende a 2 X f(x) 1.25 1.5 1.75 1.9 1.99 1.999 1.9999 X f(x) 2.75 2.5 2.25 2.1 2.01 2.001 2.0001
  • 7. Idea intuitiva del límite De la gráfica puede observarse que, aunque la función 𝑓 no esta definida para 𝑥 = 2, cuando x toma valores muy cercano a 2 la función se aproxima a 5, lo que escribimos como: lim 𝑥→2 𝑓 𝑥 = 5
  • 8. Definición 1 Escriba lim 𝑥→𝑎 𝑓 𝑥 = 𝐿 Que se expresa como: “el límite de 𝒇(𝒙) cuando 𝒙 tiende 𝐚, es igual a 𝑳” Si podemos acercar arbitrariamente los valores de 𝒇(𝒙) a 𝑳 (tanto como desee) escogiendo una 𝒙 lo bastante cerca de 𝒂, pero no igual a 𝒂
  • 9. Definición 2 Definición informal lim 𝑥→𝑎 𝑓 𝑥 = 𝐿 Si 𝒇(𝒙) puede hacerse arbitrariamente próximo al número 𝐿 al tomar 𝑥 suficientemente cerca de, pero diferente de un número 𝒂, por la izquierda y por la derecha de 𝒂, entonces el límite de 𝒇(𝒙) cuando 𝑥 tiende a a es 𝑳.
  • 10. Notación El análisis del concepto de límite se facilita al usar una notación especial. Si el símbolo de flecha → representa la palabra tiende, entonces el simbolismo 𝑥 → 𝑎− Indica que x tiende al número a por la izquierda 𝑥 → 𝑎+ Significa que x tiende a a por la derecha
  • 12. Límites por dos lados Si tanto el límite por la izquierda como el límite por la derecha existen y tienen un valor común. lim 𝑥→𝑎− 𝑓(𝑥) = 𝐿 lim 𝑥→𝑎+ 𝑓(𝑥) = 𝐿 Entonces: lim 𝑥→𝑎 𝑓(𝑥) = 𝐿
  • 13. Existencia o no existencia La existencia de un límite de una función f cuando x tiende a a, no depende de si f está definida en a, sino sólo de si está definida para x cerca del número a. Por ejemplo: Se observa aunque 𝑓 −4 = 5 lim 𝑥→−4 16 − 𝑥2 4 + 𝑥 = 8
  • 14. Límite no existe En general, el límite por los lados no existe cuando: Caso 1: Si alguno de los dos límites laterales lim 𝑥→𝑎− 𝑓(𝑥) o lim 𝑥→𝑎+ 𝑓(𝑥) no existe. Caso 2: Si lim 𝑥→𝑎− 𝑓(𝑥) = 𝐿1 y lim 𝑥→𝑎+ 𝑓(𝑥) = 𝐿2, pero 𝐿1 ≠ 𝐿2
  • 15. ActividadDeterminar los siguientes límites, utilizando para ello la representación gráfica de la función g, que se da a continuación:
  • 16. Actividad La gráfica de la función definida por partes 𝒇 𝒙 = 𝒙 𝟐, −𝒙 + 𝟔, 𝒙 < 𝟐 𝒙 > 𝟐 lim 𝒙→𝟐 𝒇(𝒙) = 𝒙 → 𝟐− 1.9 1.99 1.999 𝑓(𝑥) 𝒙 → 𝟐+ 2.1 2.01 2.001 𝑓(𝑥)
  • 17. Actividad La gráfica de la función definida por partes 𝒇 𝒙 = 𝒙 + 𝟐, −𝒙 + 𝟏𝟎, 𝒙 ≤ 𝟓 𝒙 > 𝟓 lim 𝒙→𝟓 𝒇(𝒙) = 𝒙 → 𝟓− 4.9 4.99 4.999 𝑓(𝑥) 𝒙 → 𝟓+ 5.1 5.01 5.001 𝑓(𝑥)
  • 18. Actividad Una forma indeterminada 𝒇 𝒙 = 𝒙 𝒙 𝟏, −𝟏, 𝒙 > 𝟎 𝒙 < 𝟎 lim 𝒙→𝟎− 𝒇(𝒙) = lim 𝒙→𝟎+ 𝒇(𝒙) = Se concluye: lim 𝒙→𝟎 𝒇(𝒙) =
  • 19. Actividad Un límite trigonométrico importante 𝒇 𝒙 = sin 𝒙 𝒙 Se concluye: lim 𝒙→𝟎 𝒇(𝒙) = 𝒙 → 𝟎− ‒0.1 ‒0.01 ‒0.001 𝑓(𝑥) 𝒙 → 𝟎+ 0.1 0.01 0.001 𝑓(𝑥)
  • 20. Actividad Un límite por la derecha 𝒇 𝒙 = 𝒙 Se concluye: lim 𝒙→𝟎+ 𝒇(𝒙) = 𝒙 → 𝟎− ‒0.1 ‒0.01 ‒0.001 𝑓(𝑥) 𝒙 → 𝟎+ 0.1 0.01 0.001 𝑓(𝑥)
  • 21. Actividad Límite trigonométrico 𝒇 𝒙 = 𝟏 − 𝒄𝒐𝒔 𝒙 𝒙 Se concluye: lim 𝒙→𝟎 𝒇(𝒙) = 𝒙 → 𝟎− ‒0.1 ‒0.01 ‒0.001 𝑓(𝑥) 𝒙 → 𝟎+ 0.1 0.01 0.001 𝑓(𝑥)