SlideShare una empresa de Scribd logo
¿Qué es una Raíz?
                      RAICES
La Definición de Raíz como Potencia
Raíz Cuadrada
Raíz Cúbica
El Indice Igual al Exponente
Multiplicación de Raíces de Igual Indice
División de Raíces de Igual Indice
Raíz de una Raíz.
Descomponer una Raíz
Racionalización
Condiciones de Existencia para las Raíces de Indice Par
Condiciones de Existencia para las Raíces de Indice Impar
Ecuaciones Irracionales
Curiosidades
Lugares en donde buscar más Información                     H.L.M.
¿Qué es una Raíz?
Una Raíz es una expresión que consta de un
INDICE, un símbolo de raíz y un SUBRADICAL.

          ¿Indice, raíz, cantidad subradical?
                            Símbolo      Cantidad
                   Indice   de Raíz      Subradical
      4    4
          2
8
    (-5,3)

      4
                     2
      5
Elementos de una Raíz


                                  Exponente del
INDICE                             Subradical




            m      n
                 a
Símbolo
de Raíz                    SUBRADICAL
¿Qué significa la Raíz?
Una Raíz es una Potencia con Exponente Fracción.


     Raíz    =       Potencia
                         5
                         _                                  3
                                                            _
     4   5               4                                  2
         2 =         2                      2
                                                    = (-0,6)

                             3
                             _
             3               2
                                 Ojo: El Indice 2
 (-5,3) = (-5,3)                 no se escribe.

                                                            7
                                                            _
                             _
                                                            6
         4       7                                      2
 6                   =                              =
         5                                              7
Transforma las siguientes raíces a Potencia
                                                                    3                                    2
                                                                                        2
                1
                                    4
                                            3
                                                            4       2
                                                                        3
                                                                                5                    5   3
    4           2
            4                                                                   3
                3                   7                       7                                        3
 73         7   2                                       1                                            5
                    1
                                3
                                        5           5   3
                                                                                m5              m    2

    3       3       2                                   4                                           n

    5       5
                                3
                                    7   4
                                                    7   3                   m
                                                                                dn              d   m



Transforma las siguientes Potencia a Raíces
                                    9                                               1
                                                                9           6                             6
    1                       2       2                   2               7           7                    7
6   2       6                                                                                   7
                            5                           5               53                               53
        5                           2                                       c
                        5
0,3     2       0,3             4   3           3
                                                    42                  a   b               b
                                                                                                ac
En General
            a            b
                         _
                b=       a       a≥2
                n    n
Importante:
    a   b                a   b
        0 =0                 1 = 1
Lectura de una Raíz.
                                5
-Indice 2, Raíz Cuadrada. Ej. 6
                             3 7
-Indice 3, Raíz Cúbica. Ej.   6
                             4 7
-Indice 4, Raíz Cuarta. Ej.   6
Raíz Cuadrada

  4    2   ya que   2 2      4
  9    3   ya que   33       9

16    4    ya que   4 4     16
25     5   ya que   5 5     25
 2 1,4142135623730950488016887242...
 Pero es solo una aproximación decimal de la
 Raíz, que no es exacta. Por lo que la mejor
 forma de representar a    2 es como 2 .
 Esto sucede con muchas raíces cuadradas que
        no entregan un resultado exacto
Raíz Cúbica

        3
             8    2   ya que   2 2 2       8
    3
        27        3   ya que   3 3 3 27
    3
        64        4   ya que   4 4 4 64
3
    125 5 ya que 5 5 5 125
    3
      3 1,4422495703074083823216383107796...
            Pero, al igual que el anterior es solo una aproximación
            decimal de la Raíz, que no es exacta. Por lo que la mejor
            forma de representar a 3 3 es como 3 3 .
                  Esto sucede con muchas raíces Cúbicas que
                        no entregan un resultado exacto.
1 - Propiedad:
El Indice Igual al Exponente.
                                            3
                                            _
                      7       3             7
   Sabiendo que:              2 =       2

¿Cuál será el resultado de?
                          5
                          _
            5   5         5         1
                2 = 2         = 2 =2

                      a                     a
                                            _
                              a             a
        En General:       n = n =n
2 - Propiedad:
Multiplicación de Raíces de Igual Indice.
                                         3
                                         _
                     7
Sabiendo que:            2 = 2
                             3           7


¿Cuál será el resultado de?
          9
        2 •
                 7            9      7
                5 =          2 •5
         9
         _      7
                _                1
                                 _         1
                                           _               1
                                                           _
                         9               7 2       9   7
       2 • 5 = (2 ) • (5 ) = (2 • 5 )
         2      2                2                         2




                         a    x a              y       a       x   y
     En General:             n •             m =           n •m
2 - Propiedad:
 Multiplicación de Raíces de Igual Indice.
 Resuelve usando la Propiedad de Potencia:
         3           3                                                                                  5                 3
a)           6            36          6                 f)           1,2                       1,2                  1,2
                                                                     24                       22            4
b)           8            2           4                 g)   3                    3
                                                                     35                       3             9
             3        9           3
c)       3       3                                      h)       3
                                                                     m5           3
                                                                                      m4                m3
             4       16           4

d) 3 5               3    3
                                  6           5 3 30 15
                                                        i)           n   7
                                                                                      n   5
                                                                                                    n6

e) 3 3           3
                     4        3
                                  2       3
                                              9   6    j) a   3n     3
                                                                             b   2n
                                                                                              a    5n       3
                                                                                                                b   7n
                                                                                                                          a 2 n b 3n
3 - Propiedad:
División de Raíces de Igual Indice.
                                             3
                                             _
                    7
Sabiendo que:               2 = 2
                                3            7


¿Cuál será el resultado de?

             75     5 =     7
                                     7 5 5       7


                5
                _       7
                        _                    1
                                             _         1
                                                       _               1
                                                                       _
                2       2            5               7 2       5   7   2
                                             2
            7       5 = (7 )                     (5 ) = (7 5 )


                        a           x a              y     a       x       y
     En General:                n                m =           n m
3 - Propiedad:
División de Raíces de Igual Indice.
Resuelve usando la Propiedad de Potencia:
             8                  0,08
a)                   4       e)                 0,2
             2                  0,02
         3                                                    4
b) 81                3       f)   3
                                      256       3
                                                     4
   3
     3                                 3            81        3
         3
             5   7                3
                                      m5    3
                                                n8
c)                   5       g)                          mn3
         3
             5   4                3
                                      m2    3
                                                n2
     3
                         3            b         d4           a5   a
d) 81                2       h)                          3
   3
     3               8   2        3
                                      a2        b3           d6   b
4 - Propiedad:
Raíz de una Raíz.
                                             3
                                             _                         2   3           6
Sabiendo que:
                               7    3
                                   2 = 2     7
                                                      y      (3 ) 3            =


¿Cuál será el resultado de?

      75 =     4
                       7   5                     3
                                                     75 =    6
                                                                      75
       5 1
       _ _     5 1
               _ _                  5
                                    _                5 1
                                                     _ _         5 1
                                                                 _ _               5
                                                                                   _
   (7 )2 2     2 2 •                4
                                                 (7 )3 2          •
                                                                 3 2               6
             = 7       = 7                                 = 7         = 7


                                   b a     n               b•a             n
     En General:                         m           =                 m
4 - Propiedad:
Raíz de una Raíz.
Resuelve usando la Propiedad de Potencia:

                                      8     4        2 4
a)         16       2    d)          mn         mn


                         e)          x12         x2
                               3
b)     3
           7    6
                     7               y6          y

                12             3
c)   3 4
           5         5               x 24
                          f)                    x2
                               3 3
                                     x18
Descomponer una Raíz

   Sabiendo que:             m n        m       n

 Resolver lo siguiente

          50x 7                      32x 7
  25 2 x x6                        16 2 x x6
25 2 x x 6                         16       2       x  x6
5 2     x x3                       4 2              x x 3

     3
   5x 2 x                          4 x3 2 x             Son términos semejantes

                         3
                   9x        2x
Descomponer una Raíz
Otro ejemplo

         45           20                80              125
         9 5          4 5             4 4 5           5 25
     9        5   4     5         4     4       5   5      25
    3 5           2 5             2 2       5        5 5
    3 5           2 5                 4 5            5 5
                                        Son términos semejantes



                            4 5
Racionalización
              Racionalizar es amplificar una fracción donde el
               denominador presenta una Raíz, con el fin de
                           que ésta no aparezca.

Ejemplos:

  1            2                 a                             n       3
                                                                           9n
                                     3         a
   2          2                  a                         3
                                                               3n 2        3
¿Qué es lo que hay que saber?

                   7 4      28                                         n       n
                                                                                            n
                                                                                                n
Amplificar:                                   Propiedad de Raíces:         x            x           x
                   2 4      8

       Multiplicar Raíces                2     8     2 8        16    4
       Raíz como Potencia
          Potencias
                                         x3    x5      x3 x5          x8           x4
p
              Racionalizar Raíces Cuadradas Simples de la Forma
                                                                                   q a
 1)        7          7            3       7 3          7 3     7 3
            3          3           3        3 3          32      3
           n              n            x     n x              n x       n x
 2)
          m x         m x              x    m x x          m x2          mx

      2       5       2        5       7        2    5 7        2 7       5    7     2 7       35
3)
          7                7           7            7 7                  72                7

           7               7                7            7          n    7 n       7 n
4)
              n   5
                          n 4 n1           n4 n         n2 n        n    n2n        n3

                                   p        p       a     p a           p a        p a
              En General
                               q a         q a      a    q a a          q a2        qa
Racionaliza las siguientes Expresiones

          7        7                          7             7
i)                                    v)
          11       11                         49            49

       15ax      15ax                          ab
ii)                                   vi)
       2 5a      2 5a                         b a

       40a 2b    40a 2b                        8        2
iii)                                  vii)
        10a       10a                               2

       a a       a a                          y x       x y
iv)                                   viii)
         a3        a3                          xy xy
p
                             Racionalizar Raíces Cuadradas de la Forma
                                                                                                                                                                 q       n
                                                                                                                                                                                 ak
                                          3
1)             7               7              42                          73 4                        73 4                 74 4
             3               3
                4               4         3
                                              42                      3
                                                                          4 42                        3
                                                                                                              43            4
                 n                        n                   4
                                                                      x                n          4
                                                                                                          x                n           4
                                                                                                                                            x           n4 x
2)
                                                              4                                                                                          mx
         m4 x3                m           4
                                              x   3
                                                                      x               m       4
                                                                                                      x3 x                m        4
                                                                                                                                           x4
     3
         a           a        3
                                      a       a               3
                                                                  a               3
                                                                                      a               a           3
                                                                                                                      a        3
                                                                                                                                       a2           a       3
                                                                                                                                                                a            3
                                                                                                                                                                                 a             a3 a
3)
                                                              3
         3
             a2                    33 a 2                         a                       33 a 2 a                                          33 a 3                                        3a
                                                                                                                                                        3
4)
             7                 7                                  7                                       7                                7                    42
         3       7       3        6                   3           6       3                           2       3                        2 3
                                                                                                                                                                        .....
             4                4 4                         4                       4           4                       4        4                4       3
                                                                                                                                                                42
                               p                          p                   n
                                                                                  an      k
                                                                                                              p       n
                                                                                                                          an       k
                                                                                                                                                p   n
                                                                                                                                                            an      k
                                                                                                                                                                                 p    n
                                                                                                                                                                                        an      k

 En General
                         q    n
                                  ak          q           n
                                                              ak              n
                                                                                  an      k
                                                                                                          q       n
                                                                                                                      ak an            k
                                                                                                                                                q       n
                                                                                                                                                            an                        q a
Racionaliza las siguientes Expresiones


                 7               7                                      7             7
i)                                                       v)         3             3
               3
                 11            3
                                 11                                     49            49

           15ax                    15ax                                 ab
ii)                                                      vi)
       2 5a3               2        3
                                   2 5a         2                   b3 a 5

       40a b           2
                                   40a b    2                   4
                                                                    211       4
                                                                                  27
iii)                                                     vii)
       3
           10 a    2           3
                                   10 a     2                           4
                                                                            23

       ab a    3
                               ab a 3
                                                                    3
                                                                        x     7
                                                                                  x2 y6
iv)                                                      viii)
       3
           ab      2           3
                                   ab   2                               7
                                                                             x9 y 6
Condiciones de Existencia de Raíces Cuadradas
                  e Indice Par

            Como, por ejemplo,      4   2    ya que   2 2 4
                   y así para todas las Raíces Cuadradas
                            de Números Positivos
                                  entonces
                   NO SE PUEDE OBTENER LA RAÍZ
                      CUADRADA DE NÚMEROS
                            NEGATIVOS

Es decir:                               En General, Esta condición es propia
                                        de todas las Raíces de INDICE PAR.
                4    No Existe

                                             4
               0,2   No Existe                   0,12   No Existe

               25     No Existe              8
                                                  25    No Existe
               36                                 36
Condiciones de Existencia de Raíces Cúbicas e
                Indice Impar

                 Las Raíces que tienen INDICE IMPAR
                        NO tienen restricción
  Es decir:
             3
                  8    2   ya que   2 2 2       8

          3
                 27    3   ya que   3 3 3       27

                  8    2            2   2   2        8
         3                 ya que
                 27    3            3   3   3        27
         7
                 128   2   ya que   2 2 2 2 2 2 2         128
Ecuaciones con Irracionales.
             Una Ecuación Irracional es determinar el valor de
                la incógnita que se encuentra bajo raíces.


Ejemplo de Ecuaciones Irracionales:

                                          Para resolverlas hay que seguir
           x 3      7                        dos pasos muy sencillos:
                                          i)   Si hay más de una raíz, se
       x 3        1 2x                         debe aislar en uno de los lados
                                               de la ecuación.
                                          ii) Elevar al cuadrado ambos
   x 3        4 x       7 3x 1                lados de la ecuación.

   3
       2 x 1 5 7 3x 1
Ejemplo de Resolución de Ecuaciones Irracionales:


                                  Evitamos el paso i) ya que la raíz ya esta aislada
     2x 4           6                  en uno de los dos lados de la ecuación.

                              2
     2x 4           6 /               Aplicamos el paso ii) anterior. Elevar ambos
                                              lados de la igualdad a 2.

               2          2
   2x 4               6               El elevar la raíz a 2, provoca que el Indice y
                                             el exponente se simplifiquen.

                                      Se resuelve como una ecuación de primer
   2x 4 36                                    grado con una incógnita.


        x 20                          OJO. En estricto rigor la solución de la
                                      ecuación debe estar en el siguiente
                                      conjunto: 2,
Ejemplo de Resolución de Ecuaciones Irracionales:


                                                Paso i) Aislar una de las raíces en uno de los dos
    x 8              3 x        1                              lados de la ecuación.
                                            2   Aplicamos el paso ii) anterior. Elevar ambos
    x 8 1                3 x            /               lados de la igualdad a 2.
                2                   2
    x 8              1      3 x                    El elevar la raíz a 2, provoca que el Indice y
                                                    el exponente se simplifiquen y en el otro
                                                  lado de la igualdad tengamos que realizar el
 x 8 1 2 3 x 3 x                                             cuadrado de un binomio.
                                        2
            4       2 3 x           /               Debemos volver al paso i), raíz aislada y
                                                    elevamos al cuadrado ambos lados de la
        2                   2
    4               2 3 x                                          igualdad.

                                                   Aquí en adelante la Ecuación Irracional se
      16            43 x
                                                 transforma en una Ecuación de Primer Grado
                                                              con una Incógnita
      16 12 4x
                1 x
Curiosidades
                                   2) Algoritmo para determinar una raíz.
1)                 1
     2 1
                       1
           2
                           1
               2
                               1
                   2
                           2 ...
Links

http://www.euroresidentes.com/colegio/matematicas/races_cuadradas.htm


http://www.sectormatematica.cl/contenidos.htm


http://es.wikipedia.org/wiki/Ra%C3%ADz_cuadrada

http://www.mamutmatematicas.com/ejercicios/raices-cuadradas.php

http://clic.xtec.es/db/act_es.jsp?id=1327
RAICES



  Harold Leiva Miranda
Harold.leiva@sekmail.com
 Colegio Sek – Pacífico
       Con - Con

Más contenido relacionado

Similar a Raices

Raices
RaicesRaices
Nuevo power raiz
Nuevo power raizNuevo power raiz
Nuevo power raiz
sitayanis
 
Guia geometria analitica
Guia geometria analiticaGuia geometria analitica
Guia geometria analitica
1-D
 
Fracciones: Números Mixtos y Fracciones Impropias - Suma y Resta de Números ...
Fracciones: Números Mixtos y Fracciones Impropias -  Suma y Resta de Números ...Fracciones: Números Mixtos y Fracciones Impropias -  Suma y Resta de Números ...
Fracciones: Números Mixtos y Fracciones Impropias - Suma y Resta de Números ...
Computer Learning Centers
 
Funciones a trozos
Funciones a trozosFunciones a trozos
Funciones a trozos
guest01e453
 
Taller de refuerzo grado octavo
Taller de refuerzo grado octavoTaller de refuerzo grado octavo
Taller de refuerzo grado octavo
Ricardo Montaña
 
Ejercicios De Practica FuncióN Lineal
Ejercicios De Practica FuncióN LinealEjercicios De Practica FuncióN Lineal
Ejercicios De Practica FuncióN Lineal
Carmen Batiz
 
GEMA1200 - Examen #3
GEMA1200 - Examen #3GEMA1200 - Examen #3
GEMA1200 - Examen #3
Angel Carreras
 
Exponentesyradicales jhenny
Exponentesyradicales jhennyExponentesyradicales jhenny
Exponentesyradicales jhenny
achacollo2011
 
Guia raices 1
Guia raices 1Guia raices 1
Guia raices 1
Yanira Castro
 
Exponencial
ExponencialExponencial
Exponencial
Carlos Calle
 
Guia semestral calculo diferencial
Guia semestral calculo diferencialGuia semestral calculo diferencial
Guia semestral calculo diferencial
dalia leija
 
Guia potencia
Guia potenciaGuia potencia
Guia potencia
mpalmahernandez
 
Costo Mensual
Costo Mensual Costo Mensual
Costo Mensual
yaileen_garcia
 
Radicales
RadicalesRadicales
Radicales
jotaerre70
 
Guía Conjuntos Numéricos
 Guía Conjuntos Numéricos Guía Conjuntos Numéricos
Guía Conjuntos Numéricos
matbasuts1
 
Ejercicios 5
Ejercicios 5Ejercicios 5
Ejercicios 5
salgonsan
 
Guia materia raices
Guia materia raicesGuia materia raices
Guia materia raices
solocolegio14
 
MATEMÁTICA III - GUÍA RAÍCES: PROPIEDADES Y RACIONALIZACIÓN
MATEMÁTICA III - GUÍA RAÍCES: PROPIEDADES Y RACIONALIZACIÓNMATEMÁTICA III - GUÍA RAÍCES: PROPIEDADES Y RACIONALIZACIÓN
MATEMÁTICA III - GUÍA RAÍCES: PROPIEDADES Y RACIONALIZACIÓN
Nicolás López Cvitanic
 
Acrostico jesus
Acrostico jesusAcrostico jesus
Acrostico jesus
Juan Nova
 

Similar a Raices (20)

Raices
RaicesRaices
Raices
 
Nuevo power raiz
Nuevo power raizNuevo power raiz
Nuevo power raiz
 
Guia geometria analitica
Guia geometria analiticaGuia geometria analitica
Guia geometria analitica
 
Fracciones: Números Mixtos y Fracciones Impropias - Suma y Resta de Números ...
Fracciones: Números Mixtos y Fracciones Impropias -  Suma y Resta de Números ...Fracciones: Números Mixtos y Fracciones Impropias -  Suma y Resta de Números ...
Fracciones: Números Mixtos y Fracciones Impropias - Suma y Resta de Números ...
 
Funciones a trozos
Funciones a trozosFunciones a trozos
Funciones a trozos
 
Taller de refuerzo grado octavo
Taller de refuerzo grado octavoTaller de refuerzo grado octavo
Taller de refuerzo grado octavo
 
Ejercicios De Practica FuncióN Lineal
Ejercicios De Practica FuncióN LinealEjercicios De Practica FuncióN Lineal
Ejercicios De Practica FuncióN Lineal
 
GEMA1200 - Examen #3
GEMA1200 - Examen #3GEMA1200 - Examen #3
GEMA1200 - Examen #3
 
Exponentesyradicales jhenny
Exponentesyradicales jhennyExponentesyradicales jhenny
Exponentesyradicales jhenny
 
Guia raices 1
Guia raices 1Guia raices 1
Guia raices 1
 
Exponencial
ExponencialExponencial
Exponencial
 
Guia semestral calculo diferencial
Guia semestral calculo diferencialGuia semestral calculo diferencial
Guia semestral calculo diferencial
 
Guia potencia
Guia potenciaGuia potencia
Guia potencia
 
Costo Mensual
Costo Mensual Costo Mensual
Costo Mensual
 
Radicales
RadicalesRadicales
Radicales
 
Guía Conjuntos Numéricos
 Guía Conjuntos Numéricos Guía Conjuntos Numéricos
Guía Conjuntos Numéricos
 
Ejercicios 5
Ejercicios 5Ejercicios 5
Ejercicios 5
 
Guia materia raices
Guia materia raicesGuia materia raices
Guia materia raices
 
MATEMÁTICA III - GUÍA RAÍCES: PROPIEDADES Y RACIONALIZACIÓN
MATEMÁTICA III - GUÍA RAÍCES: PROPIEDADES Y RACIONALIZACIÓNMATEMÁTICA III - GUÍA RAÍCES: PROPIEDADES Y RACIONALIZACIÓN
MATEMÁTICA III - GUÍA RAÍCES: PROPIEDADES Y RACIONALIZACIÓN
 
Acrostico jesus
Acrostico jesusAcrostico jesus
Acrostico jesus
 

Más de Jennifer Ruiz Valencia

Tendencia central
Tendencia centralTendencia central
Tendencia central
Jennifer Ruiz Valencia
 
Unidades de tiempo
Unidades de tiempoUnidades de tiempo
Unidades de tiempo
Jennifer Ruiz Valencia
 
Unidades de medida del tiempo
Unidades de medida del tiempoUnidades de medida del tiempo
Unidades de medida del tiempo
Jennifer Ruiz Valencia
 
Unidades de capacidad
Unidades de capacidadUnidades de capacidad
Unidades de capacidad
Jennifer Ruiz Valencia
 
Unidades de capacidad
Unidades de capacidadUnidades de capacidad
Unidades de capacidad
Jennifer Ruiz Valencia
 
Unidades de masa
Unidades de masaUnidades de masa
Unidades de masa
Jennifer Ruiz Valencia
 
Unidades de volumen
Unidades de volumenUnidades de volumen
Unidades de volumen
Jennifer Ruiz Valencia
 
Unidades de volumen
Unidades de volumenUnidades de volumen
Unidades de volumen
Jennifer Ruiz Valencia
 
Medidas de area
Medidas de areaMedidas de area
Medidas de area
Jennifer Ruiz Valencia
 
Fracciones y racionales
Fracciones y racionalesFracciones y racionales
Fracciones y racionales
Jennifer Ruiz Valencia
 
Máximo común divisor
Máximo común divisorMáximo común divisor
Máximo común divisor
Jennifer Ruiz Valencia
 
Mínimo común múltiplo
Mínimo común múltiploMínimo común múltiplo
Mínimo común múltiplo
Jennifer Ruiz Valencia
 
Números compuestos
Números compuestosNúmeros compuestos
Números compuestos
Jennifer Ruiz Valencia
 
Números primos
Números primosNúmeros primos
Números primos
Jennifer Ruiz Valencia
 
Divisibilidad
DivisibilidadDivisibilidad
Divisibilidad
Jennifer Ruiz Valencia
 
Divisores
DivisoresDivisores
Múltiplos de un numero
Múltiplos de un numeroMúltiplos de un numero
Múltiplos de un numero
Jennifer Ruiz Valencia
 
Ecuaciones
EcuacionesEcuaciones
Propiedades de la radicacion
Propiedades de la radicacionPropiedades de la radicacion
Propiedades de la radicacion
Jennifer Ruiz Valencia
 
Potencias de números racionales1
Potencias de números racionales1Potencias de números racionales1
Potencias de números racionales1
Jennifer Ruiz Valencia
 

Más de Jennifer Ruiz Valencia (20)

Tendencia central
Tendencia centralTendencia central
Tendencia central
 
Unidades de tiempo
Unidades de tiempoUnidades de tiempo
Unidades de tiempo
 
Unidades de medida del tiempo
Unidades de medida del tiempoUnidades de medida del tiempo
Unidades de medida del tiempo
 
Unidades de capacidad
Unidades de capacidadUnidades de capacidad
Unidades de capacidad
 
Unidades de capacidad
Unidades de capacidadUnidades de capacidad
Unidades de capacidad
 
Unidades de masa
Unidades de masaUnidades de masa
Unidades de masa
 
Unidades de volumen
Unidades de volumenUnidades de volumen
Unidades de volumen
 
Unidades de volumen
Unidades de volumenUnidades de volumen
Unidades de volumen
 
Medidas de area
Medidas de areaMedidas de area
Medidas de area
 
Fracciones y racionales
Fracciones y racionalesFracciones y racionales
Fracciones y racionales
 
Máximo común divisor
Máximo común divisorMáximo común divisor
Máximo común divisor
 
Mínimo común múltiplo
Mínimo común múltiploMínimo común múltiplo
Mínimo común múltiplo
 
Números compuestos
Números compuestosNúmeros compuestos
Números compuestos
 
Números primos
Números primosNúmeros primos
Números primos
 
Divisibilidad
DivisibilidadDivisibilidad
Divisibilidad
 
Divisores
DivisoresDivisores
Divisores
 
Múltiplos de un numero
Múltiplos de un numeroMúltiplos de un numero
Múltiplos de un numero
 
Ecuaciones
EcuacionesEcuaciones
Ecuaciones
 
Propiedades de la radicacion
Propiedades de la radicacionPropiedades de la radicacion
Propiedades de la radicacion
 
Potencias de números racionales1
Potencias de números racionales1Potencias de números racionales1
Potencias de números racionales1
 

Raices

  • 1. ¿Qué es una Raíz? RAICES La Definición de Raíz como Potencia Raíz Cuadrada Raíz Cúbica El Indice Igual al Exponente Multiplicación de Raíces de Igual Indice División de Raíces de Igual Indice Raíz de una Raíz. Descomponer una Raíz Racionalización Condiciones de Existencia para las Raíces de Indice Par Condiciones de Existencia para las Raíces de Indice Impar Ecuaciones Irracionales Curiosidades Lugares en donde buscar más Información H.L.M.
  • 2. ¿Qué es una Raíz? Una Raíz es una expresión que consta de un INDICE, un símbolo de raíz y un SUBRADICAL. ¿Indice, raíz, cantidad subradical? Símbolo Cantidad Indice de Raíz Subradical 4 4 2 8 (-5,3) 4 2 5
  • 3. Elementos de una Raíz Exponente del INDICE Subradical m n a Símbolo de Raíz SUBRADICAL
  • 4. ¿Qué significa la Raíz? Una Raíz es una Potencia con Exponente Fracción. Raíz = Potencia 5 _ 3 _ 4 5 4 2 2 = 2 2 = (-0,6) 3 _ 3 2 Ojo: El Indice 2 (-5,3) = (-5,3) no se escribe. 7 _ _ 6 4 7 2 6 = = 5 7
  • 5. Transforma las siguientes raíces a Potencia 3 2 2 1 4 3 4 2 3 5 5 3 4 2 4 3 3 7 7 3 73 7 2 1 5 1 3 5 5 3 m5 m 2 3 3 2 4 n 5 5 3 7 4 7 3 m dn d m Transforma las siguientes Potencia a Raíces 9 1 9 6 6 1 2 2 2 7 7 7 6 2 6 7 5 5 53 53 5 2 c 5 0,3 2 0,3 4 3 3 42 a b b ac
  • 6. En General a b _ b= a a≥2 n n Importante: a b a b 0 =0 1 = 1 Lectura de una Raíz. 5 -Indice 2, Raíz Cuadrada. Ej. 6 3 7 -Indice 3, Raíz Cúbica. Ej. 6 4 7 -Indice 4, Raíz Cuarta. Ej. 6
  • 7. Raíz Cuadrada 4 2 ya que 2 2 4 9 3 ya que 33 9 16 4 ya que 4 4 16 25 5 ya que 5 5 25 2 1,4142135623730950488016887242... Pero es solo una aproximación decimal de la Raíz, que no es exacta. Por lo que la mejor forma de representar a 2 es como 2 . Esto sucede con muchas raíces cuadradas que no entregan un resultado exacto
  • 8. Raíz Cúbica 3 8 2 ya que 2 2 2 8 3 27 3 ya que 3 3 3 27 3 64 4 ya que 4 4 4 64 3 125 5 ya que 5 5 5 125 3 3 1,4422495703074083823216383107796... Pero, al igual que el anterior es solo una aproximación decimal de la Raíz, que no es exacta. Por lo que la mejor forma de representar a 3 3 es como 3 3 . Esto sucede con muchas raíces Cúbicas que no entregan un resultado exacto.
  • 9. 1 - Propiedad: El Indice Igual al Exponente. 3 _ 7 3 7 Sabiendo que: 2 = 2 ¿Cuál será el resultado de? 5 _ 5 5 5 1 2 = 2 = 2 =2 a a _ a a En General: n = n =n
  • 10. 2 - Propiedad: Multiplicación de Raíces de Igual Indice. 3 _ 7 Sabiendo que: 2 = 2 3 7 ¿Cuál será el resultado de? 9 2 • 7 9 7 5 = 2 •5 9 _ 7 _ 1 _ 1 _ 1 _ 9 7 2 9 7 2 • 5 = (2 ) • (5 ) = (2 • 5 ) 2 2 2 2 a x a y a x y En General: n • m = n •m
  • 11. 2 - Propiedad: Multiplicación de Raíces de Igual Indice. Resuelve usando la Propiedad de Potencia: 3 3 5 3 a) 6 36 6 f) 1,2 1,2 1,2 24 22 4 b) 8 2 4 g) 3 3 35 3 9 3 9 3 c) 3 3 h) 3 m5 3 m4 m3 4 16 4 d) 3 5 3 3 6 5 3 30 15 i) n 7 n 5 n6 e) 3 3 3 4 3 2 3 9 6 j) a 3n 3 b 2n a 5n 3 b 7n a 2 n b 3n
  • 12. 3 - Propiedad: División de Raíces de Igual Indice. 3 _ 7 Sabiendo que: 2 = 2 3 7 ¿Cuál será el resultado de? 75 5 = 7 7 5 5 7 5 _ 7 _ 1 _ 1 _ 1 _ 2 2 5 7 2 5 7 2 2 7 5 = (7 ) (5 ) = (7 5 ) a x a y a x y En General: n m = n m
  • 13. 3 - Propiedad: División de Raíces de Igual Indice. Resuelve usando la Propiedad de Potencia: 8 0,08 a) 4 e) 0,2 2 0,02 3 4 b) 81 3 f) 3 256 3 4 3 3 3 81 3 3 5 7 3 m5 3 n8 c) 5 g) mn3 3 5 4 3 m2 3 n2 3 3 b d4 a5 a d) 81 2 h) 3 3 3 8 2 3 a2 b3 d6 b
  • 14. 4 - Propiedad: Raíz de una Raíz. 3 _ 2 3 6 Sabiendo que: 7 3 2 = 2 7 y (3 ) 3 = ¿Cuál será el resultado de? 75 = 4 7 5 3 75 = 6 75 5 1 _ _ 5 1 _ _ 5 _ 5 1 _ _ 5 1 _ _ 5 _ (7 )2 2 2 2 • 4 (7 )3 2 • 3 2 6 = 7 = 7 = 7 = 7 b a n b•a n En General: m = m
  • 15. 4 - Propiedad: Raíz de una Raíz. Resuelve usando la Propiedad de Potencia: 8 4 2 4 a) 16 2 d) mn mn e) x12 x2 3 b) 3 7 6 7 y6 y 12 3 c) 3 4 5 5 x 24 f) x2 3 3 x18
  • 16. Descomponer una Raíz Sabiendo que: m n m n Resolver lo siguiente 50x 7 32x 7 25 2 x x6 16 2 x x6 25 2 x x 6 16 2 x x6 5 2 x x3 4 2 x x 3 3 5x 2 x 4 x3 2 x Son términos semejantes 3 9x 2x
  • 17. Descomponer una Raíz Otro ejemplo 45 20 80 125 9 5 4 5 4 4 5 5 25 9 5 4 5 4 4 5 5 25 3 5 2 5 2 2 5 5 5 3 5 2 5 4 5 5 5 Son términos semejantes 4 5
  • 18. Racionalización Racionalizar es amplificar una fracción donde el denominador presenta una Raíz, con el fin de que ésta no aparezca. Ejemplos: 1 2 a n 3 9n 3 a 2 2 a 3 3n 2 3 ¿Qué es lo que hay que saber? 7 4 28 n n n n Amplificar: Propiedad de Raíces: x x x 2 4 8 Multiplicar Raíces 2 8 2 8 16 4 Raíz como Potencia Potencias x3 x5 x3 x5 x8 x4
  • 19. p Racionalizar Raíces Cuadradas Simples de la Forma q a 1) 7 7 3 7 3 7 3 7 3 3 3 3 3 3 32 3 n n x n x n x n x 2) m x m x x m x x m x2 mx 2 5 2 5 7 2 5 7 2 7 5 7 2 7 35 3) 7 7 7 7 7 72 7 7 7 7 7 n 7 n 7 n 4) n 5 n 4 n1 n4 n n2 n n n2n n3 p p a p a p a p a En General q a q a a q a a q a2 qa
  • 20. Racionaliza las siguientes Expresiones 7 7 7 7 i) v) 11 11 49 49 15ax 15ax ab ii) vi) 2 5a 2 5a b a 40a 2b 40a 2b 8 2 iii) vii) 10a 10a 2 a a a a y x x y iv) viii) a3 a3 xy xy
  • 21. p Racionalizar Raíces Cuadradas de la Forma q n ak 3 1) 7 7 42 73 4 73 4 74 4 3 3 4 4 3 42 3 4 42 3 43 4 n n 4 x n 4 x n 4 x n4 x 2) 4 mx m4 x3 m 4 x 3 x m 4 x3 x m 4 x4 3 a a 3 a a 3 a 3 a a 3 a 3 a2 a 3 a 3 a a3 a 3) 3 3 a2 33 a 2 a 33 a 2 a 33 a 3 3a 3 4) 7 7 7 7 7 42 3 7 3 6 3 6 3 2 3 2 3 ..... 4 4 4 4 4 4 4 4 4 3 42 p p n an k p n an k p n an k p n an k En General q n ak q n ak n an k q n ak an k q n an q a
  • 22. Racionaliza las siguientes Expresiones 7 7 7 7 i) v) 3 3 3 11 3 11 49 49 15ax 15ax ab ii) vi) 2 5a3 2 3 2 5a 2 b3 a 5 40a b 2 40a b 2 4 211 4 27 iii) vii) 3 10 a 2 3 10 a 2 4 23 ab a 3 ab a 3 3 x 7 x2 y6 iv) viii) 3 ab 2 3 ab 2 7 x9 y 6
  • 23. Condiciones de Existencia de Raíces Cuadradas e Indice Par Como, por ejemplo, 4 2 ya que 2 2 4 y así para todas las Raíces Cuadradas de Números Positivos entonces NO SE PUEDE OBTENER LA RAÍZ CUADRADA DE NÚMEROS NEGATIVOS Es decir: En General, Esta condición es propia de todas las Raíces de INDICE PAR. 4 No Existe 4 0,2 No Existe 0,12 No Existe 25 No Existe 8 25 No Existe 36 36
  • 24. Condiciones de Existencia de Raíces Cúbicas e Indice Impar Las Raíces que tienen INDICE IMPAR NO tienen restricción Es decir: 3 8 2 ya que 2 2 2 8 3 27 3 ya que 3 3 3 27 8 2 2 2 2 8 3 ya que 27 3 3 3 3 27 7 128 2 ya que 2 2 2 2 2 2 2 128
  • 25. Ecuaciones con Irracionales. Una Ecuación Irracional es determinar el valor de la incógnita que se encuentra bajo raíces. Ejemplo de Ecuaciones Irracionales: Para resolverlas hay que seguir x 3 7 dos pasos muy sencillos: i) Si hay más de una raíz, se x 3 1 2x debe aislar en uno de los lados de la ecuación. ii) Elevar al cuadrado ambos x 3 4 x 7 3x 1 lados de la ecuación. 3 2 x 1 5 7 3x 1
  • 26. Ejemplo de Resolución de Ecuaciones Irracionales: Evitamos el paso i) ya que la raíz ya esta aislada 2x 4 6 en uno de los dos lados de la ecuación. 2 2x 4 6 / Aplicamos el paso ii) anterior. Elevar ambos lados de la igualdad a 2. 2 2 2x 4 6 El elevar la raíz a 2, provoca que el Indice y el exponente se simplifiquen. Se resuelve como una ecuación de primer 2x 4 36 grado con una incógnita. x 20 OJO. En estricto rigor la solución de la ecuación debe estar en el siguiente conjunto: 2,
  • 27. Ejemplo de Resolución de Ecuaciones Irracionales: Paso i) Aislar una de las raíces en uno de los dos x 8 3 x 1 lados de la ecuación. 2 Aplicamos el paso ii) anterior. Elevar ambos x 8 1 3 x / lados de la igualdad a 2. 2 2 x 8 1 3 x El elevar la raíz a 2, provoca que el Indice y el exponente se simplifiquen y en el otro lado de la igualdad tengamos que realizar el x 8 1 2 3 x 3 x cuadrado de un binomio. 2 4 2 3 x / Debemos volver al paso i), raíz aislada y elevamos al cuadrado ambos lados de la 2 2 4 2 3 x igualdad. Aquí en adelante la Ecuación Irracional se 16 43 x transforma en una Ecuación de Primer Grado con una Incógnita 16 12 4x 1 x
  • 28. Curiosidades 2) Algoritmo para determinar una raíz. 1) 1 2 1 1 2 1 2 1 2 2 ...
  • 30. RAICES Harold Leiva Miranda Harold.leiva@sekmail.com Colegio Sek – Pacífico Con - Con