SlideShare una empresa de Scribd logo
TALLERES UNIDAD 5 ESTADISTICA
DOLLY PATRICIA USUGA MANCO ID 000722928
EDITH YESENIA LONDOÑO GARCÍA ID 000722588
CLAUDIA ELENA LOAIZA RESTREPO ID 000722257
OLGA LUCIA ARISTIZABAL VALLEJO ID 000720622
ESTADÍSTICA DESCRIPTIVA
NRC: 6108
DOCENTE
LILIANA MARIA LOPEZ
PROGRAMA CONTADURÍA PÚBLICA
FACULTAD DE EDUCACIÓN VIRTUAL Y A DISTANCIA
FEBRERO 22 2020
CORPORACIÓN UNIVERSITARIA MINUTO DE DIOS
BELLO
I. ¿Qué es una medida de tendencia no central?
Las medidas de posición no central, permiten conocer otros puntos de la medición que son
valores no centrales, permiten ubicar la posición de un valor dentro de un conjunto de
datos, sirve para variables de tipo cualitativo ordinal, discreta Continua, los resultados se
expresan en las mismas unidades de los datos en estudio.
1. Percentiles : se suele usar una serie de 3 valores que divide la muestra en tramos
iguales, se ordena de forma creciente o decreciente , en cuatro tramos iguales , cada
uno concentra el 25 % de los resultados.
2. Deciles : Son 9 valores que distribuye la serie en datos, ordenada en forma
creciente o decreciente, en diez tramos iguales, cada uno concentra el 10 % de los
resultados.
3. Percentiles : Son 99 datos que distribuyen los datos de forma creciente o
decreciente, en 100 tramos iguales donde cada uno concentra el 1% de los
resultados.
4. Cuartiles : Dividen los valores en 4 partes iguales. El 1ero deja un cuarto de los
valores por debajo del 2do cuartil, que es la Mediana, el 3er cuartil deja un cuarto
de los valores por arriba.
II. ¿Cómo se hallan los cuartiles de un conjunto de datos
Medida de Posición que divide en 4 partes porcentuales iguales, a una distribución
ordenada de Datos, cada parte tiene la misma cantidad de datos y cada parte representa el
25% de la totalidad de los datos.
Cuartil 1 Cuartil 2 Cuartil 3 Cuartil 4
25% 25% 25% 25
FORMULA PARA CALCULAR LOS 4 PERCENTILES
Qk = k (N/4)
Qk = Cuartil número 1, 2, 3 y 4
N = total de datos de la distribución.
La fórmula para cada cuartil es:
1. Q1 = 1 (N / 4) 2. Q2 = 2 (N / 4) 3. Q3 = 3 (N / 4) 4. Q4 = 4 (N / 4)
1. Q1 = 1 (N / 4) representa el primer 25% los datos están bajo el y encima se
encuentra el 75%
2. Q2 = 2 (N / 4 segundo cuartil representa la mitad de los datos por lo tanto la
mediana, el 50% de los datos están por debajo de él y los otros 50% de los datos por
encima.
3. Q3 = 3 (N / 4) tercer percentil, representa el 75% de los datos y por encima de él,
está el restante 25% de los datos.
4. Q4 = 4 (N / 4) representa los últimos 25%, bajo él está el 100%
CUARTILES REPRESENTACION GRAFICA
p
25 50 75 100
Q1 Q2 Q3 Q4
25% =Q1
50% = Q2
75% = Q3
100% = Q4
III. ¿Cómo determinar los percentiles de un conjunto de datos?
El percentil o centil es una de las medidas de posición de datos, en la cual se divide todo
lo que se está midiendo en 99 partes para obtener un total de 100 partes iguales..
En otras palabras, los percentiles son cada una de las posiciones que ocupan unos datos
cuando se divide la totalidad de los datos existentes en cien partes, marcando la posición
que deja por debajo de sí a un tanto por ciento determinado de la población correspondiente
con el valor del percentil per se (es decir por ejemplo el percentil 1 es el que deja por
debajo al 1%). Asimismo deja por encima de sí otro tanto por ciento relevante.
Aunque el concepto de percentil se encuentra relacionado con el de porcentaje no se trata
de lo mismo pues mientras porcentaje permite ver una cantidad como fracción entre cien
partes iguales, el percentil indica el lugar que tiene que ocupar un dato para dejar por
debajo al tanto por ciento correspondiente.
¿Cómo hallar los percentiles?
Para calcular un percentil es necesario tener en cuenta en primer lugar si se trabaja con
datos ordenados o no ordenados. Cuando los datos no están agrupados u ordenados, la
posición en la que se halla el percentil podrá calcularse dividiendo el producto del percentil
por el número de elementos de la muestra de la que partimos entre cien.
La fórmula es: P=(k*n)/100.
Cuando el conjunto de datos es ordenado, la fórmula es:
Px=Lri+((kn/100 - Fa)/f)(Ac).
Así, bastará con sumar el límite inferior de la clase donde está el percentil a producto entre
la amplitud de la clase y el cociente entre la resta de la posición menos la frecuencia
acumulada anterior y la frecuencia total.
También para encontrar un percentil determinado de un conjunto de datos (por ejemplo
buscar el percentil 25 de un conjunto o base de datos) sólo se tiene que dividir el número de
valores menores que el que tenemos por en número total de valores y multiplicar este
resultado por cien.
EJEMPLOS PARA HALLAR PERCENTILES
Ejempol 1
1.Se debe tener en cuenta que cada percentil representa una unidad de 1% del total de
100.
Es decir supongamos que tienes 60 gallinas , aunque sean 60, como 60 es el total de
las gallinas, 60 es el 100%. El 100% es el número total de datos que tenemos.
2.Se divide en 100 partes iguales y gracias a esto se puede calcular el percentil
buscado.
3.La fórmula básica para calcular percentiles es la siguiente: L /N :100 = P.
Donde la L representa los números menores al total de datos que tenemos, la N es el
total de datos que tenemos y 100 es el número en que debemos dividirlo para hallar
el percentil
4. Ejemplo primero para calcular percentiles:
vamos a calcular un percentil, en este caso será el 50, que representa el 50% de los
datos o partes iguales del 100% de las galletas que tenemos.
5.Para encontrar el percentil 50 entenderemos lo siguiente; como 60 es el 100% de
nuestros datos y queremos encontrar el percentil 50, es decir el 50% de nuestros
datos, entonces se hace la siguiente ecuación: 60 x 50 :100, es decir 60 por 50 entre
100.
6.Se eliminan dos ceros y nos quedaremos con una cuenta así: 60 x 5 :10. El resultado
será 30. Por lo cual 30 gallinas de 60 es el 50% de nuestros datos. El percentil 50 es
el dato 30.
Ejemplo 2:
1. Se tienen 70 personas de las cuales el 30% tiene sida. 70 es el 100 de
nuestros datos y deseamos conseguir el percentil 30. Para calcular cuántas
personas tienen sida haremos la siguiente ecuación: 70 x 30 :100.
2. El resultado obtenido es el número 21,de las 70 personas 70 padecen sida
entonces el percentil 30 es el dato 21.
Ejemplo 3:
Una joven tiene 18 años, y ha practicado fútbol el 14% de su vida. Se
necesita encontrar el percentil 14. Como el 18 es el 100% de su edad actual
entonces se aplica la siguiente fórmula: 18 x 14 :100 = 2.52. Por lo cual el
jóven ha practicado fútbol por un poco más de dos años y medio de su vida.
No obstante, cuando cuando se habla dinero o únicamente a números, es
recomendable redondear el resultado.
Bibliografia
https://bioestadisticaula.blogspot.com/2012/08/medidas-de-tendencia-
no-central.html
joan Fernando chipia lobo, 21 agosto 2012, Bioestadistica
https://es.slideshare.net/profeluz4/clase-4-medidas-de-tendencia-no-
central
MEDIDAS DE POSICION NO CENTRAL, LUZ ELENA GARCIA, 25 marzo
2011
https://estadisticapasoapaso.blogspot.com/2011/09/los-cuartiles.html
MEDIDAS DE POSICION, 24 septiembre 2011
Triola, M.F. (2006). Estadística. Novena Edición. Pearson Educación.
Psicología y mente. (2020). Obtenido de
https://psicologiaymente.com/miscelanea/como-calcular-
percentiles
Educar don Comos. (s.f.). Educar don Comos. Obtenido de 2020:
https://educar.doncomos.com/como-calcular-percentiles

Más contenido relacionado

La actualidad más candente

Cuartiles, deciles y percentiles
Cuartiles, deciles y percentilesCuartiles, deciles y percentiles
Cuartiles, deciles y percentiles
Sandra Pachon
 
Medidas de posicion
Medidas de posicionMedidas de posicion
Medidas de posicion
Claudio Aniñir Huenulaf
 
Matematica
MatematicaMatematica
Matematica
jaquelinerazo
 
percentiles y deciles Matematicas
percentiles y deciles Matematicaspercentiles y deciles Matematicas
percentiles y deciles MatematicasStefanitaz15
 
Medidas de posición
Medidas de posiciónMedidas de posición
Medidas de posicióncathymiranda
 
Cuantilas, medidas de posicion y simetria
Cuantilas, medidas de posicion y simetriaCuantilas, medidas de posicion y simetria
Cuantilas, medidas de posicion y simetria
Univ Peruana Los Andes
 
Medidas de posición, cuartiles, deciles y percentiles, clase mate, 1º, 3er.pe...
Medidas de posición, cuartiles, deciles y percentiles, clase mate, 1º, 3er.pe...Medidas de posición, cuartiles, deciles y percentiles, clase mate, 1º, 3er.pe...
Medidas de posición, cuartiles, deciles y percentiles, clase mate, 1º, 3er.pe...MarcosAntinioMuardadoMartines
 
Cuartiles_deciles_y_percentiles.Ppalpdf.pdf
Cuartiles_deciles_y_percentiles.Ppalpdf.pdfCuartiles_deciles_y_percentiles.Ppalpdf.pdf
Cuartiles_deciles_y_percentiles.Ppalpdf.pdf
Carlos Franco
 
Estadística
EstadísticaEstadística
Estadística
Olimpia Fernández
 
MEDIDAS DE POSICIÓN, CUARTILES, DECILES Y PERCENTILES.
MEDIDAS DE POSICIÓN, CUARTILES, DECILES Y PERCENTILES.MEDIDAS DE POSICIÓN, CUARTILES, DECILES Y PERCENTILES.
MEDIDAS DE POSICIÓN, CUARTILES, DECILES Y PERCENTILES.
Nery_15
 
Estadistica 2º eso
Estadistica 2º esoEstadistica 2º eso
Estadistica 2º esolarubia1
 
Expo cap 4 medidas posición percentiles y disperción
Expo cap 4 medidas posición percentiles y disperciónExpo cap 4 medidas posición percentiles y disperción
Expo cap 4 medidas posición percentiles y disperciónEdgar López
 
MEDIDAS DE TENDENCIA CENTRAL PARA DATOS AGRUPADOS
MEDIDAS DE TENDENCIA CENTRAL PARA DATOS AGRUPADOSMEDIDAS DE TENDENCIA CENTRAL PARA DATOS AGRUPADOS
MEDIDAS DE TENDENCIA CENTRAL PARA DATOS AGRUPADOS
WiliDj Ascanta
 
Medidas d..[1]
Medidas d..[1]Medidas d..[1]
Medidas d..[1]
meme694
 
Porcentajes
PorcentajesPorcentajes
Porcentajes
mariaeugenia12
 
Mapa conceptual de las medidas de tendencia central
Mapa conceptual de las medidas de tendencia centralMapa conceptual de las medidas de tendencia central
Mapa conceptual de las medidas de tendencia centralCarmen Cedeno
 
Mapa conceptual de las medidas de tendencia central
Mapa conceptual de las medidas de tendencia centralMapa conceptual de las medidas de tendencia central
Mapa conceptual de las medidas de tendencia centralCarmen Cedeno
 
Conceptos de estadística. Colegio La Salle Envigado
Conceptos de estadística. Colegio La Salle EnvigadoConceptos de estadística. Colegio La Salle Envigado
Conceptos de estadística. Colegio La Salle Envigado
Cristian Fernando Guerrero Montoya
 
Medidas de tendencia central con excel
Medidas de tendencia central con excelMedidas de tendencia central con excel
Medidas de tendencia central con excelEsmeralditha Casco
 

La actualidad más candente (20)

Cuartiles, deciles y percentiles
Cuartiles, deciles y percentilesCuartiles, deciles y percentiles
Cuartiles, deciles y percentiles
 
Medidas de posicion
Medidas de posicionMedidas de posicion
Medidas de posicion
 
Matematica
MatematicaMatematica
Matematica
 
percentiles y deciles Matematicas
percentiles y deciles Matematicaspercentiles y deciles Matematicas
percentiles y deciles Matematicas
 
Medidas de posición
Medidas de posiciónMedidas de posición
Medidas de posición
 
Cuantilas, medidas de posicion y simetria
Cuantilas, medidas de posicion y simetriaCuantilas, medidas de posicion y simetria
Cuantilas, medidas de posicion y simetria
 
Medidas de posición, cuartiles, deciles y percentiles, clase mate, 1º, 3er.pe...
Medidas de posición, cuartiles, deciles y percentiles, clase mate, 1º, 3er.pe...Medidas de posición, cuartiles, deciles y percentiles, clase mate, 1º, 3er.pe...
Medidas de posición, cuartiles, deciles y percentiles, clase mate, 1º, 3er.pe...
 
Cuartiles_deciles_y_percentiles.Ppalpdf.pdf
Cuartiles_deciles_y_percentiles.Ppalpdf.pdfCuartiles_deciles_y_percentiles.Ppalpdf.pdf
Cuartiles_deciles_y_percentiles.Ppalpdf.pdf
 
Estadística
EstadísticaEstadística
Estadística
 
MEDIDAS DE POSICIÓN, CUARTILES, DECILES Y PERCENTILES.
MEDIDAS DE POSICIÓN, CUARTILES, DECILES Y PERCENTILES.MEDIDAS DE POSICIÓN, CUARTILES, DECILES Y PERCENTILES.
MEDIDAS DE POSICIÓN, CUARTILES, DECILES Y PERCENTILES.
 
Estadistica 2º eso
Estadistica 2º esoEstadistica 2º eso
Estadistica 2º eso
 
Expo cap 4 medidas posición percentiles y disperción
Expo cap 4 medidas posición percentiles y disperciónExpo cap 4 medidas posición percentiles y disperción
Expo cap 4 medidas posición percentiles y disperción
 
MEDIDAS DE TENDENCIA CENTRAL PARA DATOS AGRUPADOS
MEDIDAS DE TENDENCIA CENTRAL PARA DATOS AGRUPADOSMEDIDAS DE TENDENCIA CENTRAL PARA DATOS AGRUPADOS
MEDIDAS DE TENDENCIA CENTRAL PARA DATOS AGRUPADOS
 
Medidas d..[1]
Medidas d..[1]Medidas d..[1]
Medidas d..[1]
 
Porcentajes
PorcentajesPorcentajes
Porcentajes
 
Mapa conceptual de las medidas de tendencia central
Mapa conceptual de las medidas de tendencia centralMapa conceptual de las medidas de tendencia central
Mapa conceptual de las medidas de tendencia central
 
Mapa conceptual de las medidas de tendencia central
Mapa conceptual de las medidas de tendencia centralMapa conceptual de las medidas de tendencia central
Mapa conceptual de las medidas de tendencia central
 
Conceptos de estadística
Conceptos de estadísticaConceptos de estadística
Conceptos de estadística
 
Conceptos de estadística. Colegio La Salle Envigado
Conceptos de estadística. Colegio La Salle EnvigadoConceptos de estadística. Colegio La Salle Envigado
Conceptos de estadística. Colegio La Salle Envigado
 
Medidas de tendencia central con excel
Medidas de tendencia central con excelMedidas de tendencia central con excel
Medidas de tendencia central con excel
 

Similar a Talleres unidad 5 estadistica

Presentacion diapositivas estadisticas
Presentacion diapositivas estadisticasPresentacion diapositivas estadisticas
Presentacion diapositivas estadisticas
yorge1996
 
Presentacion diapositivas estadisticas
Presentacion diapositivas estadisticasPresentacion diapositivas estadisticas
Presentacion diapositivas estadisticas
yorge1996
 
tema medidad de posicion cuartiles, deciles, persentiles
tema medidad de posicion cuartiles, deciles, persentilestema medidad de posicion cuartiles, deciles, persentiles
tema medidad de posicion cuartiles, deciles, persentiles
guadalupeerazo
 
matematica
matematicamatematica
matematica
jeovanireina
 
BioestadíStica Y EpidemiologíA
BioestadíStica Y EpidemiologíABioestadíStica Y EpidemiologíA
BioestadíStica Y EpidemiologíA
Ricardo Andrade Albarracin
 
Esta Di Stica Descriptiva
Esta Di Stica DescriptivaEsta Di Stica Descriptiva
Esta Di Stica DescriptivaDanielDierN
 
Cuartiles y percentiles
Cuartiles y percentilesCuartiles y percentiles
Cuartiles y percentiles
nchacinp
 
Temas 4 y 5 estadística I al 24 10-2020
Temas 4 y 5 estadística I al 24 10-2020Temas 4 y 5 estadística I al 24 10-2020
Temas 4 y 5 estadística I al 24 10-2020
jose torrealba
 
Estadistica I 04
Estadistica  I 04Estadistica  I 04
Estadistica I 04
Leonardo Simmons
 
Estadística descriptiva 2 clase 2do parcial
Estadística descriptiva 2 clase 2do parcialEstadística descriptiva 2 clase 2do parcial
Estadística descriptiva 2 clase 2do parcialjoseramon4225
 
Esta Di Stica Descriptiva
Esta Di Stica DescriptivaEsta Di Stica Descriptiva
Esta Di Stica Descriptivalissa
 
Sesión 3 012017
Sesión 3 012017Sesión 3 012017
Sesión 3 012017
Hinmer Garcia
 
EpidemiologíA Descriptiva Sin Fondo
EpidemiologíA Descriptiva Sin FondoEpidemiologíA Descriptiva Sin Fondo
EpidemiologíA Descriptiva Sin FondoPaola Torres
 
Presentacion de medidas de posicion .pdf
Presentacion de medidas de posicion .pdfPresentacion de medidas de posicion .pdf
Presentacion de medidas de posicion .pdf
MaricieloImanCarranz1
 
Medidas de posicion
Medidas de posicionMedidas de posicion
Medidas de posicion
luistorrealbaguillen
 
presentacion
presentacionpresentacion
presentacion
Miller Garcia
 
Presentación de matematica
Presentación de matematicaPresentación de matematica
Presentación de matematica
maria2312alberto
 
SEMANA 6 ESTADÍSTICA.pptx
SEMANA 6 ESTADÍSTICA.pptxSEMANA 6 ESTADÍSTICA.pptx
SEMANA 6 ESTADÍSTICA.pptx
MICHAELBRANDONIVELAG
 
Diapositivas Estadistica
Diapositivas EstadisticaDiapositivas Estadistica
Diapositivas Estadistica
ESTARLIN RIVERO
 

Similar a Talleres unidad 5 estadistica (20)

Presentacion diapositivas estadisticas
Presentacion diapositivas estadisticasPresentacion diapositivas estadisticas
Presentacion diapositivas estadisticas
 
Presentacion diapositivas estadisticas
Presentacion diapositivas estadisticasPresentacion diapositivas estadisticas
Presentacion diapositivas estadisticas
 
tema medidad de posicion cuartiles, deciles, persentiles
tema medidad de posicion cuartiles, deciles, persentilestema medidad de posicion cuartiles, deciles, persentiles
tema medidad de posicion cuartiles, deciles, persentiles
 
matematica
matematicamatematica
matematica
 
BioestadíStica Y EpidemiologíA
BioestadíStica Y EpidemiologíABioestadíStica Y EpidemiologíA
BioestadíStica Y EpidemiologíA
 
Esta Di Stica Descriptiva
Esta Di Stica DescriptivaEsta Di Stica Descriptiva
Esta Di Stica Descriptiva
 
Cuartiles y percentiles
Cuartiles y percentilesCuartiles y percentiles
Cuartiles y percentiles
 
Temas 4 y 5 estadística I al 24 10-2020
Temas 4 y 5 estadística I al 24 10-2020Temas 4 y 5 estadística I al 24 10-2020
Temas 4 y 5 estadística I al 24 10-2020
 
Estadistica I 04
Estadistica  I 04Estadistica  I 04
Estadistica I 04
 
Estadística descriptiva 2 clase 2do parcial
Estadística descriptiva 2 clase 2do parcialEstadística descriptiva 2 clase 2do parcial
Estadística descriptiva 2 clase 2do parcial
 
Esta Di Stica Descriptiva
Esta Di Stica DescriptivaEsta Di Stica Descriptiva
Esta Di Stica Descriptiva
 
Mapa conceptual
Mapa conceptual Mapa conceptual
Mapa conceptual
 
Sesión 3 012017
Sesión 3 012017Sesión 3 012017
Sesión 3 012017
 
EpidemiologíA Descriptiva Sin Fondo
EpidemiologíA Descriptiva Sin FondoEpidemiologíA Descriptiva Sin Fondo
EpidemiologíA Descriptiva Sin Fondo
 
Presentacion de medidas de posicion .pdf
Presentacion de medidas de posicion .pdfPresentacion de medidas de posicion .pdf
Presentacion de medidas de posicion .pdf
 
Medidas de posicion
Medidas de posicionMedidas de posicion
Medidas de posicion
 
presentacion
presentacionpresentacion
presentacion
 
Presentación de matematica
Presentación de matematicaPresentación de matematica
Presentación de matematica
 
SEMANA 6 ESTADÍSTICA.pptx
SEMANA 6 ESTADÍSTICA.pptxSEMANA 6 ESTADÍSTICA.pptx
SEMANA 6 ESTADÍSTICA.pptx
 
Diapositivas Estadistica
Diapositivas EstadisticaDiapositivas Estadistica
Diapositivas Estadistica
 

Último

Elaboración, implementación y evaluación del PCI para la gestión pedagógica d...
Elaboración, implementación y evaluación del PCI para la gestión pedagógica d...Elaboración, implementación y evaluación del PCI para la gestión pedagógica d...
Elaboración, implementación y evaluación del PCI para la gestión pedagógica d...
moshe jonathan
 
Régimen de licencias docente Santa Cruz.pdf
Régimen de licencias docente Santa Cruz.pdfRégimen de licencias docente Santa Cruz.pdf
Régimen de licencias docente Santa Cruz.pdf
colegio271
 
Explora el boletín del 27 de mayo de 2024
Explora el boletín del 27 de mayo de 2024Explora el boletín del 27 de mayo de 2024
Explora el boletín del 27 de mayo de 2024
Yes Europa
 
Pobreza en el Perú en 2023 - Industrias Alimentarias
Pobreza en el Perú en 2023 - Industrias Alimentarias Pobreza en el Perú en 2023 - Industrias Alimentarias
Pobreza en el Perú en 2023 - Industrias Alimentarias
melanychacnama
 
CONSOLIDADO DE CLASES DE DERECHOS REALES.pptx
CONSOLIDADO DE CLASES DE DERECHOS REALES.pptxCONSOLIDADO DE CLASES DE DERECHOS REALES.pptx
CONSOLIDADO DE CLASES DE DERECHOS REALES.pptx
ChristianMejiaM
 
Guía de anestesia general para enfermería
Guía de anestesia general para enfermeríaGuía de anestesia general para enfermería
Guía de anestesia general para enfermería
DanielaCarbajalAquis
 
REGLAMENTO DE FALTAS DISCIPLINARIAS Y SUS CASTIGOS CUADROS.doc
REGLAMENTO DE FALTAS DISCIPLINARIAS Y SUS CASTIGOS CUADROS.docREGLAMENTO DE FALTAS DISCIPLINARIAS Y SUS CASTIGOS CUADROS.doc
REGLAMENTO DE FALTAS DISCIPLINARIAS Y SUS CASTIGOS CUADROS.doc
v74524854
 
PLAN DE BACHEO 2024+PROCEDIMIENTO modificado.pdf
PLAN DE BACHEO 2024+PROCEDIMIENTO modificado.pdfPLAN DE BACHEO 2024+PROCEDIMIENTO modificado.pdf
PLAN DE BACHEO 2024+PROCEDIMIENTO modificado.pdf
SeguimientoSoporte
 
ACTUALIZADO 2DO CONTENIDOS, PDA Y PROYECTOS 2.pdf
ACTUALIZADO 2DO CONTENIDOS, PDA Y PROYECTOS 2.pdfACTUALIZADO 2DO CONTENIDOS, PDA Y PROYECTOS 2.pdf
ACTUALIZADO 2DO CONTENIDOS, PDA Y PROYECTOS 2.pdf
EnyberMilagros
 
Explora el boletín del 3 de junio de 2024
Explora el boletín del 3 de junio de 2024Explora el boletín del 3 de junio de 2024
Explora el boletín del 3 de junio de 2024
Yes Europa
 
欧洲杯投注app-欧洲杯投注app推荐-欧洲杯投注app| 立即访问【ac123.net】
欧洲杯投注app-欧洲杯投注app推荐-欧洲杯投注app| 立即访问【ac123.net】欧洲杯投注app-欧洲杯投注app推荐-欧洲杯投注app| 立即访问【ac123.net】
欧洲杯投注app-欧洲杯投注app推荐-欧洲杯投注app| 立即访问【ac123.net】
larisashrestha558
 

Último (11)

Elaboración, implementación y evaluación del PCI para la gestión pedagógica d...
Elaboración, implementación y evaluación del PCI para la gestión pedagógica d...Elaboración, implementación y evaluación del PCI para la gestión pedagógica d...
Elaboración, implementación y evaluación del PCI para la gestión pedagógica d...
 
Régimen de licencias docente Santa Cruz.pdf
Régimen de licencias docente Santa Cruz.pdfRégimen de licencias docente Santa Cruz.pdf
Régimen de licencias docente Santa Cruz.pdf
 
Explora el boletín del 27 de mayo de 2024
Explora el boletín del 27 de mayo de 2024Explora el boletín del 27 de mayo de 2024
Explora el boletín del 27 de mayo de 2024
 
Pobreza en el Perú en 2023 - Industrias Alimentarias
Pobreza en el Perú en 2023 - Industrias Alimentarias Pobreza en el Perú en 2023 - Industrias Alimentarias
Pobreza en el Perú en 2023 - Industrias Alimentarias
 
CONSOLIDADO DE CLASES DE DERECHOS REALES.pptx
CONSOLIDADO DE CLASES DE DERECHOS REALES.pptxCONSOLIDADO DE CLASES DE DERECHOS REALES.pptx
CONSOLIDADO DE CLASES DE DERECHOS REALES.pptx
 
Guía de anestesia general para enfermería
Guía de anestesia general para enfermeríaGuía de anestesia general para enfermería
Guía de anestesia general para enfermería
 
REGLAMENTO DE FALTAS DISCIPLINARIAS Y SUS CASTIGOS CUADROS.doc
REGLAMENTO DE FALTAS DISCIPLINARIAS Y SUS CASTIGOS CUADROS.docREGLAMENTO DE FALTAS DISCIPLINARIAS Y SUS CASTIGOS CUADROS.doc
REGLAMENTO DE FALTAS DISCIPLINARIAS Y SUS CASTIGOS CUADROS.doc
 
PLAN DE BACHEO 2024+PROCEDIMIENTO modificado.pdf
PLAN DE BACHEO 2024+PROCEDIMIENTO modificado.pdfPLAN DE BACHEO 2024+PROCEDIMIENTO modificado.pdf
PLAN DE BACHEO 2024+PROCEDIMIENTO modificado.pdf
 
ACTUALIZADO 2DO CONTENIDOS, PDA Y PROYECTOS 2.pdf
ACTUALIZADO 2DO CONTENIDOS, PDA Y PROYECTOS 2.pdfACTUALIZADO 2DO CONTENIDOS, PDA Y PROYECTOS 2.pdf
ACTUALIZADO 2DO CONTENIDOS, PDA Y PROYECTOS 2.pdf
 
Explora el boletín del 3 de junio de 2024
Explora el boletín del 3 de junio de 2024Explora el boletín del 3 de junio de 2024
Explora el boletín del 3 de junio de 2024
 
欧洲杯投注app-欧洲杯投注app推荐-欧洲杯投注app| 立即访问【ac123.net】
欧洲杯投注app-欧洲杯投注app推荐-欧洲杯投注app| 立即访问【ac123.net】欧洲杯投注app-欧洲杯投注app推荐-欧洲杯投注app| 立即访问【ac123.net】
欧洲杯投注app-欧洲杯投注app推荐-欧洲杯投注app| 立即访问【ac123.net】
 

Talleres unidad 5 estadistica

  • 1. TALLERES UNIDAD 5 ESTADISTICA DOLLY PATRICIA USUGA MANCO ID 000722928 EDITH YESENIA LONDOÑO GARCÍA ID 000722588 CLAUDIA ELENA LOAIZA RESTREPO ID 000722257 OLGA LUCIA ARISTIZABAL VALLEJO ID 000720622 ESTADÍSTICA DESCRIPTIVA NRC: 6108 DOCENTE LILIANA MARIA LOPEZ PROGRAMA CONTADURÍA PÚBLICA FACULTAD DE EDUCACIÓN VIRTUAL Y A DISTANCIA FEBRERO 22 2020 CORPORACIÓN UNIVERSITARIA MINUTO DE DIOS BELLO
  • 2.
  • 3. I. ¿Qué es una medida de tendencia no central? Las medidas de posición no central, permiten conocer otros puntos de la medición que son valores no centrales, permiten ubicar la posición de un valor dentro de un conjunto de datos, sirve para variables de tipo cualitativo ordinal, discreta Continua, los resultados se expresan en las mismas unidades de los datos en estudio. 1. Percentiles : se suele usar una serie de 3 valores que divide la muestra en tramos iguales, se ordena de forma creciente o decreciente , en cuatro tramos iguales , cada uno concentra el 25 % de los resultados. 2. Deciles : Son 9 valores que distribuye la serie en datos, ordenada en forma creciente o decreciente, en diez tramos iguales, cada uno concentra el 10 % de los resultados. 3. Percentiles : Son 99 datos que distribuyen los datos de forma creciente o decreciente, en 100 tramos iguales donde cada uno concentra el 1% de los resultados. 4. Cuartiles : Dividen los valores en 4 partes iguales. El 1ero deja un cuarto de los valores por debajo del 2do cuartil, que es la Mediana, el 3er cuartil deja un cuarto de los valores por arriba. II. ¿Cómo se hallan los cuartiles de un conjunto de datos Medida de Posición que divide en 4 partes porcentuales iguales, a una distribución ordenada de Datos, cada parte tiene la misma cantidad de datos y cada parte representa el 25% de la totalidad de los datos. Cuartil 1 Cuartil 2 Cuartil 3 Cuartil 4 25% 25% 25% 25
  • 4. FORMULA PARA CALCULAR LOS 4 PERCENTILES Qk = k (N/4) Qk = Cuartil número 1, 2, 3 y 4 N = total de datos de la distribución. La fórmula para cada cuartil es: 1. Q1 = 1 (N / 4) 2. Q2 = 2 (N / 4) 3. Q3 = 3 (N / 4) 4. Q4 = 4 (N / 4) 1. Q1 = 1 (N / 4) representa el primer 25% los datos están bajo el y encima se encuentra el 75% 2. Q2 = 2 (N / 4 segundo cuartil representa la mitad de los datos por lo tanto la mediana, el 50% de los datos están por debajo de él y los otros 50% de los datos por encima. 3. Q3 = 3 (N / 4) tercer percentil, representa el 75% de los datos y por encima de él, está el restante 25% de los datos. 4. Q4 = 4 (N / 4) representa los últimos 25%, bajo él está el 100% CUARTILES REPRESENTACION GRAFICA
  • 5. p 25 50 75 100 Q1 Q2 Q3 Q4 25% =Q1 50% = Q2 75% = Q3 100% = Q4 III. ¿Cómo determinar los percentiles de un conjunto de datos? El percentil o centil es una de las medidas de posición de datos, en la cual se divide todo lo que se está midiendo en 99 partes para obtener un total de 100 partes iguales.. En otras palabras, los percentiles son cada una de las posiciones que ocupan unos datos cuando se divide la totalidad de los datos existentes en cien partes, marcando la posición que deja por debajo de sí a un tanto por ciento determinado de la población correspondiente con el valor del percentil per se (es decir por ejemplo el percentil 1 es el que deja por debajo al 1%). Asimismo deja por encima de sí otro tanto por ciento relevante. Aunque el concepto de percentil se encuentra relacionado con el de porcentaje no se trata de lo mismo pues mientras porcentaje permite ver una cantidad como fracción entre cien partes iguales, el percentil indica el lugar que tiene que ocupar un dato para dejar por debajo al tanto por ciento correspondiente.
  • 6. ¿Cómo hallar los percentiles? Para calcular un percentil es necesario tener en cuenta en primer lugar si se trabaja con datos ordenados o no ordenados. Cuando los datos no están agrupados u ordenados, la posición en la que se halla el percentil podrá calcularse dividiendo el producto del percentil por el número de elementos de la muestra de la que partimos entre cien. La fórmula es: P=(k*n)/100. Cuando el conjunto de datos es ordenado, la fórmula es: Px=Lri+((kn/100 - Fa)/f)(Ac). Así, bastará con sumar el límite inferior de la clase donde está el percentil a producto entre la amplitud de la clase y el cociente entre la resta de la posición menos la frecuencia acumulada anterior y la frecuencia total. También para encontrar un percentil determinado de un conjunto de datos (por ejemplo buscar el percentil 25 de un conjunto o base de datos) sólo se tiene que dividir el número de valores menores que el que tenemos por en número total de valores y multiplicar este resultado por cien. EJEMPLOS PARA HALLAR PERCENTILES Ejempol 1 1.Se debe tener en cuenta que cada percentil representa una unidad de 1% del total de 100. Es decir supongamos que tienes 60 gallinas , aunque sean 60, como 60 es el total de las gallinas, 60 es el 100%. El 100% es el número total de datos que tenemos.
  • 7. 2.Se divide en 100 partes iguales y gracias a esto se puede calcular el percentil buscado. 3.La fórmula básica para calcular percentiles es la siguiente: L /N :100 = P. Donde la L representa los números menores al total de datos que tenemos, la N es el total de datos que tenemos y 100 es el número en que debemos dividirlo para hallar el percentil 4. Ejemplo primero para calcular percentiles: vamos a calcular un percentil, en este caso será el 50, que representa el 50% de los datos o partes iguales del 100% de las galletas que tenemos. 5.Para encontrar el percentil 50 entenderemos lo siguiente; como 60 es el 100% de nuestros datos y queremos encontrar el percentil 50, es decir el 50% de nuestros datos, entonces se hace la siguiente ecuación: 60 x 50 :100, es decir 60 por 50 entre 100. 6.Se eliminan dos ceros y nos quedaremos con una cuenta así: 60 x 5 :10. El resultado será 30. Por lo cual 30 gallinas de 60 es el 50% de nuestros datos. El percentil 50 es el dato 30. Ejemplo 2: 1. Se tienen 70 personas de las cuales el 30% tiene sida. 70 es el 100 de nuestros datos y deseamos conseguir el percentil 30. Para calcular cuántas personas tienen sida haremos la siguiente ecuación: 70 x 30 :100. 2. El resultado obtenido es el número 21,de las 70 personas 70 padecen sida entonces el percentil 30 es el dato 21.
  • 8. Ejemplo 3: Una joven tiene 18 años, y ha practicado fútbol el 14% de su vida. Se necesita encontrar el percentil 14. Como el 18 es el 100% de su edad actual entonces se aplica la siguiente fórmula: 18 x 14 :100 = 2.52. Por lo cual el jóven ha practicado fútbol por un poco más de dos años y medio de su vida. No obstante, cuando cuando se habla dinero o únicamente a números, es recomendable redondear el resultado.
  • 9. Bibliografia https://bioestadisticaula.blogspot.com/2012/08/medidas-de-tendencia- no-central.html joan Fernando chipia lobo, 21 agosto 2012, Bioestadistica https://es.slideshare.net/profeluz4/clase-4-medidas-de-tendencia-no- central MEDIDAS DE POSICION NO CENTRAL, LUZ ELENA GARCIA, 25 marzo 2011 https://estadisticapasoapaso.blogspot.com/2011/09/los-cuartiles.html MEDIDAS DE POSICION, 24 septiembre 2011 Triola, M.F. (2006). Estadística. Novena Edición. Pearson Educación. Psicología y mente. (2020). Obtenido de https://psicologiaymente.com/miscelanea/como-calcular- percentiles Educar don Comos. (s.f.). Educar don Comos. Obtenido de 2020: https://educar.doncomos.com/como-calcular-percentiles