SEMEJANZA
Descripción: Dos figuras son semejantes
cuando tienen la misma “forma”, pero no
necesariamente el mismo tamaño
La idea de la “misma forma” aparece
en las ampliaciones o reducciones.
¿ Qué observas ?
10 cm
5 cm
4 cm
8 cm
¿Cómo expresamos matemáticamente esta
idea de la “ misma forma”?
 La respuesta es comparando el largo y el
ancho de ambas fotografías :
Las razones entre el ancho y el largo de
cada foto son iguales; es decir:
las dos fotografías son:
¿IDÉNTICAS O SEMEJANTES ?
cm
cm
cm
cm
10
5
8
4
=
Así es, ya que los
productos “cruzados”
son iguales
10 x 4 = 8 x 5
Dos figuras son semejantes
porque:
1º Tienen la misma forma, por
ampliación o por reducción.
2° Tienen diferente tamaño, porque los
lados de la figura mayor son una
ampliación en forma proporcional
de los lados de la figura menor,
manteniéndose constante los
ángulos.
No son figuras semejantes
¿Qué elementos determinan la semejanza de las
figuras?
 Dos figuras son semejantes si sus
ángulos correspondientes son iguales
y sus lados correspondientes
proporcionales.
 Los elementos que se corresponden
(puntos, segmentos, ángulos …) se
llaman “homólogos”.
¿Qué elementos determinan la
semejanza de las figuras?
Triángulos semejantes
 Dos triángulos son semejantes si sus
ángulos son, respectivamente, iguales y
sus lados homólogos son proporcionales.
Dado un triángulo de lados 4m, 5m y 6m.
Multiplica cada uno de los lados por 3.
x 3
Los lados del triángulo se han triplicado.
4m
5m
6m
A
B
C
18m
15m
12m
P
Q
R
11
Identificamos algunos elementos :
RAZÓN DE SEMEJANZA : 3
LADOS HOMÓLOGOS
AB
BC
AC
PQ
QR
PR
Criterios de semejanza de triángulos
 Existen algunos principios que nos
permiten determinar si dos triángulos son
semejantes sin necesidad de medir y
comparar todos sus lados y todos sus
ángulos.
 Estos principios se conocen con el nombre
de criterios de semejanza de triángulos
Existen tres criterios de
semejanza de triángulos
1. AA ( ángulo-ángulo)
2. LLL (lado-lado-lado)
3. LAL (lado-ángulo-lado)
Primer criterio : AA
 Dos triángulos que tienen los dos
ángulos congruentes son semejantes
entre sí.
A´
B´C’
A
B
C
α´
α
β
´
β
γ´
γ
Es decir: Si α = α´ , β = β´ de lo anterior se deduce que γ = γ
´
Entonces, ∆ ABC semejante con ∆ A´B´C´
Ejemplo
¿Son los siguientes triángulos semejantes?
¡SI!
Por que al tener dos de
sus ángulos congruentes,
cumplen con el criterio AA
65° 25°
A
BC
Q
25°
65°
PR
Segundo criterio: LLL
 Dos triángulos que tienen los tres lados
proporcionales son semejantes entre sí.
A´
B´C’
A
BC
a
a´
El cociente obtenido de
comparar los lados
homólogos entre sí
recibe el nombre de
razón de semejanza.
Es decir:
a
a´ =
b
b´ =
c
c´ =K
b b´
c
c´
Ejemplo :
Determine si los triángulos ABC y PQR son semejantes
Verifiquemos si las medidas de los
lados son proporcionales
1,5
3 = =
3,5
7
5
10
A
B
C
1,5
3,5
5
P
Q
R
3
7
10
Efectivamente , así es, ya que
los productos la razón entre
los lados correspondientes es
constante
Por lo tanto Triángulos ABC y PQR son
semejantes por criterio LLL
= 0,5
Tercer criterio:LAL
 Dos triángulos que tienen dos lados
proporcionales y el ángulo comprendido entre
ellos es igual, son semejantes entre sí.
A’
B’C’
A
BC
Es decir:
a
a’
a
a’ =
c
c’
c
c’
y α = α’
α
α´
Entonces ∆ ABC semejante a ∆ A’B’C’
Ejemplo :
¿Son los triángulos ABC y DEF semejantes?
Veamos si dos de sus lados
son proporcionales
3
9
= 4
12
Efectivamente así es,
ya que los productos
“cruzados” son
iguales
3 • 12 = 4 • 9
¿Los ángulos formados por
estos dos lados son
congruentes?
Por criterio LAL Triángulos ABC y DEF son SEMEJANTES
Efectivamente, porque,
tal como se señala en el
dibujo, ambos son rectos
A
B
C
4
3
D
E
F
9
12

Semejanza detriangulos

  • 1.
  • 2.
    Descripción: Dos figurasson semejantes cuando tienen la misma “forma”, pero no necesariamente el mismo tamaño La idea de la “misma forma” aparece en las ampliaciones o reducciones.
  • 3.
    ¿ Qué observas? 10 cm 5 cm 4 cm 8 cm
  • 4.
    ¿Cómo expresamos matemáticamenteesta idea de la “ misma forma”?  La respuesta es comparando el largo y el ancho de ambas fotografías : Las razones entre el ancho y el largo de cada foto son iguales; es decir: las dos fotografías son: ¿IDÉNTICAS O SEMEJANTES ? cm cm cm cm 10 5 8 4 = Así es, ya que los productos “cruzados” son iguales 10 x 4 = 8 x 5
  • 5.
    Dos figuras sonsemejantes porque: 1º Tienen la misma forma, por ampliación o por reducción. 2° Tienen diferente tamaño, porque los lados de la figura mayor son una ampliación en forma proporcional de los lados de la figura menor, manteniéndose constante los ángulos.
  • 6.
    No son figurassemejantes
  • 7.
    ¿Qué elementos determinanla semejanza de las figuras?
  • 8.
     Dos figurasson semejantes si sus ángulos correspondientes son iguales y sus lados correspondientes proporcionales.  Los elementos que se corresponden (puntos, segmentos, ángulos …) se llaman “homólogos”. ¿Qué elementos determinan la semejanza de las figuras?
  • 9.
    Triángulos semejantes  Dostriángulos son semejantes si sus ángulos son, respectivamente, iguales y sus lados homólogos son proporcionales.
  • 10.
    Dado un triángulode lados 4m, 5m y 6m. Multiplica cada uno de los lados por 3. x 3 Los lados del triángulo se han triplicado. 4m 5m 6m A B C 18m 15m 12m P Q R
  • 11.
    11 Identificamos algunos elementos: RAZÓN DE SEMEJANZA : 3 LADOS HOMÓLOGOS AB BC AC PQ QR PR
  • 12.
    Criterios de semejanzade triángulos  Existen algunos principios que nos permiten determinar si dos triángulos son semejantes sin necesidad de medir y comparar todos sus lados y todos sus ángulos.  Estos principios se conocen con el nombre de criterios de semejanza de triángulos
  • 13.
    Existen tres criteriosde semejanza de triángulos 1. AA ( ángulo-ángulo) 2. LLL (lado-lado-lado) 3. LAL (lado-ángulo-lado)
  • 14.
    Primer criterio :AA  Dos triángulos que tienen los dos ángulos congruentes son semejantes entre sí. A´ B´C’ A B C α´ α β ´ β γ´ γ Es decir: Si α = α´ , β = β´ de lo anterior se deduce que γ = γ ´ Entonces, ∆ ABC semejante con ∆ A´B´C´
  • 15.
    Ejemplo ¿Son los siguientestriángulos semejantes? ¡SI! Por que al tener dos de sus ángulos congruentes, cumplen con el criterio AA 65° 25° A BC Q 25° 65° PR
  • 16.
    Segundo criterio: LLL Dos triángulos que tienen los tres lados proporcionales son semejantes entre sí. A´ B´C’ A BC a a´ El cociente obtenido de comparar los lados homólogos entre sí recibe el nombre de razón de semejanza. Es decir: a a´ = b b´ = c c´ =K b b´ c c´
  • 17.
    Ejemplo : Determine silos triángulos ABC y PQR son semejantes Verifiquemos si las medidas de los lados son proporcionales 1,5 3 = = 3,5 7 5 10 A B C 1,5 3,5 5 P Q R 3 7 10 Efectivamente , así es, ya que los productos la razón entre los lados correspondientes es constante Por lo tanto Triángulos ABC y PQR son semejantes por criterio LLL = 0,5
  • 18.
    Tercer criterio:LAL  Dostriángulos que tienen dos lados proporcionales y el ángulo comprendido entre ellos es igual, son semejantes entre sí. A’ B’C’ A BC Es decir: a a’ a a’ = c c’ c c’ y α = α’ α α´ Entonces ∆ ABC semejante a ∆ A’B’C’
  • 19.
    Ejemplo : ¿Son lostriángulos ABC y DEF semejantes? Veamos si dos de sus lados son proporcionales 3 9 = 4 12 Efectivamente así es, ya que los productos “cruzados” son iguales 3 • 12 = 4 • 9 ¿Los ángulos formados por estos dos lados son congruentes? Por criterio LAL Triángulos ABC y DEF son SEMEJANTES Efectivamente, porque, tal como se señala en el dibujo, ambos son rectos A B C 4 3 D E F 9 12