Tipificación de la variable
    Para poder utilizar la tabla tenemos que
    transformar la variable X que sigue una
distribución N (μ, σ) en otra variable Z que siga
            una distribución N (0, 1).
  Cálculo de probabilidades en distribuciones
                    normales
La tabla nos da las probabilidades de P (z ≤ k),
         siendo z la variable tipificada.
  Estas probabilidades nos dan la función de
              distribución Φ (k).
                Φ (k) = P (z ≤ k)
   Determine el área bajo la curva normal
   Ala derecha de z= -0.85.
   Entre z = 0.40 y z = 1.30.
   Entre z =0.30 y z = 0.90.
   Desde z = - 1.50 hasta z =-0.45


   Estos resultados se obtuvieron con las tablas anexas
    al final de los problemas
   A – 1 – 0.1977 = 0.8023
   B – 0.9032 – 0.6554 = 0.2478
   C – 0.8159 – 0.3821 = 0.4338
   D – 0.0668 + (1 – 0.3264) = 0.7404

   2- Las puntuaciones de una prueba estandarizada se distribuyen
    normalmente con media de 480 y desviación estándar de 90.
   ¿Cual es la proposición de puntuaciones mayores a 700?
   ¿Cual es el 25º? ¿Percentil de las puntuaciones?
   Si la puntuación de alguien es de 600. ¿En que percentil se
    encuentra?
   ¿Qué proporción de las puntuaciones se encuentra entre 420 y 520?
   µ = 480     σ = 90

      A - Z = (700-480)/90 = 2.44 el área a la derecha de Z es 0.0073
   B – la puntuación de z en el 25 º percentil -0.67
        El 25 º percentil es entonces 480 - 0.67 (90) = 419.7
   C – z = (600-480)/90 = 1.33 el área a la derecha de z es 0.9082
   Por lo que una puntuación de 600 esta en el percentil 91
   D - z = (420 - 480)/90 = - 0.67
        Z = (520 – 480)/90 = 0.44
      El área entre z = - 0.67 y z = 0.44 es 0.6700 – 0.2514 = 0.4186
   La resistencia de una aleación de aluminio se distribuye
    normalmente con media de 10 giga pascales (Gpa) desviación
    estándar de 1.4 Gpa.
   ¿Cuál es la probabilidad de que una muestra de esta aleación
    tenga resistencia mayor a 12 GPa?
   Determine el primer cuartil de la resistencia de esta aleación.
   Determine el 95º. Percentil de la resistencia de esta aleación.
   RESULTADOS
   µ = 10 σ = 1.4
   A) z = (12 -10)/1.4 = 1.43 el área ala derecha de z = 1.43 es 1 –
    0.9236 = 0.0764
   B) la puntuación de z en el 25 º percentil es -0.67
       El 25 º percentil es entonces 10 - 0.67 (1.4) = 9.062 Gpa.
   C) la puntuación de z en el 95 º percentil es 1.645
       El 25 º percentil es entonces 10 + 1.645(1.4) = 12.303 Gpa.
   La penicilina es producida por el hongo penicillium,
    que crece en un caldo, cuyo contenido de azúcar
    debe controlarse con cuidado. La concentración
    optima e azúcar es de 4.9 mg/mL. Si la concentración
    excede los 6 mg/mL, el hongo muere y el proceso
    debe suspenderse todo el día
   A) ¿Si la concentración de azúcar en tandas de caldo
    se distribuye normalmente con media 4.9 mg/mL y
    desviación estándar 0.6 mg/mL en que proporción
    de días se suspenderá el proceso?
   B) El distribuidor ofrece vender caldo con una
    concentración de azúcar que se distribuye
    normalmente con medida de 5.2 mg/mL y
    desviación estándar de 0.4 mg/mL ¿este caldo surtirá
    efectos con menos días de producción perdida?
   RESULTADOS
   (6 – 4.9)/0.6 =1.83                   1 – 0.9664 =
    0.0336


   Z = (6 – 5.2)/0.4 = 2.00        1 – 0.9772 = 0.0228
   Con este caldo el proceso se suspendería el 2.28% de
    los días
   5- El volumen de las llantas llenadas por cierta maquina se
    distribuye con media de 12.05 onzas y desviación estándar de
    0.03 onzas.
   ¿Qué proporción de latas contiene menos de 12 onzas?
   La medida del proceso se puede ajustar utilizando calibración.
    ¿En que valor debe fijarse la media para que el 99% de las
    latas contenga 12 onzas o mas?
   Si la media del procesos sigue siendo de 12.05 onzas. ¿En que
    valor debe fijarse la media para que el 99% de las latas
    contenga 12 onzas o mas?

   RESULTADOS
   (12 – 12.05)/0.03 = -1.67 la proporción es 0.0475

   Z= -2.33 entonces -2.33=(12 - µ)/0.03 despejando µ = 12 .07
    onzas

   – 2.33 = (12-12.05)/ σ despejando σ = 0.0215 onzas

   En estadística, la distribución binomial es una
    distribución de probabilidad discreta que mide el
    número de éxitos en una secuencia de n ensayos de
    Bernoulli independientes entre sí, con una probabilidad
    fija p de ocurrencia del éxito entre los ensayos.
   Un experimento de Bernoulli se caracteriza por ser
    dicotómico, esto es, sólo son posibles dos resultados. A
    uno de estos se denomina éxito y tiene una probabilidad
    de ocurrencia p y al otro, fracaso, con una probabilidad q
    = 1 - p. En la distribución binomial el anterior
    experimento se repite n veces, de forma independiente, y
    se trata de calcular la probabilidad de un determinado
    número de éxitos. Para n = 1, la binomial se convierte, de
    hecho, en una distribución de Bernoulli.
   UNA DE LAS FORMULAS PARA EL BINOMIAL

    El resultado obtenido en cada prueba es
    independiente de los resultados obtenidos
    anteriormente, esto es que el valor de la
    probabilidad de cada prueba no se afecta por
    pruebas anteriores, ni afecta pruebas futuras.

    La probabilidad del suceso "éxito" es constante, la
    representamos por p, y no varía de una prueba a
    otra. La probabilidad de el suceso "fracaso" es 1- p y
    la representamos por q .
   El experimento consta de un número n de pruebas.
    De la “n” pruebas , calculamos la probabilidad de
    “k” éxitos.

   Consideremos el siguiente juego, la apuesta a un
    número al arrojar un dado. Consideraremos un
    "éxito" si sale el número que eligimos, y un "fracaso"
    si sale otro número.
   Tenemos que:
   p = 1/6
   q = 1-p = 5/6
   Si hacemos una sola prueba donde P(k) es la
    probabilidad de k exitos.
   tenemos que:
   n=1
   P(0) = q = 5/6
   P(1) = p = 1/6
   .- La concentración de partículas en una suspensión es 2 por mL. Se
    agita por completo la concentración, y posteriormente se extraen 3
    mL. Sea X el numero de partículas que son retiradas. Determine.

   a) P(X=5)
   b) P(X≤2)
   c) μX
   d) σx

   a) P(X=5)= e-6 *
   P(X=5)= 2.478752177x10-3 *

   P(X=5)= 2.478752177x10-3 * 64.8

   P(X=5)= 0.160623141



   b) P(X≤2)
   P(X=0)= e-6 *                  P(X=1)= e-6 *
   P(X=0)= 2.478752177x10-3 *       P(X=1)= 2.478752177x10-3 *

   P(X=0)= 2.478752177x10-3 * 1         P(X=1)=
    2.478752177x10-3 * 6

   P(X=0)= 2.478752177x10-3             P(X=1)= 0.014872513


   P(X=2)= e-6 *               P(X≤2)= P(X=0)+P(X=1)+P(X=2)
   P(X=2)= 2.478752177x10-3 *        P(X≤2)=
    2.478752177+0.014872513+
                                           0.044617539
   P(X=2)= 2.478752177x10-3 * 18

   P(X=2)= 0.044617539                P(X≤2)= 0.061968804

   una variable aleatoria X tiene una distribucion
    binomial y una variable Y tiene una distribucion de
    Poisson. Tanto X como Y tienen medias iguales a 3.
    ¿Es posible determinar que variable aleatoria tiene
    la varianza mas grande? Elija una de las siguientes
    respuestas:
   i) Sí, X tiene la varianza mas grande.
   ii) Sí, Y tiene la varianza mas grande
   iii) No, se necesita conocer el numero de ensayos,
    para X.
   iv) No, se necesita conocer la probabilidad de éxito,
    p, para X.
   v) No, se necesita conocer el valor de λ para Y.
   Fórmula para determinar la varianza en una
    distribución binomial:
   σ2x= (1-p)
   σ2x= (1-3)
   σ2x= -2
   Formula para determinar la varianza en una
    distribución Poisson:
   σ2y= λ
   σ2y= 3
   Respuesta:
   ii) Sí, Y tiene la varianza más grande
    suponga que 0.03 % de los contenedores plásticos
    producidos en cierto proceso tiene pequeños agujeros
    que los dejan inservibles. X representa el numero de
    contenedores en una muestra aleatoria de 10 000 que
    tienen este defecto. Determine:


   a) P(X=3)
   b) P(X≤2)
   c) P(1≤X<4)
   d) μX
   e) σx

   a) P(X=3)= e-3*
   P(X=3)= 0.049787068 *
   P(X=3)= 0.049787068 * 4.5
   P(X=3)= 0.0224041807

   b) P(X≤2)
   P(X=0)= e-3 *               P(X=1)= e-3 *
   P(X=0)= 0.049787068 *          P(X=1)= 0.049787068 *

   P(X=0)= 0.049787068 * 1             P(X=1)= 0.049787068 * 3

   P(X=0)= 0.049787068                 P(X=1)= 0.149361205


   P(X=2)= e-3*                P(X≤2)= P(X=0)+P(X=1)+P(X=2)
   P(X=2)= 0.049787068 *          P(X≤2)=
    0.049787068+0.149361205+
                                              0.149361205
   P(X=2)= 0.049787068 * 4.5

   P(X=2)= 0.0224041807                P(X≤2)=0.42319008

   c) P(X<2)
   P(X=1)= e-3 *               P(X=2)= e-3*
   P(X=1)= 0.049787068 *          P(X=2)= 0.049787068 *

   P(X=1)= 0.049787068 * 3             P(X=2)= 0.049787068 *
    4.5


   P(X=1)= 0.149361205                 P(X=2)= 0.0224041807


   P(X=3)= e-3*                P(X<2)= P(X=1)+P(X=2)+P(X=3)
   P(X=3)= 0.049787068 *          P(X<2)=
    0.149361205+0.224041807+
                                              0.224041807
   P(X=3)= 0.049787068 * 4.5

   P(X=3)= 0.0224041807                P(X<2)= 0.597444819

   d) μX
   μX= 3


   e) σx
   σx=
   σx= 1.732030808
   .- el
        numero de mensajes recibidos por el tablero
    computado de anuncios es una variable aleatoria de
    Poisson con una razón media de ocho mensajes por hora.

   a) ¿Cuál es la probabilidad de que se reciban cinco
    mensajes en una hora?
   b) ¿Cuál es la probabilidad de que se reciban diez mensajes
    en 1.5 horas?
   c) ¿Cuál es la probabilidad de que se reciban menos de tres
    mensajes en 11/2 horas?

   a) ¿Cuál es la probabilidad de que se reciban cinco
    mensajes en una hora?
   P(X=3)= e-8*
   P(X=3)= 3.354626279x10-4 *

   P(X=3)= 3.354626279x10-4 * 273.0666667

   P(X=3)= 0.09160366


   b) ¿Cuál es la probabilidad de que se reciban
    diez mensajes en 1.5 horas?
   P(X=10)= e-12*
   P(X=10)= 6.144212353x10-6 *


   P(X=10)= 6.144212353x10-6 * 17062.76571


   P(X=10)= 0.104837255

   c) ¿Cuál es la probabilidad de que se reciban menos de tres
    mensajes en 11/2 horas?
   P(X=0)= e-12*                 P(X=1)= e-12*
   P(X=0)= 6.144212353x10-6 *          P(X=1)= 6.144212353x10-6 *

   P(X=0)= 6.144212353x10-6 * 1            P(X=1)= 6.144212353x10-6 *
    12


   P(X=0)= 6.144212353x10-6                P(X=1)= 7.373054824x10-5

   P(X=2)= e-12*                P(X<3)= P(X=0)+P(X=1)+P(X=2)
   P(X=2)= 6.144212353x10-6 *      P(X<3)= 6.144212353x10-6 +
                                                7.373054824x10-5 +
   P(X=2)= 6.144212353x10-6 * 72                 4.423832894x10-4 =

   P(X=2)= 4.423832894x10-4                P(X<3)= 5.2225805x10-4

   La distribución gamma se puede caracterizar del modo
    siguiente: si se está interesado en la ocurrencia de un evento
    generado por un proceso de Poisson de media lambda, la
    variable que mide el tiempo transcurrido hasta obtener n
    ocurrencias del evento sigue una distribución gamma con
    parámetros a= n    lambda(escala) y p=n (forma). Se denota
   Gamma(a,p).

   Por ejemplo, la distribución gamma aparece cuando se realiza
    el estudio de la duración de elementos físicos (tiempo de
    vida).
   Esta distribución presenta como propiedad interesante la
    “falta de memoria”. Por esta razón, es muy utilizada en las
    teorías de la fiabilidad, mantenimiento y fenómenos de espera
    (por ejemplo en una consulta médica “tiempo que transcurre
    hasta la llegada del segundo paciente”).
   Ejercicio 1
   El número de pacientes que llegan a la consulta de un médico sigue
    una distribución de
   Poisson de media 3 pacientes por hora. Calcular la probabilidad de que
    transcurra menos de una hora hasta la llegada del segundo paciente.
   Debe tenerse en cuenta que la variable aleatoria “tiempo que
    transcurre hasta la llegada del segundo paciente” sigue una
    distribución Gamma (6, 2).
   Solución:
   Cálculo de probabilidades. Distribuciones continuas
   Gamma (a p)

   a : Escala
   60000
   p : Forma
   20000
   Punto X
   10000es 0,98.
   Suponiendo que el tiempo de supervivencia, en años, de pacientes
    que son sometidos a una cierta intervención quirúrgica en un
    hospital sigue una distribución Gamma con parámetros a=0,81 y
    p=7,81, calcúlese:

   1. El tiempo medio de supervivencia.
   2. Los años a partir de los cuales la probabilidad de supervivencia
    es menor que 0,1.
   Cálculo de probabilidades. Distribuciones continuas

   Gamma (a,p)
   a : Escala   0,8100
   p : Forma     7,8100
   Cola Izquierda Pr [X<=k]    0,9000
   Cola Derecha Pr [X>=k]     0,1000
   Punto X                  14,2429
   Media                    9,6420
   Varianza                 11,9037
   Moda                      8,4074
   El tiempo medio de supervivencia es de, aproximadamente, 10
    años.
   En teoría de probabilidad y estadística, la
    distribución de Poisson es una distribución de
    probabilidad discreta que expresa, a partir de una
    frecuencia de ocurrencia media, la probabilidad que
    ocurra un determinado número de eventos durante
    cierto periodo de tiempo.
   Fue descubierta por Siméon-Denis Poisson, que la
    dio a conocer en 1838 en su trabajo Recherches sur la
    probabilité des jugements en matières criminelles et
    matière civile (Investigación sobre la probabilidad de los
    juicios en materias criminales y civiles).
   Aquí se muestran las formulas para determinar la media, la
    varianza y la desviación.

   Media
   μ= λ

   Varianza
    σ2 =λ

   Desviación típica
   σ=λ



   La duración de un ventilador, en horas , que se usa
    en un sistema computacional tiene una
    distribución de Weibull con
   ¿Cuáles la probabilidad de que un ventilador dure
    mas de 10 000 horas?
   P(T>10 000 ) =1 –(1-=0.3679


   ¿Cuál es la probabilidad de que un ventilador dure
    menos de 5000 horas?
   P(t<5000) =P(T

   En el articulo “Parameter Estimation with Only
    One Complete Failure Observation”se modela
    la duración en horas, de cierto tipo de cojinete
    con la distribución de Weibull con parámetros
   Determine la probabilidad de que un cojinete
    dure mas de 1000 horas
   Determine la probabilidad de que un cojinete
    dure menos de 2000 horas
   P(T<2000)= P(T

   La función de riesgo se definio en el ejercicio 4
    ¿Cuál es el riesgo en T=2000 horas?
   h(t) =

   Sea T- ~ t(4,0.5)
   Determinar

   b) Determinar

   c) Determinar P(T
   P(T
   = 1- e –(0.5)(1) - e –(0.5)(1) - e –(0.5)(1) - e (0.5)(1)
   =1- 0.60653 -0.30327 -0.075816 -0.012636
   =0.000175
   d) Determinar P(T
   P(T
   = e –(0.5)(3) - e –(0.5)(3) - e –(0.5)(3) - e (0.5)(3)
   =0.22313 + 0.33470+0.25102 +0.12551
   =0.9344

   En el articulo “Parameter Estimation with Only One
    Complete Failure Observation”se modela la duracion
    en horas, de cierto tipo de cojinete con la distribucion
    de Weibull con parámetros
   Determine la probabilidad de que un cojinete dure mas
    de 1000 horas
   Determine la probabilidad de que un cojinete dure
    menos de 2000 horas
   P(T<2000)= P(T
   La función de riesgo se definio en el ejercicio 4 ¿Cuál es
    el riesgo en T=2000 horas?
   h(t) =
Gracias por su
 atención.

Normal

  • 1.
    Tipificación de lavariable Para poder utilizar la tabla tenemos que transformar la variable X que sigue una distribución N (μ, σ) en otra variable Z que siga una distribución N (0, 1). Cálculo de probabilidades en distribuciones normales La tabla nos da las probabilidades de P (z ≤ k), siendo z la variable tipificada. Estas probabilidades nos dan la función de distribución Φ (k). Φ (k) = P (z ≤ k)
  • 2.
    Determine el área bajo la curva normal  Ala derecha de z= -0.85.  Entre z = 0.40 y z = 1.30.  Entre z =0.30 y z = 0.90.  Desde z = - 1.50 hasta z =-0.45   Estos resultados se obtuvieron con las tablas anexas al final de los problemas  A – 1 – 0.1977 = 0.8023  B – 0.9032 – 0.6554 = 0.2478  C – 0.8159 – 0.3821 = 0.4338  D – 0.0668 + (1 – 0.3264) = 0.7404 
  • 3.
    2- Las puntuaciones de una prueba estandarizada se distribuyen normalmente con media de 480 y desviación estándar de 90.  ¿Cual es la proposición de puntuaciones mayores a 700?  ¿Cual es el 25º? ¿Percentil de las puntuaciones?  Si la puntuación de alguien es de 600. ¿En que percentil se encuentra?  ¿Qué proporción de las puntuaciones se encuentra entre 420 y 520?  µ = 480 σ = 90   A - Z = (700-480)/90 = 2.44 el área a la derecha de Z es 0.0073  B – la puntuación de z en el 25 º percentil -0.67  El 25 º percentil es entonces 480 - 0.67 (90) = 419.7  C – z = (600-480)/90 = 1.33 el área a la derecha de z es 0.9082  Por lo que una puntuación de 600 esta en el percentil 91  D - z = (420 - 480)/90 = - 0.67  Z = (520 – 480)/90 = 0.44  El área entre z = - 0.67 y z = 0.44 es 0.6700 – 0.2514 = 0.4186
  • 4.
    La resistencia de una aleación de aluminio se distribuye normalmente con media de 10 giga pascales (Gpa) desviación estándar de 1.4 Gpa.  ¿Cuál es la probabilidad de que una muestra de esta aleación tenga resistencia mayor a 12 GPa?  Determine el primer cuartil de la resistencia de esta aleación.  Determine el 95º. Percentil de la resistencia de esta aleación.  RESULTADOS  µ = 10 σ = 1.4  A) z = (12 -10)/1.4 = 1.43 el área ala derecha de z = 1.43 es 1 – 0.9236 = 0.0764  B) la puntuación de z en el 25 º percentil es -0.67  El 25 º percentil es entonces 10 - 0.67 (1.4) = 9.062 Gpa.  C) la puntuación de z en el 95 º percentil es 1.645  El 25 º percentil es entonces 10 + 1.645(1.4) = 12.303 Gpa.
  • 5.
    La penicilina es producida por el hongo penicillium, que crece en un caldo, cuyo contenido de azúcar debe controlarse con cuidado. La concentración optima e azúcar es de 4.9 mg/mL. Si la concentración excede los 6 mg/mL, el hongo muere y el proceso debe suspenderse todo el día  A) ¿Si la concentración de azúcar en tandas de caldo se distribuye normalmente con media 4.9 mg/mL y desviación estándar 0.6 mg/mL en que proporción de días se suspenderá el proceso?
  • 6.
    B) El distribuidor ofrece vender caldo con una concentración de azúcar que se distribuye normalmente con medida de 5.2 mg/mL y desviación estándar de 0.4 mg/mL ¿este caldo surtirá efectos con menos días de producción perdida?  RESULTADOS  (6 – 4.9)/0.6 =1.83 1 – 0.9664 = 0.0336   Z = (6 – 5.2)/0.4 = 2.00 1 – 0.9772 = 0.0228  Con este caldo el proceso se suspendería el 2.28% de los días
  • 7.
    5- El volumen de las llantas llenadas por cierta maquina se distribuye con media de 12.05 onzas y desviación estándar de 0.03 onzas.  ¿Qué proporción de latas contiene menos de 12 onzas?  La medida del proceso se puede ajustar utilizando calibración. ¿En que valor debe fijarse la media para que el 99% de las latas contenga 12 onzas o mas?  Si la media del procesos sigue siendo de 12.05 onzas. ¿En que valor debe fijarse la media para que el 99% de las latas contenga 12 onzas o mas?   RESULTADOS  (12 – 12.05)/0.03 = -1.67 la proporción es 0.0475   Z= -2.33 entonces -2.33=(12 - µ)/0.03 despejando µ = 12 .07 onzas   – 2.33 = (12-12.05)/ σ despejando σ = 0.0215 onzas 
  • 8.
    En estadística, la distribución binomial es una distribución de probabilidad discreta que mide el número de éxitos en una secuencia de n ensayos de Bernoulli independientes entre sí, con una probabilidad fija p de ocurrencia del éxito entre los ensayos.  Un experimento de Bernoulli se caracteriza por ser dicotómico, esto es, sólo son posibles dos resultados. A uno de estos se denomina éxito y tiene una probabilidad de ocurrencia p y al otro, fracaso, con una probabilidad q = 1 - p. En la distribución binomial el anterior experimento se repite n veces, de forma independiente, y se trata de calcular la probabilidad de un determinado número de éxitos. Para n = 1, la binomial se convierte, de hecho, en una distribución de Bernoulli.
  • 9.
    UNA DE LAS FORMULAS PARA EL BINOMIAL  El resultado obtenido en cada prueba es independiente de los resultados obtenidos anteriormente, esto es que el valor de la probabilidad de cada prueba no se afecta por pruebas anteriores, ni afecta pruebas futuras.  La probabilidad del suceso "éxito" es constante, la representamos por p, y no varía de una prueba a otra. La probabilidad de el suceso "fracaso" es 1- p y la representamos por q .  El experimento consta de un número n de pruebas. De la “n” pruebas , calculamos la probabilidad de “k” éxitos. 
  • 10.
    Consideremos el siguiente juego, la apuesta a un número al arrojar un dado. Consideraremos un "éxito" si sale el número que eligimos, y un "fracaso" si sale otro número.  Tenemos que:  p = 1/6  q = 1-p = 5/6  Si hacemos una sola prueba donde P(k) es la probabilidad de k exitos.  tenemos que:  n=1  P(0) = q = 5/6  P(1) = p = 1/6
  • 11.
    .- La concentración de partículas en una suspensión es 2 por mL. Se agita por completo la concentración, y posteriormente se extraen 3 mL. Sea X el numero de partículas que son retiradas. Determine.   a) P(X=5)  b) P(X≤2)  c) μX  d) σx   a) P(X=5)= e-6 *  P(X=5)= 2.478752177x10-3 *   P(X=5)= 2.478752177x10-3 * 64.8   P(X=5)= 0.160623141 
  • 12.
      b) P(X≤2)  P(X=0)= e-6 * P(X=1)= e-6 *  P(X=0)= 2.478752177x10-3 * P(X=1)= 2.478752177x10-3 *   P(X=0)= 2.478752177x10-3 * 1 P(X=1)= 2.478752177x10-3 * 6   P(X=0)= 2.478752177x10-3 P(X=1)= 0.014872513    P(X=2)= e-6 * P(X≤2)= P(X=0)+P(X=1)+P(X=2)  P(X=2)= 2.478752177x10-3 * P(X≤2)= 2.478752177+0.014872513+  0.044617539  P(X=2)= 2.478752177x10-3 * 18   P(X=2)= 0.044617539 P(X≤2)= 0.061968804 
  • 13.
    una variable aleatoria X tiene una distribucion binomial y una variable Y tiene una distribucion de Poisson. Tanto X como Y tienen medias iguales a 3. ¿Es posible determinar que variable aleatoria tiene la varianza mas grande? Elija una de las siguientes respuestas:  i) Sí, X tiene la varianza mas grande.  ii) Sí, Y tiene la varianza mas grande  iii) No, se necesita conocer el numero de ensayos, para X.  iv) No, se necesita conocer la probabilidad de éxito, p, para X.  v) No, se necesita conocer el valor de λ para Y.
  • 14.
    Fórmula para determinar la varianza en una distribución binomial:  σ2x= (1-p)  σ2x= (1-3)  σ2x= -2  Formula para determinar la varianza en una distribución Poisson:  σ2y= λ  σ2y= 3  Respuesta:  ii) Sí, Y tiene la varianza más grande
  • 15.
    suponga que 0.03 % de los contenedores plásticos producidos en cierto proceso tiene pequeños agujeros que los dejan inservibles. X representa el numero de contenedores en una muestra aleatoria de 10 000 que tienen este defecto. Determine:   a) P(X=3)  b) P(X≤2)  c) P(1≤X<4)  d) μX  e) σx  a) P(X=3)= e-3*  P(X=3)= 0.049787068 *  P(X=3)= 0.049787068 * 4.5  P(X=3)= 0.0224041807
  • 16.
      b) P(X≤2)  P(X=0)= e-3 * P(X=1)= e-3 *  P(X=0)= 0.049787068 * P(X=1)= 0.049787068 *   P(X=0)= 0.049787068 * 1 P(X=1)= 0.049787068 * 3   P(X=0)= 0.049787068 P(X=1)= 0.149361205    P(X=2)= e-3* P(X≤2)= P(X=0)+P(X=1)+P(X=2)  P(X=2)= 0.049787068 * P(X≤2)= 0.049787068+0.149361205+  0.149361205  P(X=2)= 0.049787068 * 4.5   P(X=2)= 0.0224041807 P(X≤2)=0.42319008 
  • 17.
    c) P(X<2)  P(X=1)= e-3 * P(X=2)= e-3*  P(X=1)= 0.049787068 * P(X=2)= 0.049787068 *   P(X=1)= 0.049787068 * 3 P(X=2)= 0.049787068 * 4.5    P(X=1)= 0.149361205 P(X=2)= 0.0224041807    P(X=3)= e-3* P(X<2)= P(X=1)+P(X=2)+P(X=3)  P(X=3)= 0.049787068 * P(X<2)= 0.149361205+0.224041807+  0.224041807  P(X=3)= 0.049787068 * 4.5   P(X=3)= 0.0224041807 P(X<2)= 0.597444819 
  • 18.
    d) μX  μX= 3   e) σx  σx=  σx= 1.732030808
  • 19.
    .- el numero de mensajes recibidos por el tablero computado de anuncios es una variable aleatoria de Poisson con una razón media de ocho mensajes por hora.   a) ¿Cuál es la probabilidad de que se reciban cinco mensajes en una hora?  b) ¿Cuál es la probabilidad de que se reciban diez mensajes en 1.5 horas?  c) ¿Cuál es la probabilidad de que se reciban menos de tres mensajes en 11/2 horas?   a) ¿Cuál es la probabilidad de que se reciban cinco mensajes en una hora?  P(X=3)= e-8*  P(X=3)= 3.354626279x10-4 *   P(X=3)= 3.354626279x10-4 * 273.0666667   P(X=3)= 0.09160366
  • 20.
      b) ¿Cuál es la probabilidad de que se reciban diez mensajes en 1.5 horas?  P(X=10)= e-12*  P(X=10)= 6.144212353x10-6 *   P(X=10)= 6.144212353x10-6 * 17062.76571   P(X=10)= 0.104837255
  • 21.
      c) ¿Cuál es la probabilidad de que se reciban menos de tres mensajes en 11/2 horas?  P(X=0)= e-12* P(X=1)= e-12*  P(X=0)= 6.144212353x10-6 * P(X=1)= 6.144212353x10-6 *   P(X=0)= 6.144212353x10-6 * 1 P(X=1)= 6.144212353x10-6 * 12    P(X=0)= 6.144212353x10-6 P(X=1)= 7.373054824x10-5   P(X=2)= e-12* P(X<3)= P(X=0)+P(X=1)+P(X=2)  P(X=2)= 6.144212353x10-6 * P(X<3)= 6.144212353x10-6 +  7.373054824x10-5 +  P(X=2)= 6.144212353x10-6 * 72 4.423832894x10-4 =   P(X=2)= 4.423832894x10-4 P(X<3)= 5.2225805x10-4 
  • 22.
    La distribución gamma se puede caracterizar del modo siguiente: si se está interesado en la ocurrencia de un evento generado por un proceso de Poisson de media lambda, la variable que mide el tiempo transcurrido hasta obtener n ocurrencias del evento sigue una distribución gamma con parámetros a= n lambda(escala) y p=n (forma). Se denota  Gamma(a,p).   Por ejemplo, la distribución gamma aparece cuando se realiza el estudio de la duración de elementos físicos (tiempo de vida).  Esta distribución presenta como propiedad interesante la “falta de memoria”. Por esta razón, es muy utilizada en las teorías de la fiabilidad, mantenimiento y fenómenos de espera (por ejemplo en una consulta médica “tiempo que transcurre hasta la llegada del segundo paciente”).
  • 23.
    Ejercicio 1  El número de pacientes que llegan a la consulta de un médico sigue una distribución de  Poisson de media 3 pacientes por hora. Calcular la probabilidad de que transcurra menos de una hora hasta la llegada del segundo paciente.  Debe tenerse en cuenta que la variable aleatoria “tiempo que transcurre hasta la llegada del segundo paciente” sigue una distribución Gamma (6, 2).  Solución:  Cálculo de probabilidades. Distribuciones continuas  Gamma (a p)   a : Escala  60000  p : Forma  20000  Punto X  10000es 0,98.
  • 24.
    Suponiendo que el tiempo de supervivencia, en años, de pacientes que son sometidos a una cierta intervención quirúrgica en un hospital sigue una distribución Gamma con parámetros a=0,81 y p=7,81, calcúlese:   1. El tiempo medio de supervivencia.  2. Los años a partir de los cuales la probabilidad de supervivencia es menor que 0,1.  Cálculo de probabilidades. Distribuciones continuas   Gamma (a,p)  a : Escala 0,8100  p : Forma 7,8100  Cola Izquierda Pr [X<=k] 0,9000  Cola Derecha Pr [X>=k] 0,1000  Punto X 14,2429  Media 9,6420  Varianza 11,9037  Moda 8,4074  El tiempo medio de supervivencia es de, aproximadamente, 10 años.
  • 25.
    En teoría de probabilidad y estadística, la distribución de Poisson es una distribución de probabilidad discreta que expresa, a partir de una frecuencia de ocurrencia media, la probabilidad que ocurra un determinado número de eventos durante cierto periodo de tiempo.  Fue descubierta por Siméon-Denis Poisson, que la dio a conocer en 1838 en su trabajo Recherches sur la probabilité des jugements en matières criminelles et matière civile (Investigación sobre la probabilidad de los juicios en materias criminales y civiles).
  • 26.
    Aquí se muestran las formulas para determinar la media, la varianza y la desviación.   Media  μ= λ   Varianza  σ2 =λ   Desviación típica  σ=λ   
  • 27.
    La duración de un ventilador, en horas , que se usa en un sistema computacional tiene una distribución de Weibull con  ¿Cuáles la probabilidad de que un ventilador dure mas de 10 000 horas?  P(T>10 000 ) =1 –(1-=0.3679   ¿Cuál es la probabilidad de que un ventilador dure menos de 5000 horas?  P(t<5000) =P(T 
  • 28.
    En el articulo “Parameter Estimation with Only One Complete Failure Observation”se modela la duración en horas, de cierto tipo de cojinete con la distribución de Weibull con parámetros  Determine la probabilidad de que un cojinete dure mas de 1000 horas
  • 29.
    Determine la probabilidad de que un cojinete dure menos de 2000 horas  P(T<2000)= P(T  La función de riesgo se definio en el ejercicio 4 ¿Cuál es el riesgo en T=2000 horas?  h(t) =
  • 30.
      Sea T- ~ t(4,0.5)  Determinar   b) Determinar   c) Determinar P(T  P(T  = 1- e –(0.5)(1) - e –(0.5)(1) - e –(0.5)(1) - e (0.5)(1)  =1- 0.60653 -0.30327 -0.075816 -0.012636  =0.000175
  • 31.
    d) Determinar P(T  P(T  = e –(0.5)(3) - e –(0.5)(3) - e –(0.5)(3) - e (0.5)(3)  =0.22313 + 0.33470+0.25102 +0.12551  =0.9344
  • 32.
      En el articulo “Parameter Estimation with Only One Complete Failure Observation”se modela la duracion en horas, de cierto tipo de cojinete con la distribucion de Weibull con parámetros  Determine la probabilidad de que un cojinete dure mas de 1000 horas  Determine la probabilidad de que un cojinete dure menos de 2000 horas  P(T<2000)= P(T  La función de riesgo se definio en el ejercicio 4 ¿Cuál es el riesgo en T=2000 horas?  h(t) =
  • 33.