SlideShare una empresa de Scribd logo

Ensayo de estadística inferencial

T
T

Académico

Ensayo de estadística inferencial

1 de 16
Descargar para leer sin conexión
REPÚBLICA BOLIVARIANA DE VENEZUELA
UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA
VICERRECTORADO ACADÉMICO
INGENIERÍA EN INDUSTRIAS FORESTALES
CÁTEDRA: ESTADÍSTICA II
ESTADÍSTICA INFERENCIAL RECOPILACIÓN
DE MUESTRAS EN POBLACIÓN
FINITA E INFINITAS
AUTOR:
THOMAS RODRÍGUEZ
TUTOR:
ING. ALVARO BARRIOS
UPATA, ABRIL 2015
INTRODUCCIÓN
La estadística es una ciencia que tiene como finalidad facilitar la solución
de problemas en los cuales necesitamos conocer algunas características
sobre el comportamiento de algún suceso o evento. En nuestros días, la
estadística se ha convertido en un método efectivo para describir con
exactitud los valores de datos económicos, políticos, sociales, entre
otros… y sirve para analizar los resultados y obtener así una probabilidad.
En este ensayo se refleja uno de los tipos de la estadística como lo es la
estadística inferencial, la cual se relaciona con el proceso se utilizar los
datos de una muestra para realizar inferencias y tomar decisiones con
respecto a la población de la cual se toma una muestra que nos permite
conocer la realidad y representarla.
La estadística inferencial comprende métodos y procedimientos para
deducir probabilidades, es decir, hacer inferencias. A través de ellas se
realizan generalizaciones o se toman decisiones sobre la base de la
información obtenida de la muestra, dicha muestra es un subconjunto de
la población objetiva.
El estadístico, hoy en día no basta con solo reunir datos y calcularlos sino
debe encargarse de interpretar esa información obtenida en el proceso
estadístico para así poder tener un resultado óptimo e importante. Es el
conjunto de posibilidades de que un evento ocurra o no en un momento
y tiempo determinado. Dichos eventos pueden ser medibles a través de
una escala de 0 a 1, donde el evento que no pueda ocurrir tiene una
probabilidad de 0 (evento imposible) y un evento que ocurra con certeza
es de 1 (evento cierto).
Cabe destacar que la estadística inferencial puede proporcionar una serie
de métodos importantes la cual puede estudiar un sin números de datos.
Se muestra una breve explicación sobre los métodos tales como:
Estadística Inferencial, Probabilidad y Sus Tipos de Probabilidad,
Métodos de Muestreo y Sus Tipos de Muestras, Distribuciones
Muestrales.
REPÚBLICA BOLIVARIANA DE VENEZUELA
UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA
VICERRECTORADO ACADÉMICO
INGENIERÍA EN INDUSTRIAS FORESTALES
CÁTEDRA: ESTADÍSTICA II
ESTADÍSTICA INFERENCIAL RECOPILACIÓN
DE MUESTRAS EN POBLACIÓN
FINITA E INFINITAS
AUTOR:
THOMAS RODRÍGUEZ
Resumen: TUTOR:
ING. ALVARO BARRIOS
La estadística inferencial permite obtener conclusiones o generalizaciones
que sobrepasan los límites de los conocimientos aportados por un
conjunto de datos. A veces es necesario hacer estudios preliminares que
sirva de base como la probabilidad que no es más que una rama de la
matemática que sirve para medir en forma numérica de que un evento,
ocurra o no, pero existen tres tipos de probabilidad que son la clásica que
permite saber si un evento ocurre e aplicando la razón entre el número de
casos favorables, y el número total de casos posibles, la probabilidad
frecuencial demuestra que durante una observación lo que se busca es
un valor fijo, que tiene las frecuencias relativas de que ocurra un evento
proporcionando una probabilidad más aproximada, y la probabilidad
subjetiva es el enfoque que hay que solo una oportunidad de ocurrencia
ocurra solo una vez también en la estadística inferencial nos encontramos
con el métodos de muestreo la cual se refiere a un conjunto de
características de un parámetro poblacional a partir de un conocimiento
de la muestra obtenida o extraída de la población en estudio, el muestreo
se hace necesario por motivos de economía de recursos y tiempo, así
como de factibilidad. Por ello, el objetivo del investigador es hacer
inferencia en relación con la población total, con base en los resultados
obtenidos de la muestra.
MARCO TEÓRICO
ESTADÍSTICA INFERENCIAL
Comprende métodos y procedimientos para deducir propiedades, es decir, hacer
inferencias, de una población, a partir de una pequeña parte de la misma, o sea, de
una muestra. A través de ella se realizan generalizaciones o se toman decisiones
sobre la base de la información obtenida de la muestra. Dicha muestra es un
subconjunto de la población objetivo sobre la cual se desea inferir o deducir. En la
estadística inferencial suele plantarse un problema o una incógnita que puede
resolver en términos de estadística, unas características a estudiar, y unos
objetivos que permitan arribar a conclusiones en estudio. (Wikipedia, 2011).
PROBABILIDAD
La teoría de la probabilidad se usa extensamente en áreas como la
estadística, la física, la matemática, las ciencias y la filosofía para sacar
conclusiones sobre la probabilidad discreta de sucesos potenciales y la
mecánica subyacente discreta de sistemas complejos, por lo tanto es la
rama de los matemáticas que estudia, mide o determinada a los
experimentos o fenómenos aleatorio es que no se sabe qué resultado
particular se obtenida al realizarlo. Es decir, si a es un suceso asociado
con un experimento aleatorio, no podemos indicar con certeza si a
ocurrirá o no en una prueba en particular. (Wikipedia, 2010)
TIPOS DE PROBABILIDAD
PROBABILIDAD CLÁSICA
La probabilidad clásica a menudo recibe el nombre de probabilidad a
priori, porque si estamos usando ejemplos ordenados, como monedas y
dados legales o una baraja ordinaria, damos la respuesta por anticipado(a
priori) sin lanzar la moneda o el dado ni extraer un naipe. No es necesario
que realicemos experimentos para hacer nuestras afirmaciones de
probabilidad acerca de monedas y dados legales o una baraja ordinaria.
Por el contrario, lo hacemos basándonos en el razonamiento lógico antes
de efectuar el experimento. ( Levin, R. S/F).
La probabilidad clásica define la probabilidad de que un evento ocurra
como:
Probabilidad de un evento =
PROBABILIDAD EMPÍRICA
Una teoría de mayor aplicación y muy sostenida es la basada en la
frecuencia relativa. Puede atribuirse a este punto de vista el adelanto
registrado en la aplicación de la probabilidad en la física, la astronomía, la
biología, las ciencias sociales y los negocios. Esta teoría está
estrechamente relacionada con el punto de visto expresado por
Aristóteles: “lo probable es aquello que ocurre diariamente”. Notamos a
través de gran cantidad de observaciones acumulados con los diversos
juegos de azar una forma general de regularidad que permitió establecer
una teoría. Z supongamos que efectuamos un serie de n repeticiones del
experimento e, intentando mantener constantes las condiciones.
Pertinentes. (Op. Cit).
PROBABILIDAD SUBJETIVAS
Se refiere a la probabilidad de ocurrencia de un suceso basado en la
experiencia previa, la opinión personal o la intuición del individuo. En este
caso después de estudiar la información disponible, se asigna un valor de
probabilidad a los sucesos basados en el grado de creencia de que el
suceso pueda ocurrir. (Op. Cit).
MÉTODOS DE MUESTREO
El muestreo es un proceso de selección o escogencia de una parte de la
población para propósitos investigativos y/o recolección de información. El
muestreo se hace necesario por motivos de economía de recursos y
tiempo, así como de factibilidad. Por ello, el objetivo del investigador es
hacer inferencia en relación con la población total, con base en los
resultados obtenidos de la muestra.
Si se está realizando un sondeo de opinión, por ejemplo, no es posible
preguntar a toda una población. Si se lleva a cabo un trabajo
experimental, no es factible aplicar un tratamiento a todos los sujetos o
elementos que conforman la población. Si se trabaja en control de calidad
mediante ensayos destructivos, sería descabellado aplicar éstos a todos
los elementos que conforman la población de estudio. “un subconjunto del
conjunto población” (Pestaña, 2001).
TIPOS DE MUESTRAS
Existen dos clases básicas de muestras: la muestra probabilística y la
muestra no probabilística, como se ilustra en la siguiente figura. La
elección entre una u otra se determina con base en los objetivos del
estudio, el esquema de la investigación y el alcance de sus
contribuciones. (Hernández, Fernández y Baptista, 1991).
Figura 1. Tipos de muestras (Fuente: Berenson y Levine, 1982)
Aleatorio
Simple
Aleatorio
Sistemático
Aleatorio
Estratificado
Aleatorio
Agrupado
MuestrasProbabilísticas
Muestra
DeJuicio
Muestra
DeCuota
Trozoo
Casual
MuestrasNoProbabilísticas
TiposdeMuestrasUtilizados

Recomendados

Presentacion medidas de dispersion
Presentacion medidas de dispersionPresentacion medidas de dispersion
Presentacion medidas de dispersionFatima Branco
 
Estadistica descriptiva
Estadistica descriptivaEstadistica descriptiva
Estadistica descriptivahilzap
 
Organización de datos estadísticos
Organización de datos  estadísticos Organización de datos  estadísticos
Organización de datos estadísticos leonelgranado
 
Mapa conceptual de la estadistica
Mapa conceptual de la estadisticaMapa conceptual de la estadistica
Mapa conceptual de la estadisticamarcoantoniopc
 
Estadística inferencial, conceptos basicos
Estadística inferencial, conceptos basicosEstadística inferencial, conceptos basicos
Estadística inferencial, conceptos basicosCristina Rios
 

Más contenido relacionado

La actualidad más candente

Cuadro comparativo Técnicas e instrumentos para recolección de datos
Cuadro comparativo Técnicas e instrumentos para recolección de datosCuadro comparativo Técnicas e instrumentos para recolección de datos
Cuadro comparativo Técnicas e instrumentos para recolección de datosbriyit campos
 
Distribucion muestral de proporciones
Distribucion muestral de proporcionesDistribucion muestral de proporciones
Distribucion muestral de proporcioneseraperez
 
Organización de datos (estadística)
Organización de datos (estadística)Organización de datos (estadística)
Organización de datos (estadística)Luiscarlys Maican
 
Regresión lineal multiple autores grillet montaño rodríguez
Regresión lineal multiple  autores grillet montaño rodríguezRegresión lineal multiple  autores grillet montaño rodríguez
Regresión lineal multiple autores grillet montaño rodríguezthomas669
 
Estadistica descriptiva
Estadistica descriptivaEstadistica descriptiva
Estadistica descriptivareycol04
 
Medidas de Tendencia Central, Posición y Dispersión
Medidas de Tendencia Central, Posición y DispersiónMedidas de Tendencia Central, Posición y Dispersión
Medidas de Tendencia Central, Posición y Dispersiónreynier valor
 
Calculo muestra poblacion finita nvo
Calculo muestra poblacion finita nvoCalculo muestra poblacion finita nvo
Calculo muestra poblacion finita nvojoselbis
 
Cálculo del tamaño de muestra (con ejemplos)
Cálculo del tamaño de muestra  (con ejemplos)Cálculo del tamaño de muestra  (con ejemplos)
Cálculo del tamaño de muestra (con ejemplos)Filomeno Carvajal
 
Problemas de determinación de tamaño de la muestra (9)
Problemas de determinación de tamaño de la muestra (9)Problemas de determinación de tamaño de la muestra (9)
Problemas de determinación de tamaño de la muestra (9)Luz Hernández
 
Prueba de hipótesis
Prueba de hipótesisPrueba de hipótesis
Prueba de hipótesisCarol Ramos
 
Tendencias Lineales o no lineales / Estadistica
Tendencias Lineales o no lineales / EstadisticaTendencias Lineales o no lineales / Estadistica
Tendencias Lineales o no lineales / EstadisticaBego E A
 
Seleccion de la Muestra en Investigacion
Seleccion de la Muestra en InvestigacionSeleccion de la Muestra en Investigacion
Seleccion de la Muestra en Investigaciongambitguille
 
Conclusiones de unidad 2 organización de los datos
Conclusiones de unidad 2 organización de los datosConclusiones de unidad 2 organización de los datos
Conclusiones de unidad 2 organización de los datosJohanna Garcia
 
Estimación estadística
Estimación estadísticaEstimación estadística
Estimación estadísticaTahiri Bardales
 
DISTRIBUCIÓN MUESTRAL DE LA MEDIA
DISTRIBUCIÓN MUESTRAL DE LA MEDIADISTRIBUCIÓN MUESTRAL DE LA MEDIA
DISTRIBUCIÓN MUESTRAL DE LA MEDIAcheperobertt
 

La actualidad más candente (20)

Cuadro comparativo Técnicas e instrumentos para recolección de datos
Cuadro comparativo Técnicas e instrumentos para recolección de datosCuadro comparativo Técnicas e instrumentos para recolección de datos
Cuadro comparativo Técnicas e instrumentos para recolección de datos
 
Distribucion muestral de proporciones
Distribucion muestral de proporcionesDistribucion muestral de proporciones
Distribucion muestral de proporciones
 
Organización de datos (estadística)
Organización de datos (estadística)Organización de datos (estadística)
Organización de datos (estadística)
 
Regresión lineal multiple autores grillet montaño rodríguez
Regresión lineal multiple  autores grillet montaño rodríguezRegresión lineal multiple  autores grillet montaño rodríguez
Regresión lineal multiple autores grillet montaño rodríguez
 
Resueltos estimacion
Resueltos estimacionResueltos estimacion
Resueltos estimacion
 
Estadistica descriptiva
Estadistica descriptivaEstadistica descriptiva
Estadistica descriptiva
 
Medidas de Tendencia Central, Posición y Dispersión
Medidas de Tendencia Central, Posición y DispersiónMedidas de Tendencia Central, Posición y Dispersión
Medidas de Tendencia Central, Posición y Dispersión
 
Calculo muestra poblacion finita nvo
Calculo muestra poblacion finita nvoCalculo muestra poblacion finita nvo
Calculo muestra poblacion finita nvo
 
Prueba de Hipotesis para Muestras Pequeñas Est ind clase03
Prueba de Hipotesis para Muestras Pequeñas Est ind clase03Prueba de Hipotesis para Muestras Pequeñas Est ind clase03
Prueba de Hipotesis para Muestras Pequeñas Est ind clase03
 
Cálculo del tamaño de muestra (con ejemplos)
Cálculo del tamaño de muestra  (con ejemplos)Cálculo del tamaño de muestra  (con ejemplos)
Cálculo del tamaño de muestra (con ejemplos)
 
Problemas de determinación de tamaño de la muestra (9)
Problemas de determinación de tamaño de la muestra (9)Problemas de determinación de tamaño de la muestra (9)
Problemas de determinación de tamaño de la muestra (9)
 
Prueba de hipótesis
Prueba de hipótesisPrueba de hipótesis
Prueba de hipótesis
 
Tendencias Lineales o no lineales / Estadistica
Tendencias Lineales o no lineales / EstadisticaTendencias Lineales o no lineales / Estadistica
Tendencias Lineales o no lineales / Estadistica
 
Seleccion de la Muestra en Investigacion
Seleccion de la Muestra en InvestigacionSeleccion de la Muestra en Investigacion
Seleccion de la Muestra en Investigacion
 
Conclusiones de unidad 2 organización de los datos
Conclusiones de unidad 2 organización de los datosConclusiones de unidad 2 organización de los datos
Conclusiones de unidad 2 organización de los datos
 
Estimación estadística
Estimación estadísticaEstimación estadística
Estimación estadística
 
Muestreo sistemático
Muestreo sistemáticoMuestreo sistemático
Muestreo sistemático
 
Delimitacion ejemplo
Delimitacion   ejemploDelimitacion   ejemplo
Delimitacion ejemplo
 
DISTRIBUCIÓN MUESTRAL DE LA MEDIA
DISTRIBUCIÓN MUESTRAL DE LA MEDIADISTRIBUCIÓN MUESTRAL DE LA MEDIA
DISTRIBUCIÓN MUESTRAL DE LA MEDIA
 
Escala de medición
Escala de mediciónEscala de medición
Escala de medición
 

Similar a Ensayo de estadística inferencial

Selecciondelamuestra Universidad Americana del Noreste
Selecciondelamuestra Universidad Americana del NoresteSelecciondelamuestra Universidad Americana del Noreste
Selecciondelamuestra Universidad Americana del NoresteJavier Armendariz
 
Cap2 diseño muestral
Cap2 diseño muestralCap2 diseño muestral
Cap2 diseño muestralJavier V.
 
La poblacion y muestra en una investigacion
La poblacion y muestra en una investigacionLa poblacion y muestra en una investigacion
La poblacion y muestra en una investigacionLima - Perú
 
Muestreo Estadistico
Muestreo EstadisticoMuestreo Estadistico
Muestreo Estadisticowendylinarez
 
Ti teoria del muestreo 12052007
Ti teoria del muestreo 12052007Ti teoria del muestreo 12052007
Ti teoria del muestreo 12052007Pascual Sardella
 
República bolivariana de venezuela 1
República bolivariana de venezuela 1 República bolivariana de venezuela 1
República bolivariana de venezuela 1 thomas669
 
República bolivariana de venezuela
República bolivariana de venezuelaRepública bolivariana de venezuela
República bolivariana de venezuelathomas669
 
República bolivariana de venezuela
República bolivariana de venezuelaRepública bolivariana de venezuela
República bolivariana de venezuelathomas669
 

Similar a Ensayo de estadística inferencial (20)

Presentación estadistica
Presentación estadisticaPresentación estadistica
Presentación estadistica
 
Estadistica
EstadisticaEstadistica
Estadistica
 
CRITERIOS DE SELECCIÓN DE LA MUESTRA.pptx
CRITERIOS DE SELECCIÓN DE LA MUESTRA.pptxCRITERIOS DE SELECCIÓN DE LA MUESTRA.pptx
CRITERIOS DE SELECCIÓN DE LA MUESTRA.pptx
 
Selecciondelamuestra Universidad Americana del Noreste
Selecciondelamuestra Universidad Americana del NoresteSelecciondelamuestra Universidad Americana del Noreste
Selecciondelamuestra Universidad Americana del Noreste
 
Cap2 diseño muestral
Cap2 diseño muestralCap2 diseño muestral
Cap2 diseño muestral
 
El muestreo
El muestreoEl muestreo
El muestreo
 
La poblacion y muestra en una investigacion
La poblacion y muestra en una investigacionLa poblacion y muestra en una investigacion
La poblacion y muestra en una investigacion
 
Nocion de probabilidad
Nocion de probabilidadNocion de probabilidad
Nocion de probabilidad
 
Muestra o analisis muestral
Muestra o analisis muestralMuestra o analisis muestral
Muestra o analisis muestral
 
Exposición taller ii
Exposición taller iiExposición taller ii
Exposición taller ii
 
Capitulo 9
Capitulo  9Capitulo  9
Capitulo 9
 
1.1-Analisis Estadistico.pptx
1.1-Analisis Estadistico.pptx1.1-Analisis Estadistico.pptx
1.1-Analisis Estadistico.pptx
 
Estadistica ii expo
Estadistica ii expoEstadistica ii expo
Estadistica ii expo
 
Exposición taller ii
Exposición taller iiExposición taller ii
Exposición taller ii
 
2 Población y muestra.pptx
2 Población y muestra.pptx2 Población y muestra.pptx
2 Población y muestra.pptx
 
Muestreo Estadistico
Muestreo EstadisticoMuestreo Estadistico
Muestreo Estadistico
 
Ti teoria del muestreo 12052007
Ti teoria del muestreo 12052007Ti teoria del muestreo 12052007
Ti teoria del muestreo 12052007
 
República bolivariana de venezuela 1
República bolivariana de venezuela 1 República bolivariana de venezuela 1
República bolivariana de venezuela 1
 
República bolivariana de venezuela
República bolivariana de venezuelaRepública bolivariana de venezuela
República bolivariana de venezuela
 
República bolivariana de venezuela
República bolivariana de venezuelaRepública bolivariana de venezuela
República bolivariana de venezuela
 

Más de thomas669

Ensayo de estadistica numero dos
Ensayo de estadistica numero dosEnsayo de estadistica numero dos
Ensayo de estadistica numero dosthomas669
 
Hipótesis 1
Hipótesis 1 Hipótesis 1
Hipótesis 1 thomas669
 
República bolivariana de venezuela.docx111111
República bolivariana de venezuela.docx111111República bolivariana de venezuela.docx111111
República bolivariana de venezuela.docx111111thomas669
 
Estadística ii 1
Estadística ii 1 Estadística ii 1
Estadística ii 1 thomas669
 
Ficha de estadística 1
Ficha de estadística 1Ficha de estadística 1
Ficha de estadística 1thomas669
 
Ensayo de estadística inferencial 1
Ensayo de estadística inferencial 1 Ensayo de estadística inferencial 1
Ensayo de estadística inferencial 1 thomas669
 
Infografía de tabla de números aleatorios 2
Infografía de tabla de números aleatorios 2Infografía de tabla de números aleatorios 2
Infografía de tabla de números aleatorios 2thomas669
 
Infografía de tabla de números aleatorios 1
Infografía de tabla de números aleatorios 1Infografía de tabla de números aleatorios 1
Infografía de tabla de números aleatorios 1thomas669
 
Ensayo de estadística inferencial
Ensayo de estadística inferencialEnsayo de estadística inferencial
Ensayo de estadística inferencialthomas669
 
Infografía de tabla de números aleatorios 1
Infografía de tabla de números aleatorios 1Infografía de tabla de números aleatorios 1
Infografía de tabla de números aleatorios 1thomas669
 
Estadística ii
Estadística iiEstadística ii
Estadística iithomas669
 
Ficha de estadística 1
Ficha de estadística 1Ficha de estadística 1
Ficha de estadística 1thomas669
 
Presentación1kk
Presentación1kkPresentación1kk
Presentación1kkthomas669
 
Ficha sobre punto en el espacio. 1
Ficha sobre punto en el espacio. 1Ficha sobre punto en el espacio. 1
Ficha sobre punto en el espacio. 1thomas669
 
Presentación1kk
Presentación1kkPresentación1kk
Presentación1kkthomas669
 
Cilindro en el espacio 1
Cilindro en el espacio 1Cilindro en el espacio 1
Cilindro en el espacio 1thomas669
 
Ficha de estadística 1
Ficha de estadística 1Ficha de estadística 1
Ficha de estadística 1thomas669
 
Infografía de tabla de números aleatorios 1
Infografía de tabla de números aleatorios 1Infografía de tabla de números aleatorios 1
Infografía de tabla de números aleatorios 1thomas669
 
Infografía de tabla de números aleatorios 1
Infografía de tabla de números aleatorios 1Infografía de tabla de números aleatorios 1
Infografía de tabla de números aleatorios 1thomas669
 

Más de thomas669 (20)

Ensayo de estadistica numero dos
Ensayo de estadistica numero dosEnsayo de estadistica numero dos
Ensayo de estadistica numero dos
 
Hipótesis 1
Hipótesis 1 Hipótesis 1
Hipótesis 1
 
República bolivariana de venezuela.docx111111
República bolivariana de venezuela.docx111111República bolivariana de venezuela.docx111111
República bolivariana de venezuela.docx111111
 
Estadística ii 1
Estadística ii 1 Estadística ii 1
Estadística ii 1
 
Ficha de estadística 1
Ficha de estadística 1Ficha de estadística 1
Ficha de estadística 1
 
Ensayo de estadística inferencial 1
Ensayo de estadística inferencial 1 Ensayo de estadística inferencial 1
Ensayo de estadística inferencial 1
 
Infografía de tabla de números aleatorios 2
Infografía de tabla de números aleatorios 2Infografía de tabla de números aleatorios 2
Infografía de tabla de números aleatorios 2
 
Infografía de tabla de números aleatorios 1
Infografía de tabla de números aleatorios 1Infografía de tabla de números aleatorios 1
Infografía de tabla de números aleatorios 1
 
Ensayo de estadística inferencial
Ensayo de estadística inferencialEnsayo de estadística inferencial
Ensayo de estadística inferencial
 
Infografía de tabla de números aleatorios 1
Infografía de tabla de números aleatorios 1Infografía de tabla de números aleatorios 1
Infografía de tabla de números aleatorios 1
 
Hipótesis
HipótesisHipótesis
Hipótesis
 
Estadística ii
Estadística iiEstadística ii
Estadística ii
 
Ficha de estadística 1
Ficha de estadística 1Ficha de estadística 1
Ficha de estadística 1
 
Presentación1kk
Presentación1kkPresentación1kk
Presentación1kk
 
Ficha sobre punto en el espacio. 1
Ficha sobre punto en el espacio. 1Ficha sobre punto en el espacio. 1
Ficha sobre punto en el espacio. 1
 
Presentación1kk
Presentación1kkPresentación1kk
Presentación1kk
 
Cilindro en el espacio 1
Cilindro en el espacio 1Cilindro en el espacio 1
Cilindro en el espacio 1
 
Ficha de estadística 1
Ficha de estadística 1Ficha de estadística 1
Ficha de estadística 1
 
Infografía de tabla de números aleatorios 1
Infografía de tabla de números aleatorios 1Infografía de tabla de números aleatorios 1
Infografía de tabla de números aleatorios 1
 
Infografía de tabla de números aleatorios 1
Infografía de tabla de números aleatorios 1Infografía de tabla de números aleatorios 1
Infografía de tabla de números aleatorios 1
 

Último

Rojas_Carolina__Alumno1_Ruiz_Joseph_Alumno2.pdf
Rojas_Carolina__Alumno1_Ruiz_Joseph_Alumno2.pdfRojas_Carolina__Alumno1_Ruiz_Joseph_Alumno2.pdf
Rojas_Carolina__Alumno1_Ruiz_Joseph_Alumno2.pdfcarolinarojas476396
 
Presentación -del curso de Precalculo - 2024-I.ppt
Presentación -del curso de Precalculo - 2024-I.pptPresentación -del curso de Precalculo - 2024-I.ppt
Presentación -del curso de Precalculo - 2024-I.pptMarioSanchezGonzalez1
 
Lasso_Anthony_Tarea_2.pdf, EVOLUCION DE INTERNETE
Lasso_Anthony_Tarea_2.pdf, EVOLUCION DE INTERNETELasso_Anthony_Tarea_2.pdf, EVOLUCION DE INTERNETE
Lasso_Anthony_Tarea_2.pdf, EVOLUCION DE INTERNETEalexlasso65
 
Infografia (curiosidades sobre el instituto diocesano) estudiante Antonella G...
Infografia (curiosidades sobre el instituto diocesano) estudiante Antonella G...Infografia (curiosidades sobre el instituto diocesano) estudiante Antonella G...
Infografia (curiosidades sobre el instituto diocesano) estudiante Antonella G...antognzalz
 
10-Operadores+comparación.pdf
10-Operadores+comparación.pdf10-Operadores+comparación.pdf
10-Operadores+comparación.pdfVictor Zapata
 
Alexander Lasso_Marco Garzón_Tarea #4 (1).pdf
Alexander Lasso_Marco Garzón_Tarea #4 (1).pdfAlexander Lasso_Marco Garzón_Tarea #4 (1).pdf
Alexander Lasso_Marco Garzón_Tarea #4 (1).pdfgarzonespinozamarco2
 
Presentacion cuidado del medio ambiente collage scrapbook verde y blanco.pdf
Presentacion cuidado del medio ambiente collage scrapbook verde y blanco.pdfPresentacion cuidado del medio ambiente collage scrapbook verde y blanco.pdf
Presentacion cuidado del medio ambiente collage scrapbook verde y blanco.pdfJohnCarvajal23
 
Laminia_Melany_Tarea_1_La Sociedad de la Ignorancia.pdf
Laminia_Melany_Tarea_1_La Sociedad de la Ignorancia.pdfLaminia_Melany_Tarea_1_La Sociedad de la Ignorancia.pdf
Laminia_Melany_Tarea_1_La Sociedad de la Ignorancia.pdfMelanyLaminia
 
Infopedagogia Uzhca_Marcelo_ tarea_No_1.pdf
Infopedagogia Uzhca_Marcelo_ tarea_No_1.pdfInfopedagogia Uzhca_Marcelo_ tarea_No_1.pdf
Infopedagogia Uzhca_Marcelo_ tarea_No_1.pdfMarceloUzhca
 
IMÁGENES SUBLIMINALES OCULTAS EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
IMÁGENES SUBLIMINALES OCULTAS EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁIMÁGENES SUBLIMINALES OCULTAS EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
IMÁGENES SUBLIMINALES OCULTAS EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁClaude LaCombe
 
Lasso_Alexander_Alumno_1- Garzon_Marco_Alumno_2 (1).pdf
Lasso_Alexander_Alumno_1- Garzon_Marco_Alumno_2 (1).pdfLasso_Alexander_Alumno_1- Garzon_Marco_Alumno_2 (1).pdf
Lasso_Alexander_Alumno_1- Garzon_Marco_Alumno_2 (1).pdfalexlasso65
 
EJERCICIO TOMÁS Y LA ENERGÍA ELÉCTRICA.docx
EJERCICIO TOMÁS Y LA ENERGÍA ELÉCTRICA.docxEJERCICIO TOMÁS Y LA ENERGÍA ELÉCTRICA.docx
EJERCICIO TOMÁS Y LA ENERGÍA ELÉCTRICA.docxnelsontobontrujillo
 
Casco_Angela_Práctica_Infopedagogía4.pdf
Casco_Angela_Práctica_Infopedagogía4.pdfCasco_Angela_Práctica_Infopedagogía4.pdf
Casco_Angela_Práctica_Infopedagogía4.pdfAngelaCasco1
 
Oxidos Básicos.pdf
Oxidos Básicos.pdfOxidos Básicos.pdf
Oxidos Básicos.pdfvanesacaiza
 
herramientas manuales grado cuarto primaria.pptx
herramientas manuales grado cuarto primaria.pptxherramientas manuales grado cuarto primaria.pptx
herramientas manuales grado cuarto primaria.pptxnelsontobontrujillo
 
Prueba 1_Jessica J.docx_Evaluación grupo 1
Prueba 1_Jessica J.docx_Evaluación grupo 1Prueba 1_Jessica J.docx_Evaluación grupo 1
Prueba 1_Jessica J.docx_Evaluación grupo 1jessicamaribeljaneta
 

Último (20)

Rojas_Carolina__Alumno1_Ruiz_Joseph_Alumno2.pdf
Rojas_Carolina__Alumno1_Ruiz_Joseph_Alumno2.pdfRojas_Carolina__Alumno1_Ruiz_Joseph_Alumno2.pdf
Rojas_Carolina__Alumno1_Ruiz_Joseph_Alumno2.pdf
 
Presentación -del curso de Precalculo - 2024-I.ppt
Presentación -del curso de Precalculo - 2024-I.pptPresentación -del curso de Precalculo - 2024-I.ppt
Presentación -del curso de Precalculo - 2024-I.ppt
 
Lasso_Anthony_Tarea_2.pdf, EVOLUCION DE INTERNETE
Lasso_Anthony_Tarea_2.pdf, EVOLUCION DE INTERNETELasso_Anthony_Tarea_2.pdf, EVOLUCION DE INTERNETE
Lasso_Anthony_Tarea_2.pdf, EVOLUCION DE INTERNETE
 
Infografia (curiosidades sobre el instituto diocesano) estudiante Antonella G...
Infografia (curiosidades sobre el instituto diocesano) estudiante Antonella G...Infografia (curiosidades sobre el instituto diocesano) estudiante Antonella G...
Infografia (curiosidades sobre el instituto diocesano) estudiante Antonella G...
 
Grupo_8_Tarea_3 (1).pdf
Grupo_8_Tarea_3 (1).pdfGrupo_8_Tarea_3 (1).pdf
Grupo_8_Tarea_3 (1).pdf
 
10-Operadores+comparación.pdf
10-Operadores+comparación.pdf10-Operadores+comparación.pdf
10-Operadores+comparación.pdf
 
Alexander Lasso_Marco Garzón_Tarea #4 (1).pdf
Alexander Lasso_Marco Garzón_Tarea #4 (1).pdfAlexander Lasso_Marco Garzón_Tarea #4 (1).pdf
Alexander Lasso_Marco Garzón_Tarea #4 (1).pdf
 
Presentacion cuidado del medio ambiente collage scrapbook verde y blanco.pdf
Presentacion cuidado del medio ambiente collage scrapbook verde y blanco.pdfPresentacion cuidado del medio ambiente collage scrapbook verde y blanco.pdf
Presentacion cuidado del medio ambiente collage scrapbook verde y blanco.pdf
 
frecuencia cardiaca.pptx
frecuencia cardiaca.pptxfrecuencia cardiaca.pptx
frecuencia cardiaca.pptx
 
Laminia_Melany_Tarea_1_La Sociedad de la Ignorancia.pdf
Laminia_Melany_Tarea_1_La Sociedad de la Ignorancia.pdfLaminia_Melany_Tarea_1_La Sociedad de la Ignorancia.pdf
Laminia_Melany_Tarea_1_La Sociedad de la Ignorancia.pdf
 
Infopedagogia Uzhca_Marcelo_ tarea_No_1.pdf
Infopedagogia Uzhca_Marcelo_ tarea_No_1.pdfInfopedagogia Uzhca_Marcelo_ tarea_No_1.pdf
Infopedagogia Uzhca_Marcelo_ tarea_No_1.pdf
 
IMÁGENES SUBLIMINALES OCULTAS EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
IMÁGENES SUBLIMINALES OCULTAS EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁIMÁGENES SUBLIMINALES OCULTAS EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
IMÁGENES SUBLIMINALES OCULTAS EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
 
Lasso_Alexander_Alumno_1- Garzon_Marco_Alumno_2 (1).pdf
Lasso_Alexander_Alumno_1- Garzon_Marco_Alumno_2 (1).pdfLasso_Alexander_Alumno_1- Garzon_Marco_Alumno_2 (1).pdf
Lasso_Alexander_Alumno_1- Garzon_Marco_Alumno_2 (1).pdf
 
EJERCICIO TOMÁS Y LA ENERGÍA ELÉCTRICA.docx
EJERCICIO TOMÁS Y LA ENERGÍA ELÉCTRICA.docxEJERCICIO TOMÁS Y LA ENERGÍA ELÉCTRICA.docx
EJERCICIO TOMÁS Y LA ENERGÍA ELÉCTRICA.docx
 
Händel.pdf
Händel.pdfHändel.pdf
Händel.pdf
 
Casco_Angela_Práctica_Infopedagogía4.pdf
Casco_Angela_Práctica_Infopedagogía4.pdfCasco_Angela_Práctica_Infopedagogía4.pdf
Casco_Angela_Práctica_Infopedagogía4.pdf
 
Oxidos Básicos.pdf
Oxidos Básicos.pdfOxidos Básicos.pdf
Oxidos Básicos.pdf
 
PPT: Tu amor es grande hasta los cielos IASD
PPT: Tu amor es grande hasta los cielos IASDPPT: Tu amor es grande hasta los cielos IASD
PPT: Tu amor es grande hasta los cielos IASD
 
herramientas manuales grado cuarto primaria.pptx
herramientas manuales grado cuarto primaria.pptxherramientas manuales grado cuarto primaria.pptx
herramientas manuales grado cuarto primaria.pptx
 
Prueba 1_Jessica J.docx_Evaluación grupo 1
Prueba 1_Jessica J.docx_Evaluación grupo 1Prueba 1_Jessica J.docx_Evaluación grupo 1
Prueba 1_Jessica J.docx_Evaluación grupo 1
 

Ensayo de estadística inferencial

  • 1. REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO INGENIERÍA EN INDUSTRIAS FORESTALES CÁTEDRA: ESTADÍSTICA II ESTADÍSTICA INFERENCIAL RECOPILACIÓN DE MUESTRAS EN POBLACIÓN FINITA E INFINITAS AUTOR: THOMAS RODRÍGUEZ TUTOR: ING. ALVARO BARRIOS UPATA, ABRIL 2015
  • 2. INTRODUCCIÓN La estadística es una ciencia que tiene como finalidad facilitar la solución de problemas en los cuales necesitamos conocer algunas características sobre el comportamiento de algún suceso o evento. En nuestros días, la estadística se ha convertido en un método efectivo para describir con exactitud los valores de datos económicos, políticos, sociales, entre otros… y sirve para analizar los resultados y obtener así una probabilidad. En este ensayo se refleja uno de los tipos de la estadística como lo es la estadística inferencial, la cual se relaciona con el proceso se utilizar los datos de una muestra para realizar inferencias y tomar decisiones con respecto a la población de la cual se toma una muestra que nos permite conocer la realidad y representarla. La estadística inferencial comprende métodos y procedimientos para deducir probabilidades, es decir, hacer inferencias. A través de ellas se realizan generalizaciones o se toman decisiones sobre la base de la información obtenida de la muestra, dicha muestra es un subconjunto de la población objetiva. El estadístico, hoy en día no basta con solo reunir datos y calcularlos sino debe encargarse de interpretar esa información obtenida en el proceso estadístico para así poder tener un resultado óptimo e importante. Es el conjunto de posibilidades de que un evento ocurra o no en un momento y tiempo determinado. Dichos eventos pueden ser medibles a través de una escala de 0 a 1, donde el evento que no pueda ocurrir tiene una probabilidad de 0 (evento imposible) y un evento que ocurra con certeza es de 1 (evento cierto). Cabe destacar que la estadística inferencial puede proporcionar una serie de métodos importantes la cual puede estudiar un sin números de datos. Se muestra una breve explicación sobre los métodos tales como: Estadística Inferencial, Probabilidad y Sus Tipos de Probabilidad, Métodos de Muestreo y Sus Tipos de Muestras, Distribuciones Muestrales.
  • 3. REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO INGENIERÍA EN INDUSTRIAS FORESTALES CÁTEDRA: ESTADÍSTICA II ESTADÍSTICA INFERENCIAL RECOPILACIÓN DE MUESTRAS EN POBLACIÓN FINITA E INFINITAS AUTOR: THOMAS RODRÍGUEZ Resumen: TUTOR: ING. ALVARO BARRIOS La estadística inferencial permite obtener conclusiones o generalizaciones que sobrepasan los límites de los conocimientos aportados por un conjunto de datos. A veces es necesario hacer estudios preliminares que sirva de base como la probabilidad que no es más que una rama de la matemática que sirve para medir en forma numérica de que un evento, ocurra o no, pero existen tres tipos de probabilidad que son la clásica que permite saber si un evento ocurre e aplicando la razón entre el número de casos favorables, y el número total de casos posibles, la probabilidad frecuencial demuestra que durante una observación lo que se busca es un valor fijo, que tiene las frecuencias relativas de que ocurra un evento proporcionando una probabilidad más aproximada, y la probabilidad subjetiva es el enfoque que hay que solo una oportunidad de ocurrencia ocurra solo una vez también en la estadística inferencial nos encontramos con el métodos de muestreo la cual se refiere a un conjunto de características de un parámetro poblacional a partir de un conocimiento de la muestra obtenida o extraída de la población en estudio, el muestreo se hace necesario por motivos de economía de recursos y tiempo, así como de factibilidad. Por ello, el objetivo del investigador es hacer inferencia en relación con la población total, con base en los resultados obtenidos de la muestra.
  • 4. MARCO TEÓRICO ESTADÍSTICA INFERENCIAL Comprende métodos y procedimientos para deducir propiedades, es decir, hacer inferencias, de una población, a partir de una pequeña parte de la misma, o sea, de una muestra. A través de ella se realizan generalizaciones o se toman decisiones sobre la base de la información obtenida de la muestra. Dicha muestra es un subconjunto de la población objetivo sobre la cual se desea inferir o deducir. En la estadística inferencial suele plantarse un problema o una incógnita que puede resolver en términos de estadística, unas características a estudiar, y unos objetivos que permitan arribar a conclusiones en estudio. (Wikipedia, 2011). PROBABILIDAD La teoría de la probabilidad se usa extensamente en áreas como la estadística, la física, la matemática, las ciencias y la filosofía para sacar conclusiones sobre la probabilidad discreta de sucesos potenciales y la mecánica subyacente discreta de sistemas complejos, por lo tanto es la rama de los matemáticas que estudia, mide o determinada a los experimentos o fenómenos aleatorio es que no se sabe qué resultado particular se obtenida al realizarlo. Es decir, si a es un suceso asociado con un experimento aleatorio, no podemos indicar con certeza si a ocurrirá o no en una prueba en particular. (Wikipedia, 2010) TIPOS DE PROBABILIDAD PROBABILIDAD CLÁSICA La probabilidad clásica a menudo recibe el nombre de probabilidad a priori, porque si estamos usando ejemplos ordenados, como monedas y dados legales o una baraja ordinaria, damos la respuesta por anticipado(a priori) sin lanzar la moneda o el dado ni extraer un naipe. No es necesario
  • 5. que realicemos experimentos para hacer nuestras afirmaciones de probabilidad acerca de monedas y dados legales o una baraja ordinaria. Por el contrario, lo hacemos basándonos en el razonamiento lógico antes de efectuar el experimento. ( Levin, R. S/F). La probabilidad clásica define la probabilidad de que un evento ocurra como: Probabilidad de un evento = PROBABILIDAD EMPÍRICA Una teoría de mayor aplicación y muy sostenida es la basada en la frecuencia relativa. Puede atribuirse a este punto de vista el adelanto registrado en la aplicación de la probabilidad en la física, la astronomía, la biología, las ciencias sociales y los negocios. Esta teoría está estrechamente relacionada con el punto de visto expresado por Aristóteles: “lo probable es aquello que ocurre diariamente”. Notamos a través de gran cantidad de observaciones acumulados con los diversos juegos de azar una forma general de regularidad que permitió establecer una teoría. Z supongamos que efectuamos un serie de n repeticiones del experimento e, intentando mantener constantes las condiciones. Pertinentes. (Op. Cit). PROBABILIDAD SUBJETIVAS Se refiere a la probabilidad de ocurrencia de un suceso basado en la experiencia previa, la opinión personal o la intuición del individuo. En este caso después de estudiar la información disponible, se asigna un valor de probabilidad a los sucesos basados en el grado de creencia de que el suceso pueda ocurrir. (Op. Cit).
  • 6. MÉTODOS DE MUESTREO El muestreo es un proceso de selección o escogencia de una parte de la población para propósitos investigativos y/o recolección de información. El muestreo se hace necesario por motivos de economía de recursos y tiempo, así como de factibilidad. Por ello, el objetivo del investigador es hacer inferencia en relación con la población total, con base en los resultados obtenidos de la muestra. Si se está realizando un sondeo de opinión, por ejemplo, no es posible preguntar a toda una población. Si se lleva a cabo un trabajo experimental, no es factible aplicar un tratamiento a todos los sujetos o elementos que conforman la población. Si se trabaja en control de calidad mediante ensayos destructivos, sería descabellado aplicar éstos a todos los elementos que conforman la población de estudio. “un subconjunto del conjunto población” (Pestaña, 2001). TIPOS DE MUESTRAS Existen dos clases básicas de muestras: la muestra probabilística y la muestra no probabilística, como se ilustra en la siguiente figura. La elección entre una u otra se determina con base en los objetivos del estudio, el esquema de la investigación y el alcance de sus contribuciones. (Hernández, Fernández y Baptista, 1991). Figura 1. Tipos de muestras (Fuente: Berenson y Levine, 1982) Aleatorio Simple Aleatorio Sistemático Aleatorio Estratificado Aleatorio Agrupado MuestrasProbabilísticas Muestra DeJuicio Muestra DeCuota Trozoo Casual MuestrasNoProbabilísticas TiposdeMuestrasUtilizados
  • 7. Muestras No Probabilísticas (no aleatorios): la elección de los elementos no depende de la probabilidad, sino de causas relacionadas con las características del investigador o del que hace la muestra. Suelen ser mucho más sencilla y barata de obtener, comprende un agrupamiento de procedimientos como muestras de juicio, muestras de cuota y el trozo de pastel. (Berenson y Levine, 1982; Pestaña, 2001). a) Muestra de Juicio: El investigador selecciona a cualesquiera de los sujetos que desee. b) Muestra de Cuota: Basados en la definición de las características generales de la población, se selecciona posteriormente un número determinado de individuos que las cumplan. Dicha selección está restringida por varias cuotas preestablecidas en relación con sexo, raza, edad, etc. c) Trozo o Casual: Se compone por un proceso de autoselección, es decir, un trozo es una mera “muestra de conveniencia”, un conjunto de sujetos fácilmente agrupados, como los miembros de una clase en particular, el público de un teatro particular. Muestras Probabilísticas (o aleatorias): Estos métodos están basados en el principio de la equiprobabilidad, o sea, todos los individuos o elementos de la población tienen la misma probabilidad de entrar en la muestra, y son los que más aseguran la representatividad de la muestra. No obstante, la selección aleatoria, no garantiza que la muestra sea perfectamente representativa, pero sí garantiza que la muestra escogida no esté sesgada por los propósitos o intenciones del investigador y que las posibles diferencias entre muestra y población sean debidas al azar. Asimismo, es preciso considerar que no siempre se puede realizar una selección aleatoria, puesto que ello implica tener acceso a todos los elementos de la población. Los métodos aleatorios se clasifican como sigue:
  • 8. Aleatorio simple: La selección de la muestra se realiza asignando un número secuencial de registro a cada elemento de la población, escogiendo entre ellos los que correspondan a los números de la tabla aleatoria o mediante un programa estadístico. Aleatorio sistemático: Una vez asignado a cada elemento de la población su número de registro se calcula c = N / n, en donde N es el tamaño de la población y n, el de la muestra, siendo c un número natural. Seguidamente se elige al azar un número “a”, menor que c. El primer elemento seleccionado será el que tenga el registro “a”, el segundo el que tenga “a” + c; el tercero el que tenga el registro “a” + 2c, y así sucesivamente. Aleatorio estratificado: La escogencia se realiza dividendo la población en estratos (por edades, rasgos, características, etc., de acuerdo con los propósitos del estudio); de cada estrato se selecciona un número de elementos decidido por tres vías alternativas, a saber: con el mismo número de elementos por cada estrato (fijación simple); con la misma proporción de elementos por estrato (fijación proporcional) y teniendo en cuenta la proporción numérica y la dispersión de lo datos (fijación óptima). Aleatorio por conglomerados: La escogencia se realiza por grupos y no por individuos. Utilizado en el caso de que existan “grupos naturales” en la población, se procede como en el caso de la estratificación. En esta situación el “grupo” juega un rol similar al del estrato (Pestaña, 2001).
  • 9. Selección de la Muestra Aleatoria Simple: El proceso de seleccionar una muestra aleatoria simple, el cual, aunque no es el más eficiente de los procedimientos para una muestra probabilística, suministra la base a partir de la cual se han ampliado procedimientos más complejos para muestreo. La clave para la selección apropiada de la muestra es lo adecuado del listado de todos los sujetos entre los cuales se tomará la muestra. Si no existe ese listado, hay que construirlo; si un listado es ya obsoleto, se debe actualizar. Muestreo con o sin reemplazo de poblaciones finitas: Hay que tener en cuenta que hay dos métodos básicos utilizables para seleccionar la muestra: la muestra se podría obtener con reemplazo o sin reemplazo de la población finita. El investigador debe enunciar con claridad el método empleado, ya que las diversas fórmulas utilizadas para fines de inferencia estadísticas dependen del método de selección. Al muestrear con reemplazo, la probabilidad de que cualquier sujeto particular sea seleccionado en el primer sorteo en un recipiente es 1 / N. Quienquiera que resulte seleccionado en el primer sorteo, la información pertinente se registra y la tarjeta particular se reemplaza en el recipiente (muestreo con reemplazo). Cuando se muestrea en poblaciones humanas, por lo general se considera más apropiado tener una muestra de diferentes sujetos que permitir mediciones repetidas del mismo sujeto. En dicho caso el método de selección es el muestreo sin reemplazo, mediante el cual, una vez que se ha elegido a un sujeto, no se le puede seleccionar otra vez. Igual que antes, al muestrear sin reemplazo, la probabilidad de cualquier sujeto en la población sea seleccionado es de 1 / N. Quienquiera que resulte seleccionado, la información se anota y la tarjeta particular se pone a un lado, en vez de reemplazarla en el recipiente (muestreo sin reemplazo). Las restantes N – 1 tarjetas en el recipiente, se mezclan bien y se extrae la segunda tarjeta, y así sucesivamente hasta obtener un tamaño de muestra igual a n.
  • 10. Los métodos para muestreo en un recipiente o una pecera, aunque son muy comprensibles, no son muy eficientes. Son deseables métodos de selección menos engorrosos y más científicos. Dos de estos métodos es la tabla de números aleatorios y el uso de Microsoft Excel para obtener las muestras (Berenson y Levine, 1982). Uso de una tabla de números aleatorios: Dicha tabla consiste en una serie de dígitos generados en forma aleatoria o al azar y enlistados en la sucesión en que se generaron los dígitos. Dado que nuestro sistema utiliza 10 dígitos (0, 1, 2,..., 9) la probabilidad de generar al azar cualquier dígito particular es igual a la probabilidad de generar cualquier otro dígito. Esta probabilidad es de 1 entre 10. Ya que cada dígito o sucesión de ellos en la tabla es aleatorio, se puede usar la tabla y leerla en sentido horizontal o vertical. Los dígitos en sí están agrupados en sucesiones de cinco con el solo fin de facilitar la observación de la tabla. (Berenson y Levine, 1982). DISTRIBUCIONES MUESTRALES La estadística es cualquier función de las observaciones en una muestra aleatoria que no depende de parámetros desconocidos. Por ejemplo, X1, X2,…,Xn una muestra aleatoria de tamaño n, entonces la media de la muestra, la varianza de muestra s^2, y la desviación estándar s son estadísticas. Es una función de los datos a partir de una muestra aleatoria, ella misma es también una variable aleatoria. El proceso de extraer conclusiones en torno a poblaciones con base en datos de muestras utiliza en forma considerable las estadísticas. Los procedimientos requieren que entendamos el comportamiento probabilístico de ciertas estadísticas. Hay varias distribuciones de
  • 11. muestreo importantes que se utilizaran de manera extensiva en las siguientes unidades de la asignatura (Hines y Montgomery, 1993). Distribuciones de media muestrales: (Hines y Montgomery, 1993).Dice que las distribuciones de la media muéstrales se distingue dos situaciones: 1) El caso en que el muestreo se hace en una población normalmente distribuida. 2) El caso en que el muestreo se hace en una población que no presente una distribución normal. 1.1) Muestreo en una población distribuida normalmente: i X la media de la muestra aleatoria de tamaño n sacada de una población distribuida normalmente con media y varianza finita 2, entonces la distribución muestral de X está normalmente distribuida con media y varianza 2 n. A su vez, x = /√n se conoce como la desviación estándar de la media muestral o el error estándar de la media y es la medida de variabilidad de la media entre muestra y muestra cuando se muestreo con reemplazo.Para hallar la probabilidad asociada a la X, se trasforma los valores de la X (de la distribución normal) a valores de la distribución normal estandarizada, mediante la fórmula: 1.2) Muestreo en poblaciones que no distribuidas normalmente: En algunas investigaciones nos encontramos con poblaciones que no están distribuidas normalmente. Existen métodos que se pueden emplear cuando se necesita hacer una inferencia sobre la media correspondiente a una población de este tipo. Una solución usada con frecuencia es que se extraiga una muestra grande de la población de interés. Una vez
  • 12. extraído ese n grande, el investigador puede utilizar el Teorema del imite entral, En consecuencia, para hallar la probabilidad asociada a X se utiliza la fórmula: DISTRIBUCIÓN DE LA DIFERENCIA ENTRE DOS MEDIAS MUESTRALES A veces se hace investigaciones en dos poblaciones, donde se desea establecer inferencias sobre la diferencia entre dos medias poblacionales, o saber si es razonable concluir que dos medias poblacionales no son iguales.La forma funcional de la distribución muestral de depende de la forma funcional de las poblaciones de donde se extraen las muestras:  Si ambas poblaciones están distribuidas normalmente la distribución muestral de será normal.  Si una (o ambas) población original no están distribuida normalmente, la distribución muestral de estarán distribuidas más o menos normalmente si son grandes (este resultado es una extensión del Teorema del Limite Central.  ( ̅ ̅ )( ) √ ⁄ ⁄
  • 13. CONCLUCIÓN La estadística inferencial es una rama de la estadística que estudia el comportamiento y propiedades de una muestra para poder generalizar unos resultados obtenidos, basándose en la probabilidad este tipo de estadística permitirá al investigador recolectar datos importantes para el estudio de situaciones y dar respuestas a los problemas de una forma útil y significativa. Como respuestas a esos resultados es inferir si el evento ocurrirá o no mediante la aplicación de estudios como: métodos de muestreo, probabilidad y sus tipos de probabilidad y distribuciones muestrales todos estas técnicas exige que la muestra de la población sea aleatoria. Cabe destacar que la estadística inferencial puede proporcionar una serie de métodos importantes la cual puede estudiar un sin números de datos. Se puede decir que la estadística inferencial es importante para simular situaciones, controlar procesos y verificar las posibles respuestas a condiciones controladas, en una empresa puede reducir costos ya que puede anticipar lo que puede suceder y tomar previsiones, a esperar que pase y no estar preparado.
  • 14. REFERENCIAS BERENSON, M. y LEVINE, D. 1982. Estadística para administración y economía: Conceptos y aplicaciones. Nueva Editorial Interamericana. México. HERNÁNDEZ, R; FERNÁNDEZ, C. y BAPTISTA, P. 1991. Metodología de la investigación. Mc Graw-Hill. México. Levin, R. (S/F). Estadística para Administradores. 2do Edición PESTAÑA, P. 2002. Estadística. Conceptos básicos, terminología y metodología de la estadística descriptiva. Los Libros de El Nacional. Caracas, Venezuela. Wikipedia. (2010) [ ] Disponible: http://es.wikipedia.org/wiki/Probabilidad. [ ] Wikipedia. (2011) [ ] Disponible: http://aldanalisis.blogspot.com/2011/Estadística Descriptiva y inferencial. [ ]