Congruencias y semejanzas de
figuras planas
Juan Serrano, MA
UNIVERSIDAD INTERAMERICANA DE PUERTO RICO
GEOMETRIA:
El estudiante es capaz de identificar formas y dimensiones
geométricas, y utilizar el conocimiento espacial para analizar sus
estructuras, características, propiedades y relaciones para
entender y descubrir el entorno físico.
• 9.G.5.1
Compara y contrasta la igualdad, la congruencia y la
semejanza.
¿Cómo son las figuras mostradas?
3
Son idénticas
• .
Ejemplos de Congruencia
ESTAS SI SON FIGURAS CONGRUENTES
ESTAS SI SON FIGURAS CONGRUENTES
ESTAS NO SON FIGURAS CONGRUNTES
Congruencia
• .
 Dos figuras son congruentes cuando
tienen la misma forma y tamaño, es decir,
si al colocarlas una sobre otra son
coincidentes en toda su extensión.
Criterios de congruencia
Triángulos congruentes
• Dos triángulos son congruentes si y sólo si
sus partes correspondientes son
congruentes.
A
B C
D
E F
ABC  DEF
Definición: Dos triángulos ABC y DEF son
correspondientes si:
• Sus lados correspondientes son congruentes.
• Sus ángulos correspondiente son congruentes.
• En la figura
A
DFACEFBCEDAB 
B
C
E
F D
 



POSTULADOS DE CONGRUENCIA
• Criterio LLL: Si en dos triángulos los tres lados de uno son
respectivamente congruentes con los de otro, entonces los
triángulos son congruentes.
• Criterio LAL: Si los lados que forman a un ángulo, y éste, son
congruentes con dos lados y el ángulo comprendido por estos de
otro triángulo, entonces los triángulos son congruentes.
• Criterio ALA: Si dos ángulos y el lado entre ellos son
respectivamente congruentes con dos ángulos y el lado entre
ellos de otro triángulo, entonces los triángulos son congruentes.
• Criterio LLA: Si el lado más largo del triangulo, junto con otro
lado de éste, y el ángulo superior del lado más largo del triángulo
son congruentes con los del otro triangulo, entonces los
triángulos son congruentes.
Postulado LLL
• Si los lados de un triángulo son congruentes con
los lados de un segundo triángulo, entonces los
triángulos son congruentes.
A
B C
D
E F
ABC  DEF
Postulado ALA
• Si dos ángulos y el lado incluido de un triángulo son
congruentes con dos ángulos y el lado incluido de otro
triángulo, los triángulos son congruentes.
A
B
C
D
E
ABC  CDE
Postulado AAL
• Si dos ángulos y el lado no incluido de un triángulo son
congruentes con dos ángulos y el lado no incluido de otro
triángulo, los triángulos son congruentes.
A
B C
D
E
ABC  EFD
F
Postulado LAL
• Si dos lados y el ángulo incluido de un triángulo son
congruentes a dos lados y el ángulo incluido de otro
triángulo, entonces los dos triángulos son congruentes.
A
B
C D
E
ABC  DEF
F
• Ejemplos:
• 1) En la figura, se tiene un triángulo
ABC isósceles ( AC = BC) y se ha dividido su
base AB en 4 partes iguales. ¿Cuáles
triángulos son congruentes?
• 2) Dado el triángulo rectángulo de lados a,b y c, se han
construido las figuras que están a sus lados copiándolo varias
veces y colocándolo en diferentes posiciones.
• Analiza los ángulos que son congruentes en las distintas
posiciones. ¿Podrías deducir que el cuadrado que se forma es
congruente en ambas figuras?
PROPORCIONALIDAD DE SEGMENTOS
TEOREMA DE THALES
TEOREMA DE THALES
22
A
B
C
BASE MEDIAPROPIEDAD
M N 2
AC
MN 
ACMN //
FIGURAS SEMEJANTES
GEOMETRIA:
El estudiante es capaz de identificar formas y dimensiones
geométricas, y utilizar el conocimiento espacial para analizar sus
estructuras, características, propiedades y relaciones para
entender y descubrir el entorno físico.
7.G.10.1 Define e identifica semejanzas en figuras bidimensionales,
incluidas las partes correspondientes, la razón de semejanza y las
medidas de las partes correspondientes. Determina la relación
proporcional entre las medidas de los lados correspondientes de figuras
semejantes.
25
¿Cómo son las figuras mostradas?
Son proporcionales
Son semejantes
Semejanza
• Dos figuras que tienen la misma forma, aun
con diferentes dimensiones, se llaman
semejantes.
• Dos figuras son semejantes si sus ángulos
correspondientes son iguales y sus lados
correspondientes proporcionales.
• Los elementos que se corresponden (puntos,
segmentos, ángulos …) se llaman homólogos.
• Dos figuras del plano
son semejantes si los
cocientes de de los
segmentos
determinados por
pares cualesquiera
de puntos
correspondientes
son iguales.
ML
M'L'
es la razón de semejanza
Dos triángulos son semejantes si tienen los lados proporcionales y los
ángulos iguales.
El cociente
a b c
k
a' b' c'
  
se llama razón de semejanza.
30
SEMEJANZA
DE TRIÁNGULOS
33
Dado un triángulo de lados 4m, 5m y 6m.
Multiplica cada uno de los lados por 3.
Los lados del triángulo se han triplicado.
4m
5m
6m
A
B
C
18m
15m
12m
P
Q
R
34
Identificamos algunos elementos :
RAZÓN DE SEMEJANZA : 3
LADOS HOMÓLOGOS : AB
BC
AC
PQ
QR
PR
Si la altura relativa al lado AC mide a, podemos afirmar que la
altura relativa a su lado homólogo PR mide 3a.
Además:
Cualquier longitud (lados y líneas notables) en el triángulo ABC se
triplica en el triángulo PQR.

¿Cuál es el símbolo que se utiliza para representar
la semejanza de dos triángulos?
Es necesario ubicarse a una distancia tal que mirando con un solo ojo queden alineados el
extremo superior del árbol y el de la vara de longitud conocida.
Distancias o alturas aplicando semejanza
• Los dibujos siguientes ilustran diversas maneras, utilizadas
habitualmente por las guías y scouts, para estimar alturas y
distancias, recurriendo a la semejanza de triángulos.
• En este caso, es necesario que la persona pueda observar el
extremo superior del árbol reflejado en el espejo.
38
CASOS DE SEMEJANZA DE TRIÁNGULOS
Criterios de semejanza de triángulos
• existen algunos principios que nos permiten
determinar si dos triángulos son semejantes
sin necesidad de medir y comparar todos sus
lados y todos sus ángulos. Estos principios se
conocen con el nombre de criterios de
semejanza de triángulos
Existen tres criterios de semejanza de
triángulos
1. AA ( ángulo-ángulo)
2. LLL (lado-lado-lado)
3. LAL (lado-ángulo-lado)
SEMEJANZA DE TRIÁNGULOS
POSTULADOS DE SEMEJANZA
Criterio AA de semejanza.
Teorema: “ Si dos triángulos tienen sus dos ángulos correspondientes
congruentes, entonces el tercero también será congruente y los
triángulos son semejantes”.
Criterio LAL de semejanza.
Teorema: “ Dos triángulos son semejantes si tienen un ángulo
congruente comprendido entre lados proporcionales”.
Criterio LLL de semejanza.
Teorema: "Si los lados correspondientes de dos triángulos son
proporcionales, entonces los triángulos son semejantes".
A´
B´C’
A
B
C
I. Primer criterio AA
• Dos triángulos que tienen los dos ángulos
congruentes son semejantes entre sí.
´

´

´

Es decir: Si   ´ ,   ´ de lo anterior se deduce que   ´
Entonces, D ABC semejante con DA´B´C´
Ejemplo
¿Son los siguientes triángulos semejantes?
65 25
65
¡SI!
Por que al tener dos de sus
ángulos congruentes,
cumplen con el criterio AA
II. Segundo criterio LLL
• Dos triángulos que tienen los tres lados proporcionales son
semejantes entre sí.
A´
B´C’
A
B
C
a
a´
El cociente obtenido de
comparar los lados
homólogos entre sí recibe
el nombre de razón de
semejanza.
Es decir:
a
a´ =
b
b´ =
c
c´ =K
b b´
c
c´
Entonces, D ABC semejante con DA´B´C´
Ejemplo
Determine si los triángulos ABC y PQR son semejantes
A
B
C
P
Q
R
1,5
3,5
5
3
7
10
Verifiquemos si las medidas de los lados
son proporcionales
1,5
3
= =
3,5
7
5
10
Efectivamente , así es, ya que los
productos “cruzados” son iguales
1,5 • 7 = 3 • 3,5 = 10,5
3,5 • 10 = 7 • 5 = 35
Por lo tanto Triángulos ABC y PQR son semejantes por criterio
LLL
III. Tercer criterio LAL
• Dos triángulos que tienen dos lados proporcionales y el
ángulo comprendido entre ellos es igual, son semejantes
entre sí.
A´
B´C’
A
BC
Es decir:
a
a´
a
a´
= c
c´
c
c´
y  = ´

´
Entonces D ABC semejante a D A´B´C´
Ejemplo
¿Son los triángulos ABC y DEF semejantes?
A
B
C
4
3
D
E
F
9
12
Veamos si dos de sus lados son
proporcionales
3
9
= 4
12
Efectivamente así es, ya
que los productos
“cruzados” son iguales
3 • 12 = 4 • 9
¿Los ángulos formados por
estos dos lados son
congruentes?
Por criterio LAL Triángulos ABC y DEF son SEMEJANTES
Efectivamente, porque, tal
como se señala en el
dibujo, ambos son rectos
Algunas aplicaciones de estos
conceptos
Ejercicio
• Conocemos las dimensiones de los lados de dos triángulos. Comprueba que son semejantes y halla la razón de
semejanza.
• a) 8 cm, 10 cm, 12 cm
b) 52 cm, 65 cm, 78 cm
Comprobemos que las medidas de los lados
homólogos son proporcionales
Entonces los triángulos son semejantes por criterio LLL
8
10
12
78
65
52
Representemos el ejercicio
Para calcular la razón de
semejanza se calcula una de
las razones
65 : 10 = 6,5
52
8
= 65
10
= 78
12
= 6,5
Efectivamente, al calcular los
productos “cruzados”,
podemos ver la
proporcionalidad entre las
medidas de los lados
respectivos
52 •10 = 8 • 65 = 520
65 • 12 = 10 •78 = 780
Ejercicio
• Tenemos un triángulo cuyos lados miden 3 cm, 4 cm y 5 cm respectivamente
y deseamos hacer una ampliación a escala 3:1. ¿Cuánto medirá cada
lado?.¿Cuál es la razón de semejanza?.
Luego, debe ocurrir:
3
4
5
x
y
z
Entonces: X= 3· 3 = 9
= 9
Y = 4 · 3 =12
12 =
Z = 5 · 3 = 15
=15
La razón de
semejanza es 3
Representamos la situación
=
X
3
=
Y
4
Z
5
=
3
1
=3
Escala de
ampliación
X
3
= 3
Y
4
=3
Z
5
=3
Los lados de un triángulo miden 30, 40 y 50 centímetros respectivamente. Los lados de un segundo triángulo
miden 12, 16 y 20 centímetros. ¿Son semejantes?. En caso afirmativo, ¿cual es la razón de semejanza?.
50
30
40
12
16
20
30
12
= 40
16
50
20
=
Para calcular la razón de
semejanza se calcula una de
las razones
50 : 20 = 2,5
Para comprobar la
proporcionalidad podemos
efectuar los productos
“cruzados”
30x16=480 y 40x12=480
además
40x20=800 y 16x50=800
Comprobemos que las medidas de los lados
homólogos son proporcionales
Un poste vertical de 3 metros proyecta una sombra de 2 metros; ¿qué altura tiene
un árbol que a la misma hora proyecta una sombra de 4,5 metros?(Haz un dibujo
del problema).
4,5m
x
3m
2m sombra
p
o
s
t
e
Los triángulos definidos por el poste y su sombra y el árbol y su sombra son
semejantes, por lo tanto
De donde = 6,75m
Son semejantes por
que cumplen el
criterio AA, tienen
iguales el ángulo
recto y el ángulo de
elevación que
forman los rayos
solares con el suelo
=
3
x
2
4,5
X = 3 • 4,5
2Formamos la proporción
Actividades de semejanza y congruencia
1.Construcción de la bisectriz de un segmento
INSTRUCCIONES
• Dibuja un segmento sobre un pedazo de papel encerado.
Dobla el papel hasta unir los dos extremos del segmento.
OBSERVACIÓN
• La línea de doblaje divide al segmento en dos segmentos
con la misma medida, o sea, dos segmentos congruentes.
Actividades de semejanza y congruencia
COMENTARIO
• El punto de intersección entre el segmento y la línea del doblaje se conoce
con el nombre de punto medio del segmento. El estudiante construye la
definición de punto medio de un segmento. Cualquier recta que pase por
ese punto medio (se dibujan algunas rectas pasando por el punto medio)
se conoce con el nombre de bisectriz del segmento. El estudiante
construye la definición de bisectriz de un segmento. Ahora, marca bien la
línea de doblaje y mide los ángulos formados. Observa que la medida de
los ángulos es de 90°. Aquí se lleva al estudiante a descubrir la relación
entre el segmento y la línea de doblaje.
OBSERVACIÓN
• La línea de doblaje biseca al segmento y a la misma vez es perpendicular
con éste. “Cuando una línea recta biseca un segmento y a la vez es
perpendicular con éste se dice que la recta es mediatriz del segmento.” El
estudiante construye la definición de mediatriz.
Actividades de semejanza y congruencia
2. Las bisectrices de los ángulos de un triángulo
Dibuje un triángulo en un pedazo de papel encerado. Marque las bisectrices de
cada ángulo doblando el papel por cada vértice (aplicación de la construcción 3).
OBSERVACIÓN
Las bisectrices concurren o se encuentran en un punto.
COMENTARIO
El punto donde concurren las bisectrices de los ángulos internos de un
triángulo se conoce como el incentro del triángulo.
Actividades de semejanza y congruencia
Solicite que mediante un doblaje marquen un segmento perpendicular desde el
incentro hasta uno de los lados del triángulo. Ahora, con un compás, haciendo centro
en el incentro del triángulo, abra el mismo hasta el extremo del segmento
perpendicular y trace un círculo. El estudiante debe observar que cada lado del
triángulo tiene un punto en común con la circunferencia (punto de tangencia).
COMENTARIO
• El círculo trazado está inscrito en el triángulo. El estudiante
construye la definición de círculo inscrito en un triángulo.
RECOMENDACIÓN
• Llevar al estudiante a determinar que el radio del círculo es
perpendicular a la tangente, al mismo, en su punto de tangencia.
Para terminar una pequeña
demostración
Demuestre: Si L1// L2 , , entonces ΔABC ~ΔDEC
CA
B
D
E
Afirmaciones Razones
Demostración
Por ser ángulos alternos internos entre //CDEABC 
CDEBAC  Por ser Ángulos alternos internos entre //
Por lo tanto al tener dos ángulos congruentes, se cumple al
criterio AA, luego, los triángulos ABC y DEC son
semejantes
Dadas las rectas AB y DE, son paralelas. Demuestra que el triangulo ABC y
el triangulo DEC son semejantes.

Semejanza de triagulos

  • 1.
    Congruencias y semejanzasde figuras planas Juan Serrano, MA UNIVERSIDAD INTERAMERICANA DE PUERTO RICO
  • 2.
    GEOMETRIA: El estudiante escapaz de identificar formas y dimensiones geométricas, y utilizar el conocimiento espacial para analizar sus estructuras, características, propiedades y relaciones para entender y descubrir el entorno físico. • 9.G.5.1 Compara y contrasta la igualdad, la congruencia y la semejanza.
  • 3.
    ¿Cómo son lasfiguras mostradas? 3 Son idénticas
  • 4.
    • . Ejemplos deCongruencia ESTAS SI SON FIGURAS CONGRUENTES ESTAS SI SON FIGURAS CONGRUENTES ESTAS NO SON FIGURAS CONGRUNTES
  • 5.
    Congruencia • .  Dosfiguras son congruentes cuando tienen la misma forma y tamaño, es decir, si al colocarlas una sobre otra son coincidentes en toda su extensión.
  • 6.
  • 7.
    Triángulos congruentes • Dostriángulos son congruentes si y sólo si sus partes correspondientes son congruentes. A B C D E F ABC  DEF
  • 8.
    Definición: Dos triángulosABC y DEF son correspondientes si: • Sus lados correspondientes son congruentes. • Sus ángulos correspondiente son congruentes. • En la figura A DFACEFBCEDAB  B C E F D     
  • 9.
    POSTULADOS DE CONGRUENCIA •Criterio LLL: Si en dos triángulos los tres lados de uno son respectivamente congruentes con los de otro, entonces los triángulos son congruentes. • Criterio LAL: Si los lados que forman a un ángulo, y éste, son congruentes con dos lados y el ángulo comprendido por estos de otro triángulo, entonces los triángulos son congruentes. • Criterio ALA: Si dos ángulos y el lado entre ellos son respectivamente congruentes con dos ángulos y el lado entre ellos de otro triángulo, entonces los triángulos son congruentes. • Criterio LLA: Si el lado más largo del triangulo, junto con otro lado de éste, y el ángulo superior del lado más largo del triángulo son congruentes con los del otro triangulo, entonces los triángulos son congruentes.
  • 10.
    Postulado LLL • Silos lados de un triángulo son congruentes con los lados de un segundo triángulo, entonces los triángulos son congruentes. A B C D E F ABC  DEF
  • 11.
    Postulado ALA • Sidos ángulos y el lado incluido de un triángulo son congruentes con dos ángulos y el lado incluido de otro triángulo, los triángulos son congruentes. A B C D E ABC  CDE
  • 12.
    Postulado AAL • Sidos ángulos y el lado no incluido de un triángulo son congruentes con dos ángulos y el lado no incluido de otro triángulo, los triángulos son congruentes. A B C D E ABC  EFD F
  • 13.
    Postulado LAL • Sidos lados y el ángulo incluido de un triángulo son congruentes a dos lados y el ángulo incluido de otro triángulo, entonces los dos triángulos son congruentes. A B C D E ABC  DEF F
  • 14.
    • Ejemplos: • 1)En la figura, se tiene un triángulo ABC isósceles ( AC = BC) y se ha dividido su base AB en 4 partes iguales. ¿Cuáles triángulos son congruentes?
  • 15.
    • 2) Dadoel triángulo rectángulo de lados a,b y c, se han construido las figuras que están a sus lados copiándolo varias veces y colocándolo en diferentes posiciones. • Analiza los ángulos que son congruentes en las distintas posiciones. ¿Podrías deducir que el cuadrado que se forma es congruente en ambas figuras?
  • 18.
  • 19.
  • 20.
  • 22.
  • 23.
  • 24.
    GEOMETRIA: El estudiante escapaz de identificar formas y dimensiones geométricas, y utilizar el conocimiento espacial para analizar sus estructuras, características, propiedades y relaciones para entender y descubrir el entorno físico. 7.G.10.1 Define e identifica semejanzas en figuras bidimensionales, incluidas las partes correspondientes, la razón de semejanza y las medidas de las partes correspondientes. Determina la relación proporcional entre las medidas de los lados correspondientes de figuras semejantes.
  • 25.
    25 ¿Cómo son lasfiguras mostradas? Son proporcionales Son semejantes
  • 26.
    Semejanza • Dos figurasque tienen la misma forma, aun con diferentes dimensiones, se llaman semejantes. • Dos figuras son semejantes si sus ángulos correspondientes son iguales y sus lados correspondientes proporcionales. • Los elementos que se corresponden (puntos, segmentos, ángulos …) se llaman homólogos.
  • 27.
    • Dos figurasdel plano son semejantes si los cocientes de de los segmentos determinados por pares cualesquiera de puntos correspondientes son iguales. ML M'L' es la razón de semejanza
  • 28.
    Dos triángulos sonsemejantes si tienen los lados proporcionales y los ángulos iguales. El cociente a b c k a' b' c'    se llama razón de semejanza.
  • 30.
  • 33.
    33 Dado un triángulode lados 4m, 5m y 6m. Multiplica cada uno de los lados por 3. Los lados del triángulo se han triplicado. 4m 5m 6m A B C 18m 15m 12m P Q R
  • 34.
    34 Identificamos algunos elementos: RAZÓN DE SEMEJANZA : 3 LADOS HOMÓLOGOS : AB BC AC PQ QR PR Si la altura relativa al lado AC mide a, podemos afirmar que la altura relativa a su lado homólogo PR mide 3a. Además: Cualquier longitud (lados y líneas notables) en el triángulo ABC se triplica en el triángulo PQR.
  • 35.
     ¿Cuál es elsímbolo que se utiliza para representar la semejanza de dos triángulos?
  • 36.
    Es necesario ubicarsea una distancia tal que mirando con un solo ojo queden alineados el extremo superior del árbol y el de la vara de longitud conocida.
  • 37.
    Distancias o alturasaplicando semejanza • Los dibujos siguientes ilustran diversas maneras, utilizadas habitualmente por las guías y scouts, para estimar alturas y distancias, recurriendo a la semejanza de triángulos. • En este caso, es necesario que la persona pueda observar el extremo superior del árbol reflejado en el espejo.
  • 38.
    38 CASOS DE SEMEJANZADE TRIÁNGULOS
  • 39.
    Criterios de semejanzade triángulos • existen algunos principios que nos permiten determinar si dos triángulos son semejantes sin necesidad de medir y comparar todos sus lados y todos sus ángulos. Estos principios se conocen con el nombre de criterios de semejanza de triángulos
  • 40.
    Existen tres criteriosde semejanza de triángulos 1. AA ( ángulo-ángulo) 2. LLL (lado-lado-lado) 3. LAL (lado-ángulo-lado)
  • 41.
    SEMEJANZA DE TRIÁNGULOS POSTULADOSDE SEMEJANZA Criterio AA de semejanza. Teorema: “ Si dos triángulos tienen sus dos ángulos correspondientes congruentes, entonces el tercero también será congruente y los triángulos son semejantes”. Criterio LAL de semejanza. Teorema: “ Dos triángulos son semejantes si tienen un ángulo congruente comprendido entre lados proporcionales”. Criterio LLL de semejanza. Teorema: "Si los lados correspondientes de dos triángulos son proporcionales, entonces los triángulos son semejantes".
  • 42.
    A´ B´C’ A B C I. Primer criterioAA • Dos triángulos que tienen los dos ángulos congruentes son semejantes entre sí. ´  ´  ´  Es decir: Si   ´ ,   ´ de lo anterior se deduce que   ´ Entonces, D ABC semejante con DA´B´C´
  • 43.
    Ejemplo ¿Son los siguientestriángulos semejantes? 65 25 65 ¡SI! Por que al tener dos de sus ángulos congruentes, cumplen con el criterio AA
  • 44.
    II. Segundo criterioLLL • Dos triángulos que tienen los tres lados proporcionales son semejantes entre sí. A´ B´C’ A B C a a´ El cociente obtenido de comparar los lados homólogos entre sí recibe el nombre de razón de semejanza. Es decir: a a´ = b b´ = c c´ =K b b´ c c´ Entonces, D ABC semejante con DA´B´C´
  • 45.
    Ejemplo Determine si lostriángulos ABC y PQR son semejantes A B C P Q R 1,5 3,5 5 3 7 10 Verifiquemos si las medidas de los lados son proporcionales 1,5 3 = = 3,5 7 5 10 Efectivamente , así es, ya que los productos “cruzados” son iguales 1,5 • 7 = 3 • 3,5 = 10,5 3,5 • 10 = 7 • 5 = 35 Por lo tanto Triángulos ABC y PQR son semejantes por criterio LLL
  • 46.
    III. Tercer criterioLAL • Dos triángulos que tienen dos lados proporcionales y el ángulo comprendido entre ellos es igual, son semejantes entre sí. A´ B´C’ A BC Es decir: a a´ a a´ = c c´ c c´ y  = ´  ´ Entonces D ABC semejante a D A´B´C´
  • 47.
    Ejemplo ¿Son los triángulosABC y DEF semejantes? A B C 4 3 D E F 9 12 Veamos si dos de sus lados son proporcionales 3 9 = 4 12 Efectivamente así es, ya que los productos “cruzados” son iguales 3 • 12 = 4 • 9 ¿Los ángulos formados por estos dos lados son congruentes? Por criterio LAL Triángulos ABC y DEF son SEMEJANTES Efectivamente, porque, tal como se señala en el dibujo, ambos son rectos
  • 48.
    Algunas aplicaciones deestos conceptos
  • 49.
    Ejercicio • Conocemos lasdimensiones de los lados de dos triángulos. Comprueba que son semejantes y halla la razón de semejanza. • a) 8 cm, 10 cm, 12 cm b) 52 cm, 65 cm, 78 cm Comprobemos que las medidas de los lados homólogos son proporcionales Entonces los triángulos son semejantes por criterio LLL 8 10 12 78 65 52 Representemos el ejercicio Para calcular la razón de semejanza se calcula una de las razones 65 : 10 = 6,5 52 8 = 65 10 = 78 12 = 6,5 Efectivamente, al calcular los productos “cruzados”, podemos ver la proporcionalidad entre las medidas de los lados respectivos 52 •10 = 8 • 65 = 520 65 • 12 = 10 •78 = 780
  • 50.
    Ejercicio • Tenemos untriángulo cuyos lados miden 3 cm, 4 cm y 5 cm respectivamente y deseamos hacer una ampliación a escala 3:1. ¿Cuánto medirá cada lado?.¿Cuál es la razón de semejanza?. Luego, debe ocurrir: 3 4 5 x y z Entonces: X= 3· 3 = 9 = 9 Y = 4 · 3 =12 12 = Z = 5 · 3 = 15 =15 La razón de semejanza es 3 Representamos la situación = X 3 = Y 4 Z 5 = 3 1 =3 Escala de ampliación X 3 = 3 Y 4 =3 Z 5 =3
  • 51.
    Los lados deun triángulo miden 30, 40 y 50 centímetros respectivamente. Los lados de un segundo triángulo miden 12, 16 y 20 centímetros. ¿Son semejantes?. En caso afirmativo, ¿cual es la razón de semejanza?. 50 30 40 12 16 20 30 12 = 40 16 50 20 = Para calcular la razón de semejanza se calcula una de las razones 50 : 20 = 2,5 Para comprobar la proporcionalidad podemos efectuar los productos “cruzados” 30x16=480 y 40x12=480 además 40x20=800 y 16x50=800 Comprobemos que las medidas de los lados homólogos son proporcionales
  • 52.
    Un poste verticalde 3 metros proyecta una sombra de 2 metros; ¿qué altura tiene un árbol que a la misma hora proyecta una sombra de 4,5 metros?(Haz un dibujo del problema). 4,5m x 3m 2m sombra p o s t e Los triángulos definidos por el poste y su sombra y el árbol y su sombra son semejantes, por lo tanto De donde = 6,75m Son semejantes por que cumplen el criterio AA, tienen iguales el ángulo recto y el ángulo de elevación que forman los rayos solares con el suelo = 3 x 2 4,5 X = 3 • 4,5 2Formamos la proporción
  • 53.
    Actividades de semejanzay congruencia 1.Construcción de la bisectriz de un segmento INSTRUCCIONES • Dibuja un segmento sobre un pedazo de papel encerado. Dobla el papel hasta unir los dos extremos del segmento. OBSERVACIÓN • La línea de doblaje divide al segmento en dos segmentos con la misma medida, o sea, dos segmentos congruentes.
  • 54.
    Actividades de semejanzay congruencia COMENTARIO • El punto de intersección entre el segmento y la línea del doblaje se conoce con el nombre de punto medio del segmento. El estudiante construye la definición de punto medio de un segmento. Cualquier recta que pase por ese punto medio (se dibujan algunas rectas pasando por el punto medio) se conoce con el nombre de bisectriz del segmento. El estudiante construye la definición de bisectriz de un segmento. Ahora, marca bien la línea de doblaje y mide los ángulos formados. Observa que la medida de los ángulos es de 90°. Aquí se lleva al estudiante a descubrir la relación entre el segmento y la línea de doblaje. OBSERVACIÓN • La línea de doblaje biseca al segmento y a la misma vez es perpendicular con éste. “Cuando una línea recta biseca un segmento y a la vez es perpendicular con éste se dice que la recta es mediatriz del segmento.” El estudiante construye la definición de mediatriz.
  • 55.
    Actividades de semejanzay congruencia 2. Las bisectrices de los ángulos de un triángulo Dibuje un triángulo en un pedazo de papel encerado. Marque las bisectrices de cada ángulo doblando el papel por cada vértice (aplicación de la construcción 3). OBSERVACIÓN Las bisectrices concurren o se encuentran en un punto. COMENTARIO El punto donde concurren las bisectrices de los ángulos internos de un triángulo se conoce como el incentro del triángulo.
  • 56.
    Actividades de semejanzay congruencia Solicite que mediante un doblaje marquen un segmento perpendicular desde el incentro hasta uno de los lados del triángulo. Ahora, con un compás, haciendo centro en el incentro del triángulo, abra el mismo hasta el extremo del segmento perpendicular y trace un círculo. El estudiante debe observar que cada lado del triángulo tiene un punto en común con la circunferencia (punto de tangencia). COMENTARIO • El círculo trazado está inscrito en el triángulo. El estudiante construye la definición de círculo inscrito en un triángulo. RECOMENDACIÓN • Llevar al estudiante a determinar que el radio del círculo es perpendicular a la tangente, al mismo, en su punto de tangencia.
  • 57.
    Para terminar unapequeña demostración
  • 58.
    Demuestre: Si L1//L2 , , entonces ΔABC ~ΔDEC CA B D E Afirmaciones Razones Demostración Por ser ángulos alternos internos entre //CDEABC  CDEBAC  Por ser Ángulos alternos internos entre // Por lo tanto al tener dos ángulos congruentes, se cumple al criterio AA, luego, los triángulos ABC y DEC son semejantes Dadas las rectas AB y DE, son paralelas. Demuestra que el triangulo ABC y el triangulo DEC son semejantes.

Notas del editor