FactorizaciónFactor común
Agrupación de términos
Diferencia de cuadrados
Trinomio cuadrado perfecto
Trinomio de la forma x2 + bx +c
Trinomio de la forma ax2 + bx + c
Suma y diferencia de cubosFactorizaciónCuando se habla de factorizar una expresión algebraica, consiste en hallar dos o más factores, cuyo producto sea igual a la expresión propuesta. Por ejemplo:15= (3)(5)14ab= (2)(7)(a)(b)5x + 5y= (5)(x + y)
Factor comúnAl factor que aparece en todos los términos de una expresión se le llama factor común.Si en una expresión todos sus términos tienen factor común, este será uno de los factores de factorización.Por lo cual lo primero que se tiene que hacer es determinar en la expresión el factor común, y luego dividir todo el binomio o polinomio dado entre dicho factor, indicando la factorización como el producto del factor común por el cociente obtenido.
Por ejemplo:4ab + 10ac=El factor común es a, por lo tanto la expresión quedaría de la siguiente manera:a(4b + 10c) ó2a(2b + 5c), ya que en la expresión anterior todavía se puede seguir factorizando.
Agrupación de términosAlgunos polinomios no tienen un factor común a todos los términos; pero puede ocurrir que grupos de términos tengan cierto factor común.Agrupándolos y factorizando cada grupo puede resultar un factor común a todos los grupos del polinomio.Estas factorizaciones se llaman por agrupación de términos.
Por ejemplo:Factoricemos ax + 2a + bx + 2b, notemos que el polinomio no tiene un factor común a todos los términos, pero se puede agrupar tomando en cuenta los términos que tengan algún factor común.(ax + bx) + (2a + 2b), donde los dos primeros términos tienen a x como factor común, y los dos últimos 2.
Factorizando cada grupo quedaría: x(a + b) + 2(a + b).Resulta que (a + b) es un factor común de todo el polinomio, por lo que factorizándolo se tiene: x(a + b) +2(a + b)= (x + 2)(a + b)Así ax + 2a + bx + 2b= (x + 2) (a + b)
Diferencia de cuadradosLa diferencia de cuadrados es igual al producto de dos binomios conjugados formados por las raíces cuadradas de los términos de esta diferencia, teniendo en cuenta que los términos simétricos de los binomios conjugados deben corresponder a la raíz cuadrada del sustraendo en la diferencia de cuadrados.
Por ejemplo:Factoricemos 9a2 – 16b2Obtengamos la raíz cuadrada de 9a2 es: 3aDeterminamos la raíz cuadrada de 16b2 es: 4bObtenemos los binomios conjugados multiplicando la suma de estas raíces (3a +4b) por su diferencia (3a – 4b) y tendremos:9a2 – 16b2= (3a + 4b)(3a - 4b)
Trinomio Cuadrado PerfectoUna cantidad es cuadrado perfecto cuando su raíz cuadrada es racional.Al elevar un binomio al cuadrado se obtiene un trinomio, este se denomina trinomio cuadrado perfecto, ya que se obtiene al elevar al cuadrado el binomio a + b, es decir:(a + b)2= a2 + 2ab +b2
Por ejemplo:X2 + 14x + 49La raíz cuadrada del primer término x2 es: xLa raíz cuadrada del tercer término 49 es: 7Por lo tanto, x2 y 49 son cuadrados perfectos y ambos términos tienen signos positivos.El doble del producto de las raíces es (2)(7)(x)= 14x, el segundo términoAsí x2 + 14x + 49 es cuadrado perfecto
Trinomio de la forma x2 + bx +cA el resultado del producto de dos binomios con un término común se le conoce como: trinomio de la forma x2 + bx +c, cuyo primer término es cuadrado perfecto, el segundo término tiene un factor igual a la raíz cuadrada positiva del primero y el tercer término es independiente de la letra del primer término.
Por ejemplo:x2 + 5x + 6Se debe obtener dos binomios cuyo primer término sea x, osea la raíz cuadrada del primer término del trinomio (x   )(x   ).Ahora se debe encontrarlos segundos términos, que deben ser 2 números cuyo producto debe ser igual a 6 (el término independiente), y cuya suma sea 5 (el coeficiente de x)
El producto (+6) es positivo, lo que indica que ambos términos deben ser positivos o negativos, además la suma también es positiva (+5), por lo que ambos deben ser positivos.Los números buscados son 2 y 3, ya que el producto de estos da 6, y la suma de los mismos da 5.Por lo cual x2 + 5x + 6= (x +2)(x + 3)
Trinomio de la forma ax2 + bx + cTrinomios de este tipo provienen de multiplicar dos binomios, donde los términos de un binomio son semejantes a los términos del otro binomio.
Por ejemplo:Factoricemos 5x2 + 16 x +3Una forma de resolverlo es la siguiente: podemos convertir este trinomio en otro que tenga la forma x2 + bx + c, esto es posible multiplicándolo por el coeficiente del primer término así:5(5x2) +5(16x) +5(3)Escribiéndolo de otro modo (5x)2 + 5(16x) + 5(3)
Los factores deben ser dos binomios cuyo primer término sea 5x y los segundos términos deben ser dos números cuyo producto sea 15 y cuya suma sea 16:(5x)2 +16(5x) +15= (5x + 15)(5x + 1)Factorizando:        = 5(x + 3)(5x + 1)Debido a que al trinomio original lo multiplicamos por 5, la expresión anterior la dividiremos entre 5 para tener la factorización del trinomio original:5x2 +16x + 3= (x + 3)(5x + 1)
Suma y diferencia de cubosSe tiene una suma o diferencia de cuboscuando en un binomio ambos términos tienen raíz cúbica racional.La suma de los cubos de 2 términos se factoriza como el producto de dos factores, uno de los cuales es la suma de las raíces cúbicas de esos términos, y el otro es la suma de los cuadrados de las mismas raíces, disminuida en su producto.

Factorización

  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
    Trinomio de laforma x2 + bx +c
  • 6.
    Trinomio de laforma ax2 + bx + c
  • 7.
    Suma y diferenciade cubosFactorizaciónCuando se habla de factorizar una expresión algebraica, consiste en hallar dos o más factores, cuyo producto sea igual a la expresión propuesta. Por ejemplo:15= (3)(5)14ab= (2)(7)(a)(b)5x + 5y= (5)(x + y)
  • 8.
    Factor comúnAl factorque aparece en todos los términos de una expresión se le llama factor común.Si en una expresión todos sus términos tienen factor común, este será uno de los factores de factorización.Por lo cual lo primero que se tiene que hacer es determinar en la expresión el factor común, y luego dividir todo el binomio o polinomio dado entre dicho factor, indicando la factorización como el producto del factor común por el cociente obtenido.
  • 9.
    Por ejemplo:4ab +10ac=El factor común es a, por lo tanto la expresión quedaría de la siguiente manera:a(4b + 10c) ó2a(2b + 5c), ya que en la expresión anterior todavía se puede seguir factorizando.
  • 10.
    Agrupación de términosAlgunospolinomios no tienen un factor común a todos los términos; pero puede ocurrir que grupos de términos tengan cierto factor común.Agrupándolos y factorizando cada grupo puede resultar un factor común a todos los grupos del polinomio.Estas factorizaciones se llaman por agrupación de términos.
  • 11.
    Por ejemplo:Factoricemos ax+ 2a + bx + 2b, notemos que el polinomio no tiene un factor común a todos los términos, pero se puede agrupar tomando en cuenta los términos que tengan algún factor común.(ax + bx) + (2a + 2b), donde los dos primeros términos tienen a x como factor común, y los dos últimos 2.
  • 12.
    Factorizando cada grupoquedaría: x(a + b) + 2(a + b).Resulta que (a + b) es un factor común de todo el polinomio, por lo que factorizándolo se tiene: x(a + b) +2(a + b)= (x + 2)(a + b)Así ax + 2a + bx + 2b= (x + 2) (a + b)
  • 13.
    Diferencia de cuadradosLadiferencia de cuadrados es igual al producto de dos binomios conjugados formados por las raíces cuadradas de los términos de esta diferencia, teniendo en cuenta que los términos simétricos de los binomios conjugados deben corresponder a la raíz cuadrada del sustraendo en la diferencia de cuadrados.
  • 14.
    Por ejemplo:Factoricemos 9a2– 16b2Obtengamos la raíz cuadrada de 9a2 es: 3aDeterminamos la raíz cuadrada de 16b2 es: 4bObtenemos los binomios conjugados multiplicando la suma de estas raíces (3a +4b) por su diferencia (3a – 4b) y tendremos:9a2 – 16b2= (3a + 4b)(3a - 4b)
  • 15.
    Trinomio Cuadrado PerfectoUnacantidad es cuadrado perfecto cuando su raíz cuadrada es racional.Al elevar un binomio al cuadrado se obtiene un trinomio, este se denomina trinomio cuadrado perfecto, ya que se obtiene al elevar al cuadrado el binomio a + b, es decir:(a + b)2= a2 + 2ab +b2
  • 16.
    Por ejemplo:X2 +14x + 49La raíz cuadrada del primer término x2 es: xLa raíz cuadrada del tercer término 49 es: 7Por lo tanto, x2 y 49 son cuadrados perfectos y ambos términos tienen signos positivos.El doble del producto de las raíces es (2)(7)(x)= 14x, el segundo términoAsí x2 + 14x + 49 es cuadrado perfecto
  • 17.
    Trinomio de laforma x2 + bx +cA el resultado del producto de dos binomios con un término común se le conoce como: trinomio de la forma x2 + bx +c, cuyo primer término es cuadrado perfecto, el segundo término tiene un factor igual a la raíz cuadrada positiva del primero y el tercer término es independiente de la letra del primer término.
  • 18.
    Por ejemplo:x2 +5x + 6Se debe obtener dos binomios cuyo primer término sea x, osea la raíz cuadrada del primer término del trinomio (x )(x ).Ahora se debe encontrarlos segundos términos, que deben ser 2 números cuyo producto debe ser igual a 6 (el término independiente), y cuya suma sea 5 (el coeficiente de x)
  • 19.
    El producto (+6)es positivo, lo que indica que ambos términos deben ser positivos o negativos, además la suma también es positiva (+5), por lo que ambos deben ser positivos.Los números buscados son 2 y 3, ya que el producto de estos da 6, y la suma de los mismos da 5.Por lo cual x2 + 5x + 6= (x +2)(x + 3)
  • 20.
    Trinomio de laforma ax2 + bx + cTrinomios de este tipo provienen de multiplicar dos binomios, donde los términos de un binomio son semejantes a los términos del otro binomio.
  • 21.
    Por ejemplo:Factoricemos 5x2+ 16 x +3Una forma de resolverlo es la siguiente: podemos convertir este trinomio en otro que tenga la forma x2 + bx + c, esto es posible multiplicándolo por el coeficiente del primer término así:5(5x2) +5(16x) +5(3)Escribiéndolo de otro modo (5x)2 + 5(16x) + 5(3)
  • 22.
    Los factores debenser dos binomios cuyo primer término sea 5x y los segundos términos deben ser dos números cuyo producto sea 15 y cuya suma sea 16:(5x)2 +16(5x) +15= (5x + 15)(5x + 1)Factorizando: = 5(x + 3)(5x + 1)Debido a que al trinomio original lo multiplicamos por 5, la expresión anterior la dividiremos entre 5 para tener la factorización del trinomio original:5x2 +16x + 3= (x + 3)(5x + 1)
  • 23.
    Suma y diferenciade cubosSe tiene una suma o diferencia de cuboscuando en un binomio ambos términos tienen raíz cúbica racional.La suma de los cubos de 2 términos se factoriza como el producto de dos factores, uno de los cuales es la suma de las raíces cúbicas de esos términos, y el otro es la suma de los cuadrados de las mismas raíces, disminuida en su producto.