SlideShare una empresa de Scribd logo
1 de 46
Descargar para leer sin conexión
55
Sucesiones, técnicas de
conteo y funciones
exponenciales
	 Objetivos de la Unidad:
	 Utilizarás las sucesiones aritméticas y geométricas, mediante la
deducción y aplicación de su término general, que corresponde a
intervalos específicos.
	 Aplicarásprocedimientosdeordenamientoyconteoparadeterminar
el número de formas diferentes de seleccionar grupos de objetos de
un conjunto dado y aplicarlas a la resolución de problemas de la	
vida cotidiana.
	 Aplicarás con seguridad las funciones exponenciales en
la resolución de situaciones problemáticas del entorno escolar y
social.
MATEMÁTICA
Unidad 1
Descripción del proyecto
En esta unidad trabajarás en un proyecto de la vida cotidiana en el cual podrás
encontrar el interés compuesto de un préstamo aplicando elementos matemáticos, que
te servirán para tomar decisiones sobre tus finanzas.
Sucesiones
Aritméticas Geométricas
Términos
generales
Suma de
términosInterpolaciónExtrapolación
n-ésimo término Medios
calculando el calculando
pueden ser
que se utilizan en
las determinan
Funciones
exponenciales
Características
Identificarlas
Gráficos
Dominio
Rango
Clasificación
Crecientes
Decrecientes
Principio de la
multiplicación Permutaciones Combinaciones
Técnicas
de conteo
Número de
arreglos
Diagrama de
árbol
todos los
elementos
r de n
elementos
estudiaremos
en función de
definidos en un
d
Principio
de la suma
apoyado
por el
considerando
sus su
definiendo enque permiten
Segundo Año - Matemática 57
Primera Unidad Lección 1
Sucesiones Aritméticas
Motivación
Indicadores de logro
Para descubrir cuáles son los elementos que deben ir
en los espacios, comienzas observando que en cada
ordenamiento existe una regla o patrón. Así:
En a) se presenta el ordenamiento de las letras del
alfabeto.
En b) el ordenamiento de los meses del año.
Los siguientes literales contienen ordenamientos de
números naturales.
Puedes ver que en estas series de números hay un orden,
es decir un elemento o término sigue al otro; hay un
primer elemento, un segundo, un tercero…
En el literal d) y e) ¿cuál es la diferencia entre un término
y el siguiente?
¿Cuál es la diferencia entre el ordenamiento de d)
y de e)?
¿Cuál es la diferencia entre un elemento y el siguiente en
f), g), h)? Piensa y contesta.
Debes tener presente que a estas series de números
que tienen un orden se les denomina sucesiones. Haz
un intento de definir con tus palabras lo que es una
sucesión, piensa y redacta.
¡Te daré una ayuda!
	 Identificarás,coninterésyseguridad,unasucesiónaritmética.
	 Describirásyexplicarásconseguridad,todaslascaracterísticasdecada
sucesiónaritmética.
	 Determinarás,conprecisión,ladiferenciaentredostérminos
consecutivosdeunasucesiónaritmética.
	 Deducirásyexplicarás,conperseveranciayconfianza,eltérminogeneral
deunasucesiónaritmética.
	 Calcularás,conseguridad,elé-nesimotérminodeuna
sucesiónaritmética.
	 Utilizarás,conseguridad,eltérminogeneralalcalcularcualquiertérmino
deunasucesiónaritmética.
	 Identificarásycalcularás,coninterés,todoslosmediosaritméticosentre
dostérminosdeunasucesiónaritmética.
	 Aplicaráscorrectamenteyconprecisiónlafórmulaparaobtenerlasuma
delosprimerostérminosdeunasucesiónaritmética.
	 Resolverásejerciciosyproblemassobresucesionesaritméticas,con
interésyperseverancia.
Encuentra los elementos que deben estar en los espacios.
e)	 1, 3, 5, 7, , , . .
f)	 1, 4, 9, 16, 25, , , . . .
g)	 8, 11, 14, 17, , , . . .
h)	 6, 8, 11, 16, 23, , , . .
a)	 A, B, C, D, , ,
b)	 Enero, febrero, , abril,
c)	 1, 2, 3, 4, , ,
d)	 2, 4, 6, 8, , ,
Una sucesión es un conjunto de elementos
ordenados, de tal manera, que no exista duda de
cuál es el primero de ellos, cuál es el segundo, o
cualquier otro.
UNIDAD 1
58 Matemática - Segundo Año
En la siguiente fotografía hay una sucesión de personas
que hacen cola para comprar su boleto de entrada al
estadio Cuscatlán.
Así como están nombradas esas personas, utilizamos una
notación para nombrar los términos de las sucesiones
numéricas. Por ejemplo, en la sucesión 8, 11, 14, 17,...
tendremo que a1
representa el primer término, a2
el
segundo, a3
el tercero. . .
¿Cómo se representa el décimo término? ¡Piensa!
¿Cómo se representa el trigésimo primer término? ¡Piensa!
Las respuestas a estas dos preguntas aquí las tienes.
Décimo término = 10º término = a10
a31
= 31º término = trigésimo primer término
Puedes ver que el subíndice indica la posición del término. Las notaciones de
los términos de una sucesión se utilizan para calcular el término general de
una sucesión.
Encontremos la diferencia entre un elemento y otro consecutivo
en una sucesión aritmética
20...8,
a1
11,
a2
14,
a3
17,
a4
Ahora estudia la siguiente situación
Primer metro $15
Segundo metro $35
Tercer metro $55
Cuarto metro $75
Para el n – ésimo término o término general, usarás el símbolo: an
Observa esta expresión: a1
a2
a3
, . . . , an
, . . . ¿Qué indican los puntos suspensivos en esta sucesión?
La cooperativa “El buen amigo” necesita hacer un pozo
para satisfacer sus necesidades de agua. El costo por
metro excavado es de
UNIDAD 1
Segundo Año - Matemática 59
¿Qué observas en los precios? ¿Cuánto aumenta el
precio de un metro a otro? Puedes ver que cada metro
excavado cuesta $20 más que el anterior.
Si al excavar 16 metros aún no aparece agua, ¿cuánto
cuesta el 17º metro?
Para resolver esta situación, de seguro razonas así:
Primero observas que la diferencia entre dos valores
consecutivos es la misma.
a2
– a1
= 35 – 15 = 20
a3
– a2
= 55 – 35 = 20
a4
– a3
= 75 – 55 = 20
Para este caso d = 20
Encuentra el término general de una sucesión aritmética
Punto de apoyo
En forma general, la diferencia entre un elemento
y otro consecutivo se expresa así:
d = an
– an–1
donde: d, es la diferencia; an
, es un número; y
an–1
, es el número anterior a ese número.
Observa
Cada término se obtiene sumando d al anterior.
Al segundo, le sumas 1d; al tercero, 2d; al cuarto,
3d ¿Cuántas veces d le sumas al 100º término?
En fin, al n–ésimo le sumas (n – 1) d.
El término general de una sucesión aritmética lo
encontrarás así:
a1
= a1
a2
= a1
+ d
a3
= a1
+ 2d
a4
= a1
+ 3d
a5
= a1
+ 4d
an
= a1
+ (n – 1)d
Cada término se puede calcular conociendo el primero
y la diferencia.
Observa el precio de cada metro excavado y lo siguiente.
a1
= 15
a2
= 15 + 1(20) = 35
a3
= 15 + 2(20) = 55
a4
= 15 + 3(20) = 75
a12
= 15 + 11(20) = 235
a17
= 15 + 16(20) = 15 + 320 = $335
Luego, el precio para perforar el metro 17, es $ 335
UNIDAD 1
60 Matemática - Segundo Año
Encuentra otros términos, conociendo dos términos
no consecutivos
Ahora estudiarás como se aplica la fórmula anterior. Por ejemplo, dada la sucesión 8, 11,
14, 17, . . , vas a encontrar: a) El décimo término b) a35
c) a20
Para encontrarlos, comienzas escribiendo los datos: a1
= 8, d = 17 – 14 = 3. Luego:
a)	Décimo término = a10
	 an
= a1
+ (n – 1)d
	 a10
= 8 + (10 – 1)(3)
	 a10
= 8 + 9(3)
	 a10
= 35
¿Cómo encuentras a20
?
¿De qué otras formas encuentras d?
Observa que el término general an
sirve para calcular el n – ésimo término (cualquier
término) de una sucesión.
Considera que el primero y el quinto término de una sucesión aritmética son 2 y 14
respectivamente. ¿Cuáles son los otros términos?
Observa que en este caso tienes los datos siguientes:
a1
= 2	 a5
= 14
d)	 7,12,17,22 , ,
e)	 1, 1
1
2
,2, , ,
f)	 15,10,5, , , ,
a)	 3,6,9, , ,
b)	 5,10,15,20, ,
c)	 , ,c, ,e,f, ,
2.	Encadacasotedamoseltérminogeneral.Encuentralostérminosqueteindicamos.
a)	 an
=5+(n–1)4:a1
,a5
,a10
b)	 an
=3+(n–1)7:a4
,a5
,a7
c)	 an
=2+(n–1)(–3):a5
,a8
,a10
a1
a2
a3
a4
a5
1 Actividad
1.	Encuentraporsimpleinspecciónlostérminosquedebenirenlosrecuadros.
b)	a35
	 an
= a1
+(n – 1)d
	 a35
= 8 + (35 – 1)(3)
	 a35
= 8 + 34(3)
	 a35
= 110
UNIDAD 1
Segundo Año - Matemática 61
Luego: an
= a1
+ (n – 1) d
a5
= a1
+ (5 – 1) d Sustituyendo
14 = 2 + 4d
14 – 2 = 4d
12 = 4d
d =
12
4
= 3
Como la diferencia es 3, los otros términos son:
a2
= 2 + 3 = 5
a3
= 2 + 2(3) = 8
a4
= 2 + 3(3) = 11
Puedes ver que en este ejercicio encuentras los términos
que están entre el primero y el n – ésimo. Es decir que
has encontrado los términos entre 2 y 14. Los términos
que encontraste se llaman medios aritméticos.
Al procedimiento anterior se le denomina interpolación
de términos.
Actividad 2
a)	Encuentracuatromediosaritméticosentre7y27hazloentucuaderno.
b)	Compruebaquelasumadelostérminosanterioreses102.
UNIDAD 1
62 Matemática - Segundo Año
Observa que la suma del primero y último término es igual al del segundo y penúltimo
y así sucesivamente.
Esto nos permite plantear la suma de los 8 términos, S8
, de dos formas.
10 12 14 16 18 20 22 24
Suman 34
Suman 34
10
24 22
12
20
14
18
16
16
18
14
20
12
22
10
24+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ + + + + +
+
34 34 34 34 34 34 34 34
8 veces 34Sumando
ambas
igualdades
S8
=
S8
=
2S8
=
2S8
=
S8
=
34 × 8
34 × 8
2
= 136
10
a1
12
a2
14
a3
16
a4
18
a5
20
a6
22
a7
24
a8
Calcula la suma de los primeros n términos
de una sucesión aritmética
Si necesitas hacer un tejado colocando las tejas de tal forma que en la primera fila haya
10, en la segunda 12. . . Hasta llegar a un total de 8 filas.
¿Cuántas tejas necesitas?
Para resolver esta situación escribes el número de tejas de cada fila.
Necesito 136 tejas en total.
UNIDAD 1
Segundo Año - Matemática 63
Puedes ver que 34 es la suma del primero y del último término (a1
+ an
), y 8 el número
de términos (n) luego, en general para calcular la suma de los primeros n términos de
una sucesión aritmética aplicamos la fórmula siguiente.
Sn =
n a an( )1
2
+
Observa como ahora puedes calcular la suma de los primeros 25 números pares
La suma es 2 + 4 + 6 +
Como no tenemos el último término, a25
, lo vamos
a calcular.
a1
= 2	 an
= a1
+ (n – 1) d
n = 25	 a25
= 2 + (25 – 1)2
d = 2	 a25
= 2 + (24)2
	 a25
= 2 + 48 = 50
Sustituimos los datos en la fórmula Sn =
n a an( )1
2
+
S25
=
25 2 50
2
650
( )+
=
La suma de los primeros 25 números pares es 650. Es decir:
2 + 4 + 6 + + 50 = 650
1.	Encuentraelvalordelassiguientessumas.
a)	 3+6+9+ +60
b)	 5+10+15+ +100
2.	Hallalasumadelosprimeros15múltiplosde6.
Actividad 3
Resumen
En esta lección conociste las sucesiones aritméticas. Sus elementos principales
son el primer término y la diferencia entre un término y el siguiente. Con ellos
puedes conocer cualquier término de la sucesión. También puedes calcular la
suma de términos de una sucesión con la respectiva fórmula.
UNIDAD 1
64 Matemática - Segundo Año
Autocomprobación
Soluciones
	
	 Jorgereúne50arbolitosdenaranjoparasembrarlosen
línearecta.Elprimeroestáa6mdedondeélsehalla,y
cadaunodelosotrosa6mdelanterior.Jorgesólopuede
cargarunarbolitoporvez.Alterminardesembrarcada
arbolitoregresaalpuntodepartida,queesdondereunió
los50arbolitos.LadistanciatotalquecaminaJorgees:
a)	 7,650 m		 c) 15,300 m
b)	 2,000 m		 d) 1,000 m
4	 Elcuartotérminodeunasucesiónaritméticacon
d=3ya20
=100es:
a)	 20
b)	 26
c)	 60
d)	 52
2
1	 Eldécimotérminodelasucesión3,8,13,...es:
a)	 33
b)	 48
c)	 24
d)	 50
3	 Setieneunacantidaddetrozosparaaserrarlos.Enla
primeracapaseubican24;enlasegunda,22;enla
tercera20yasísucesivamente.Silaúltimacapatiene
10trozos,eltotaldetrozoses:
a)	 136	 c) 8
b)	 34	 d) 2
Para llegar a la firma de los Acuerdos de Paz
de enero de 1992 en El Salvador, se dio una
sucesión de hechos. Entre ellos están:
Lo anterior no es sucesión aritmética, pero es
una sucesión de hechos que es
importante conocerla.
LOS ACUERDOS DE PAZ
1.b.			2.d.			3.a.			4.c.
	 Alto al fuego.
	 Nombramiento de representantes.
	 Propuestas de reforma en las áreas
	 social, seguridad y judicial.
	 Establecimiento de derechos
	 humanos.
	 Tratamiento de la impunidad.
	 Establecimiento de ONUSAL.
Segundo Año - Matemática 65
Primera Unidad
Motivación
Indicadores de logro
Para que respondas a la pregunta inicial se te sugiere construir una tabla como la siguiente:
Para que veas cómo van en aumento los términos de la
sucesión 2, 2.3, 2.32
, 2.33
,. . . te diremos que a las 12 del
mediodía. . . ¡2.316
= 86 093 442 personas conocen
el rumor!
Después de estudiar esta lección, habrás descubierto
métodos para resolver este tipo de problemas.
	 Deducirásyexplicarás,coninterésyseguridad,eltérminogeneraldeuna
sucesióngeométrica.
	 Utilizarás,conseguridad,eltérminogeneralparacalcularcualquier
términodeunasucesióngeométrica.
	 Identificarásycalcularáslosmediosgeométricosentredostérminosde
unasucesióngeométrica,conseguridadeinterés.
	 Aplicarásconprecisiónlafórmulaparalaobtencióndelasumade
términosdeunasucesióngeométrica.
	 Resolveráscorrectamenteyconinterésejerciciosyproblemas
aplicandolassucesionesgeométricas
Vilma y Balmore investigan con que velocidad se
corre un rumor. Para ello inventan uno a las 8 de la
mañana. A los 15 minutos cada uno de ellos se lo
transmite a 3 amigos.
Después de otro cuarto de hora, éstos le comunican
el mismo rumor a otros tres amigos los cuales lo
transmiten a otros tres. Y así sucesivamente.
¿Cuántas personas conocen el rumor a las 12
del mediodía?
Sucesiones GEOMÉTRICAS
Lección 2
Hora N° de personas
8:00 2
8:15 6
8:30 18
8.45 54
9:00 162
9:15 486
¿Podrías encontrar el siguiente término de las sucesiones
a continuación?
3, 6,12, 24, , ,
2, 6, 18, 54, , ,
200, 100, 50, 25, , ,
UNIDAD 1
66 Matemática - Segundo Año
Observarás que en la primera sucesión, cada término se
genera multiplicando el anterior por 2. En la segunda,
multiplicas por 3 para encontrar el siguiente término.
¿Cómo se generan los términos en la tercera sucesión?
Haz lo siguiente:
Divide en la primera sucesión el segundo término por
el primero
6
3
divide el tercero por el segundo
12
6
y así
sucesivamente divides cada término por el anterior.
Observas que el resultado es el mismo ¿verdad?
Haz lo mismo con las otras dos sucesiones. Todos los
cocientes en cada una de las sucesiones te dará el mismo
resultado. Pues bien a esto se le llama Razón.
¿Cuál es la razón de la sucesión 5, 15, 45. . .? ¿Cómo la
encuentras?. Puedes ver que:
r = =
45
15
3 	 ó	 r = =
15
5
3
O sea, la razón de una sucesión la encuentras dividiendo
un término entre el anterior. Es decir:
	 r
a
a
a
a
a
a
a
a
n
n
= = = =
−
2
1
3
2
4
3 1
...
Encuentra la razón en una sucesión
Y para cualquier an
, así:
an
= a1
rn-1
Esta última expresión representa el término general de
una sucesión geométrica.
Los ejemplos de sucesiones en donde puedes encontrar
la misma razón entre dos términos seguidos uno del
otro se llaman sucesiones geométricas. ¿Cómo defines
una sucesión geométrica?
Término general de una sucesión geométrica
Si en una sucesión geométrica el primer término es a1
y
la razón es r, entonces:
Primer término	 = a1
Segundo término	 = a2
= a1
r
Tercer término	 = a3
= a1
r2
Cuarto término	 = a4
= a1
r3
Al conocer el primer término a1
y la razón r, puedes
conocer cualquier término.
Observa en los términos anteriores que existe una
relación entre el orden del término y el exponente de r.
Luego para encontrar a101
escribimos Así:
a101
= a1
r 101-1
= a1
r 100
Una sucesión geométrica es aquella en la cual cada
término se obtiene multiplicando el anterior por un
número fijo llamado razón geométrica o razón.
UNIDAD 1
Segundo Año - Matemática 67
Considera la sucesión 3, 6, 12, 24,. . .Ahora, encuentra el
11° término de ella.
Lo primero que debes hacer es escribir los datos.
a1
= 3	 r = =
12
6
2 	 n = 11
Luego, el término general te permite calcular cualquier
término, o sea, el n-ésimo:
Para ello sustituimos los datos anteriores en la fórmula
a a rn
n
= −
1
1
a11
= 3(2)11-1
=3(2)10
=3(1024)=3072
En cada paso anterior verifica las operaciones con tu
calculadora. Por lo tanto el décimo primer término de 3,
6, 12, 24, . . . es 3072.
Ejemplo 1
Ahora encuentra el décimo término de la sucesión 4096,
2048, 1024, 512, . . .
Solución:
Datos: a1
= 4096,	 r = =
1024
2048
1
2
	 n = 10
Luego, sustituyendo los datos en an
= a1
r n-1
a10
10 1
9
9
9
4096
4096
4096
1
2
1
2
1
2
=




=




=



-

=




=
=
4096
4096
512
8
1
512
El décimo término de la sucesión 4096, 2048, 1024,. . .
es 8.
El diente de león o dandelión es una planta con
aplicaciones en medicina biológica. Una planta de
dandelión da unas 100 semillas. Si el terreno que la
rodea permitiera que todas germinaran, un año después
habría 100 plantas, y así sucesivamente
Luego de 8 años las plantas de dandelión cubrirían toda
la Tierra, ésta tiene una superficie de:
135 000 000 000 000m2
Años N° de plantas
1 1
2 100
3 10 000
4 1000 000
5 100 000 000
6 1000 000 000
7 1000 000 000 000
8 100 000 000 000 000
Cálculo del n-ésimo término
Planta dandelión
UNIDAD 1
68 Matemática - Segundo Año
Observa la siguiente sucesión geométrica:
8, , 128
¿Cómo encuentras los términos que faltan?
1.	Unestudiantetomaunpliegodepapelconunespesorde0.1mm,doblaelpliegoporlamitad,luego
alvolverloadoblarobtieneunespesorcuatroveceseloriginal.Supónqueelpliegooriginaleslo
suficientementegrandequepuedeefectuarse50dobleces.
¿Cuáleselespesordelfajoresultante?
Solución
Puedesverquelasucesióndeespesores0.1,0.2,0.4,0.8,...
Luego r = =
02
01
2
.
.
		 a1
=0.1		 n=50
	 Sustituyendoenlafórmuladeln-ésimotermino,compruebaquelarespuestaes¡Másde
56millonesdekilómetros!(estonoesposiblefisicamente,aunquematemáticamentese
puedaencontrar)
2.	Copiaentucuadernolassiguientessucesionesyescribelostérminosquefaltan.
a)	 1,5,25, , , ,...	 c) 256,128,64, , , ,...
b)	 3,6,12, , , ,...	 d) 1
1
2
1
4
, , , , , , ..
3.	Escribeloscincoprimerostérminosdeunasucesióngeométricasi:
a)	 a1
=2,	 r=5	 b) a1
=200, r=
1
5
	 c) a1
=1, r=3
4.	Calculaelduodécimotérminodelasucesión4,8,16,...
5.	Determinaelnovenotérminodelasucesión2187,729,243,...
Para encontrar los términos que están entre 8 y 128,
comienzas escribiendo los datos:
a1
= 8		 a5
= 128		 n = 5
Como lo estudiaste en la fórmula del término general,
¿qué elementos necesitas para calcular los términos de
una sucesión geométrica? Como lo recordarás, estos
elementos son el primer término a1 y la razón r.
Como a1
= 8, entonces necesitas conocer el valor de r.
Actividad1
Punto de apoyo
Te recordarás que toda raíz par tiene dos signos
25 5= ± , ya que 52
= 25 y (–5)2
= 25; ¿Cuántas
raíces tiene toda raíz impar, por ejemplo -83
?
Interpolación geométrica
UNIDAD 1
Segundo Año - Matemática 69
Despejando entonces r en la fórmula del término general,
tendremos: r
a
a
n
n=
1
1-
Con esta fórmula puedes calcular la razón, conociendo el
primer término y el n-ésimo.
Observa cómo se aplica la fórmula anterior.
Sustituyendo los datos an
= a5
= 128, a1
= 8	 n = 5
Tendremos:	 r = = = ±
128
8
16 25 1 4-
Retomando el ejemplo anterior:
a)	Conociendo a1
= 8 y r = ± 2, calculas los términos que
faltan. Con r = 2:
a2
= a1
r = 8(2) = 16
a3
= a1
r2
= 8(2)2
= 32
a4
= a1
r3
= 8(2)3
= 64
Al escribir la sucesión, te queda así: 8, 16, 32, 64, 128,…
b)	Si r = – 2, los términos son:
a2
= a1
r = 8(–2) = –16
a3
= a1
r2
= 8(–2)2
= 8(4) = 32
a4
= a1
r3
= 8(–2)3
= 8(–8) – 64
Luego, al escribir la sucesión te queda así:
8, −16, 32, −64, 128,…
Así como estudiaste en las sucesiones aritméticas,
cuando encuentras dos o más términos entre dos
términos dados, dices que has interpolado dichos
términos, en este caso les llamaremos medios
geométricos.
Ahora vamos a interpolar cuatro términos entre 4 y
1
8
de modo que formen una sucesión geométrica.
Conviene visualizar los datos en el esquema siguiente.
4, , , , ,
1
8
Como vas a interpolar 4 términos y tienes dos de ellos,
n=6, a1
=4, a6
=
1
8
La fórmula de la razón es r
a
a
n
n= −
1
1
Sustituyendo los datos r = = =
−
1
8
4
1
32
1
2
6 1
5
Ahora como a1
=4, multiplicas por
1
2
para obtener el
siguiente término y así sucesivamente hasta llegar a
1
8
Por tanto la sucesión es: 4, 2, 1, 1
2
1
4
1
8
, ,
UNIDAD 1
70 Matemática - Segundo Año
Suma de términos de una sucesión geométrica
1.	Encuentralostérminosquefaltanenlassiguientessucesionesgeométricas
a)	 3, ,96	 b) 1, ,81	 c) 243, ,9
En una pequeña finca de café, se cortan tres arrobas de
café el primer día, seis el segundo, doce el tercero y así
sucesivamente.
¿Cuántas arrobas se cortan luego de siete días?
Para resolver este problema, comienza escribiendo los
términos de la sucesión.
3, 6, 12, 24, . . . .
Observa
Los elementos de 2S se cancelan con
los de –S excepto 3(2)7
de la primera
ecuación y -3 de la segunda ecuación.
¿Cuántas arrobas se cortan en el séptimo día? Seguramente tu respuesta fue:
a7
= 3(2)7 – 1
= 3(2)6
Completando la sucesión, tendremos: 3, 3(2), 3(2)2
, 3(2)3
,. . . , 3(2)6
La suma que vas a calcular es: S = 3 + 3(2) + 3(2)2
+ 3(2)3
+. . . + 3(2)6
Multiplicando la igualdad por r = 2: 2S = 3(2)+3(2)2
+3(2)3
+3(2)4
+. . . 3(2)7
Ahora sumando 2 S con –S obtienes:
2 3 2 3 2 3 2 3 2 3 2 3 22 3 4 5
S = ( ) + ( ) + ( ) + ( ) + ( ) + ( )) + ( )
− = − − ( ) − ( ) −
6 7
2
3 2
3 3 2 3 2 3 2S (( ) − ( ) − ( ) − ( )
− =
3 4 5 6
3 2 3 2 3 2
2 3 2S S (( ) −7
3
Factor común: S (2 – 1) = 3(27
– 1).
Luego, despejando S =
−( )
−
=
3 2 1
2 1
381
7
Lo que significa que en siete días se cortan un total de
381 arrobas de café.
Actividad2
UNIDAD 1
Segundo Año - Matemática 71
Siguiendo el proceso anterior, calcula la suma de los
primeros diez términos de la sucesión 5 + 5(3)+ 5(3)2
+. . .
Seguramente llegas a la siguiente expresión
S = =
5 3 1
3 1
147 620
10
( - )
-
,
La suma de los 10 primeros términos es 147,620
Observando los procedimientos anteriores, puedes ver
que llegamos a las siguientes expresiones para la suma.
¿Qué elemento de la sucesión respectiva aparece en
cada uno?
S =
3 2 1
2 1
7
( - )
-
	 S =
5 3 1
3 1
10
( - )
-
Puedes comprobar que:
3 = a1
		 5 = a1
2 = r		 3 = r
7 = n		 10 = n
Resumen
En esta lección conociste las sucesiones geométricas. En ellas, cada término
se genera al multiplicar el anterior por un número fijo llamado razón. Para
calcular cualquier término de una sucesión necesitamos el primer término
de una sucesión y la razón. Dados el primer y otro cualquiera, calculamos la
razón aplicando la fórmula respectiva. La suma de los primeros n términos de
una sucesión geométrica la calculas si tienes el primer término, la razón y el
número de términos. Las sucesiones geométricas sirven de modelo a fenómenos
biológicos, de comunicación, etc.
Luego, las situaciones anteriores sugieren la
siguiente fórmula para la suma de términos de una
sucesión geométrica:
S
a r
r
n
= 1 1
1
( - )
-
Así, para calcular la suma de los primeros ocho términos
de 2, 6, 18, . . , comienzas escribiendo los datos.
a r n1 2
18
6
6
2
3 8= = = = =
Ahora escribes la fórmula para la suma y sustituye
los datos.
S
a r
r
n
=
( )
=
( )
=
( )
=
1
8
1
1
2 3 1
3 1
2 6 561 1
2
2 6 5
−
−
−
−
−,
, 660
2
6 560
( )
= ,
La suma de los 8 promeros términos es 65,60.
UNIDAD 1
72 Matemática - Segundo Año
Autocomprobación
4	 Paraconvertircm2
adam2
:
a) Multiplicas por 100
b) Divides entre 100
c) Divides entre 1 000,000
d) Multiplicas por 1 000,000
2	 Diezcentímetroscuadradosequivalena:
a) 1 m2
b) 0.01 m2
c) 0.10 m2
d) 0.0010 m2
1	 LaunidadbásicadesuperficiedelSIes:
a) El km2
b) El cm2
c) El m2
d) El hm2
3	 10,000m2
equivalena
a) 1 km2
b) 2 km2
c) 1 dam2
d) 1 hm2
	
Un nenúfar es una planta acuática que vemos en
los lagos. En condiciones ideales al reproducirse
la planta se duplica cada día. Si un nenúfar tarda
un mes en cubrir la superficie de un lago
¿Cuánto tardan en cubrirla dos nenúfares?
Analiza el siguiente razonamiento:
Si tienes un nenúfar, el segundo día ya hay dos.
Si tienes dos plantas al inicio, éstas necesitan un
día menos en cubrir la superficie del lago.
Esto significa que dos nenúfares van a cubrir
todo el lago en 30 – 1 = 29 días.
Haz un esquema y comprueba la
respuesta anterior.
1.d.			2.c.			3.a.			4.d. Soluciones
NENÚFAR Y SUCESIONES GEOMÉTRICAS
4	 Lasumadelosprimerosochotérminosdela
sucesión5,10,20,40,...es:
a)	 255
b)	 640
c)	 1,280
d)	 1,275
2	 Larazóndelasucesión6,12,24,...es:
a)	
1
2
b)	 4
c)	 2
d)	 3
1	 Delassiguientessucesioneslaquecorresponde
aunasucesióngeométricaes:
a)	 1,4,9,25,...
b)	 5,9,13,17,...
c)	 100,90,80,70,..
d)	 5,10,20,40,..
3	 Dadalasucesión5,15,45, ,eltérminoqueva
dentrodelcuadroes:
a)	 135
b)	 270
c)	 90
d)	 25
Segundo Año - Matemática 73
Primera Unidad
Motivación
Indicadores de logro
El principio de la multiplicación
Luisa almuerza en el comedor “El buen gusto”. El menú es el siguiente:
	 Deducirás,utilizarásyexplicaráselprincipiodelamultiplicaciónparael
cálculodelaposibilidaddeocurrenciadedosomáseventosaleatorios
conautonomíayconfianza.
	 Resolverásproblemasutilizandoelprincipiodelamultiplicación
conseguridad.
	 Deducirás,utilizarásyexplicarás,conautonomíaconfianza,elprincipio
delasumaparaelcálculodelaposibilidaddeocurrenciadedosomás
eventosaleatorios.
	 Calcularáslaposibilidaddedoseventosexcluyentesutilizandoel
principiodelasuma,coninterésyconfianza.
	 Resolverásproblemasutilizandoelprincipiodelasuma
conseguridad
	 Resolverás,coninterésyconfianza,problemasdelentorno
queinvolucrenlaaplicacióncombinadadelosprincipiosde
multiplicaciónysuma.
	 Resolverásproblemasdeaplicaciónsobrelafactorialdeunnúmero
conseguridadyconfianza.
	 Resolverásproblemasconseguridadyorden,aplicandoeldiagrama
deárbol.
El club de observadores de pájaros de El Salvador
está formado por cuatro hombres y 2 mujeres. En la
toma de posesión se toman una fotografía. Además,
van a elegir los cargos de presidente, vicepresidente y
secretario o secretaria.
a)	 ¿De cuántas maneras pueden formarse para
su foto?
b)	 ¿De cuántas maneras pueden elegir sus
tres directivos?
c)	 ¿Y si el presidente debe ser mujer y el
vicepresidente hombre?
Para contestar éstas y otras preguntas similares,
necesitas conocer dos técnicas o métodos de conteo:
el principio de la multiplicación y el de la suma.
Técnicas de conteo
Lección 3
Plato principal
Carne
Pollo
Sopas
Gallina
Patas
Frijoles
Luisa puede elegir una sopa y un plato principal por $ 2.00. ¿Cuántos menús diferentes puede elegir Luisa?
UNIDAD 1
74 Matemática - Segundo Año
Observa que cada menú se considera como un recorrido compuesto por dos tramos:
Sopa Plato principal
1. Gallina Carne
2.
3. Patas
4.
5. Frijoles
6. Pollo
	 Sihaysopadegallina,patasofrijolesblancos;platoprincipal
derellenosopolloypostredefrutaotorreja.
a)	 Escribeunlistadodealmenoscincoopcionesen
quepuedeselegirtumenú.
b)	 ¿Cuántasposibilidades hayentotal?.
Uno corresponde a sopas y otro al plato principal. ¿De
cuántas maneras puede llegar del punto A al punto B?
Fíjate que Luisa puede recorrer el primer tramo de 3
maneras. Por cada una, puede recorrer el segundo tramo
de 2 formas; o sea, Luisa puede llegar de A a B de
3 × 2 = 6 maneras.
Copia en tu cuaderno la tabla y completa los espacios
para enumerar los seis recorridos (menús) que Luisa
puede elegir.
Del ejemplo anterior llegas a la siguiente regla, conocida
como principio de la multiplicación.
Si hay m maneras en que puede darse un evento M y n
maneras en que puede darse otro evento N entonces hay
m × n formas en que pueden darse ambos eventos.
El principio de la multiplicación puede ampliarse a más
de dos eventos.
Número de maneras = m × n × p × s. . .
Evento Nº de maneras
Elegir una sopa 3
Elegir un plato principal 2
Elegir un postre 4
Observa cómo se aplica esta fórmula. Luisa puede elegir un menú entre 3 sopas, 2
platos principales y 4 postres. ¿De cuántas formas puede arreglar su menú?
frijoles pollo
patasA B
gallina carne
Actividad 1
Si escribes cada tarea y el número de formas en que
puede darse, tienes:
Luego, por el principio de la multiplicación:
Nº total de maneras = 3 × 2 × 4 = 24
UNIDAD 1
Segundo Año - Matemática 75
	 Acontinuacióntepresentamosvariassituacionesparaquelasresuelvasaplicandoelprincipiode
lamultiplicación.
a)	Unfabricantesacaalaventa5basesparalámparay4pantallasquepuedenusarsejuntas.¿Cuántas
lámparasoarreglospuedenformarse?
b)	Enunaventadecomidarápida,elmenúdeldíacontempla2clasesdesopas,4platosprincipales,
5postresy3refrescos.SiMirnaeligeunavariedaddecadacategoría,¿decuántasformaspuede
formarsuelección.
Nºtotaldemaneras= × × × =
c)	¿Decuántasmaneraspuedenacomodarse6librosenunestantecon6espaciosdisponibles?
Actividad 2
Ejemplo 1
En la elección de una junta directiva de tu comunidad hay 4 candidatos a presidente, 3
candidatos a secretario y 5 candidatos a tesorero.
a)	Define las tareas y el número de formas en que puede darse cada una.
b)	Calcula el número de maneras resultantes de la elección.
Solución:
a)	Al definir eventos y el número de formas en que puede darse cada uno te queda:
b)	Por el principio de la multiplicación, el proceso de selección completo es:
	 Nº total de maneras = 4 × 3 × 5 = 60
Evento Nº de maneras
Elegir un presidente 4
Elegir un secretario 3
Elegir un tesorero 5
Ejemplo 2
Para determinar el número de formas en que puedes colocar 3 de 6 libros en tres
espacios disponibles lo hacemos así: 6 × 5 × 4 =120 formas.
¿De cuántas maneras puedes ordenar 5 de 6 libros en un estante con 5 espacios
disponibles?
UNIDAD 1
76 Matemática - Segundo Año
Diagrama de árbol
El principio de la multiplicación te permite encontrar el número de arreglos o maneras en
que pueden darse dos o más tareas. Así, si por ejemplo para ir a trabajar, Sonia dispone de
dos faldas y tres blusas.
Si quisieras enumerar las formas o arreglos con los cuales Sonia se viste, existe una
herramienta que te permite encontrarlos con facilidad. Esta herramienta recibe el nombre
de diagrama de árbol.
¿En qué consiste el diagrama de árbol? La respuesta a esta pregunta te la mostramos en los
siguientes ejemplos.
	Sonia dispone de 2 faldas: 1 azul (A), y una café (C),
además de tres blusas: una blanca (B), una celeste (Ce)
y una gris (G). Calcula el número de formas en que
Sonia puede vestirse con blusa y falda y enuméralas.
La situación corresponde obviamente al principio de la
multiplicación:
Nº total de maneras = 2 × 3 = 6
Para encontrar o enumerar los arreglos que resultan
construimos el diagrama de árbol.
Partimos de un punto cualquiera; de él sacamos dos
ramas, una para cada falda: azul o café. De cada falda
sacamos tres ramas para cada blusa: blanca, celeste
o gris.
Si Sonia elige la falda azul (A), la blusa puede ser blanca
(B) y el arreglo es A B. Si elige la falda A y la blusa Ce, el
arreglo es A Ce. Siguiendo este procedimiento obtienes
las seis maneras.
A
C
B
Ce
G
B
Ce
G
1) A B
2) A Ce
3) A G
4) C B
5) C Ce
6) C G
Blusas ArregloFaldas
	Si lanzas al aire una moneda de 25 centavos y otra de 10, ¿de cuántas maneras pueden caer
las monedas? Enuméralas
UNIDAD 1
Segundo Año - Matemática 77
Cada moneda puede caer de dos formas: cara (c) o número (#). Luego, el número de formas
en que caen ambas es: Nº total de maneras = 2 × 2 = 4. Para hallar esas cuatro maneras,
construyes el diagrama de árbol. Seguramente llegas a la siguiente respuesta: c #, c c, # #, # c;
donde # significa número y c significa cara. ¿Es lo mismo c # que # c?
Principio de la suma
Consideras de nuevo a los miembros del club de observadores de pájaros de El Salvador.
¿De cuántas maneras pueden elegir su directiva de tal manera que si el presidente es mujer
los otros dos son hombres; o si el presidente es hombre los otros directivos son mujeres?
Construyeeldiagramadeárbolcorrespondienteallanzamientode:
	 a) Tresmonedasdediferentedenominación	 b) Cuatromonedasdediferentedenominación
Primera situación que puede darse
Evento N° de maneras
El presidente
es mujer
2
Los otros dos
son hombres
El vicepresidente
es hombre
4
El secretario
es hombre
3
N° total de maneras = 2 × 4 × 3 = 24
Segunda situación que puede darse
Evento N° de maneras
El presidente
es hombre
4
Los otros dos
son mujeres
El vicepresidente
es mujer
2
El secretario
es mujer
1
N° total de maneras = 4 × 2 × 1 = 8
Actividad 3
Puedes ver entonces que el número de formas en que puede darse la primera o la segunda
situación es: 24 + 8 = 32.
Este ejemplo te permite enunciar la siguiente regla, conocida como el principio de
la suma:
Sean M y N dos eventos excluyentes, o sea, que no pueden suceder al mismo tiempo. Si M
puede ocurrir de m maneras y N de n maneras, entonces M o N pueden ocurrir de
m + n maneras.
Ahora resuelve: Tania posee tres blusas para combinar con dos faldas. Además, tiene cinco
camisetas para combinar con cuatro pantalones. ¿De cuántas maneras puede vestirse
Tania? Compara tu situación con la siguiente: Si Tania se decide por blusa y falda lo hace de
3 × 2 = 6 maneras; si opta por llevar camiseta y pantalón; lo hace de 5 × 4 = 20 maneras.
Por el principio de la suma, Tania puede vestirse de 6 + 20 = 26 maneras.
UNIDAD 1
78 Matemática - Segundo Año
Factorial de un número
Cuando estudiaste el principio de la multiplicación, resolviste problemas como este.
¿De cuántas maneras puedes colocar seis libros en un mueble con seis espacios?
Sabes que la solución a esta situación es:
La expresión 6 × 5 × 4 × 3 × 2 × 1 recibe el nombre de
factorial de 6 y se representa por 6! Es decir:
6! = 6 × 5 × 4 × 3 × 2 × 1
Evento N° de maneras
M: colocar el primer libro 6
N: colocar el segundo libro 6 − 1
P: colocar el tercer libro 6 − 2
Q: colocar el cuarto libro 6 − 3
R: colocar el quinto libro 6 − 4
S: colocar el sexto libro 6 − 5
Nº total de maneras = 6(6 – 1)(6 – 2)(6 – 3)(6 – 4) (6 – 5) =720
¿Cómo defines el factorial de 7?
Lo haces así: 7! = 7 × 6 × 5 × 4 × 3 × 2 × 1
En general, el factorial de un número natural “n” mayor
que 1, se define así:
n! = n(n – 1) (n – 2) (n – 3). . . 3 × 2 × 1
El símbolo n! se lee “factorial de n”
Si n = 1, definimos 1! = 1
Si n = 0, definimos 0! = 1
Actividad4
0! = 1
1! = 1
2! = 2 × 1 = 2
3! = 3 × 2 × 1 = 6
4! = 4 × 3 × 2 × 1 = 24
5! = 5 × 4 × 3 × 2 × 1 = 120
6! = 6 × 5 × 4 × 3 × 2 × 1 = 720
a)	Enelcomedor“Elhigiénico”Lorenapuede
elegirunmenúentredosclasesdesopas,tres
platosprincipalesycuatrovariedadesdefrutas.
En“Eleconómico”,ellalopuedeelegirentretres
variedadesdesopas,dosplatosprincipalesytres
postres.Entotal,¿cuántasmanerasdemenúpuede
elegirLorena?
UNIDAD 1
Segundo Año - Matemática 79
Una propiedad muy importante del factorial de un
número la obtienes al observar el desarrollo de los
factoriales anteriores. Por ejemplo:
6! = 6 × (5 × 4 × 3 × 2 × 1) ⇒6! = 6 × 5!
5! = 5 ×(4 × 3 × 2 × 1) ⇒ 5! = 5 ×4!
4! = 4 × (3 × 2 × 1) ⇒4! = 4 × 3!
7! = 7 × (6 × 5 × 4 × 3 × 2 × 1) ⇒ 7! = 7 × 6!
¿Cómo simbolizas esta propiedad? Seguramente lo
haces así:
n! = n(n – 1)!
También los desarrollos de los factoriales anteriores te
muestran que:
n! = n(n – 1) (n – 2)!
n! = n(n – 1) (n – 2) (n – 3)!
Ejemplo 3
8! = 8(8 – 1)! = 8 × 7!
8! = 8(8 – 1) (8 – 2)! = 8 × 7 × 6!
8! = 8(8 – 1) (8 – 2) (8 – 3)! = 8 × 7 × 6 × 5!
Aplicandolapropiedadestudiadadefactorial,simplificalassiguientesexpresiones:
a)	
12
11
!
!
		 b)
15
12
!
!
		 c)
10 8
7 12
! !
! !
Actividad 5
Resumen
En esta lección estudiaste el principio de la multiplicación, el cual te permite calcular el número de maneras en
que pueden suceder dos o más eventos. Además estudiaste el principio de la suma, el cual te permite calcular
el número de maneras en que pueden ocurrir dos o más eventos que no pueden suceder al mismo tiempo. La
mejor forma de enumerar esas maneras, es recurriendo al diagrama de árbol. También estudiaste el factorial de
un número.
Esta propiedad te ayuda a simplificar expresiones como
ésta:
9
6
!
!
9
6
9 8 7 6
6
9 8 7 504
!
!
!
!
= = × × =
x x x
Simplifica la siguiente expresión:
15 0
13 2
! !
! !
15 0
13 2
15 14 13 0
13 2
15 14
! !
! !
! !
! !
=
× ×
=
× ××
×
=
× ×
=
1
2 1
15 7 1
1
105
UNIDAD 1
80 Matemática - Segundo Año
Autocomprobación
4	 Paraconvertircm2
adam2
:
a) Multiplicas por 100
b) Divides entre 100
c) Divides entre 1 000,000
d) Multiplicas por 1 000,000
2	 Diezcentímetroscuadradosequivalena:
a) 1 m2
b) 0.01 m2
c) 0.10 m2
d) 0.0010 m2
1	 LaunidadbásicadesuperficiedelSIes:
a) El km2
b) El cm2
c) El m2
d) El hm2
3	 10,000m2
equivalena
a) 1 km2
b) 2 km2
c) 1 dam2
d) 1 hm2
	
1.a.			2.c.			3.d.			4.b.
El cálculo del factorial de un número puede
ser muy complicado. Por ello, las calculadoras
poseen una tecla que sirve para calcularlo. Sin
embargo, hay casos en los que no se puede
calcular el valor del número factorial por tener
muchos dígitos.
Comprueba los siguientes resultados:
Notas su gran utilidad.
Soluciones
LA CALCULADORA Y EL FACTORIAL
4	 Elresultadodesimplificarlaexpresión
12
9
!
!
es:
a)	
4
3
	 c) 2,480
b)	 1,320	 d)
3
4
2	 Comopartedelaclasedebiología,Taniaestudiaun
árbol.Observaquetieneveinteramas;decadauna
salenquincebrotes,ydecadabrotedocehojas.El
númerodehojasquetieneelárboles:
a)	 180	 c) 3,600
b)	 300	 d) 1,800
1	 Elnúmerodemanerasenquepuedenelegirseun
presidente,unsecretarioyuntesorerodeungrupo
desietepersonas,es:
a)	 210
b)	 420
c)	 200
d)	 105
3	 Paratratarseunaenfermedad,ellaboratorio
“A”producecuatroclasesdejarabesycinco
antibióticos,mientrasqueellaboratorio“B”
fabricatresclasesdejarabesycuatroclases
deantibióticos.Siunapersonapuedetratarse
conunjarabeyunantibiótico,elnúmerode
tratamientosdiferentesquepuederecibires:
a)	 240	 c) 120
b)	 16	 d) 32
7! = 5,040
8! = 40,320
9! = 362,880
10! = 3,628,800
11! = 39,916,800
12! = 479,001,600
Segundo Año - Matemática 81
Primera Unidad
Motivación
Indicadores de logro
Lección 4
Para que respondas la pregunta inicial, puedes encontrar algunas de esas formas por
ejemplo las siguientes:
Encuentra otros posibles ordenamientos, te darás cuenta que puedes encontrar
muchos diferentes, ¿verdad?
El número de posibles ordenamientos que puede formar el concursante es ¡40 320!
Este valor corresponde a 8! = 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 porque se trata de ordenar
8 tarjetas.
	 Solucionarásconautonomíayconfianza,ejerciciosqueinvolucrenel
ordenamientodeunconjuntodeobjetosdiferentes,formadostodoso
partedeellos.
	 Utilizarás,conseguridadelordenamientocircularenejercicios
deaplicación.
	 Resolverásproblemasaplicandopermutacionesconseguridad.
	 Interpretarás,utilizarásyexplicarás,conseguridad,lacombinación.
	 Resolverásproblemasaplicandolascombinacionesconseguridad.
	 Explicarásclaramenteladiferenciaentrepermutacionesycombinaciones.
	 Utilizaráslafórmulaapropiadaparacalcular,conprecisión,elnúmerode
combinacionesopermutacionesde“n”objetostomados“r”alavez,en
ejerciciosdeaplicación.
	 Resolverás,conseguridad,problemasdeaplicaciónsobreelnúmerode
ordenamientosdeobjetosentreloscualeshayrepeticionesonolashay.
En un famoso programa de televisión en vivo
se presenta el siguiente concurso. Entregan al
participante ocho tarjetas sin descubrir, y le explican
que cada una tiene escrita una letra de la palabra
VEHICULO.
Con los ojos vendados ordena las tarjetas, y si al
descubrirlas forma esa palabra, gana un vehículo último
modelo. ¿Cuántas formas de ordenar las letras, pueden
resultar?
PERMUTACIONES Y COMBINACIONES
E L O V H I C U
V U L I C O H E
V E H I C U L O
V I C H U E L O
O V L I C H U E
UNIDAD 1
82 Matemática - Segundo Año
Encuentra los ordenamientos que pueden formarse con las letras de la palabra PAZ.
Seguramente haz obtenido:
	 PAZ	 PZA	 APZ	 AZP	 ZPA	 ZAP
Observa que no es lo mismo PAZ que ZAP; es decir el orden en que se forman
es importante.
Si son de dos letras, ¿cuáles obtienes? Seguramente obtienes las siguientes:
PA	 AP	 PZ	 ZP	 AZ	 ZA
Permutaciones
Permutaciones de
ART
A R T
A T R
R A T
R T A
T A R
T R A
Y si son de una letra, obtienes:
P	 A	 Z
El ejemplo anterior te muestra las permutaciones
que pueden formarse con las letras de la palabra PAZ
tomadas de tres, dos y un elemento.
¿Cómo defines entonces lo que es una permutación?
Permutación es una disposición ordenada de un
conjunto de objetos; en los cuales hay un primero,
un segundo, etc.
Permutaciones con "n" objetos diferentes tomados todos a la vez
Has visto que permutar una colección de objetos
(sean éstos personas, animales, cosas, etc.) significa
reordenarlos. O sea que una permutación de una
colección de objetos es un arreglo ordenado de ellos.
En la figura te mostramos las seis permutaciones de las
letras ART.
Considera las letras de la palabra F A C T O R. Si éstas
las escribes en tarjetas:
F A C T O R
Las puedes ubicar como desees. Puedes formar
ordenamientos como CORFAT, TRACOF y FRACOT.
Ninguno forma una palabra que encontremos
en el diccionario, pero todos son correctos como
permutaciones. Si llamamos código a cada uno de ellos
¿Cuántos códigos puedes formar con las letras de la
palabra factor?
Observa que esto es como llenar seis casilleros.
UNIDAD 1
Segundo Año - Matemática 83
El primero se puede llenar de 6 maneras. Habiendo hecho esto, el segundo puede
llenarse de 5 maneras, el tercero de 4 y así sucesivamente. Luego, por el principio de la
multiplicación tienes que:
6 × 5 × 4 × 3 × 2 × 1= 720
Hay 720 códigos
¿Te fijas que ésta también es la respuesta a la primera pregunta del club de observadores
de pájaros? Ésta te pide calcular de cuántas maneras pueden ubicarse sus seis miembros
para una fotografía en grupo. Si identificas a cada persona con una letra por ejemplo,
las de FACTOR, entonces estás en el mismo caso. Colocar a los observadores de
pájaros es como hacer un código de seis letras. Y esto, como ya lo sabes, se puede hacer
de 720 maneras.
Lo escribimos así, 6
P6
= 6! = 720 (6
P6
significa permutar 6 en grupos de 6).
¿Has visto las placas de vehículos de países como México o Estados Unidos? ¿Qué
característica tienen que es diferente en las placas salvadoreñas? ¿Por qué en esos países
usan esas letras en las placas?
1.	Explicaelconceptodepermutaciónydaunejemplodeello.
2.	Evalúalassiguientesexpresiones:
a)	 7
P7
b)	 6
P6
c)	 4!
d)	 8!
3.	Escribeennotaciónfactorial:
a)	 9×8×7×6×...×1
b)	 5
P5
4.	Calculaelnúmerodepalabrascódigoquepuedanformarse,sinimportarsusignificado,contodas
lasletrasdelapalabra“lapicero”.
5.	¿Decuántasmaneraspuedencolgarseenlaparedunserrucho,unasierra,unastijerasyunrollode
tirrosihay4ganchosparahacerlos?
Actividad 1
CA-93284
USA
JAL-75829
México D.F.
UNIDAD 1
84 Matemática - Segundo Año
Observa que para n
personas tomando
grupos de r se tiene
(n) (n-1) (n-2)… (n–r+1)
comprueba esto para la
situación anterior.
En general, el número de permutaciones que pueden formarse tomando grupos "r" de
"n" elementos está dado por: n
Pr
= n (n – 1)(n – 2). . . (n – r + 1)
Ejemplo 2
Calcula el número de códigos que pueden formarse con las letras de la palabra
PERFUMADO si estas se toman de la siguiente forma.
a) 3 de 9		 b) 4 de 9		 c) 6 de 9
Solución:
a) Como se toman 3 de las 9 letras
Permutaciones con “n” objetos diferentes tomando “r”
Luego por el principio de la multiplicación:
Número total de maneras = 9 × 8 × 7 = 504
b) Como se toman 4 de 9 letras:
Número total de maneras = 9 × 8 × 7 × 6 = 3024
9 8 7 6× × × = 3024
Personas para 1a
posición
Personas para 2a
posición
Personas para 3a
posición
Personas para 4a
posición
Número de maneras
en que puede elegirse la
primera letra
Número de maneras
en que puede elegirse
la segunda letra
Número de maneras
en que puede elegirse
la tercera letra.
9 8 7
Punto de apoyo
Una permutación nos indica orden:
Arreglos, filas… Así: 42≠24
Ahora observa la siguiente situación.
Ejemplo 1
¿De cuántas maneras se pueden sentar, en una banca, 4 de 9 personas?
Solución:
Por el principio de la multiplicación, tienes lo siguiente.
UNIDAD 1
Segundo Año - Matemática 85
c) Como se toman 6 de las 9 letras
Número total de maneras = 9 × 8 × 7 × 6 × 5 × 4 = 60,480
Observa tu calculadora científica. Notarás que posee las teclas n
Pr
y n!
La tecla n! te da las permutaciones de n objetos tomados simultáneamente.
La tecla nPr te da las permutaciones de n objetos tomados r de ellos.
Ahora que has comprendido qué son las permutaciones y cómo se calculan, puedes
usar tu calculadora científica para facilitar los cálculos.
Por ejemplo, si quieres calcular 7
P5
lo haces así:
Considera seis puntos en el plano, sin que haya tres en la
misma recta. Llámalos F, A, C, T, O, R.
Cópialos y encuentra el número de triángulos que
puedes dibujar. Usa los puntos de F, A, C, T, O, R como
el vértice.
Observa que para cada selección de tres puntos puedes
dibujar un triángulo.
En pantalla
1.	Evalúalassiguientesexpresiones.
a)	 8!
b)	 (5!)(3!)
c)	 9
6
!
!
d)	 5
P2
e)	 10
P4
2.	Calculacuántoscódigosdecuatroletraspuedenhacerseconlasletrasdelapalabra
	 MÚLTIPLOS,ningunaletradeberepetirse.
3.	DeterminaelnúmerodepermutacionesquepuedenformarseconlasletrasdelapalabraMÁSsi
setoman:
a)	 todas
b)	 2de3
c)	 todasó2de3
A
C
R
O
T
F
Actividad 2
7 nPr 5 = 2520
Combinaciones
UNIDAD 1
86 Matemática - Segundo Año
Por ejemplo F A R.
Sin embargo, nota que el orden en que eliges los tres
puntos no interesa. Así, FAR, FRA, AFR, ARF, RAF y
RFA representan el mismo triángulo.
Observa que con la palabra FACTOR tendrás que el
número de permutaciones de 3 letras es:
6
P3
= 6 × 5 × 4 = 120
Ahora, como cada triángulo queda definido con
3! = 6 códigos diferentes entonces con los 120 códigos
anteriores ¿cuántos triángulos diferentes puedes formar?
Muy bien, habrás contestado
120
6
20= triángulos.
Lo anterior se escribe así: 6 3
3
6 5 4
3 2 1
20
P x x
x x!
= =
En este caso, cada triángulo es una combinación de la
colección de puntos F, A, C, T, O, R, lo cual denotamos
por
6
3



 o 6
C3
, que es el número de combinaciones de 6
objetos tomando 3 de ellos.
Habrás notado que, el número de combinaciones de n
objetos tomando r se denota por
n
r



 o n
Cr
,
donde
n
r
P
r
n r


 =
!
Puede demostrarse, lo cual no es un objetivo de esta
lección, que: n rP
r
n
r n r!
!
!( - )!
=
Luego;
n
r
n
r n r



 =
!
! ( - )!
que es la fórmula del número
de combinaciones de n objetos cuando se toma r.
Ejemplo 3
Un equipo de béisbol aficionado tiene siete jugadores
de cuadro, seis jardineros, cinco lanzadores y dos
receptores. Cada jardinero puede ocupar cualquiera de
las tres posiciones y cada jugador de cuadro cualquiera
de las cuatro posiciones del cuadro. ¿De cuántas
maneras puede seleccionarse el equipo de nueve
jugadores?
A
C
R
O
T
F
Solución:
La cantidad de maneras de seleccionar tres jardineros,
de seis posibles es:
6
3
6
3 6 3
6
3 3
6 5 4 3
3



 = = =
!
!( - )!
!
! !
!x x x
x 22 1 3
20
x x !
=
Las formas de seleccionar los cuatro jugadores de
cuadro son:
7
4
7
4 7 4
7
4 3
7 6 5 4
3



 = = =
!
!( - )!
!
! !
!x x x
x 22 1 4
35
x x !
=
Además, tienes cinco maneras de seleccionar un lanzador
y dos para el receptor. Luego, por el principio de la
multiplicación.
20 × 35 × 5 × 2 = 7,000
Hay 7,000 maneras de seleccionar un equipo de béisbol.
UNIDAD 1
Segundo Año - Matemática 87
1.	Evalúalassiguientesexpresiones.
a)	 5
C2	
c)
10
3 7
!
! !
b)	
9
7



 	 d)
10
4




2.	Enunaoficinatrabajanochopersonas,ydecidenformaruncomitédetreselementos.¿Decuántas
maneraspuedeelegirse?
3.	Enunaseccióndeunaoficinahaycincoempleadosquepasaránunexamenmédico.
a)	 ¿Decuántasmaneraspuedensentarseenunafiladecincoasientosparapasarel examen
médico?
b)	 Sieligenunadirectivade3personas.¿Decuántasmaneraspuedenhacerlo?
Actividad 3
Punto de apoyo
En una combinación no importa el orden. Así por ejemplo: comité,
grupos, colección dan la idea de una combinación
Resumen
Seleccionar r objetos de n
¿Importa el orden?
Combinación Permutación
n
r
n
r n r



 =
!
! ( - )! n n n n rP . . .r ( ) ( )= − − +1 1
No Si
UNIDAD 1
88 Matemática - Segundo Año
Autocomprobación
	
	 Elnúmerodemanerasenquepuedensentarseocho
personasenlaprimerafiladeunauditorioes:
a)	 7!
b)	 8!
c)	 5040
d)	 a) yc)soncorrectas
4	 Losseismiembrosdeunaoficinaquieren
seleccionarunpresidente,unvicepresidente
yunsecretario.Elnúmerodeformasenque
puedenhacerlo,es:
a)	 6
C3
b)	 6!
c)	 6
P3
d)	 3!
2
	 Silosseismiembrosdelproblemaanteriorquieren
sencillamenteelegiruncomitédetrespersonas,el
númerodeformasenquepuedenhacerlo,es:
a)	 6
C3
b)	 6!
c)	 6
P3
d)	 3!
3	 ¿Cómoserepresentaunapermutacióndeun
conjuntodenobjetostomandor?
a)	 n
Cr		
c) n
Pn
b)	
r
n



 		 d) n
Pr
1
Internacionalmente las estaciones de radio
comienzan con K, Y o W. Las otras letras que la
forman pueden ser dos o tres. YSU, YSKL, YSAX.
Observa que las letras forman una permutación.
Otros nombres de estaciones de radio
pueden ser:
YSK, KSU, WXY, WYSU,
YKL, YSEB, YKB
¿Con qué letra empieza el nombre de las
emisoras en El Salvador?
1.d.			2.c.			3.a.			4.b. Soluciones
ESTACIONES DE RADIO Y PERMUTACIONES
Segundo Año - Matemática 89
Primera Unidad
Motivación
Indicadores de logro
Antes de comenzar el estudio de las funciones exponenciales vas a repasar las funciones uno a uno.
	 Identificarásyexplicarás,coninterésyseguridad,lafunciónexponencial
haciendousodellenguajematemático.
	 Identificarásyaplicarás,coninterésyseguridad,laspropiedadesdela
funciónexponencial.
	 Seleccionarás,conseguridad,laescalaapropiadapararepresentarla
gráficadeunafunciónexponencial
	 Construirástabladevaloresdelafunciónexponencial,conordenyaseo.
	 Identificarásyexplicarás,conseguridad,eldominioyrangodecada
funciónexponencial.
Los organismos unicelulares se reproducen
asexualmente por división celular, después de
un periodo de tiempo se van replicando. En la
bipartición, si hay una célula, ésta se dividirá en dos
células. Cada una de éstas se dividirá nuevamente
en otras dos. ¿Cuántas células habrá después de la
tercera división?
FUNCIONES EXPONENCIALES
Lección 5
Recuerda la función uno a uno
El gráfico de la derecha representa una función.
¿Puedes decir por qué es una función?
Es una función, porque a cada valor de x le corresponde
un único valor de y tal que (x, y), pertenece a la función
es decir que (x, y), es un punto de su gráfico.
La función se puede expresar mediante la ecuación
y = x2
Observa su gráfico y responde si a cada valor de y se
le puede asociar un único valor de x, para que (x, y)
pertenezca al gráfico.
y
x
y (x,y)
UNIDAD 1
90 Matemática - Segundo Año
Puedes ver, que no; tal como te lo ilustramos en la figura de
abajo; para el valor que se indica de y, existen dos valores para
x; estos son: x1
y x2;
tales que (x1,
y) y (x2,
y) pertenecen
al gráfico.
Por lo tanto la función no es uno a uno ya que para que lo sea
cada y debe relacionarse con un único x.
¿Cómo haces para que f(x) = x2
sea una función uno a
uno?
Observa lo siguiente:
Si delimitas el dominio de f(x) = x2
para valores de x
mayores o iguales que cero, se tendrá que cada valor de
x tiene un valor único de y, y cada valor de y un único
valor de x; es decir el punto (x, y) pertenece al gráfico de
la función.
Haz una tabla para encontrar (x, y) donde x ≥ 0.
Grafica para f(x) = x2
y compara tu resultado con la
gráfica de abajo. Así la función f(x) = x2
con x > 0 es una
función uno a uno: cada valor de y tiene un valor único
para x
¿Cómo identificas gráficamente una función uno a uno?
a)
b)
c)
d)
e)
Para que una función sea uno a uno, debe satisfacer no
sólo la prueba de la recta vertical (prueba que muestra
que es una función); sino también la prueba de la recta
horizontal que verifica que la función es uno a uno.
y
x
y
x1 x2
y
x
UNIDAD 1
Segundo Año - Matemática 91
Función exponencial
Retomando la situación del inicio de esta lección, ahora investigaremos, ¿cuántas
células habrá después de 10 periodos de tiempo? para ello consideremos lo siguiente:
Si f (t) denota el número de células después de t periodos de tiempo, obtendremos los
resultados que aparecen en la siguiente tabla:
f t t
( ) =2 es una expresión que describe la reproducción celular.
¿Cuántas células habrá después de 10 periodos de tiempo?. Correcto
f(10) = 210
(encuentra este resultado con tu calculadora)
En este ejemplo compruebas que las células se reproducen de acuerdo a la expresión
f t t
( ) =2 .
t 0 1 2 3 4 5 6
f(t) 1 2 4 8 16 32 64
Una función exponencial es una función de la forma f(x) = ax
, donde
a es, un número real positivo, diferente de 1.
Puedes ver que (a), (d) y (e) son funciones uno a uno. Notarás que (b) y (c) no lo son, ya
que no pasan la prueba de la recta horizontal: hay más de una y para una sola x.
x1
x2
x1
x2
x3
UNIDAD 1
92 Matemática - Segundo Año
Observa en el gráfico que el valor de y no puede ser 0
Actividad1
Puedes ver en el gráfico, que el
dominio de la función son todos los
números reales, R. El rango son todos
los números mayores que cero.
x -3 -2 -1 0 1 2 3
y=2x y = = =2
1
2
1
8
3
3
-
2
1
4
2-
= 2
1
2
1-
= 2°=1 2 4 8
Solución:
Comienzas construyendo una tabla de valores.
Ahora, localizamos en el plano los puntos - , , - , , - ,3
1
8
2
1
4
1
1
2











 , (0,1), (1, 2), (2, 4), etc,
y los unimos.
Ejemplo 1
Las siguientes funciones son exponenciales:
y = 2x	
y = 5x	 y
x
=




3
4
En general una función exponencial se denota así:
f(x) = ax
, para todo real a > 0 y a ≠ 1
¿Cómo graficas una función exponencial?
Grafica la función y = 2x
define su dominio y rango.
a)	Encuentramásvaloresdey=2x
contucalculadoradandovalorespositivosmayoresque5yotros
valoresmenoresque–5.¿Cómoeselsignodelosresultados?.
y = 2x
x
y
2
4
6
8
10
12
14
16
18
2 4 6-2-4-6
UNIDAD 1
Segundo Año - Matemática 93
Las gráficas de la actividad anterior te sugieren el siguiente cuadro comparativo.
Ejemplo 2
Grafica ahora y
x
=




1
2
y define el dominio y rango.
Solución:
Similarmente al ejemplo anterior, construyes una tabla de valores y luego graficas la
curva respectiva.
x -3 -2 -1 0 1 2 3 4
y
x
=




1
2
1
2
1
1
2
8
3
3



 =




=
−
4 2 1
1
2
1
4
1
8
1
16
Al igual que en la función
anterior, puedes ver que:
D f = R	
R f =] 0, ∞ [
	 Graficaentucuadernolasfuncionesy=3x
, y
x
=




2
3
.
a)	Laformadey=3x
,¿acuáldelasdosfuncionesanterioresseparece?
b)	Ylaformadelgráficode y
x
=




2
3
,¿acuáldelasdosfuncionesanterioresseasemeja?
Terminología Definición Gráfica de f con
a > 1
Gráfica de f con
a < 1
Función
exponencial f con
base a
y = ax
para todo
x en los números
reales donde a > 0
y a≠1
(0,1)
y
(0,1)
y
Actividad 2
y = ( )x
x
y
2
3
4
5
6
7
8
9
1 2 3 4 5 6-1-2-3-4
1
2
UNIDAD 1
94 Matemática - Segundo Año
a)	Graficaenelmismoconjuntodeejes,lasfuncionesy=2x
e y=3x
.¿Cuáldelasdosmuestramayorcrecimiento?¿Porqué?
b)	Analizasilafunciónexponencialesunoauno(biunívoca).
Solución:
Como la población mundial se pide a partir de 1975, este
año se toma como referencia inicial. Luego:
a) 1975: P (0) = 4(1.02)º = 4.0 miles de millones.
b) Como 2000 – 1975 = 25, entonces:
2000: P (25) = 4(1,02)25
= 6.56 miles de millones
c) Como 2020 –1975 = 45, entonces
2020: P (45) = 4(1.02)45
= 9.75miles de millones
Para efectuar los cálculos de (1.02)25
y (1.02)45
usaste
calculadora científica.
A continuación estudiarás cuatro modelos en donde se utiliza la función exponencial.
1.Población
Si la expresión P (t) = 4(1.02)t
es la fórmula que nos da el crecimiento de la población
mundial donde P (t) representa el número de personas (en miles de millones) y t es el
número de años después de 1975, calcula la población mundial para los años:
a) 1975		 b) 2000		 c) 2020
Actividad3
Características de la función exponencial
1.	Las gráficas del cuadro anterior indican que si a > 1,
entonces f es creciente, y si 0 < a < 1, es decreciente.
2.Como aº = 1 la intersección de f con el eje y es en (0, 1),
para todo a.
3.Si a > 1, conforme x decrece hasta valores negativos, la
gráfica de f se aproxima al eje x. Luego, el eje x es una
asíntota horizontal.
Además, a medida que x aumenta a través de valores
positivos, la gráfica sube con rapidez. Este tipo de
variación es característica de la ley exponencial de
crecimiento y f puede ser nombrada como función de
crecimiento.
Por comparación, haz el análisis del párrafo anterior para
0 < a < 1.
4.El dominio de la función exponencial es el conjunto
de los números R, y el rango es ]0, ∞[.
5.Las funciones exponenciales, obedecen las
propiedades de los exponentes; cuando a y b
son positivos:
a a ax y x y
= +
	
a
b
a
b
x x
x



 = 	
a
a
a
x
y
x y
= -
a ax y x y
( ) = 	 ab a bx x x
( ) =
UNIDAD 1
Segundo Año - Matemática 95
a)	 Paraelmodelodelapoblacióncalculalapoblaciónmundialenelaño2010.
b)	 Paraelmodelodelaradioactividadencuentraelnúmerodegramosquetienelasustanciadespuésde15años.
2.Radiactividad
Un equipo de científicos determina que la masa total
que se halla en una sustancia radiactiva, en gramos,
luego de transcurridos t años está dada por
y = 80(2)–0.4t
Encuentra el número de gramos que tiene la sustancia
luego de:
	 a) 10 años	 b) 100 años.
Solución:
Puedes observar que el problema se reduce a sustituir el
respectivo valor de t en la expresión y= 80(2)– 0.4t
Luego:
a) f (10) = 80(2)–0.4(10)
= 5g
Luego de 10 años, la sustancia tiene una masa de 5 g
b) f (100) = 80(2)–0.4(100)
= 7.28 × 10–11
g
Luego de 100 años, la masa de la sustancia es de
7.28 × 10–11
g, lo que significa que prácticamente se ha
extinguido por la acción radioactiva.
3.Finanzas
Magda deposita $ 1,000.00 en una cuenta de ahorros al
8% anual cuando nace su hija. ¿Cuánto posee cuando
ésta tiene quince años?
Solución:
Después de un año, los intereses son de
(0.08) (1,000) = $ 80 que sumados a $1,000 da un total
de $ 1,080.
Durante el segundo año, $1,080 gana intereses de
0.08 (1,080), dando un total de
1,080 + 0.08 (1,080) = 1,080 (1+0.08)
	 = 1,080 (1.08)
	 = 1,000 (1.08) (1.08) sustituyendo 	
		 1,080 por 1,000(1.08)
	 = 1,000 (1.08)2
Continuando de esta forma, el capital o principal de
Magda crece a 1,000 (1.08)3
luego de 3 años; a
1,000 (1.08)4
, luego de 4 años y así sucesivamente.
En 15 años será de: 1,000 (1.08)15
= $ 3,172.17
4. Crecimiento bacteriano
La cantidad de bacterias en cierto cultivo aumenta de
600 a 1,800 en dos horas. La cantidad f (t) de bacterias
en t horas después de iniciado el crecimiento está dada
por f t t
( ) ( ) /
=600 3 2
a)	Calcula la cantidad de bacterias en el cultivo una hora 	
después del crecimiento.
b)	Calcula la cantidad de bacterias en el cultivo cuatro
horas después del crecimiento.
Solución:
a) f ( ) ( ) ,/
1 600 3 1 0391 2
= = bacterias
b) f ( ) ( ) /
4 600 3 4 2
= = 5,400 bacterias
Resumen
Una función exponencial es aquella de la forma y = f(x) = ax
, con a > 1 ó 0 < a < 1. Si a>1, la función es creciente,
y decreciente si 0 < a < 1. Las funciones exponenciales representan modelos demográficos, biológicos, físicos,
económicos, etc.
Actividad4
96 Matemática - Segundo Año
Autocomprobación
UNIDAD 1
	
1.a.			2.d.			3.c.			4.c.
Las aplicaciones de los isótopos radiactivos a la
medicina se deben en gran medida a la científica
francesa Marie Curie (Varsovia,1867). Por ello
fue galardonada con el premio Nobel de física
en 1903, a la par de su esposo y de H. Bequerel
quienes estudiaron la radioactividad,descubierta
por este último. Posteriormente fue galardonada
con el premio nobel de química. Sin duda
Marie Curie ha sido una de las mujeres
más extraordinarias en toda la historia. Sus
investigaciones contribuyeron al tratamiento de
algunas enfermedades mediante isótopos y a la
construcción de equipos radiográficos.
La figura de la par, te muestra el gráfico de cuatro
funciones exponenciales: 2x
, 3x
, 5x
y 1
3




x
Soluciones
LA DESINTEGRACIÓN Y MARIE CURIE
	 Elgráficoquecorrespondeay=3x
es:
a)	 f1
b)	 f2
c)	 f3
d)	 f4
1
	 Elgráficoquecorrespondeay= 1
3




x
es
a)	 f1	
c) f3
b)	 f2	
d) f4
3	 Elgráficoquecorrespondeay=5x
es:
a)	 f1
b)	 f2
c)	 f3
d)	 f4
2
	 Elpuntodondesecortanlascuatrofuncioneses:
a)	 (1,0)	 c) (0,1)
b)	 y=0	 d) x=1
4
Marie Curie
0
y
x
f3
f4
f1
f2
Segundo Año - Matemática 97
Lección 1
Actividad 1:	 1.	Encuentras la diferencia en cada sucesión. Con ella 		
		 calculas los términos que faltan.
		 2.	Sustituyendo en el término general la posición del 		
		 término respectivo, ejemplo:
		 a) an
= 5 + (n – 1)4, a10
= 5 + (10 – 1)4 = 5 + (9)4 = 41
Actividad 2:	 	 Con a1
= 7 y a6
=27. Luego a6
= a1
+ (6 – 1) d, 			
		 sustituyendo 27 = 7 + 5d
			 27 – 7 = 5d
			 20 = 5d
			 4 = d
		 Luego d = 4 y sumas 4 al primer término obteniendo el 		
		 segundo y así sucesivamente.
Actividad 3:	 1. Resta dos valores consecutivos para calcular d. Luego 		
		 aplicas la fórmula de la suma.
		 2.	El primer término es a1
= 6 y n = 15 por lo que 			
		 a15
=15(6)=90. Calculas d y luego S.
Lección 2:
Actividad 1:	 1.	Sustituyes los datos en la fórmula de S. Usa tu calculadora 		
		 científica
		 2.	En cada sucesión calculas la razón. Con ella calculas los 		
		 términos que faltan
		 3.	Multiplicas por r el primer término y obtienes el segundo 		
		 término y así sucesivamente hasta encontrar los
		 cinco términos
		 4. y 5. En ambos casos lo haces con an
.
Actividad 2: 	 a)	 Hallas r con la fórmula respectiva n=6, a1
=3 y a6
=96.
		 Luego r=2.
Lección3:
Actividad 1:	 b) 12 posibilidades
Actividad 2:	 a), b), y c) son una aplicación del principio de la 			
		 multiplicación: a) 5 × 4 = 20; b) 2 × 4 × 5 × 3 =120;
		 c) 6 × 5 × 4 × 3 × 2 × 1 = 720.
Solucionario
98 Matemática - Segundo Año
Actividad 3:	 a)	 Son 8 posibilidades, b) Son 16 posibilidades.
Actividad 4:	 a)	 2 × 3 × 4 + 3 × 2 × 3 = 24 + 18 = 42 posibilidades de menú.
Actividad 5:	 a)	 12, b) 2730, c)
2
33
Lección 4
Actividad 1:	 2. 5040, b) 720, c) 24, d) 40320
		 3.	 a)9!, b)5!
		 4.	 8! = 40320
		 5.	 4! = 24
Actividad 2:	 1.	 a) 40320, b) 720, c) 504, d) 20, e) 5040
		 2.	 3024
		 3.	 a) 3! ó 3 × 2 × 1 = 6, b) 3 × 2 = 6, c) 6 + 6 = 12.
Actividad 3:	 1.	a)
5
2 3
10
!
! !
= , b) 36, c)
10 9 8 7
3 2 1 7
120
× × ×
× × ×
=
!
!
, d) 210
		 2.	
8
3
8
3 5
56



 = =
!
! !
		 3.	a)120; b)10
Lección 5
Actividad 1:	 a)	 El signo es positivo y el valor es mayor que cero.
Actividad 3:	 a)	 Tiene mayor crecimiento 3x
, ya que a medida que x 		
		 aumenta, la gráfica crece con mayor rapidez
		 b)	 La función exponencial es uno a uno, al trazar una recta		
		 horizontal solo corta en un punto la gráfica.
Actividad 4:	 a)	 P(35) = 4(1.02)35
= 7.9995, aproximadamente 8 miles de 		
		 millones de habitantes
		 b)	 f (15) = 80(2)–0.4(15)
= 80(2)–6
= 1.25 gramos.
Solucionario
Segundo Año - Matemática 99
Proyecto
Interés compuesto
La fórmula del interés compuesto. Es la base de todo
tipo de transacción financiera, por ejemplo, las que
realizan los bancos.
A es el monto, o sea capital más interés.
P es el capital o principal.
i es la tasa de interés por período compuesto
n es el número de períodos compuestos.
Sustituyendo:	 A = 10,000 (1 + 0.02)24
	 = 10,000 (1.02)24
	 = 10,000 (1.6084) de tu calculadora científica
	 A = $ 16,084
Puedes ver que la inversión inicial de $ 10,000 aumentó a $ 16,084 en 6 años.
Supón que una cooperativa de empleados públicos dispone de $10,000 y tiene dos ofertas para que sean
depositados por 5 años, en dos bancos. El primero les ofrece el 9% convertible o compuesto mensualmente y el
segundo el 10% convertible o compuesto trimestralmente. Ayúdalos a decidir que les conviene más. Además
preséntales gráficamente ambas situaciones.
Por ejemplo, supón que una cooperativa de transporte invierte $ 10,000 al 8% anual convertible trimestralmente
durante 6 años.
Tendremos:
P = $ 10,000
i =
8
4
% = 2% =
2
100
= 0.02 nota que 8 se divide entre 4 debido a que hay 4 trimestres en el año.
Luego: A = P (1 + i)n
n = 6 × 4 = 24 períodos
Número de trimestres en el año
Número de años
100 Matemática - Segundo Año
Recursos
ALLEN R. Ángel, Álgebra Intermedia. Editorial Prentice Hall, segunda
edición, México, 1992
BARNETT, Raymond, Álgebra y Trigonometría. Editorial Mc Graw Hill,
tercera edición, Colombia, 1990
SWOKOWSKI, Earl y Cole, Jeffery, Álgebra y trigonometría con geometría
analítica, Editorial Thomson y Learning, décima edición, México, 2002
SPIEGEL, Murray, Álgebra Superior. Editorial McGraw-Hill, serie Shaum,
primera edición, México, 1970
http: //www.fing.edu.uy/darosa/nadjasthella.pdf

Más contenido relacionado

La actualidad más candente (20)

Guia trabajo uno_en_casa_trigonometria_2021_(1)
Guia trabajo uno_en_casa_trigonometria_2021_(1)Guia trabajo uno_en_casa_trigonometria_2021_(1)
Guia trabajo uno_en_casa_trigonometria_2021_(1)
 
Unidad 4 t5 lenguaje algebraico
Unidad 4  t5 lenguaje algebraicoUnidad 4  t5 lenguaje algebraico
Unidad 4 t5 lenguaje algebraico
 
Mate grado 10°
Mate grado 10°Mate grado 10°
Mate grado 10°
 
Principio aditivo
Principio aditivoPrincipio aditivo
Principio aditivo
 
Progresion matematica
Progresion matematicaProgresion matematica
Progresion matematica
 
Sucesiones - progresiones -
Sucesiones -  progresiones -Sucesiones -  progresiones -
Sucesiones - progresiones -
 
Sucesiones progresines series
Sucesiones progresines seriesSucesiones progresines series
Sucesiones progresines series
 
Progresiones1
Progresiones1Progresiones1
Progresiones1
 
Cuadernillo de matematicas 2015
Cuadernillo de matematicas 2015Cuadernillo de matematicas 2015
Cuadernillo de matematicas 2015
 
U4 t5 ecuaciones
U4 t5 ecuacionesU4 t5 ecuaciones
U4 t5 ecuaciones
 
Unidad 1 Razones y Proporciones
Unidad 1  Razones y ProporcionesUnidad 1  Razones y Proporciones
Unidad 1 Razones y Proporciones
 
Teodre ma de moivre (3)
Teodre ma de moivre (3)Teodre ma de moivre (3)
Teodre ma de moivre (3)
 
Aplicaciones de los números complejos
Aplicaciones de los números complejosAplicaciones de los números complejos
Aplicaciones de los números complejos
 
Mate grado 11o
Mate grado 11oMate grado 11o
Mate grado 11o
 
Numeros complejos
Numeros complejos Numeros complejos
Numeros complejos
 
Sucesiones y progresiones
Sucesiones y progresionesSucesiones y progresiones
Sucesiones y progresiones
 
Examen del 1er parcial (calculo)
Examen del 1er parcial (calculo)Examen del 1er parcial (calculo)
Examen del 1er parcial (calculo)
 
Ecuaciones de la forma a+x=b
Ecuaciones de la forma a+x=bEcuaciones de la forma a+x=b
Ecuaciones de la forma a+x=b
 
Mate grado 8°
Mate grado 8°Mate grado 8°
Mate grado 8°
 
Sucesiones aritmeticas
Sucesiones aritmeticasSucesiones aritmeticas
Sucesiones aritmeticas
 

Destacado

Atelier Lean takeoff Agile Grenoble 2014
Atelier Lean takeoff Agile Grenoble 2014Atelier Lean takeoff Agile Grenoble 2014
Atelier Lean takeoff Agile Grenoble 2014Christophe NEY
 
Shopping mission impossible
Shopping mission impossibleShopping mission impossible
Shopping mission impossiblecatavrio
 
Quel est le_prix_de_la_beaute
Quel est le_prix_de_la_beauteQuel est le_prix_de_la_beaute
Quel est le_prix_de_la_beautecatavrio
 
Beezbox: développez votre activité en exploitant les facebook, twitter et Li...
Beezbox:  développez votre activité en exploitant les facebook, twitter et Li...Beezbox:  développez votre activité en exploitant les facebook, twitter et Li...
Beezbox: développez votre activité en exploitant les facebook, twitter et Li...Solofo RAFENO
 
Portafolio de presentación.Coursera. Semana 4.
Portafolio de presentación.Coursera. Semana 4.Portafolio de presentación.Coursera. Semana 4.
Portafolio de presentación.Coursera. Semana 4.Adis Corona
 
El teatro en imágenes
El teatro en imágenesEl teatro en imágenes
El teatro en imágenesinicial4jfk
 
Modelos espiral
Modelos espiralModelos espiral
Modelos espiralalextein
 
ACHAT APPARTEMENT PARIS 16 MUETTE
ACHAT APPARTEMENT PARIS 16 MUETTE ACHAT APPARTEMENT PARIS 16 MUETTE
ACHAT APPARTEMENT PARIS 16 MUETTE Marc Foujols
 
Bloque 2.Tarea3a. Una buena alimentación
Bloque 2.Tarea3a. Una buena alimentaciónBloque 2.Tarea3a. Una buena alimentación
Bloque 2.Tarea3a. Una buena alimentacióntutoresaa
 
DETERMINACION DE REQUERIMIENTOS -----> TIPOS DE FACTIBILIDAD
DETERMINACION DE REQUERIMIENTOS ----->   TIPOS DE FACTIBILIDADDETERMINACION DE REQUERIMIENTOS ----->   TIPOS DE FACTIBILIDAD
DETERMINACION DE REQUERIMIENTOS -----> TIPOS DE FACTIBILIDADRoy Varela
 
Liste De Vignerons
Liste De VigneronsListe De Vignerons
Liste De Vigneronslbdb
 
A la découverte de redo
A la découverte de redoA la découverte de redo
A la découverte de redoThierry Gayet
 
Alegoría de la caverna
Alegoría de la caverna Alegoría de la caverna
Alegoría de la caverna Sofia Shawol
 
Videography "Advertising"
Videography "Advertising"Videography "Advertising"
Videography "Advertising"Vilicha Bella
 
De hefbomen van een succesvolle webshop : eCommerce Kortrijk eXpo
De hefbomen van een succesvolle webshop : eCommerce Kortrijk eXpo De hefbomen van een succesvolle webshop : eCommerce Kortrijk eXpo
De hefbomen van een succesvolle webshop : eCommerce Kortrijk eXpo Carole Lamarque
 

Destacado (20)

Atelier Lean takeoff Agile Grenoble 2014
Atelier Lean takeoff Agile Grenoble 2014Atelier Lean takeoff Agile Grenoble 2014
Atelier Lean takeoff Agile Grenoble 2014
 
Guerra fria profesora (1)
Guerra fria profesora (1)Guerra fria profesora (1)
Guerra fria profesora (1)
 
Shopping mission impossible
Shopping mission impossibleShopping mission impossible
Shopping mission impossible
 
Quel est le_prix_de_la_beaute
Quel est le_prix_de_la_beauteQuel est le_prix_de_la_beaute
Quel est le_prix_de_la_beaute
 
Beezbox: développez votre activité en exploitant les facebook, twitter et Li...
Beezbox:  développez votre activité en exploitant les facebook, twitter et Li...Beezbox:  développez votre activité en exploitant les facebook, twitter et Li...
Beezbox: développez votre activité en exploitant les facebook, twitter et Li...
 
Portafolio de presentación.Coursera. Semana 4.
Portafolio de presentación.Coursera. Semana 4.Portafolio de presentación.Coursera. Semana 4.
Portafolio de presentación.Coursera. Semana 4.
 
El teatro en imágenes
El teatro en imágenesEl teatro en imágenes
El teatro en imágenes
 
Modelos espiral
Modelos espiralModelos espiral
Modelos espiral
 
ACHAT APPARTEMENT PARIS 16 MUETTE
ACHAT APPARTEMENT PARIS 16 MUETTE ACHAT APPARTEMENT PARIS 16 MUETTE
ACHAT APPARTEMENT PARIS 16 MUETTE
 
Bloque 2.Tarea3a. Una buena alimentación
Bloque 2.Tarea3a. Una buena alimentaciónBloque 2.Tarea3a. Una buena alimentación
Bloque 2.Tarea3a. Una buena alimentación
 
DETERMINACION DE REQUERIMIENTOS -----> TIPOS DE FACTIBILIDAD
DETERMINACION DE REQUERIMIENTOS ----->   TIPOS DE FACTIBILIDADDETERMINACION DE REQUERIMIENTOS ----->   TIPOS DE FACTIBILIDAD
DETERMINACION DE REQUERIMIENTOS -----> TIPOS DE FACTIBILIDAD
 
Los genes humanos
Los genes humanos Los genes humanos
Los genes humanos
 
La Famille Bellido
La Famille BellidoLa Famille Bellido
La Famille Bellido
 
Liste De Vignerons
Liste De VigneronsListe De Vignerons
Liste De Vignerons
 
A la découverte de redo
A la découverte de redoA la découverte de redo
A la découverte de redo
 
4
44
4
 
1
11
1
 
Alegoría de la caverna
Alegoría de la caverna Alegoría de la caverna
Alegoría de la caverna
 
Videography "Advertising"
Videography "Advertising"Videography "Advertising"
Videography "Advertising"
 
De hefbomen van een succesvolle webshop : eCommerce Kortrijk eXpo
De hefbomen van een succesvolle webshop : eCommerce Kortrijk eXpo De hefbomen van een succesvolle webshop : eCommerce Kortrijk eXpo
De hefbomen van een succesvolle webshop : eCommerce Kortrijk eXpo
 

Similar a Mat 11 u1

UTPL-FUNDAMENTOS MATEMÁTICOS-II-BIMESTRE-(OCTUBRE 2011-FEBRERO 2012)
UTPL-FUNDAMENTOS MATEMÁTICOS-II-BIMESTRE-(OCTUBRE 2011-FEBRERO 2012)UTPL-FUNDAMENTOS MATEMÁTICOS-II-BIMESTRE-(OCTUBRE 2011-FEBRERO 2012)
UTPL-FUNDAMENTOS MATEMÁTICOS-II-BIMESTRE-(OCTUBRE 2011-FEBRERO 2012)Videoconferencias UTPL
 
redes sociales Johana Escanta
redes sociales Johana Escantaredes sociales Johana Escanta
redes sociales Johana EscantaJcKitty
 
Bloque 2. secuencia didáctica 2.1 Uso de la aritmética de los números reales.
Bloque 2. secuencia didáctica 2.1 Uso de la aritmética de los números reales.Bloque 2. secuencia didáctica 2.1 Uso de la aritmética de los números reales.
Bloque 2. secuencia didáctica 2.1 Uso de la aritmética de los números reales.Patricia Lizette González Pérez
 
INFORME_TECNICO_Series_y_Sucesiones_Darwin_Diaz.pdf
INFORME_TECNICO_Series_y_Sucesiones_Darwin_Diaz.pdfINFORME_TECNICO_Series_y_Sucesiones_Darwin_Diaz.pdf
INFORME_TECNICO_Series_y_Sucesiones_Darwin_Diaz.pdfAlexFernandoLoyolaTu
 
Apoyo 2 para unidad 1
Apoyo 2 para unidad 1Apoyo 2 para unidad 1
Apoyo 2 para unidad 1matedivliss
 
Sucesiones Progresiones
Sucesiones ProgresionesSucesiones Progresiones
Sucesiones Progresionesjohed
 
FUNDAMENTOS MATEMÁTICOS (II Bimestre Abril Agosto 2011)
FUNDAMENTOS MATEMÁTICOS (II Bimestre Abril Agosto 2011)FUNDAMENTOS MATEMÁTICOS (II Bimestre Abril Agosto 2011)
FUNDAMENTOS MATEMÁTICOS (II Bimestre Abril Agosto 2011)Videoconferencias UTPL
 
Teoría y Problemas de Progresiones Aritméticas ccesa007
Teoría y Problemas de Progresiones Aritméticas  ccesa007Teoría y Problemas de Progresiones Aritméticas  ccesa007
Teoría y Problemas de Progresiones Aritméticas ccesa007Demetrio Ccesa Rayme
 

Similar a Mat 11 u1 (20)

Ejemplos de patrones
Ejemplos de patronesEjemplos de patrones
Ejemplos de patrones
 
Ay t mod2-3
Ay t mod2-3Ay t mod2-3
Ay t mod2-3
 
Tareas plus
Tareas plus Tareas plus
Tareas plus
 
UTPL-FUNDAMENTOS MATEMÁTICOS-II-BIMESTRE-(OCTUBRE 2011-FEBRERO 2012)
UTPL-FUNDAMENTOS MATEMÁTICOS-II-BIMESTRE-(OCTUBRE 2011-FEBRERO 2012)UTPL-FUNDAMENTOS MATEMÁTICOS-II-BIMESTRE-(OCTUBRE 2011-FEBRERO 2012)
UTPL-FUNDAMENTOS MATEMÁTICOS-II-BIMESTRE-(OCTUBRE 2011-FEBRERO 2012)
 
Sucesiones y progresiones
Sucesiones y progresionesSucesiones y progresiones
Sucesiones y progresiones
 
redes sociales Johana Escanta
redes sociales Johana Escantaredes sociales Johana Escanta
redes sociales Johana Escanta
 
Bloque 2. secuencia didáctica 2.1 Uso de la aritmética de los números reales.
Bloque 2. secuencia didáctica 2.1 Uso de la aritmética de los números reales.Bloque 2. secuencia didáctica 2.1 Uso de la aritmética de los números reales.
Bloque 2. secuencia didáctica 2.1 Uso de la aritmética de los números reales.
 
INFORME_TECNICO_Series_y_Sucesiones_Darwin_Diaz.pdf
INFORME_TECNICO_Series_y_Sucesiones_Darwin_Diaz.pdfINFORME_TECNICO_Series_y_Sucesiones_Darwin_Diaz.pdf
INFORME_TECNICO_Series_y_Sucesiones_Darwin_Diaz.pdf
 
Universidad de oriente
Universidad de orienteUniversidad de oriente
Universidad de oriente
 
Apoyo 2 para unidad 1
Apoyo 2 para unidad 1Apoyo 2 para unidad 1
Apoyo 2 para unidad 1
 
Kennyto
KennytoKennyto
Kennyto
 
Sucesiones Progresiones
Sucesiones ProgresionesSucesiones Progresiones
Sucesiones Progresiones
 
Tipos de problemas
Tipos de problemasTipos de problemas
Tipos de problemas
 
Sec. didac.e9
Sec. didac.e9Sec. didac.e9
Sec. didac.e9
 
FUNDAMENTOS MATEMÁTICOS (II Bimestre Abril Agosto 2011)
FUNDAMENTOS MATEMÁTICOS (II Bimestre Abril Agosto 2011)FUNDAMENTOS MATEMÁTICOS (II Bimestre Abril Agosto 2011)
FUNDAMENTOS MATEMÁTICOS (II Bimestre Abril Agosto 2011)
 
Teoría y Problemas de Progresiones Aritméticas ccesa007
Teoría y Problemas de Progresiones Aritméticas  ccesa007Teoría y Problemas de Progresiones Aritméticas  ccesa007
Teoría y Problemas de Progresiones Aritméticas ccesa007
 
Sucesiones Matemáticas
Sucesiones MatemáticasSucesiones Matemáticas
Sucesiones Matemáticas
 
Módulo 1
Módulo 1Módulo 1
Módulo 1
 
Mat fin unidad1
Mat fin unidad1Mat fin unidad1
Mat fin unidad1
 
Módulo 3
Módulo 3Módulo 3
Módulo 3
 

Más de Roxana Abarca Gonzalez (18)

UNIDAD 1
UNIDAD 1UNIDAD 1
UNIDAD 1
 
UNIDAD 2
UNIDAD 2UNIDAD 2
UNIDAD 2
 
UNIDAD 3
UNIDAD 3UNIDAD 3
UNIDAD 3
 
UNIDAD 3
UNIDAD 3UNIDAD 3
UNIDAD 3
 
UNIDAD 4
UNIDAD 4UNIDAD 4
UNIDAD 4
 
UNIDAD 5
UNIDAD 5UNIDAD 5
UNIDAD 5
 
Unidad 6 solución de triángulos oblicuángulos.
Unidad 6 solución de triángulos oblicuángulos.Unidad 6 solución de triángulos oblicuángulos.
Unidad 6 solución de triángulos oblicuángulos.
 
Triangulos oblicuangulos
Triangulos oblicuangulosTriangulos oblicuangulos
Triangulos oblicuangulos
 
Unidad+7+apliquemos+elementos+de+geometria+analitica.
Unidad+7+apliquemos+elementos+de+geometria+analitica.Unidad+7+apliquemos+elementos+de+geometria+analitica.
Unidad+7+apliquemos+elementos+de+geometria+analitica.
 
Geometria analitica
Geometria analiticaGeometria analitica
Geometria analitica
 
Unidad+8+resolvamos+con+geometria+analitica.
Unidad+8+resolvamos+con+geometria+analitica.Unidad+8+resolvamos+con+geometria+analitica.
Unidad+8+resolvamos+con+geometria+analitica.
 
Unidad+9+utilicemos+la+trigonometria.
Unidad+9+utilicemos+la+trigonometria.Unidad+9+utilicemos+la+trigonometria.
Unidad+9+utilicemos+la+trigonometria.
 
Unidad+9+utilicemos+la+trigonometria.
Unidad+9+utilicemos+la+trigonometria.Unidad+9+utilicemos+la+trigonometria.
Unidad+9+utilicemos+la+trigonometria.
 
Mate 11 u5
Mate 11 u5Mate 11 u5
Mate 11 u5
 
Mat 11 u4
Mat 11 u4Mat 11 u4
Mat 11 u4
 
Mat 11 u3
Mat 11 u3Mat 11 u3
Mat 11 u3
 
Diapositivas de tecnologia blog
Diapositivas de tecnologia blogDiapositivas de tecnologia blog
Diapositivas de tecnologia blog
 
Segundo año de bachillerato
Segundo año de bachilleratoSegundo año de bachillerato
Segundo año de bachillerato
 

Último

Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosCesarFernandez937857
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.amayarogel
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADOJosé Luis Palma
 
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdf
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdfResolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdf
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxlclcarmen
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptxEXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptxPryhaSalam
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptxJunkotantik
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para eventoDiegoMtsS
 
codigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinacodigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinavergarakarina022
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
Herramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfHerramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfMARIAPAULAMAHECHAMOR
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...JAVIER SOLIS NOYOLA
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arteRaquel Martín Contreras
 
Manual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfManual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfMaryRotonda1
 
EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.DaluiMonasterio
 

Último (20)

Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos Básicos
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.
 
Sesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdfSesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdf
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
 
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdf
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdfResolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdf
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdf
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptxEXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptx
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para evento
 
codigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinacodigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karina
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
 
Herramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfHerramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdf
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arte
 
Manual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfManual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdf
 
EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.
 

Mat 11 u1

  • 1. 55 Sucesiones, técnicas de conteo y funciones exponenciales Objetivos de la Unidad: Utilizarás las sucesiones aritméticas y geométricas, mediante la deducción y aplicación de su término general, que corresponde a intervalos específicos. Aplicarásprocedimientosdeordenamientoyconteoparadeterminar el número de formas diferentes de seleccionar grupos de objetos de un conjunto dado y aplicarlas a la resolución de problemas de la vida cotidiana. Aplicarás con seguridad las funciones exponenciales en la resolución de situaciones problemáticas del entorno escolar y social. MATEMÁTICA Unidad 1
  • 2. Descripción del proyecto En esta unidad trabajarás en un proyecto de la vida cotidiana en el cual podrás encontrar el interés compuesto de un préstamo aplicando elementos matemáticos, que te servirán para tomar decisiones sobre tus finanzas. Sucesiones Aritméticas Geométricas Términos generales Suma de términosInterpolaciónExtrapolación n-ésimo término Medios calculando el calculando pueden ser que se utilizan en las determinan Funciones exponenciales Características Identificarlas Gráficos Dominio Rango Clasificación Crecientes Decrecientes Principio de la multiplicación Permutaciones Combinaciones Técnicas de conteo Número de arreglos Diagrama de árbol todos los elementos r de n elementos estudiaremos en función de definidos en un d Principio de la suma apoyado por el considerando sus su definiendo enque permiten
  • 3. Segundo Año - Matemática 57 Primera Unidad Lección 1 Sucesiones Aritméticas Motivación Indicadores de logro Para descubrir cuáles son los elementos que deben ir en los espacios, comienzas observando que en cada ordenamiento existe una regla o patrón. Así: En a) se presenta el ordenamiento de las letras del alfabeto. En b) el ordenamiento de los meses del año. Los siguientes literales contienen ordenamientos de números naturales. Puedes ver que en estas series de números hay un orden, es decir un elemento o término sigue al otro; hay un primer elemento, un segundo, un tercero… En el literal d) y e) ¿cuál es la diferencia entre un término y el siguiente? ¿Cuál es la diferencia entre el ordenamiento de d) y de e)? ¿Cuál es la diferencia entre un elemento y el siguiente en f), g), h)? Piensa y contesta. Debes tener presente que a estas series de números que tienen un orden se les denomina sucesiones. Haz un intento de definir con tus palabras lo que es una sucesión, piensa y redacta. ¡Te daré una ayuda! Identificarás,coninterésyseguridad,unasucesiónaritmética. Describirásyexplicarásconseguridad,todaslascaracterísticasdecada sucesiónaritmética. Determinarás,conprecisión,ladiferenciaentredostérminos consecutivosdeunasucesiónaritmética. Deducirásyexplicarás,conperseveranciayconfianza,eltérminogeneral deunasucesiónaritmética. Calcularás,conseguridad,elé-nesimotérminodeuna sucesiónaritmética. Utilizarás,conseguridad,eltérminogeneralalcalcularcualquiertérmino deunasucesiónaritmética. Identificarásycalcularás,coninterés,todoslosmediosaritméticosentre dostérminosdeunasucesiónaritmética. Aplicaráscorrectamenteyconprecisiónlafórmulaparaobtenerlasuma delosprimerostérminosdeunasucesiónaritmética. Resolverásejerciciosyproblemassobresucesionesaritméticas,con interésyperseverancia. Encuentra los elementos que deben estar en los espacios. e) 1, 3, 5, 7, , , . . f) 1, 4, 9, 16, 25, , , . . . g) 8, 11, 14, 17, , , . . . h) 6, 8, 11, 16, 23, , , . . a) A, B, C, D, , , b) Enero, febrero, , abril, c) 1, 2, 3, 4, , , d) 2, 4, 6, 8, , , Una sucesión es un conjunto de elementos ordenados, de tal manera, que no exista duda de cuál es el primero de ellos, cuál es el segundo, o cualquier otro.
  • 4. UNIDAD 1 58 Matemática - Segundo Año En la siguiente fotografía hay una sucesión de personas que hacen cola para comprar su boleto de entrada al estadio Cuscatlán. Así como están nombradas esas personas, utilizamos una notación para nombrar los términos de las sucesiones numéricas. Por ejemplo, en la sucesión 8, 11, 14, 17,... tendremo que a1 representa el primer término, a2 el segundo, a3 el tercero. . . ¿Cómo se representa el décimo término? ¡Piensa! ¿Cómo se representa el trigésimo primer término? ¡Piensa! Las respuestas a estas dos preguntas aquí las tienes. Décimo término = 10º término = a10 a31 = 31º término = trigésimo primer término Puedes ver que el subíndice indica la posición del término. Las notaciones de los términos de una sucesión se utilizan para calcular el término general de una sucesión. Encontremos la diferencia entre un elemento y otro consecutivo en una sucesión aritmética 20...8, a1 11, a2 14, a3 17, a4 Ahora estudia la siguiente situación Primer metro $15 Segundo metro $35 Tercer metro $55 Cuarto metro $75 Para el n – ésimo término o término general, usarás el símbolo: an Observa esta expresión: a1 a2 a3 , . . . , an , . . . ¿Qué indican los puntos suspensivos en esta sucesión? La cooperativa “El buen amigo” necesita hacer un pozo para satisfacer sus necesidades de agua. El costo por metro excavado es de
  • 5. UNIDAD 1 Segundo Año - Matemática 59 ¿Qué observas en los precios? ¿Cuánto aumenta el precio de un metro a otro? Puedes ver que cada metro excavado cuesta $20 más que el anterior. Si al excavar 16 metros aún no aparece agua, ¿cuánto cuesta el 17º metro? Para resolver esta situación, de seguro razonas así: Primero observas que la diferencia entre dos valores consecutivos es la misma. a2 – a1 = 35 – 15 = 20 a3 – a2 = 55 – 35 = 20 a4 – a3 = 75 – 55 = 20 Para este caso d = 20 Encuentra el término general de una sucesión aritmética Punto de apoyo En forma general, la diferencia entre un elemento y otro consecutivo se expresa así: d = an – an–1 donde: d, es la diferencia; an , es un número; y an–1 , es el número anterior a ese número. Observa Cada término se obtiene sumando d al anterior. Al segundo, le sumas 1d; al tercero, 2d; al cuarto, 3d ¿Cuántas veces d le sumas al 100º término? En fin, al n–ésimo le sumas (n – 1) d. El término general de una sucesión aritmética lo encontrarás así: a1 = a1 a2 = a1 + d a3 = a1 + 2d a4 = a1 + 3d a5 = a1 + 4d an = a1 + (n – 1)d Cada término se puede calcular conociendo el primero y la diferencia. Observa el precio de cada metro excavado y lo siguiente. a1 = 15 a2 = 15 + 1(20) = 35 a3 = 15 + 2(20) = 55 a4 = 15 + 3(20) = 75 a12 = 15 + 11(20) = 235 a17 = 15 + 16(20) = 15 + 320 = $335 Luego, el precio para perforar el metro 17, es $ 335
  • 6. UNIDAD 1 60 Matemática - Segundo Año Encuentra otros términos, conociendo dos términos no consecutivos Ahora estudiarás como se aplica la fórmula anterior. Por ejemplo, dada la sucesión 8, 11, 14, 17, . . , vas a encontrar: a) El décimo término b) a35 c) a20 Para encontrarlos, comienzas escribiendo los datos: a1 = 8, d = 17 – 14 = 3. Luego: a) Décimo término = a10 an = a1 + (n – 1)d a10 = 8 + (10 – 1)(3) a10 = 8 + 9(3) a10 = 35 ¿Cómo encuentras a20 ? ¿De qué otras formas encuentras d? Observa que el término general an sirve para calcular el n – ésimo término (cualquier término) de una sucesión. Considera que el primero y el quinto término de una sucesión aritmética son 2 y 14 respectivamente. ¿Cuáles son los otros términos? Observa que en este caso tienes los datos siguientes: a1 = 2 a5 = 14 d) 7,12,17,22 , , e) 1, 1 1 2 ,2, , , f) 15,10,5, , , , a) 3,6,9, , , b) 5,10,15,20, , c) , ,c, ,e,f, , 2. Encadacasotedamoseltérminogeneral.Encuentralostérminosqueteindicamos. a) an =5+(n–1)4:a1 ,a5 ,a10 b) an =3+(n–1)7:a4 ,a5 ,a7 c) an =2+(n–1)(–3):a5 ,a8 ,a10 a1 a2 a3 a4 a5 1 Actividad 1. Encuentraporsimpleinspecciónlostérminosquedebenirenlosrecuadros. b) a35 an = a1 +(n – 1)d a35 = 8 + (35 – 1)(3) a35 = 8 + 34(3) a35 = 110
  • 7. UNIDAD 1 Segundo Año - Matemática 61 Luego: an = a1 + (n – 1) d a5 = a1 + (5 – 1) d Sustituyendo 14 = 2 + 4d 14 – 2 = 4d 12 = 4d d = 12 4 = 3 Como la diferencia es 3, los otros términos son: a2 = 2 + 3 = 5 a3 = 2 + 2(3) = 8 a4 = 2 + 3(3) = 11 Puedes ver que en este ejercicio encuentras los términos que están entre el primero y el n – ésimo. Es decir que has encontrado los términos entre 2 y 14. Los términos que encontraste se llaman medios aritméticos. Al procedimiento anterior se le denomina interpolación de términos. Actividad 2 a) Encuentracuatromediosaritméticosentre7y27hazloentucuaderno. b) Compruebaquelasumadelostérminosanterioreses102.
  • 8. UNIDAD 1 62 Matemática - Segundo Año Observa que la suma del primero y último término es igual al del segundo y penúltimo y así sucesivamente. Esto nos permite plantear la suma de los 8 términos, S8 , de dos formas. 10 12 14 16 18 20 22 24 Suman 34 Suman 34 10 24 22 12 20 14 18 16 16 18 14 20 12 22 10 24+ + + + + + + + + + + + + + + + + + + + + 34 34 34 34 34 34 34 34 8 veces 34Sumando ambas igualdades S8 = S8 = 2S8 = 2S8 = S8 = 34 × 8 34 × 8 2 = 136 10 a1 12 a2 14 a3 16 a4 18 a5 20 a6 22 a7 24 a8 Calcula la suma de los primeros n términos de una sucesión aritmética Si necesitas hacer un tejado colocando las tejas de tal forma que en la primera fila haya 10, en la segunda 12. . . Hasta llegar a un total de 8 filas. ¿Cuántas tejas necesitas? Para resolver esta situación escribes el número de tejas de cada fila. Necesito 136 tejas en total.
  • 9. UNIDAD 1 Segundo Año - Matemática 63 Puedes ver que 34 es la suma del primero y del último término (a1 + an ), y 8 el número de términos (n) luego, en general para calcular la suma de los primeros n términos de una sucesión aritmética aplicamos la fórmula siguiente. Sn = n a an( )1 2 + Observa como ahora puedes calcular la suma de los primeros 25 números pares La suma es 2 + 4 + 6 + Como no tenemos el último término, a25 , lo vamos a calcular. a1 = 2 an = a1 + (n – 1) d n = 25 a25 = 2 + (25 – 1)2 d = 2 a25 = 2 + (24)2 a25 = 2 + 48 = 50 Sustituimos los datos en la fórmula Sn = n a an( )1 2 + S25 = 25 2 50 2 650 ( )+ = La suma de los primeros 25 números pares es 650. Es decir: 2 + 4 + 6 + + 50 = 650 1. Encuentraelvalordelassiguientessumas. a) 3+6+9+ +60 b) 5+10+15+ +100 2. Hallalasumadelosprimeros15múltiplosde6. Actividad 3 Resumen En esta lección conociste las sucesiones aritméticas. Sus elementos principales son el primer término y la diferencia entre un término y el siguiente. Con ellos puedes conocer cualquier término de la sucesión. También puedes calcular la suma de términos de una sucesión con la respectiva fórmula.
  • 10. UNIDAD 1 64 Matemática - Segundo Año Autocomprobación Soluciones Jorgereúne50arbolitosdenaranjoparasembrarlosen línearecta.Elprimeroestáa6mdedondeélsehalla,y cadaunodelosotrosa6mdelanterior.Jorgesólopuede cargarunarbolitoporvez.Alterminardesembrarcada arbolitoregresaalpuntodepartida,queesdondereunió los50arbolitos.LadistanciatotalquecaminaJorgees: a) 7,650 m c) 15,300 m b) 2,000 m d) 1,000 m 4 Elcuartotérminodeunasucesiónaritméticacon d=3ya20 =100es: a) 20 b) 26 c) 60 d) 52 2 1 Eldécimotérminodelasucesión3,8,13,...es: a) 33 b) 48 c) 24 d) 50 3 Setieneunacantidaddetrozosparaaserrarlos.Enla primeracapaseubican24;enlasegunda,22;enla tercera20yasísucesivamente.Silaúltimacapatiene 10trozos,eltotaldetrozoses: a) 136 c) 8 b) 34 d) 2 Para llegar a la firma de los Acuerdos de Paz de enero de 1992 en El Salvador, se dio una sucesión de hechos. Entre ellos están: Lo anterior no es sucesión aritmética, pero es una sucesión de hechos que es importante conocerla. LOS ACUERDOS DE PAZ 1.b. 2.d. 3.a. 4.c. Alto al fuego. Nombramiento de representantes. Propuestas de reforma en las áreas social, seguridad y judicial. Establecimiento de derechos humanos. Tratamiento de la impunidad. Establecimiento de ONUSAL.
  • 11. Segundo Año - Matemática 65 Primera Unidad Motivación Indicadores de logro Para que respondas a la pregunta inicial se te sugiere construir una tabla como la siguiente: Para que veas cómo van en aumento los términos de la sucesión 2, 2.3, 2.32 , 2.33 ,. . . te diremos que a las 12 del mediodía. . . ¡2.316 = 86 093 442 personas conocen el rumor! Después de estudiar esta lección, habrás descubierto métodos para resolver este tipo de problemas. Deducirásyexplicarás,coninterésyseguridad,eltérminogeneraldeuna sucesióngeométrica. Utilizarás,conseguridad,eltérminogeneralparacalcularcualquier términodeunasucesióngeométrica. Identificarásycalcularáslosmediosgeométricosentredostérminosde unasucesióngeométrica,conseguridadeinterés. Aplicarásconprecisiónlafórmulaparalaobtencióndelasumade términosdeunasucesióngeométrica. Resolveráscorrectamenteyconinterésejerciciosyproblemas aplicandolassucesionesgeométricas Vilma y Balmore investigan con que velocidad se corre un rumor. Para ello inventan uno a las 8 de la mañana. A los 15 minutos cada uno de ellos se lo transmite a 3 amigos. Después de otro cuarto de hora, éstos le comunican el mismo rumor a otros tres amigos los cuales lo transmiten a otros tres. Y así sucesivamente. ¿Cuántas personas conocen el rumor a las 12 del mediodía? Sucesiones GEOMÉTRICAS Lección 2 Hora N° de personas 8:00 2 8:15 6 8:30 18 8.45 54 9:00 162 9:15 486 ¿Podrías encontrar el siguiente término de las sucesiones a continuación? 3, 6,12, 24, , , 2, 6, 18, 54, , , 200, 100, 50, 25, , ,
  • 12. UNIDAD 1 66 Matemática - Segundo Año Observarás que en la primera sucesión, cada término se genera multiplicando el anterior por 2. En la segunda, multiplicas por 3 para encontrar el siguiente término. ¿Cómo se generan los términos en la tercera sucesión? Haz lo siguiente: Divide en la primera sucesión el segundo término por el primero 6 3 divide el tercero por el segundo 12 6 y así sucesivamente divides cada término por el anterior. Observas que el resultado es el mismo ¿verdad? Haz lo mismo con las otras dos sucesiones. Todos los cocientes en cada una de las sucesiones te dará el mismo resultado. Pues bien a esto se le llama Razón. ¿Cuál es la razón de la sucesión 5, 15, 45. . .? ¿Cómo la encuentras?. Puedes ver que: r = = 45 15 3 ó r = = 15 5 3 O sea, la razón de una sucesión la encuentras dividiendo un término entre el anterior. Es decir: r a a a a a a a a n n = = = = − 2 1 3 2 4 3 1 ... Encuentra la razón en una sucesión Y para cualquier an , así: an = a1 rn-1 Esta última expresión representa el término general de una sucesión geométrica. Los ejemplos de sucesiones en donde puedes encontrar la misma razón entre dos términos seguidos uno del otro se llaman sucesiones geométricas. ¿Cómo defines una sucesión geométrica? Término general de una sucesión geométrica Si en una sucesión geométrica el primer término es a1 y la razón es r, entonces: Primer término = a1 Segundo término = a2 = a1 r Tercer término = a3 = a1 r2 Cuarto término = a4 = a1 r3 Al conocer el primer término a1 y la razón r, puedes conocer cualquier término. Observa en los términos anteriores que existe una relación entre el orden del término y el exponente de r. Luego para encontrar a101 escribimos Así: a101 = a1 r 101-1 = a1 r 100 Una sucesión geométrica es aquella en la cual cada término se obtiene multiplicando el anterior por un número fijo llamado razón geométrica o razón.
  • 13. UNIDAD 1 Segundo Año - Matemática 67 Considera la sucesión 3, 6, 12, 24,. . .Ahora, encuentra el 11° término de ella. Lo primero que debes hacer es escribir los datos. a1 = 3 r = = 12 6 2 n = 11 Luego, el término general te permite calcular cualquier término, o sea, el n-ésimo: Para ello sustituimos los datos anteriores en la fórmula a a rn n = − 1 1 a11 = 3(2)11-1 =3(2)10 =3(1024)=3072 En cada paso anterior verifica las operaciones con tu calculadora. Por lo tanto el décimo primer término de 3, 6, 12, 24, . . . es 3072. Ejemplo 1 Ahora encuentra el décimo término de la sucesión 4096, 2048, 1024, 512, . . . Solución: Datos: a1 = 4096, r = = 1024 2048 1 2 n = 10 Luego, sustituyendo los datos en an = a1 r n-1 a10 10 1 9 9 9 4096 4096 4096 1 2 1 2 1 2 =     =     =    -  =     = = 4096 4096 512 8 1 512 El décimo término de la sucesión 4096, 2048, 1024,. . . es 8. El diente de león o dandelión es una planta con aplicaciones en medicina biológica. Una planta de dandelión da unas 100 semillas. Si el terreno que la rodea permitiera que todas germinaran, un año después habría 100 plantas, y así sucesivamente Luego de 8 años las plantas de dandelión cubrirían toda la Tierra, ésta tiene una superficie de: 135 000 000 000 000m2 Años N° de plantas 1 1 2 100 3 10 000 4 1000 000 5 100 000 000 6 1000 000 000 7 1000 000 000 000 8 100 000 000 000 000 Cálculo del n-ésimo término Planta dandelión
  • 14. UNIDAD 1 68 Matemática - Segundo Año Observa la siguiente sucesión geométrica: 8, , 128 ¿Cómo encuentras los términos que faltan? 1. Unestudiantetomaunpliegodepapelconunespesorde0.1mm,doblaelpliegoporlamitad,luego alvolverloadoblarobtieneunespesorcuatroveceseloriginal.Supónqueelpliegooriginaleslo suficientementegrandequepuedeefectuarse50dobleces. ¿Cuáleselespesordelfajoresultante? Solución Puedesverquelasucesióndeespesores0.1,0.2,0.4,0.8,... Luego r = = 02 01 2 . . a1 =0.1 n=50 Sustituyendoenlafórmuladeln-ésimotermino,compruebaquelarespuestaes¡Másde 56millonesdekilómetros!(estonoesposiblefisicamente,aunquematemáticamentese puedaencontrar) 2. Copiaentucuadernolassiguientessucesionesyescribelostérminosquefaltan. a) 1,5,25, , , ,... c) 256,128,64, , , ,... b) 3,6,12, , , ,... d) 1 1 2 1 4 , , , , , , .. 3. Escribeloscincoprimerostérminosdeunasucesióngeométricasi: a) a1 =2, r=5 b) a1 =200, r= 1 5 c) a1 =1, r=3 4. Calculaelduodécimotérminodelasucesión4,8,16,... 5. Determinaelnovenotérminodelasucesión2187,729,243,... Para encontrar los términos que están entre 8 y 128, comienzas escribiendo los datos: a1 = 8 a5 = 128 n = 5 Como lo estudiaste en la fórmula del término general, ¿qué elementos necesitas para calcular los términos de una sucesión geométrica? Como lo recordarás, estos elementos son el primer término a1 y la razón r. Como a1 = 8, entonces necesitas conocer el valor de r. Actividad1 Punto de apoyo Te recordarás que toda raíz par tiene dos signos 25 5= ± , ya que 52 = 25 y (–5)2 = 25; ¿Cuántas raíces tiene toda raíz impar, por ejemplo -83 ? Interpolación geométrica
  • 15. UNIDAD 1 Segundo Año - Matemática 69 Despejando entonces r en la fórmula del término general, tendremos: r a a n n= 1 1- Con esta fórmula puedes calcular la razón, conociendo el primer término y el n-ésimo. Observa cómo se aplica la fórmula anterior. Sustituyendo los datos an = a5 = 128, a1 = 8 n = 5 Tendremos: r = = = ± 128 8 16 25 1 4- Retomando el ejemplo anterior: a) Conociendo a1 = 8 y r = ± 2, calculas los términos que faltan. Con r = 2: a2 = a1 r = 8(2) = 16 a3 = a1 r2 = 8(2)2 = 32 a4 = a1 r3 = 8(2)3 = 64 Al escribir la sucesión, te queda así: 8, 16, 32, 64, 128,… b) Si r = – 2, los términos son: a2 = a1 r = 8(–2) = –16 a3 = a1 r2 = 8(–2)2 = 8(4) = 32 a4 = a1 r3 = 8(–2)3 = 8(–8) – 64 Luego, al escribir la sucesión te queda así: 8, −16, 32, −64, 128,… Así como estudiaste en las sucesiones aritméticas, cuando encuentras dos o más términos entre dos términos dados, dices que has interpolado dichos términos, en este caso les llamaremos medios geométricos. Ahora vamos a interpolar cuatro términos entre 4 y 1 8 de modo que formen una sucesión geométrica. Conviene visualizar los datos en el esquema siguiente. 4, , , , , 1 8 Como vas a interpolar 4 términos y tienes dos de ellos, n=6, a1 =4, a6 = 1 8 La fórmula de la razón es r a a n n= − 1 1 Sustituyendo los datos r = = = − 1 8 4 1 32 1 2 6 1 5 Ahora como a1 =4, multiplicas por 1 2 para obtener el siguiente término y así sucesivamente hasta llegar a 1 8 Por tanto la sucesión es: 4, 2, 1, 1 2 1 4 1 8 , ,
  • 16. UNIDAD 1 70 Matemática - Segundo Año Suma de términos de una sucesión geométrica 1. Encuentralostérminosquefaltanenlassiguientessucesionesgeométricas a) 3, ,96 b) 1, ,81 c) 243, ,9 En una pequeña finca de café, se cortan tres arrobas de café el primer día, seis el segundo, doce el tercero y así sucesivamente. ¿Cuántas arrobas se cortan luego de siete días? Para resolver este problema, comienza escribiendo los términos de la sucesión. 3, 6, 12, 24, . . . . Observa Los elementos de 2S se cancelan con los de –S excepto 3(2)7 de la primera ecuación y -3 de la segunda ecuación. ¿Cuántas arrobas se cortan en el séptimo día? Seguramente tu respuesta fue: a7 = 3(2)7 – 1 = 3(2)6 Completando la sucesión, tendremos: 3, 3(2), 3(2)2 , 3(2)3 ,. . . , 3(2)6 La suma que vas a calcular es: S = 3 + 3(2) + 3(2)2 + 3(2)3 +. . . + 3(2)6 Multiplicando la igualdad por r = 2: 2S = 3(2)+3(2)2 +3(2)3 +3(2)4 +. . . 3(2)7 Ahora sumando 2 S con –S obtienes: 2 3 2 3 2 3 2 3 2 3 2 3 22 3 4 5 S = ( ) + ( ) + ( ) + ( ) + ( ) + ( )) + ( ) − = − − ( ) − ( ) − 6 7 2 3 2 3 3 2 3 2 3 2S (( ) − ( ) − ( ) − ( ) − = 3 4 5 6 3 2 3 2 3 2 2 3 2S S (( ) −7 3 Factor común: S (2 – 1) = 3(27 – 1). Luego, despejando S = −( ) − = 3 2 1 2 1 381 7 Lo que significa que en siete días se cortan un total de 381 arrobas de café. Actividad2
  • 17. UNIDAD 1 Segundo Año - Matemática 71 Siguiendo el proceso anterior, calcula la suma de los primeros diez términos de la sucesión 5 + 5(3)+ 5(3)2 +. . . Seguramente llegas a la siguiente expresión S = = 5 3 1 3 1 147 620 10 ( - ) - , La suma de los 10 primeros términos es 147,620 Observando los procedimientos anteriores, puedes ver que llegamos a las siguientes expresiones para la suma. ¿Qué elemento de la sucesión respectiva aparece en cada uno? S = 3 2 1 2 1 7 ( - ) - S = 5 3 1 3 1 10 ( - ) - Puedes comprobar que: 3 = a1 5 = a1 2 = r 3 = r 7 = n 10 = n Resumen En esta lección conociste las sucesiones geométricas. En ellas, cada término se genera al multiplicar el anterior por un número fijo llamado razón. Para calcular cualquier término de una sucesión necesitamos el primer término de una sucesión y la razón. Dados el primer y otro cualquiera, calculamos la razón aplicando la fórmula respectiva. La suma de los primeros n términos de una sucesión geométrica la calculas si tienes el primer término, la razón y el número de términos. Las sucesiones geométricas sirven de modelo a fenómenos biológicos, de comunicación, etc. Luego, las situaciones anteriores sugieren la siguiente fórmula para la suma de términos de una sucesión geométrica: S a r r n = 1 1 1 ( - ) - Así, para calcular la suma de los primeros ocho términos de 2, 6, 18, . . , comienzas escribiendo los datos. a r n1 2 18 6 6 2 3 8= = = = = Ahora escribes la fórmula para la suma y sustituye los datos. S a r r n = ( ) = ( ) = ( ) = 1 8 1 1 2 3 1 3 1 2 6 561 1 2 2 6 5 − − − − −, , 660 2 6 560 ( ) = , La suma de los 8 promeros términos es 65,60.
  • 18. UNIDAD 1 72 Matemática - Segundo Año Autocomprobación 4 Paraconvertircm2 adam2 : a) Multiplicas por 100 b) Divides entre 100 c) Divides entre 1 000,000 d) Multiplicas por 1 000,000 2 Diezcentímetroscuadradosequivalena: a) 1 m2 b) 0.01 m2 c) 0.10 m2 d) 0.0010 m2 1 LaunidadbásicadesuperficiedelSIes: a) El km2 b) El cm2 c) El m2 d) El hm2 3 10,000m2 equivalena a) 1 km2 b) 2 km2 c) 1 dam2 d) 1 hm2 Un nenúfar es una planta acuática que vemos en los lagos. En condiciones ideales al reproducirse la planta se duplica cada día. Si un nenúfar tarda un mes en cubrir la superficie de un lago ¿Cuánto tardan en cubrirla dos nenúfares? Analiza el siguiente razonamiento: Si tienes un nenúfar, el segundo día ya hay dos. Si tienes dos plantas al inicio, éstas necesitan un día menos en cubrir la superficie del lago. Esto significa que dos nenúfares van a cubrir todo el lago en 30 – 1 = 29 días. Haz un esquema y comprueba la respuesta anterior. 1.d. 2.c. 3.a. 4.d. Soluciones NENÚFAR Y SUCESIONES GEOMÉTRICAS 4 Lasumadelosprimerosochotérminosdela sucesión5,10,20,40,...es: a) 255 b) 640 c) 1,280 d) 1,275 2 Larazóndelasucesión6,12,24,...es: a) 1 2 b) 4 c) 2 d) 3 1 Delassiguientessucesioneslaquecorresponde aunasucesióngeométricaes: a) 1,4,9,25,... b) 5,9,13,17,... c) 100,90,80,70,.. d) 5,10,20,40,.. 3 Dadalasucesión5,15,45, ,eltérminoqueva dentrodelcuadroes: a) 135 b) 270 c) 90 d) 25
  • 19. Segundo Año - Matemática 73 Primera Unidad Motivación Indicadores de logro El principio de la multiplicación Luisa almuerza en el comedor “El buen gusto”. El menú es el siguiente: Deducirás,utilizarásyexplicaráselprincipiodelamultiplicaciónparael cálculodelaposibilidaddeocurrenciadedosomáseventosaleatorios conautonomíayconfianza. Resolverásproblemasutilizandoelprincipiodelamultiplicación conseguridad. Deducirás,utilizarásyexplicarás,conautonomíaconfianza,elprincipio delasumaparaelcálculodelaposibilidaddeocurrenciadedosomás eventosaleatorios. Calcularáslaposibilidaddedoseventosexcluyentesutilizandoel principiodelasuma,coninterésyconfianza. Resolverásproblemasutilizandoelprincipiodelasuma conseguridad Resolverás,coninterésyconfianza,problemasdelentorno queinvolucrenlaaplicacióncombinadadelosprincipiosde multiplicaciónysuma. Resolverásproblemasdeaplicaciónsobrelafactorialdeunnúmero conseguridadyconfianza. Resolverásproblemasconseguridadyorden,aplicandoeldiagrama deárbol. El club de observadores de pájaros de El Salvador está formado por cuatro hombres y 2 mujeres. En la toma de posesión se toman una fotografía. Además, van a elegir los cargos de presidente, vicepresidente y secretario o secretaria. a) ¿De cuántas maneras pueden formarse para su foto? b) ¿De cuántas maneras pueden elegir sus tres directivos? c) ¿Y si el presidente debe ser mujer y el vicepresidente hombre? Para contestar éstas y otras preguntas similares, necesitas conocer dos técnicas o métodos de conteo: el principio de la multiplicación y el de la suma. Técnicas de conteo Lección 3 Plato principal Carne Pollo Sopas Gallina Patas Frijoles Luisa puede elegir una sopa y un plato principal por $ 2.00. ¿Cuántos menús diferentes puede elegir Luisa?
  • 20. UNIDAD 1 74 Matemática - Segundo Año Observa que cada menú se considera como un recorrido compuesto por dos tramos: Sopa Plato principal 1. Gallina Carne 2. 3. Patas 4. 5. Frijoles 6. Pollo Sihaysopadegallina,patasofrijolesblancos;platoprincipal derellenosopolloypostredefrutaotorreja. a) Escribeunlistadodealmenoscincoopcionesen quepuedeselegirtumenú. b) ¿Cuántasposibilidades hayentotal?. Uno corresponde a sopas y otro al plato principal. ¿De cuántas maneras puede llegar del punto A al punto B? Fíjate que Luisa puede recorrer el primer tramo de 3 maneras. Por cada una, puede recorrer el segundo tramo de 2 formas; o sea, Luisa puede llegar de A a B de 3 × 2 = 6 maneras. Copia en tu cuaderno la tabla y completa los espacios para enumerar los seis recorridos (menús) que Luisa puede elegir. Del ejemplo anterior llegas a la siguiente regla, conocida como principio de la multiplicación. Si hay m maneras en que puede darse un evento M y n maneras en que puede darse otro evento N entonces hay m × n formas en que pueden darse ambos eventos. El principio de la multiplicación puede ampliarse a más de dos eventos. Número de maneras = m × n × p × s. . . Evento Nº de maneras Elegir una sopa 3 Elegir un plato principal 2 Elegir un postre 4 Observa cómo se aplica esta fórmula. Luisa puede elegir un menú entre 3 sopas, 2 platos principales y 4 postres. ¿De cuántas formas puede arreglar su menú? frijoles pollo patasA B gallina carne Actividad 1 Si escribes cada tarea y el número de formas en que puede darse, tienes: Luego, por el principio de la multiplicación: Nº total de maneras = 3 × 2 × 4 = 24
  • 21. UNIDAD 1 Segundo Año - Matemática 75 Acontinuacióntepresentamosvariassituacionesparaquelasresuelvasaplicandoelprincipiode lamultiplicación. a) Unfabricantesacaalaventa5basesparalámparay4pantallasquepuedenusarsejuntas.¿Cuántas lámparasoarreglospuedenformarse? b) Enunaventadecomidarápida,elmenúdeldíacontempla2clasesdesopas,4platosprincipales, 5postresy3refrescos.SiMirnaeligeunavariedaddecadacategoría,¿decuántasformaspuede formarsuelección. Nºtotaldemaneras= × × × = c) ¿Decuántasmaneraspuedenacomodarse6librosenunestantecon6espaciosdisponibles? Actividad 2 Ejemplo 1 En la elección de una junta directiva de tu comunidad hay 4 candidatos a presidente, 3 candidatos a secretario y 5 candidatos a tesorero. a) Define las tareas y el número de formas en que puede darse cada una. b) Calcula el número de maneras resultantes de la elección. Solución: a) Al definir eventos y el número de formas en que puede darse cada uno te queda: b) Por el principio de la multiplicación, el proceso de selección completo es: Nº total de maneras = 4 × 3 × 5 = 60 Evento Nº de maneras Elegir un presidente 4 Elegir un secretario 3 Elegir un tesorero 5 Ejemplo 2 Para determinar el número de formas en que puedes colocar 3 de 6 libros en tres espacios disponibles lo hacemos así: 6 × 5 × 4 =120 formas. ¿De cuántas maneras puedes ordenar 5 de 6 libros en un estante con 5 espacios disponibles?
  • 22. UNIDAD 1 76 Matemática - Segundo Año Diagrama de árbol El principio de la multiplicación te permite encontrar el número de arreglos o maneras en que pueden darse dos o más tareas. Así, si por ejemplo para ir a trabajar, Sonia dispone de dos faldas y tres blusas. Si quisieras enumerar las formas o arreglos con los cuales Sonia se viste, existe una herramienta que te permite encontrarlos con facilidad. Esta herramienta recibe el nombre de diagrama de árbol. ¿En qué consiste el diagrama de árbol? La respuesta a esta pregunta te la mostramos en los siguientes ejemplos. Sonia dispone de 2 faldas: 1 azul (A), y una café (C), además de tres blusas: una blanca (B), una celeste (Ce) y una gris (G). Calcula el número de formas en que Sonia puede vestirse con blusa y falda y enuméralas. La situación corresponde obviamente al principio de la multiplicación: Nº total de maneras = 2 × 3 = 6 Para encontrar o enumerar los arreglos que resultan construimos el diagrama de árbol. Partimos de un punto cualquiera; de él sacamos dos ramas, una para cada falda: azul o café. De cada falda sacamos tres ramas para cada blusa: blanca, celeste o gris. Si Sonia elige la falda azul (A), la blusa puede ser blanca (B) y el arreglo es A B. Si elige la falda A y la blusa Ce, el arreglo es A Ce. Siguiendo este procedimiento obtienes las seis maneras. A C B Ce G B Ce G 1) A B 2) A Ce 3) A G 4) C B 5) C Ce 6) C G Blusas ArregloFaldas Si lanzas al aire una moneda de 25 centavos y otra de 10, ¿de cuántas maneras pueden caer las monedas? Enuméralas
  • 23. UNIDAD 1 Segundo Año - Matemática 77 Cada moneda puede caer de dos formas: cara (c) o número (#). Luego, el número de formas en que caen ambas es: Nº total de maneras = 2 × 2 = 4. Para hallar esas cuatro maneras, construyes el diagrama de árbol. Seguramente llegas a la siguiente respuesta: c #, c c, # #, # c; donde # significa número y c significa cara. ¿Es lo mismo c # que # c? Principio de la suma Consideras de nuevo a los miembros del club de observadores de pájaros de El Salvador. ¿De cuántas maneras pueden elegir su directiva de tal manera que si el presidente es mujer los otros dos son hombres; o si el presidente es hombre los otros directivos son mujeres? Construyeeldiagramadeárbolcorrespondienteallanzamientode: a) Tresmonedasdediferentedenominación b) Cuatromonedasdediferentedenominación Primera situación que puede darse Evento N° de maneras El presidente es mujer 2 Los otros dos son hombres El vicepresidente es hombre 4 El secretario es hombre 3 N° total de maneras = 2 × 4 × 3 = 24 Segunda situación que puede darse Evento N° de maneras El presidente es hombre 4 Los otros dos son mujeres El vicepresidente es mujer 2 El secretario es mujer 1 N° total de maneras = 4 × 2 × 1 = 8 Actividad 3 Puedes ver entonces que el número de formas en que puede darse la primera o la segunda situación es: 24 + 8 = 32. Este ejemplo te permite enunciar la siguiente regla, conocida como el principio de la suma: Sean M y N dos eventos excluyentes, o sea, que no pueden suceder al mismo tiempo. Si M puede ocurrir de m maneras y N de n maneras, entonces M o N pueden ocurrir de m + n maneras. Ahora resuelve: Tania posee tres blusas para combinar con dos faldas. Además, tiene cinco camisetas para combinar con cuatro pantalones. ¿De cuántas maneras puede vestirse Tania? Compara tu situación con la siguiente: Si Tania se decide por blusa y falda lo hace de 3 × 2 = 6 maneras; si opta por llevar camiseta y pantalón; lo hace de 5 × 4 = 20 maneras. Por el principio de la suma, Tania puede vestirse de 6 + 20 = 26 maneras.
  • 24. UNIDAD 1 78 Matemática - Segundo Año Factorial de un número Cuando estudiaste el principio de la multiplicación, resolviste problemas como este. ¿De cuántas maneras puedes colocar seis libros en un mueble con seis espacios? Sabes que la solución a esta situación es: La expresión 6 × 5 × 4 × 3 × 2 × 1 recibe el nombre de factorial de 6 y se representa por 6! Es decir: 6! = 6 × 5 × 4 × 3 × 2 × 1 Evento N° de maneras M: colocar el primer libro 6 N: colocar el segundo libro 6 − 1 P: colocar el tercer libro 6 − 2 Q: colocar el cuarto libro 6 − 3 R: colocar el quinto libro 6 − 4 S: colocar el sexto libro 6 − 5 Nº total de maneras = 6(6 – 1)(6 – 2)(6 – 3)(6 – 4) (6 – 5) =720 ¿Cómo defines el factorial de 7? Lo haces así: 7! = 7 × 6 × 5 × 4 × 3 × 2 × 1 En general, el factorial de un número natural “n” mayor que 1, se define así: n! = n(n – 1) (n – 2) (n – 3). . . 3 × 2 × 1 El símbolo n! se lee “factorial de n” Si n = 1, definimos 1! = 1 Si n = 0, definimos 0! = 1 Actividad4 0! = 1 1! = 1 2! = 2 × 1 = 2 3! = 3 × 2 × 1 = 6 4! = 4 × 3 × 2 × 1 = 24 5! = 5 × 4 × 3 × 2 × 1 = 120 6! = 6 × 5 × 4 × 3 × 2 × 1 = 720 a) Enelcomedor“Elhigiénico”Lorenapuede elegirunmenúentredosclasesdesopas,tres platosprincipalesycuatrovariedadesdefrutas. En“Eleconómico”,ellalopuedeelegirentretres variedadesdesopas,dosplatosprincipalesytres postres.Entotal,¿cuántasmanerasdemenúpuede elegirLorena?
  • 25. UNIDAD 1 Segundo Año - Matemática 79 Una propiedad muy importante del factorial de un número la obtienes al observar el desarrollo de los factoriales anteriores. Por ejemplo: 6! = 6 × (5 × 4 × 3 × 2 × 1) ⇒6! = 6 × 5! 5! = 5 ×(4 × 3 × 2 × 1) ⇒ 5! = 5 ×4! 4! = 4 × (3 × 2 × 1) ⇒4! = 4 × 3! 7! = 7 × (6 × 5 × 4 × 3 × 2 × 1) ⇒ 7! = 7 × 6! ¿Cómo simbolizas esta propiedad? Seguramente lo haces así: n! = n(n – 1)! También los desarrollos de los factoriales anteriores te muestran que: n! = n(n – 1) (n – 2)! n! = n(n – 1) (n – 2) (n – 3)! Ejemplo 3 8! = 8(8 – 1)! = 8 × 7! 8! = 8(8 – 1) (8 – 2)! = 8 × 7 × 6! 8! = 8(8 – 1) (8 – 2) (8 – 3)! = 8 × 7 × 6 × 5! Aplicandolapropiedadestudiadadefactorial,simplificalassiguientesexpresiones: a) 12 11 ! ! b) 15 12 ! ! c) 10 8 7 12 ! ! ! ! Actividad 5 Resumen En esta lección estudiaste el principio de la multiplicación, el cual te permite calcular el número de maneras en que pueden suceder dos o más eventos. Además estudiaste el principio de la suma, el cual te permite calcular el número de maneras en que pueden ocurrir dos o más eventos que no pueden suceder al mismo tiempo. La mejor forma de enumerar esas maneras, es recurriendo al diagrama de árbol. También estudiaste el factorial de un número. Esta propiedad te ayuda a simplificar expresiones como ésta: 9 6 ! ! 9 6 9 8 7 6 6 9 8 7 504 ! ! ! ! = = × × = x x x Simplifica la siguiente expresión: 15 0 13 2 ! ! ! ! 15 0 13 2 15 14 13 0 13 2 15 14 ! ! ! ! ! ! ! ! = × × = × ×× × = × × = 1 2 1 15 7 1 1 105
  • 26. UNIDAD 1 80 Matemática - Segundo Año Autocomprobación 4 Paraconvertircm2 adam2 : a) Multiplicas por 100 b) Divides entre 100 c) Divides entre 1 000,000 d) Multiplicas por 1 000,000 2 Diezcentímetroscuadradosequivalena: a) 1 m2 b) 0.01 m2 c) 0.10 m2 d) 0.0010 m2 1 LaunidadbásicadesuperficiedelSIes: a) El km2 b) El cm2 c) El m2 d) El hm2 3 10,000m2 equivalena a) 1 km2 b) 2 km2 c) 1 dam2 d) 1 hm2 1.a. 2.c. 3.d. 4.b. El cálculo del factorial de un número puede ser muy complicado. Por ello, las calculadoras poseen una tecla que sirve para calcularlo. Sin embargo, hay casos en los que no se puede calcular el valor del número factorial por tener muchos dígitos. Comprueba los siguientes resultados: Notas su gran utilidad. Soluciones LA CALCULADORA Y EL FACTORIAL 4 Elresultadodesimplificarlaexpresión 12 9 ! ! es: a) 4 3 c) 2,480 b) 1,320 d) 3 4 2 Comopartedelaclasedebiología,Taniaestudiaun árbol.Observaquetieneveinteramas;decadauna salenquincebrotes,ydecadabrotedocehojas.El númerodehojasquetieneelárboles: a) 180 c) 3,600 b) 300 d) 1,800 1 Elnúmerodemanerasenquepuedenelegirseun presidente,unsecretarioyuntesorerodeungrupo desietepersonas,es: a) 210 b) 420 c) 200 d) 105 3 Paratratarseunaenfermedad,ellaboratorio “A”producecuatroclasesdejarabesycinco antibióticos,mientrasqueellaboratorio“B” fabricatresclasesdejarabesycuatroclases deantibióticos.Siunapersonapuedetratarse conunjarabeyunantibiótico,elnúmerode tratamientosdiferentesquepuederecibires: a) 240 c) 120 b) 16 d) 32 7! = 5,040 8! = 40,320 9! = 362,880 10! = 3,628,800 11! = 39,916,800 12! = 479,001,600
  • 27. Segundo Año - Matemática 81 Primera Unidad Motivación Indicadores de logro Lección 4 Para que respondas la pregunta inicial, puedes encontrar algunas de esas formas por ejemplo las siguientes: Encuentra otros posibles ordenamientos, te darás cuenta que puedes encontrar muchos diferentes, ¿verdad? El número de posibles ordenamientos que puede formar el concursante es ¡40 320! Este valor corresponde a 8! = 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 porque se trata de ordenar 8 tarjetas. Solucionarásconautonomíayconfianza,ejerciciosqueinvolucrenel ordenamientodeunconjuntodeobjetosdiferentes,formadostodoso partedeellos. Utilizarás,conseguridadelordenamientocircularenejercicios deaplicación. Resolverásproblemasaplicandopermutacionesconseguridad. Interpretarás,utilizarásyexplicarás,conseguridad,lacombinación. Resolverásproblemasaplicandolascombinacionesconseguridad. Explicarásclaramenteladiferenciaentrepermutacionesycombinaciones. Utilizaráslafórmulaapropiadaparacalcular,conprecisión,elnúmerode combinacionesopermutacionesde“n”objetostomados“r”alavez,en ejerciciosdeaplicación. Resolverás,conseguridad,problemasdeaplicaciónsobreelnúmerode ordenamientosdeobjetosentreloscualeshayrepeticionesonolashay. En un famoso programa de televisión en vivo se presenta el siguiente concurso. Entregan al participante ocho tarjetas sin descubrir, y le explican que cada una tiene escrita una letra de la palabra VEHICULO. Con los ojos vendados ordena las tarjetas, y si al descubrirlas forma esa palabra, gana un vehículo último modelo. ¿Cuántas formas de ordenar las letras, pueden resultar? PERMUTACIONES Y COMBINACIONES E L O V H I C U V U L I C O H E V E H I C U L O V I C H U E L O O V L I C H U E
  • 28. UNIDAD 1 82 Matemática - Segundo Año Encuentra los ordenamientos que pueden formarse con las letras de la palabra PAZ. Seguramente haz obtenido: PAZ PZA APZ AZP ZPA ZAP Observa que no es lo mismo PAZ que ZAP; es decir el orden en que se forman es importante. Si son de dos letras, ¿cuáles obtienes? Seguramente obtienes las siguientes: PA AP PZ ZP AZ ZA Permutaciones Permutaciones de ART A R T A T R R A T R T A T A R T R A Y si son de una letra, obtienes: P A Z El ejemplo anterior te muestra las permutaciones que pueden formarse con las letras de la palabra PAZ tomadas de tres, dos y un elemento. ¿Cómo defines entonces lo que es una permutación? Permutación es una disposición ordenada de un conjunto de objetos; en los cuales hay un primero, un segundo, etc. Permutaciones con "n" objetos diferentes tomados todos a la vez Has visto que permutar una colección de objetos (sean éstos personas, animales, cosas, etc.) significa reordenarlos. O sea que una permutación de una colección de objetos es un arreglo ordenado de ellos. En la figura te mostramos las seis permutaciones de las letras ART. Considera las letras de la palabra F A C T O R. Si éstas las escribes en tarjetas: F A C T O R Las puedes ubicar como desees. Puedes formar ordenamientos como CORFAT, TRACOF y FRACOT. Ninguno forma una palabra que encontremos en el diccionario, pero todos son correctos como permutaciones. Si llamamos código a cada uno de ellos ¿Cuántos códigos puedes formar con las letras de la palabra factor? Observa que esto es como llenar seis casilleros.
  • 29. UNIDAD 1 Segundo Año - Matemática 83 El primero se puede llenar de 6 maneras. Habiendo hecho esto, el segundo puede llenarse de 5 maneras, el tercero de 4 y así sucesivamente. Luego, por el principio de la multiplicación tienes que: 6 × 5 × 4 × 3 × 2 × 1= 720 Hay 720 códigos ¿Te fijas que ésta también es la respuesta a la primera pregunta del club de observadores de pájaros? Ésta te pide calcular de cuántas maneras pueden ubicarse sus seis miembros para una fotografía en grupo. Si identificas a cada persona con una letra por ejemplo, las de FACTOR, entonces estás en el mismo caso. Colocar a los observadores de pájaros es como hacer un código de seis letras. Y esto, como ya lo sabes, se puede hacer de 720 maneras. Lo escribimos así, 6 P6 = 6! = 720 (6 P6 significa permutar 6 en grupos de 6). ¿Has visto las placas de vehículos de países como México o Estados Unidos? ¿Qué característica tienen que es diferente en las placas salvadoreñas? ¿Por qué en esos países usan esas letras en las placas? 1. Explicaelconceptodepermutaciónydaunejemplodeello. 2. Evalúalassiguientesexpresiones: a) 7 P7 b) 6 P6 c) 4! d) 8! 3. Escribeennotaciónfactorial: a) 9×8×7×6×...×1 b) 5 P5 4. Calculaelnúmerodepalabrascódigoquepuedanformarse,sinimportarsusignificado,contodas lasletrasdelapalabra“lapicero”. 5. ¿Decuántasmaneraspuedencolgarseenlaparedunserrucho,unasierra,unastijerasyunrollode tirrosihay4ganchosparahacerlos? Actividad 1 CA-93284 USA JAL-75829 México D.F.
  • 30. UNIDAD 1 84 Matemática - Segundo Año Observa que para n personas tomando grupos de r se tiene (n) (n-1) (n-2)… (n–r+1) comprueba esto para la situación anterior. En general, el número de permutaciones que pueden formarse tomando grupos "r" de "n" elementos está dado por: n Pr = n (n – 1)(n – 2). . . (n – r + 1) Ejemplo 2 Calcula el número de códigos que pueden formarse con las letras de la palabra PERFUMADO si estas se toman de la siguiente forma. a) 3 de 9 b) 4 de 9 c) 6 de 9 Solución: a) Como se toman 3 de las 9 letras Permutaciones con “n” objetos diferentes tomando “r” Luego por el principio de la multiplicación: Número total de maneras = 9 × 8 × 7 = 504 b) Como se toman 4 de 9 letras: Número total de maneras = 9 × 8 × 7 × 6 = 3024 9 8 7 6× × × = 3024 Personas para 1a posición Personas para 2a posición Personas para 3a posición Personas para 4a posición Número de maneras en que puede elegirse la primera letra Número de maneras en que puede elegirse la segunda letra Número de maneras en que puede elegirse la tercera letra. 9 8 7 Punto de apoyo Una permutación nos indica orden: Arreglos, filas… Así: 42≠24 Ahora observa la siguiente situación. Ejemplo 1 ¿De cuántas maneras se pueden sentar, en una banca, 4 de 9 personas? Solución: Por el principio de la multiplicación, tienes lo siguiente.
  • 31. UNIDAD 1 Segundo Año - Matemática 85 c) Como se toman 6 de las 9 letras Número total de maneras = 9 × 8 × 7 × 6 × 5 × 4 = 60,480 Observa tu calculadora científica. Notarás que posee las teclas n Pr y n! La tecla n! te da las permutaciones de n objetos tomados simultáneamente. La tecla nPr te da las permutaciones de n objetos tomados r de ellos. Ahora que has comprendido qué son las permutaciones y cómo se calculan, puedes usar tu calculadora científica para facilitar los cálculos. Por ejemplo, si quieres calcular 7 P5 lo haces así: Considera seis puntos en el plano, sin que haya tres en la misma recta. Llámalos F, A, C, T, O, R. Cópialos y encuentra el número de triángulos que puedes dibujar. Usa los puntos de F, A, C, T, O, R como el vértice. Observa que para cada selección de tres puntos puedes dibujar un triángulo. En pantalla 1. Evalúalassiguientesexpresiones. a) 8! b) (5!)(3!) c) 9 6 ! ! d) 5 P2 e) 10 P4 2. Calculacuántoscódigosdecuatroletraspuedenhacerseconlasletrasdelapalabra MÚLTIPLOS,ningunaletradeberepetirse. 3. DeterminaelnúmerodepermutacionesquepuedenformarseconlasletrasdelapalabraMÁSsi setoman: a) todas b) 2de3 c) todasó2de3 A C R O T F Actividad 2 7 nPr 5 = 2520 Combinaciones
  • 32. UNIDAD 1 86 Matemática - Segundo Año Por ejemplo F A R. Sin embargo, nota que el orden en que eliges los tres puntos no interesa. Así, FAR, FRA, AFR, ARF, RAF y RFA representan el mismo triángulo. Observa que con la palabra FACTOR tendrás que el número de permutaciones de 3 letras es: 6 P3 = 6 × 5 × 4 = 120 Ahora, como cada triángulo queda definido con 3! = 6 códigos diferentes entonces con los 120 códigos anteriores ¿cuántos triángulos diferentes puedes formar? Muy bien, habrás contestado 120 6 20= triángulos. Lo anterior se escribe así: 6 3 3 6 5 4 3 2 1 20 P x x x x! = = En este caso, cada triángulo es una combinación de la colección de puntos F, A, C, T, O, R, lo cual denotamos por 6 3     o 6 C3 , que es el número de combinaciones de 6 objetos tomando 3 de ellos. Habrás notado que, el número de combinaciones de n objetos tomando r se denota por n r     o n Cr , donde n r P r n r    = ! Puede demostrarse, lo cual no es un objetivo de esta lección, que: n rP r n r n r! ! !( - )! = Luego; n r n r n r     = ! ! ( - )! que es la fórmula del número de combinaciones de n objetos cuando se toma r. Ejemplo 3 Un equipo de béisbol aficionado tiene siete jugadores de cuadro, seis jardineros, cinco lanzadores y dos receptores. Cada jardinero puede ocupar cualquiera de las tres posiciones y cada jugador de cuadro cualquiera de las cuatro posiciones del cuadro. ¿De cuántas maneras puede seleccionarse el equipo de nueve jugadores? A C R O T F Solución: La cantidad de maneras de seleccionar tres jardineros, de seis posibles es: 6 3 6 3 6 3 6 3 3 6 5 4 3 3     = = = ! !( - )! ! ! ! !x x x x 22 1 3 20 x x ! = Las formas de seleccionar los cuatro jugadores de cuadro son: 7 4 7 4 7 4 7 4 3 7 6 5 4 3     = = = ! !( - )! ! ! ! !x x x x 22 1 4 35 x x ! = Además, tienes cinco maneras de seleccionar un lanzador y dos para el receptor. Luego, por el principio de la multiplicación. 20 × 35 × 5 × 2 = 7,000 Hay 7,000 maneras de seleccionar un equipo de béisbol.
  • 33. UNIDAD 1 Segundo Año - Matemática 87 1. Evalúalassiguientesexpresiones. a) 5 C2 c) 10 3 7 ! ! ! b) 9 7     d) 10 4     2. Enunaoficinatrabajanochopersonas,ydecidenformaruncomitédetreselementos.¿Decuántas maneraspuedeelegirse? 3. Enunaseccióndeunaoficinahaycincoempleadosquepasaránunexamenmédico. a) ¿Decuántasmaneraspuedensentarseenunafiladecincoasientosparapasarel examen médico? b) Sieligenunadirectivade3personas.¿Decuántasmaneraspuedenhacerlo? Actividad 3 Punto de apoyo En una combinación no importa el orden. Así por ejemplo: comité, grupos, colección dan la idea de una combinación Resumen Seleccionar r objetos de n ¿Importa el orden? Combinación Permutación n r n r n r     = ! ! ( - )! n n n n rP . . .r ( ) ( )= − − +1 1 No Si
  • 34. UNIDAD 1 88 Matemática - Segundo Año Autocomprobación Elnúmerodemanerasenquepuedensentarseocho personasenlaprimerafiladeunauditorioes: a) 7! b) 8! c) 5040 d) a) yc)soncorrectas 4 Losseismiembrosdeunaoficinaquieren seleccionarunpresidente,unvicepresidente yunsecretario.Elnúmerodeformasenque puedenhacerlo,es: a) 6 C3 b) 6! c) 6 P3 d) 3! 2 Silosseismiembrosdelproblemaanteriorquieren sencillamenteelegiruncomitédetrespersonas,el númerodeformasenquepuedenhacerlo,es: a) 6 C3 b) 6! c) 6 P3 d) 3! 3 ¿Cómoserepresentaunapermutacióndeun conjuntodenobjetostomandor? a) n Cr c) n Pn b) r n     d) n Pr 1 Internacionalmente las estaciones de radio comienzan con K, Y o W. Las otras letras que la forman pueden ser dos o tres. YSU, YSKL, YSAX. Observa que las letras forman una permutación. Otros nombres de estaciones de radio pueden ser: YSK, KSU, WXY, WYSU, YKL, YSEB, YKB ¿Con qué letra empieza el nombre de las emisoras en El Salvador? 1.d. 2.c. 3.a. 4.b. Soluciones ESTACIONES DE RADIO Y PERMUTACIONES
  • 35. Segundo Año - Matemática 89 Primera Unidad Motivación Indicadores de logro Antes de comenzar el estudio de las funciones exponenciales vas a repasar las funciones uno a uno. Identificarásyexplicarás,coninterésyseguridad,lafunciónexponencial haciendousodellenguajematemático. Identificarásyaplicarás,coninterésyseguridad,laspropiedadesdela funciónexponencial. Seleccionarás,conseguridad,laescalaapropiadapararepresentarla gráficadeunafunciónexponencial Construirástabladevaloresdelafunciónexponencial,conordenyaseo. Identificarásyexplicarás,conseguridad,eldominioyrangodecada funciónexponencial. Los organismos unicelulares se reproducen asexualmente por división celular, después de un periodo de tiempo se van replicando. En la bipartición, si hay una célula, ésta se dividirá en dos células. Cada una de éstas se dividirá nuevamente en otras dos. ¿Cuántas células habrá después de la tercera división? FUNCIONES EXPONENCIALES Lección 5 Recuerda la función uno a uno El gráfico de la derecha representa una función. ¿Puedes decir por qué es una función? Es una función, porque a cada valor de x le corresponde un único valor de y tal que (x, y), pertenece a la función es decir que (x, y), es un punto de su gráfico. La función se puede expresar mediante la ecuación y = x2 Observa su gráfico y responde si a cada valor de y se le puede asociar un único valor de x, para que (x, y) pertenezca al gráfico. y x y (x,y)
  • 36. UNIDAD 1 90 Matemática - Segundo Año Puedes ver, que no; tal como te lo ilustramos en la figura de abajo; para el valor que se indica de y, existen dos valores para x; estos son: x1 y x2; tales que (x1, y) y (x2, y) pertenecen al gráfico. Por lo tanto la función no es uno a uno ya que para que lo sea cada y debe relacionarse con un único x. ¿Cómo haces para que f(x) = x2 sea una función uno a uno? Observa lo siguiente: Si delimitas el dominio de f(x) = x2 para valores de x mayores o iguales que cero, se tendrá que cada valor de x tiene un valor único de y, y cada valor de y un único valor de x; es decir el punto (x, y) pertenece al gráfico de la función. Haz una tabla para encontrar (x, y) donde x ≥ 0. Grafica para f(x) = x2 y compara tu resultado con la gráfica de abajo. Así la función f(x) = x2 con x > 0 es una función uno a uno: cada valor de y tiene un valor único para x ¿Cómo identificas gráficamente una función uno a uno? a) b) c) d) e) Para que una función sea uno a uno, debe satisfacer no sólo la prueba de la recta vertical (prueba que muestra que es una función); sino también la prueba de la recta horizontal que verifica que la función es uno a uno. y x y x1 x2 y x
  • 37. UNIDAD 1 Segundo Año - Matemática 91 Función exponencial Retomando la situación del inicio de esta lección, ahora investigaremos, ¿cuántas células habrá después de 10 periodos de tiempo? para ello consideremos lo siguiente: Si f (t) denota el número de células después de t periodos de tiempo, obtendremos los resultados que aparecen en la siguiente tabla: f t t ( ) =2 es una expresión que describe la reproducción celular. ¿Cuántas células habrá después de 10 periodos de tiempo?. Correcto f(10) = 210 (encuentra este resultado con tu calculadora) En este ejemplo compruebas que las células se reproducen de acuerdo a la expresión f t t ( ) =2 . t 0 1 2 3 4 5 6 f(t) 1 2 4 8 16 32 64 Una función exponencial es una función de la forma f(x) = ax , donde a es, un número real positivo, diferente de 1. Puedes ver que (a), (d) y (e) son funciones uno a uno. Notarás que (b) y (c) no lo son, ya que no pasan la prueba de la recta horizontal: hay más de una y para una sola x. x1 x2 x1 x2 x3
  • 38. UNIDAD 1 92 Matemática - Segundo Año Observa en el gráfico que el valor de y no puede ser 0 Actividad1 Puedes ver en el gráfico, que el dominio de la función son todos los números reales, R. El rango son todos los números mayores que cero. x -3 -2 -1 0 1 2 3 y=2x y = = =2 1 2 1 8 3 3 - 2 1 4 2- = 2 1 2 1- = 2°=1 2 4 8 Solución: Comienzas construyendo una tabla de valores. Ahora, localizamos en el plano los puntos - , , - , , - ,3 1 8 2 1 4 1 1 2             , (0,1), (1, 2), (2, 4), etc, y los unimos. Ejemplo 1 Las siguientes funciones son exponenciales: y = 2x y = 5x y x =     3 4 En general una función exponencial se denota así: f(x) = ax , para todo real a > 0 y a ≠ 1 ¿Cómo graficas una función exponencial? Grafica la función y = 2x define su dominio y rango. a) Encuentramásvaloresdey=2x contucalculadoradandovalorespositivosmayoresque5yotros valoresmenoresque–5.¿Cómoeselsignodelosresultados?. y = 2x x y 2 4 6 8 10 12 14 16 18 2 4 6-2-4-6
  • 39. UNIDAD 1 Segundo Año - Matemática 93 Las gráficas de la actividad anterior te sugieren el siguiente cuadro comparativo. Ejemplo 2 Grafica ahora y x =     1 2 y define el dominio y rango. Solución: Similarmente al ejemplo anterior, construyes una tabla de valores y luego graficas la curva respectiva. x -3 -2 -1 0 1 2 3 4 y x =     1 2 1 2 1 1 2 8 3 3     =     = − 4 2 1 1 2 1 4 1 8 1 16 Al igual que en la función anterior, puedes ver que: D f = R R f =] 0, ∞ [ Graficaentucuadernolasfuncionesy=3x , y x =     2 3 . a) Laformadey=3x ,¿acuáldelasdosfuncionesanterioresseparece? b) Ylaformadelgráficode y x =     2 3 ,¿acuáldelasdosfuncionesanterioresseasemeja? Terminología Definición Gráfica de f con a > 1 Gráfica de f con a < 1 Función exponencial f con base a y = ax para todo x en los números reales donde a > 0 y a≠1 (0,1) y (0,1) y Actividad 2 y = ( )x x y 2 3 4 5 6 7 8 9 1 2 3 4 5 6-1-2-3-4 1 2
  • 40. UNIDAD 1 94 Matemática - Segundo Año a) Graficaenelmismoconjuntodeejes,lasfuncionesy=2x e y=3x .¿Cuáldelasdosmuestramayorcrecimiento?¿Porqué? b) Analizasilafunciónexponencialesunoauno(biunívoca). Solución: Como la población mundial se pide a partir de 1975, este año se toma como referencia inicial. Luego: a) 1975: P (0) = 4(1.02)º = 4.0 miles de millones. b) Como 2000 – 1975 = 25, entonces: 2000: P (25) = 4(1,02)25 = 6.56 miles de millones c) Como 2020 –1975 = 45, entonces 2020: P (45) = 4(1.02)45 = 9.75miles de millones Para efectuar los cálculos de (1.02)25 y (1.02)45 usaste calculadora científica. A continuación estudiarás cuatro modelos en donde se utiliza la función exponencial. 1.Población Si la expresión P (t) = 4(1.02)t es la fórmula que nos da el crecimiento de la población mundial donde P (t) representa el número de personas (en miles de millones) y t es el número de años después de 1975, calcula la población mundial para los años: a) 1975 b) 2000 c) 2020 Actividad3 Características de la función exponencial 1. Las gráficas del cuadro anterior indican que si a > 1, entonces f es creciente, y si 0 < a < 1, es decreciente. 2.Como aº = 1 la intersección de f con el eje y es en (0, 1), para todo a. 3.Si a > 1, conforme x decrece hasta valores negativos, la gráfica de f se aproxima al eje x. Luego, el eje x es una asíntota horizontal. Además, a medida que x aumenta a través de valores positivos, la gráfica sube con rapidez. Este tipo de variación es característica de la ley exponencial de crecimiento y f puede ser nombrada como función de crecimiento. Por comparación, haz el análisis del párrafo anterior para 0 < a < 1. 4.El dominio de la función exponencial es el conjunto de los números R, y el rango es ]0, ∞[. 5.Las funciones exponenciales, obedecen las propiedades de los exponentes; cuando a y b son positivos: a a ax y x y = + a b a b x x x     = a a a x y x y = - a ax y x y ( ) = ab a bx x x ( ) =
  • 41. UNIDAD 1 Segundo Año - Matemática 95 a) Paraelmodelodelapoblacióncalculalapoblaciónmundialenelaño2010. b) Paraelmodelodelaradioactividadencuentraelnúmerodegramosquetienelasustanciadespuésde15años. 2.Radiactividad Un equipo de científicos determina que la masa total que se halla en una sustancia radiactiva, en gramos, luego de transcurridos t años está dada por y = 80(2)–0.4t Encuentra el número de gramos que tiene la sustancia luego de: a) 10 años b) 100 años. Solución: Puedes observar que el problema se reduce a sustituir el respectivo valor de t en la expresión y= 80(2)– 0.4t Luego: a) f (10) = 80(2)–0.4(10) = 5g Luego de 10 años, la sustancia tiene una masa de 5 g b) f (100) = 80(2)–0.4(100) = 7.28 × 10–11 g Luego de 100 años, la masa de la sustancia es de 7.28 × 10–11 g, lo que significa que prácticamente se ha extinguido por la acción radioactiva. 3.Finanzas Magda deposita $ 1,000.00 en una cuenta de ahorros al 8% anual cuando nace su hija. ¿Cuánto posee cuando ésta tiene quince años? Solución: Después de un año, los intereses son de (0.08) (1,000) = $ 80 que sumados a $1,000 da un total de $ 1,080. Durante el segundo año, $1,080 gana intereses de 0.08 (1,080), dando un total de 1,080 + 0.08 (1,080) = 1,080 (1+0.08) = 1,080 (1.08) = 1,000 (1.08) (1.08) sustituyendo 1,080 por 1,000(1.08) = 1,000 (1.08)2 Continuando de esta forma, el capital o principal de Magda crece a 1,000 (1.08)3 luego de 3 años; a 1,000 (1.08)4 , luego de 4 años y así sucesivamente. En 15 años será de: 1,000 (1.08)15 = $ 3,172.17 4. Crecimiento bacteriano La cantidad de bacterias en cierto cultivo aumenta de 600 a 1,800 en dos horas. La cantidad f (t) de bacterias en t horas después de iniciado el crecimiento está dada por f t t ( ) ( ) / =600 3 2 a) Calcula la cantidad de bacterias en el cultivo una hora después del crecimiento. b) Calcula la cantidad de bacterias en el cultivo cuatro horas después del crecimiento. Solución: a) f ( ) ( ) ,/ 1 600 3 1 0391 2 = = bacterias b) f ( ) ( ) / 4 600 3 4 2 = = 5,400 bacterias Resumen Una función exponencial es aquella de la forma y = f(x) = ax , con a > 1 ó 0 < a < 1. Si a>1, la función es creciente, y decreciente si 0 < a < 1. Las funciones exponenciales representan modelos demográficos, biológicos, físicos, económicos, etc. Actividad4
  • 42. 96 Matemática - Segundo Año Autocomprobación UNIDAD 1 1.a. 2.d. 3.c. 4.c. Las aplicaciones de los isótopos radiactivos a la medicina se deben en gran medida a la científica francesa Marie Curie (Varsovia,1867). Por ello fue galardonada con el premio Nobel de física en 1903, a la par de su esposo y de H. Bequerel quienes estudiaron la radioactividad,descubierta por este último. Posteriormente fue galardonada con el premio nobel de química. Sin duda Marie Curie ha sido una de las mujeres más extraordinarias en toda la historia. Sus investigaciones contribuyeron al tratamiento de algunas enfermedades mediante isótopos y a la construcción de equipos radiográficos. La figura de la par, te muestra el gráfico de cuatro funciones exponenciales: 2x , 3x , 5x y 1 3     x Soluciones LA DESINTEGRACIÓN Y MARIE CURIE Elgráficoquecorrespondeay=3x es: a) f1 b) f2 c) f3 d) f4 1 Elgráficoquecorrespondeay= 1 3     x es a) f1 c) f3 b) f2 d) f4 3 Elgráficoquecorrespondeay=5x es: a) f1 b) f2 c) f3 d) f4 2 Elpuntodondesecortanlascuatrofuncioneses: a) (1,0) c) (0,1) b) y=0 d) x=1 4 Marie Curie 0 y x f3 f4 f1 f2
  • 43. Segundo Año - Matemática 97 Lección 1 Actividad 1: 1. Encuentras la diferencia en cada sucesión. Con ella calculas los términos que faltan. 2. Sustituyendo en el término general la posición del término respectivo, ejemplo: a) an = 5 + (n – 1)4, a10 = 5 + (10 – 1)4 = 5 + (9)4 = 41 Actividad 2: Con a1 = 7 y a6 =27. Luego a6 = a1 + (6 – 1) d, sustituyendo 27 = 7 + 5d 27 – 7 = 5d 20 = 5d 4 = d Luego d = 4 y sumas 4 al primer término obteniendo el segundo y así sucesivamente. Actividad 3: 1. Resta dos valores consecutivos para calcular d. Luego aplicas la fórmula de la suma. 2. El primer término es a1 = 6 y n = 15 por lo que a15 =15(6)=90. Calculas d y luego S. Lección 2: Actividad 1: 1. Sustituyes los datos en la fórmula de S. Usa tu calculadora científica 2. En cada sucesión calculas la razón. Con ella calculas los términos que faltan 3. Multiplicas por r el primer término y obtienes el segundo término y así sucesivamente hasta encontrar los cinco términos 4. y 5. En ambos casos lo haces con an . Actividad 2: a) Hallas r con la fórmula respectiva n=6, a1 =3 y a6 =96. Luego r=2. Lección3: Actividad 1: b) 12 posibilidades Actividad 2: a), b), y c) son una aplicación del principio de la multiplicación: a) 5 × 4 = 20; b) 2 × 4 × 5 × 3 =120; c) 6 × 5 × 4 × 3 × 2 × 1 = 720. Solucionario
  • 44. 98 Matemática - Segundo Año Actividad 3: a) Son 8 posibilidades, b) Son 16 posibilidades. Actividad 4: a) 2 × 3 × 4 + 3 × 2 × 3 = 24 + 18 = 42 posibilidades de menú. Actividad 5: a) 12, b) 2730, c) 2 33 Lección 4 Actividad 1: 2. 5040, b) 720, c) 24, d) 40320 3. a)9!, b)5! 4. 8! = 40320 5. 4! = 24 Actividad 2: 1. a) 40320, b) 720, c) 504, d) 20, e) 5040 2. 3024 3. a) 3! ó 3 × 2 × 1 = 6, b) 3 × 2 = 6, c) 6 + 6 = 12. Actividad 3: 1. a) 5 2 3 10 ! ! ! = , b) 36, c) 10 9 8 7 3 2 1 7 120 × × × × × × = ! ! , d) 210 2. 8 3 8 3 5 56     = = ! ! ! 3. a)120; b)10 Lección 5 Actividad 1: a) El signo es positivo y el valor es mayor que cero. Actividad 3: a) Tiene mayor crecimiento 3x , ya que a medida que x aumenta, la gráfica crece con mayor rapidez b) La función exponencial es uno a uno, al trazar una recta horizontal solo corta en un punto la gráfica. Actividad 4: a) P(35) = 4(1.02)35 = 7.9995, aproximadamente 8 miles de millones de habitantes b) f (15) = 80(2)–0.4(15) = 80(2)–6 = 1.25 gramos. Solucionario
  • 45. Segundo Año - Matemática 99 Proyecto Interés compuesto La fórmula del interés compuesto. Es la base de todo tipo de transacción financiera, por ejemplo, las que realizan los bancos. A es el monto, o sea capital más interés. P es el capital o principal. i es la tasa de interés por período compuesto n es el número de períodos compuestos. Sustituyendo: A = 10,000 (1 + 0.02)24 = 10,000 (1.02)24 = 10,000 (1.6084) de tu calculadora científica A = $ 16,084 Puedes ver que la inversión inicial de $ 10,000 aumentó a $ 16,084 en 6 años. Supón que una cooperativa de empleados públicos dispone de $10,000 y tiene dos ofertas para que sean depositados por 5 años, en dos bancos. El primero les ofrece el 9% convertible o compuesto mensualmente y el segundo el 10% convertible o compuesto trimestralmente. Ayúdalos a decidir que les conviene más. Además preséntales gráficamente ambas situaciones. Por ejemplo, supón que una cooperativa de transporte invierte $ 10,000 al 8% anual convertible trimestralmente durante 6 años. Tendremos: P = $ 10,000 i = 8 4 % = 2% = 2 100 = 0.02 nota que 8 se divide entre 4 debido a que hay 4 trimestres en el año. Luego: A = P (1 + i)n n = 6 × 4 = 24 períodos Número de trimestres en el año Número de años
  • 46. 100 Matemática - Segundo Año Recursos ALLEN R. Ángel, Álgebra Intermedia. Editorial Prentice Hall, segunda edición, México, 1992 BARNETT, Raymond, Álgebra y Trigonometría. Editorial Mc Graw Hill, tercera edición, Colombia, 1990 SWOKOWSKI, Earl y Cole, Jeffery, Álgebra y trigonometría con geometría analítica, Editorial Thomson y Learning, décima edición, México, 2002 SPIEGEL, Murray, Álgebra Superior. Editorial McGraw-Hill, serie Shaum, primera edición, México, 1970 http: //www.fing.edu.uy/darosa/nadjasthella.pdf