SlideShare una empresa de Scribd logo
1 de 8
RELACIONES ENTRE CONJUNTOS INCLUSIÓN Un conjunto A esta incluido en otro conjunto B ,sí y sólo sí, todo elemento de A es también elemento de B NOTACIÓN : Se lee : A esta incluido en B, A es subconjunto de B, A esta contenido en B , A es parte de B. REPRESENTACIÓN GRÁFICA : A B
PROPIEDADES: I ) Todo conjunto está incluido en si mismo.    II ) El conjunto vacío se considera incluido en cualquier conjunto.    III ) A está incluido en B (           ) equivale a decir que B incluye  A  (            ) IV ) Si A no está incluido en B o A no es subconjunto de B significa que por lo menos un elemento de A no pertenece a B. (            ) V ) Simbólicamente:
CONJUNTOS COMPARABLES Un conjunto A es COMPARABLE con otro conjunto B si entre dichos conjuntos existe  una relación de inclusión. A es comparable con B   A  B   B  A Ejemplo: A={1;2;3;4;5}  y  B={2;4} A Observa que B está incluido en A ,por lo tanto Ay B son COMPARABLES  5 1 4 3 2 B
IGUALDAD DE CONJUNTOS Dos conjuntos son iguales si tienen los mismos elementos. Ejemplo: A = { x / x2 = 9 }    y  B = { x / (x – 3)(x + 3) =0 } Resolviendo la ecuación de cada conjunto se obtiene en ambos casos que x es igual a 3 o -3, es decir : A = {-3;3}  y  B = {-3;3} ,por lo tanto A=B Simbólicamente :
CONJUNTOS DISJUNTOS Dos conjuntos son disjuntos cuando no tienen elementos comunes. REPRESENTACIÓN GRÁFICA : Como puedes observar los conjuntos A y B no tienen elementos comunes, por lo tanto son CONJUNTOS DISJUNTOS  B A 7 4 9  6 5 3 2 1 8 
CONJUNTO DE CONJUNTOS Es un conjunto cuyos elementos son conjuntos. Ejemplo: F = { {a};{b};{a; b};{a;b;c} } Observa que los elementos del conjunto F también son conjuntos. {a} es un elemento del conjunto F entonces {a}    F   ¿ Es correcto decir que {b}      F ? NO Porque {b} es un elemento del conjunto F ,lo correcto es {b}    F
CONJUNTO POTENCIA El conjunto potencia de un conjunto A denotado por P(A) o Por(A) es el conjunto formado por todos los subconjuntos de A. Ejemplo:Sea A = { m;n;p } Los subconjuntos de A son {n;p}, {m;p}, {m;n;p}, {m}, {n}, {p}, {m;n}, Φ Entonces el conjunto potencia de A es: P(A) = { {m};{n};{p};{m;n};{m;p};{n;p};{m:n;p};Φ } ¿ CUÁNTOS ELEMENTOS TIENE EL CONJUNTO POTENCIA DE A ?
Observa que el conjunto A tiene 3 elementos y su conjunto potencia ósea P(A) tiene 8 elementos. Si 5<x<15 y es un número par entonces B= {6;8;10;12;14} PROPIEDAD: Observa que el conjunto B tiene 5 elementos entonces: Dado un conjunto A cuyo número de elementos es n , entonces el número de elementos de su conjunto potencia es 2n. CardinalP(B)=n P(B)=25=32 Ejemplo: Dado el conjunto B ={x / x es un número par y 5< x <15 }. Determinar el cardinal de P(B). RESPUESTA

Más contenido relacionado

La actualidad más candente

Relaciones binarias
Relaciones binariasRelaciones binarias
Relaciones binarias
elduro299ful
 
Conjuntos y relacion entre conjuntos
Conjuntos y relacion entre conjuntosConjuntos y relacion entre conjuntos
Conjuntos y relacion entre conjuntos
phoebefphs
 
Relaciones Y Funciones
Relaciones Y FuncionesRelaciones Y Funciones
Relaciones Y Funciones
guestee24d3
 
Relaciones entre conjuntos
Relaciones entre conjuntosRelaciones entre conjuntos
Relaciones entre conjuntos
elduro299ful
 

La actualidad más candente (20)

Complemento de conjuntos
Complemento de conjuntosComplemento de conjuntos
Complemento de conjuntos
 
Conjuntos-Unión-Intersección
Conjuntos-Unión-IntersecciónConjuntos-Unión-Intersección
Conjuntos-Unión-Intersección
 
Teoría de conjuntos ii
Teoría de conjuntos iiTeoría de conjuntos ii
Teoría de conjuntos ii
 
Diapositivas funciones 1
Diapositivas funciones 1Diapositivas funciones 1
Diapositivas funciones 1
 
Relaciones binarias
Relaciones binariasRelaciones binarias
Relaciones binarias
 
Relaciones binarias
Relaciones binariasRelaciones binarias
Relaciones binarias
 
TALLER TEORIA DE CONJUNTOS
TALLER TEORIA DE CONJUNTOSTALLER TEORIA DE CONJUNTOS
TALLER TEORIA DE CONJUNTOS
 
Conjuntos y relacion entre conjuntos
Conjuntos y relacion entre conjuntosConjuntos y relacion entre conjuntos
Conjuntos y relacion entre conjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Relaciones Y Funciones
Relaciones Y FuncionesRelaciones Y Funciones
Relaciones Y Funciones
 
Relaciones de orden y de equivalencia
Relaciones de orden y de equivalenciaRelaciones de orden y de equivalencia
Relaciones de orden y de equivalencia
 
relaciones y funciones
relaciones y funcionesrelaciones y funciones
relaciones y funciones
 
TEORÍA DE CONJUNTOS
TEORÍA DE CONJUNTOSTEORÍA DE CONJUNTOS
TEORÍA DE CONJUNTOS
 
Funciones reales
Funciones realesFunciones reales
Funciones reales
 
Funciones y relaciones
Funciones y relacionesFunciones y relaciones
Funciones y relaciones
 
Grupos, subgrupos, anillo y cuerpo, Estructuras algebraicas
Grupos, subgrupos, anillo y cuerpo, Estructuras algebraicasGrupos, subgrupos, anillo y cuerpo, Estructuras algebraicas
Grupos, subgrupos, anillo y cuerpo, Estructuras algebraicas
 
Resumen teoria de conjuntos
Resumen teoria de conjuntosResumen teoria de conjuntos
Resumen teoria de conjuntos
 
Relaciones binarias
Relaciones binariasRelaciones binarias
Relaciones binarias
 
LÓGICA PROPOSICIONAL
LÓGICA PROPOSICIONALLÓGICA PROPOSICIONAL
LÓGICA PROPOSICIONAL
 
Relaciones entre conjuntos
Relaciones entre conjuntosRelaciones entre conjuntos
Relaciones entre conjuntos
 

Similar a Relacion Entre Conjuntos (20)

Relacion entre conjuntos
Relacion entre conjuntos Relacion entre conjuntos
Relacion entre conjuntos
 
4° Sec - I Bim - Conjuntos II
4° Sec - I Bim - Conjuntos II4° Sec - I Bim - Conjuntos II
4° Sec - I Bim - Conjuntos II
 
Conjuntos 2
Conjuntos 2Conjuntos 2
Conjuntos 2
 
Ronald camacho C.I 24567405
Ronald camacho C.I 24567405Ronald camacho C.I 24567405
Ronald camacho C.I 24567405
 
4°s semana5
4°s semana54°s semana5
4°s semana5
 
Conjuntos1
Conjuntos1Conjuntos1
Conjuntos1
 
Conjuntos y subconjuntos
Conjuntos y subconjuntosConjuntos y subconjuntos
Conjuntos y subconjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Conjuntos22
Conjuntos22Conjuntos22
Conjuntos22
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
CONJUNTOS (CLASE 01).ppt
CONJUNTOS (CLASE 01).pptCONJUNTOS (CLASE 01).ppt
CONJUNTOS (CLASE 01).ppt
 
Conjunto Sexto.ppt
Conjunto Sexto.pptConjunto Sexto.ppt
Conjunto Sexto.ppt
 
Conjun.ppt
Conjun.pptConjun.ppt
Conjun.ppt
 
Conjun.ppt
Conjun.pptConjun.ppt
Conjun.ppt
 

Más de fredylozada (12)

Definicion
DefinicionDefinicion
Definicion
 
concepto
conceptoconcepto
concepto
 
Union De Conjuntos
Union De ConjuntosUnion De Conjuntos
Union De Conjuntos
 
Relacion De Pertenencia
Relacion De PertenenciaRelacion De Pertenencia
Relacion De Pertenencia
 
Conjuntos Especiales
Conjuntos EspecialesConjuntos Especiales
Conjuntos Especiales
 
Diagramas De Venn
Diagramas De VennDiagramas De Venn
Diagramas De Venn
 
Detrminacion De Un Conjunto
Detrminacion De Un ConjuntoDetrminacion De Un Conjunto
Detrminacion De Un Conjunto
 
Diferencia De Conjuntos
Diferencia De ConjuntosDiferencia De Conjuntos
Diferencia De Conjuntos
 
Diferencia Simetrica
Diferencia SimetricaDiferencia Simetrica
Diferencia Simetrica
 
Complemento De Conjuntos
Complemento De ConjuntosComplemento De Conjuntos
Complemento De Conjuntos
 
Conjuntos Numericos
Conjuntos NumericosConjuntos Numericos
Conjuntos Numericos
 
Definicion
DefinicionDefinicion
Definicion
 

Último

Estrategia Nacional de Refuerzo Escolar SJA Ccesa007.pdf
Estrategia Nacional de Refuerzo Escolar  SJA  Ccesa007.pdfEstrategia Nacional de Refuerzo Escolar  SJA  Ccesa007.pdf
Estrategia Nacional de Refuerzo Escolar SJA Ccesa007.pdf
Demetrio Ccesa Rayme
 
Pasos para enviar una tarea en SIANET - sólo estudiantes.pdf
Pasos para enviar una tarea en SIANET - sólo estudiantes.pdfPasos para enviar una tarea en SIANET - sólo estudiantes.pdf
Pasos para enviar una tarea en SIANET - sólo estudiantes.pdf
NELLYKATTY
 
PLAN LECTOR QUINTO 2023 educación primaria de menores Quinto grado
PLAN LECTOR QUINTO 2023  educación primaria de menores Quinto gradoPLAN LECTOR QUINTO 2023  educación primaria de menores Quinto grado
PLAN LECTOR QUINTO 2023 educación primaria de menores Quinto grado
Santosprez2
 
RESOLUCION_VICE_MINISTERIAL-00048-2024-M-EVALUACIÓN EVALAUCION FORMATIVA MINE...
RESOLUCION_VICE_MINISTERIAL-00048-2024-M-EVALUACIÓN EVALAUCION FORMATIVA MINE...RESOLUCION_VICE_MINISTERIAL-00048-2024-M-EVALUACIÓN EVALAUCION FORMATIVA MINE...
RESOLUCION_VICE_MINISTERIAL-00048-2024-M-EVALUACIÓN EVALAUCION FORMATIVA MINE...
helmer del pozo cruz
 
ACTIVIDAD 19 Construyo mi identidad personal y familiar para fortalecer los v...
ACTIVIDAD 19 Construyo mi identidad personal y familiar para fortalecer los v...ACTIVIDAD 19 Construyo mi identidad personal y familiar para fortalecer los v...
ACTIVIDAD 19 Construyo mi identidad personal y familiar para fortalecer los v...
MarcoAntonioAmayaSag
 

Último (20)

4. MATERIALES QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
4. MATERIALES QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx4. MATERIALES QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
4. MATERIALES QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
 
Sesión de clase Motivados por la esperanza.pdf
Sesión de clase Motivados por la esperanza.pdfSesión de clase Motivados por la esperanza.pdf
Sesión de clase Motivados por la esperanza.pdf
 
Estrategia Nacional de Refuerzo Escolar SJA Ccesa007.pdf
Estrategia Nacional de Refuerzo Escolar  SJA  Ccesa007.pdfEstrategia Nacional de Refuerzo Escolar  SJA  Ccesa007.pdf
Estrategia Nacional de Refuerzo Escolar SJA Ccesa007.pdf
 
La historia de la vida estudiantil a 102 años de la fundación de las Normales...
La historia de la vida estudiantil a 102 años de la fundación de las Normales...La historia de la vida estudiantil a 102 años de la fundación de las Normales...
La historia de la vida estudiantil a 102 años de la fundación de las Normales...
 
novelas-cortas--3.pdf Analisis introspectivo y retrospectivo, sintesis
novelas-cortas--3.pdf Analisis introspectivo y retrospectivo, sintesisnovelas-cortas--3.pdf Analisis introspectivo y retrospectivo, sintesis
novelas-cortas--3.pdf Analisis introspectivo y retrospectivo, sintesis
 
2. Entornos Virtuales de Aprendizaje.pptx
2. Entornos Virtuales de Aprendizaje.pptx2. Entornos Virtuales de Aprendizaje.pptx
2. Entornos Virtuales de Aprendizaje.pptx
 
POEMAS ILUSTRADOS DE LUÍSA VILLALTA. Elaborados polos alumnos de 4º PDC do IE...
POEMAS ILUSTRADOS DE LUÍSA VILLALTA. Elaborados polos alumnos de 4º PDC do IE...POEMAS ILUSTRADOS DE LUÍSA VILLALTA. Elaborados polos alumnos de 4º PDC do IE...
POEMAS ILUSTRADOS DE LUÍSA VILLALTA. Elaborados polos alumnos de 4º PDC do IE...
 
Seguridad y virus informáticos 12°B 2024
Seguridad y virus informáticos 12°B 2024Seguridad y virus informáticos 12°B 2024
Seguridad y virus informáticos 12°B 2024
 
Pasos para enviar una tarea en SIANET - sólo estudiantes.pdf
Pasos para enviar una tarea en SIANET - sólo estudiantes.pdfPasos para enviar una tarea en SIANET - sólo estudiantes.pdf
Pasos para enviar una tarea en SIANET - sólo estudiantes.pdf
 
Época colonial: vestimenta, costumbres y juegos de la época
Época colonial: vestimenta, costumbres y juegos de la épocaÉpoca colonial: vestimenta, costumbres y juegos de la época
Época colonial: vestimenta, costumbres y juegos de la época
 
Botiquin del amor - Plantillas digitales.pdf
Botiquin del amor - Plantillas digitales.pdfBotiquin del amor - Plantillas digitales.pdf
Botiquin del amor - Plantillas digitales.pdf
 
GOBIERNO DE MANUEL ODRIA EL OCHENIO.pptx
GOBIERNO DE MANUEL ODRIA   EL OCHENIO.pptxGOBIERNO DE MANUEL ODRIA   EL OCHENIO.pptx
GOBIERNO DE MANUEL ODRIA EL OCHENIO.pptx
 
El liderazgo en la empresa sostenible, introducción, definición y ejemplo.
El liderazgo en la empresa sostenible, introducción, definición y ejemplo.El liderazgo en la empresa sostenible, introducción, definición y ejemplo.
El liderazgo en la empresa sostenible, introducción, definición y ejemplo.
 
En un aposento alto himno _letra y acordes.pdf
En un aposento alto himno _letra y acordes.pdfEn un aposento alto himno _letra y acordes.pdf
En un aposento alto himno _letra y acordes.pdf
 
PLAN LECTOR QUINTO 2023 educación primaria de menores Quinto grado
PLAN LECTOR QUINTO 2023  educación primaria de menores Quinto gradoPLAN LECTOR QUINTO 2023  educación primaria de menores Quinto grado
PLAN LECTOR QUINTO 2023 educación primaria de menores Quinto grado
 
3. ELEMENTOS QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
3. ELEMENTOS QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx3. ELEMENTOS QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
3. ELEMENTOS QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
 
REGLAMENTO FINAL DE EVALUACIÓN 2024 pdf.pdf
REGLAMENTO  FINAL DE EVALUACIÓN 2024 pdf.pdfREGLAMENTO  FINAL DE EVALUACIÓN 2024 pdf.pdf
REGLAMENTO FINAL DE EVALUACIÓN 2024 pdf.pdf
 
RESOLUCION_VICE_MINISTERIAL-00048-2024-M-EVALUACIÓN EVALAUCION FORMATIVA MINE...
RESOLUCION_VICE_MINISTERIAL-00048-2024-M-EVALUACIÓN EVALAUCION FORMATIVA MINE...RESOLUCION_VICE_MINISTERIAL-00048-2024-M-EVALUACIÓN EVALAUCION FORMATIVA MINE...
RESOLUCION_VICE_MINISTERIAL-00048-2024-M-EVALUACIÓN EVALAUCION FORMATIVA MINE...
 
ACTIVIDAD 19 Construyo mi identidad personal y familiar para fortalecer los v...
ACTIVIDAD 19 Construyo mi identidad personal y familiar para fortalecer los v...ACTIVIDAD 19 Construyo mi identidad personal y familiar para fortalecer los v...
ACTIVIDAD 19 Construyo mi identidad personal y familiar para fortalecer los v...
 
Tema 9. Roma. 1º ESO 2014. Ciencias SOciales
Tema 9. Roma. 1º ESO 2014. Ciencias SOcialesTema 9. Roma. 1º ESO 2014. Ciencias SOciales
Tema 9. Roma. 1º ESO 2014. Ciencias SOciales
 

Relacion Entre Conjuntos

  • 1. RELACIONES ENTRE CONJUNTOS INCLUSIÓN Un conjunto A esta incluido en otro conjunto B ,sí y sólo sí, todo elemento de A es también elemento de B NOTACIÓN : Se lee : A esta incluido en B, A es subconjunto de B, A esta contenido en B , A es parte de B. REPRESENTACIÓN GRÁFICA : A B
  • 2. PROPIEDADES: I ) Todo conjunto está incluido en si mismo. II ) El conjunto vacío se considera incluido en cualquier conjunto. III ) A está incluido en B ( ) equivale a decir que B incluye A ( ) IV ) Si A no está incluido en B o A no es subconjunto de B significa que por lo menos un elemento de A no pertenece a B. ( ) V ) Simbólicamente:
  • 3. CONJUNTOS COMPARABLES Un conjunto A es COMPARABLE con otro conjunto B si entre dichos conjuntos existe una relación de inclusión. A es comparable con B  A  B  B  A Ejemplo: A={1;2;3;4;5} y B={2;4} A Observa que B está incluido en A ,por lo tanto Ay B son COMPARABLES 5 1 4 3 2 B
  • 4. IGUALDAD DE CONJUNTOS Dos conjuntos son iguales si tienen los mismos elementos. Ejemplo: A = { x / x2 = 9 } y B = { x / (x – 3)(x + 3) =0 } Resolviendo la ecuación de cada conjunto se obtiene en ambos casos que x es igual a 3 o -3, es decir : A = {-3;3} y B = {-3;3} ,por lo tanto A=B Simbólicamente :
  • 5. CONJUNTOS DISJUNTOS Dos conjuntos son disjuntos cuando no tienen elementos comunes. REPRESENTACIÓN GRÁFICA : Como puedes observar los conjuntos A y B no tienen elementos comunes, por lo tanto son CONJUNTOS DISJUNTOS  B A 7 4 9  6 5 3 2 1 8 
  • 6. CONJUNTO DE CONJUNTOS Es un conjunto cuyos elementos son conjuntos. Ejemplo: F = { {a};{b};{a; b};{a;b;c} } Observa que los elementos del conjunto F también son conjuntos. {a} es un elemento del conjunto F entonces {a} F ¿ Es correcto decir que {b} F ? NO Porque {b} es un elemento del conjunto F ,lo correcto es {b} F
  • 7. CONJUNTO POTENCIA El conjunto potencia de un conjunto A denotado por P(A) o Por(A) es el conjunto formado por todos los subconjuntos de A. Ejemplo:Sea A = { m;n;p } Los subconjuntos de A son {n;p}, {m;p}, {m;n;p}, {m}, {n}, {p}, {m;n}, Φ Entonces el conjunto potencia de A es: P(A) = { {m};{n};{p};{m;n};{m;p};{n;p};{m:n;p};Φ } ¿ CUÁNTOS ELEMENTOS TIENE EL CONJUNTO POTENCIA DE A ?
  • 8. Observa que el conjunto A tiene 3 elementos y su conjunto potencia ósea P(A) tiene 8 elementos. Si 5<x<15 y es un número par entonces B= {6;8;10;12;14} PROPIEDAD: Observa que el conjunto B tiene 5 elementos entonces: Dado un conjunto A cuyo número de elementos es n , entonces el número de elementos de su conjunto potencia es 2n. CardinalP(B)=n P(B)=25=32 Ejemplo: Dado el conjunto B ={x / x es un número par y 5< x <15 }. Determinar el cardinal de P(B). RESPUESTA