SlideShare una empresa de Scribd logo
1 de 35
Cinética química
Cinética química
Termodinámica: ¿ tiene lugar una reacción?
Cinética: ¿qué tan rápido procede una reacción?
Velocidad de reacción es el cambio en la concentración de
un reactivo o un producto con respecto al tiempo (M/s).
A B
velocidad = -
∆[A]
∆t
velocidad =
∆[B]
∆t
∆[A] = cambios en la concentración de A
sobre un periodo de tiempo ∆t
∆[B] = cambios en la concentración de B
sobre un periodo de tiempo ∆t
Porque [A] disminuye con el tiempo, ∆[A] es
negativa.
A B
velocidad = -
∆[A]
∆t
velocidad =
∆[B]
∆t
tiempo
moléculas B
moléculas A
Br2 (ac) + HCOOH (ac) 2Br-
(ac) + 2H+
(ac) + CO2 (g)
tiempo
393 nm
luz
Detector
∆[Br2] α ∆ Absorción
393nm
Br2 (ac)
Longitud de onda (nm)
Absorción
Br2 (aq) + HCOOH (aq) 2Br-
(aq) + 2H+
(aq) + CO2 (g)
velocidad promedio = -
∆[Br2]
∆t
= -
[Br2]final – [Br2]inicial
tfinal - tinicial
pendiente de
la tangente
pendiente de
la tangente
pendiente de
la tangente
velocidad instantánea = velocidad para un momento específico
Tiempo(s)
velocidad α [Br2]
velocidad = k [Br2]
k =
velocidad
[Br2]
= constante
de velocidad
= 3.50 x 10-3
s-1
2H2O2 (ac) 2H2O (l) + O2 (g)
PV = nRT
P = RT = [O2]RT
n
V
[O2] = P
RT
1
velocidad =
∆[O2]
∆t RT
1 ∆P
∆t
=
medir ∆P con el tiempo
2H2O2 (aq) 2H2O (l) + O2 (g)
Pendiente = 0.12 mmHg/ min
Velocidad de reacción y estequiometría
2A B
Dos moles de A desaparecen por cada mole de B que se
forma.
velocidad =
∆[B]
∆t
velocidad = -
∆[A]
∆t
1
2
aA + bB cC + dD
velocidad = -
∆[A]
∆t
1
a
= -
∆[B]
∆t
1
b
=
∆[C]
∆t
1
c
=
∆[D]
∆t
1
d
Escriba la expresión de velocidad para la reacción
siguiente :
CH4 (g) + 2O2 (g) CO2 (g) + 2H2O (g)
velocidad = -
∆[CH4]
∆t
= -
∆[O2]
∆t
1
2
=
∆[H2O]
∆t
1
2
=
∆[CO2]
∆t
La ley de la velocidad
La ley de la velocidad expresa la relación de la velocidad de
una reacción con la constante de velocidad y la concentración de
los reactivos elevados a alguna potencia.
aA + bB cC + dD
Velocidad = k [A]x
[B]y
La reacción es de orden x en A
La reacción es de orden y en B
La reacción es de orden (x +y) global
F2 (g) + 2ClO2 (g) 2FClO2 (g)
velocidad = k [F2]x
[ClO2]y
Doble [F2] con [ClO2] constante
Velocidad doble
x = 1
Cuadruple [ClO2] con [F2] constante
Velocidad cuádruple
y = 1
velocidad = k [F2][ClO2]
F2 (g) + 2ClO2 (g) 2FClO2 (g)
velocidad = k [F2][ClO2]
Leyes de la
velocidad
• Las leyes de la velocidad siempre se determinan
experimentalmente.
• El orden de la reacción siempre se define en términos de
las concentraciones de los reactivos (no de los productos).
• El orden de un reactivo no está relacionado con el
coeficiente estequiométrico del reactivo en la ecuación
química balanceada.
1
Determine la ley de la velocidad y calcule la constante de
velocidad para la reacción siguiente de los datos
siguientes:
S2O8
2-
(ac) + 3I-
(ac) 2SO4
2-
(ac) + I3
-
(ac)
Experimento [S2O8
2-
] [I-
]
Velocidad
inicial (M/s)
1 0.08 0.034 2.2 x 10-4
2 0.08 0.017 1.1 x 10-4
3 0.16 0.017 2.2 x 10-4
velocidad = k [S2O8
2-
]x
[I-
]y
Doble [I-
], velocidad doble (experimento 1 y 2)
y = 1
Doble [S2O8
2-
], velocidad doble (experimento 2 y 3)
x = 1
k =
velocidad
[S2O8
2-
][I-
]
=
2.2 x 10-4
M/s
(0.08 M)(0.034 M)
= 0.08/M•s
velocidad = k [S2O8
2-
][I-
]
Reacciones de primer orden
A producto velocidad = -
∆[A]
∆t
velocidad = k [A]
k =
velocidad
[A]
= 1/s o s-1M/s
M
=
∆[A]
∆t
= k [A]-
[A] es la concentración de A en algún tiempo t
[A]0 es la concentración de A en el tiempo t=0
[A] = [A]0exp(-kt) ln[A] = ln[A]0 - kt
La reacción 2A B es de primer orden en A con una
constante de velocidad de 2.8 x 10-2
s-1
en 800
C. ¿Cuánto
tiempo tomará para A disminuir de 0.88 M a 0.14 M ?
ln[A] = ln[A]0 - kt
kt = ln[A]0 – ln[A]
t =
ln[A]0 – ln[A]
k
= 66 s
[A]0 = 0.88 M
[A] = 0.14 M
ln
[A]0
[A]
k
=
ln
0.88 M
0.14 M
2.8 x 10-2
s-1
=
Reacciones de primer orden
La vida media, t½, es el tiempo requerido para que la
concentración de un reactivo disminuya a la mitad de su
concentración inicial.
t½ = t cuando [A] = [A]0/2
ln
[A]0
[A]0/2
k
=t½
ln2
k
=
0.693
k
=
¿Cuál es la vida media de N2O5 si la descomposición con
una constante de velocidad de 5.7 x 10-4
s-1
?
t½
ln2
k
=
0.693
5.7 x 10-4
s-1
= = 1200 s = 20 minutos
¿Cómo sabe que la descomposición es de primer orden?
unidades de k (s-1
)
A producto
Reacción de primer orden
# vidas
medias [A] = [A]0/n
1
2
3
4
2
4
8
16
Concentración
Número de medias vidas transcurridas
Reacciones de segundo orden
A producto velocidad = -
∆[A]
∆t
velocidad = k [A]2
k =
rate
[A]2
= 1/M•s
M/s
M2=
∆[A]
∆t
= k [A]2-
[A] es la concentración de A en algún tiempo t
[A]0 es la concentración de A en el tiempo t=0
1
[A]
=
1
[A]0
+ kt
t½ = t cuando [A] = [A]0/2
t½ =
1
k[A]0
Reacciones de orden cero
A producto velocidad = -
∆[A]
∆t
velocidad = k [A]0
= k
k =
rate
[A]0
= M/s
∆[A]
∆t
= k-
[A] es la concentración de A en algún tiempo t
[A]0 es la concentración de A en el tiempo t=0
t½ = t cuando [A] = [A]0/2
t½ =
[A]0
2k
[A] = [A]0 - kt
Resumen de la cinética para las reacciones de
orden cero, primer orden y de segundo orden
Orden
Ley de la
velocidad
Ecuación
Concentración-Tiempo Vida media
0
1
2
velocidad = k
velocidad = k [A]
velocidad = k [A]2
ln[A] = ln[A]0 - kt
1
[A]
=
1
[A]0
+ kt
[A] = [A]0 - kt
t½
ln2
k
=
t½ =
[A]0
2k
t½ =
1
k[A]0
A + B C + D
Reacción exotérmica Reacción endotérmica
La energía de activación (Ea) es la mínima cantidad de
energía requerida para iniciar una reacción química.
Avance de la reacción Avance de la reacción
Energíapotencial
Energíapotencial
Complejo
activado
Complejo
activado
Dependencia de la constante de velocidad
respecto a la temperatura
k = A • exp( -Ea/RT )
Ea es la energía de activación (J/mol)
R es la constante de gas (8.314 J/K•mol
T es la temperatura absoluta
A es el factor de frecuencia
lnk = -
Ea
R
1
T
+ lnA
(Ecuación de Arrhenius)
Temperatura
Constantedevelocidad
lnk = -
Ea
R
1
T
+ lnA
Mecanismos de reacción
El avance de una reacción química global puede representarse
a nivel molecular por una serie de pasos elementales simples
o reacciones elementales.
La secuencia de pasos elementales que conduce a la
formación del producto es el mecanismo de reacción .
2NO (g) + O2 (g) 2NO2 (g)
N2O2 ¡se detecta durante la reacción!
Paso elemental : NO + NO N2O2
Paso elemental : N2O2 + O2 2NO2
Reacción global: 2NO + O2 2NO2
+
Paso elemental : NO + NO N2O2
Paso elemental : N2O2 + O2 2NO2
Reacción global : 2NO + O2 2NO2
+
Intermediarios son especies que aparecen en el mecanismo
de reacción pero no en la ecuación global balanceada.
Un intermediario siempre se forma en un paso elemental
inicial y se consume en un paso elemental más tarde.
La molecularidad de una reacción es el número de
moléculas reaccionando en un paso elemental
• Reacción unimolecular – paso elemental con 1 molécula
• Reacción bimolecular– paso elemental con 2 moléculas
• Reacción termolecular– paso elemental con 3 moléculas
Reacción unimolecular A productos velocidad = k [A]
Reacción bimolecular A + B productos velocidad = k [A][B]
Reacción bimolecular A + A productos velocidad = k [A]2
Las leyes de velocidad y los pasos elementales
Pasos de los mecanismos de reacción verosímil:
• La suma de los pasos elementales debe dar la ecuación
balanceada global para la reacción .
• El paso determinante de la velocidad debe predecir la
misma ley de la velocidad que es experimentalmente
determinada .
El paso determinante de la velocidad es el paso más
lento en la secuencia de pasos que conducen a la
formación del producto.
La ley de la velocidad experimental para la reacción entre
NO2 y CO para producir NO y CO2 es la velocidad =
k[NO2]2
. Se cree que la reacción ocurre vía dos pasos:
Paso 1: NO2 + NO2 NO + NO3
Paso 2: NO3 + CO NO2 + CO2
¿Cuál es la ecuación para la reacción global?
NO2+ CO NO + CO2
¿Cuál es el intermedio?
NO3
¿Qué puede decir sobre las velocidades relativas de los pasos 1 y 2?
velocidad = k[NO2]2
es la ley de la velocidad para el paso 1, así
el paso 1 debe ser más lento que el paso 2
El catalizador es una sustancia que aumenta la velocidad de
una reacción química sin consumirse a sí mismo.
k = A • exp( -Ea/RT ) Ea k
sin catalizador catalizador
velocidadcon catalizador > velocidadsin catalizador
Ea < Ea‘
Avance de la reacción Avance de la reacción
Energíapotencial
Energíapotencial
En la catálisis heterogénea, los reactivos y el catalizador
están en diferentes fases.
En la catálisis homogénea, los reactivos y el catalizador
están dispersos en una sola fase, generalmente líquida.
• Síntesis de Haber para el amoniaco
• El proceso Ostwald para la producción del
ácido nítrico
• Convertidores catalíticos
• Catálisis ácida
• Catálisis básica
N2 (g) + 3H2 (g) 2NH3 (g)
Fe/Al2O3/K2O
catalizador
Proceso de Haber
Proceso Ostwald
Un alambre caliente Pt
sobre una disolución
NH3
Pt-Rh catalizador usado
en el proceso Ostwald
4NH3 (g) + 5O2 (g) 4NO (g) + 6H2O (g)
Pt catalizador
2NO (g) + O2 (g) 2NO2 (g)
2NO2 (g) + H2O (l) HNO2 (ac) + HNO3 (ac)
Convertidores catalíticos
CO + Hidrocarburos no quemados + O2
CO2 + H2O
convertidor
catalítico
2NO + 2NO2 2N2 + 3O2
convertidor
catalítico
Colector de gases de escape
Tubo de escape
Convertidores catalíticos
Compresor de aire;
Fuente secundaria de aire
Salida de tubo de escape
Catálisis enzimática
Sustrato Productos
EnzimaComplejo
Enzima-Sustrato
Enzima
sin catalizador
enzima
catalizada
Avance de la reacciónAvance de la reacción
Energíapotencial
Energíapotencial
Velocidaddeformacióndelproducto
A esta concentración
del sustrato, y a
concentraciones
mayores,todos los
sitios activos están
ocupados

Más contenido relacionado

La actualidad más candente

Cinètica química
Cinètica químicaCinètica química
Cinètica química
David Mur
 
Reacciones multiples (6).ppt
Reacciones multiples (6).pptReacciones multiples (6).ppt
Reacciones multiples (6).ppt
juan flores
 

La actualidad más candente (20)

EFECTO DE LA TEMPERATURA. EC. ARRHENIUS.pptx
EFECTO DE LA TEMPERATURA. EC. ARRHENIUS.pptxEFECTO DE LA TEMPERATURA. EC. ARRHENIUS.pptx
EFECTO DE LA TEMPERATURA. EC. ARRHENIUS.pptx
 
Equilibrio de reacciones químicas
Equilibrio de reacciones químicasEquilibrio de reacciones químicas
Equilibrio de reacciones químicas
 
Lab de quimica Eira santamaria Ana Soto
Lab de quimica Eira santamaria Ana Soto Lab de quimica Eira santamaria Ana Soto
Lab de quimica Eira santamaria Ana Soto
 
Problema de propiedad coligativa temperatura congelación de una disolución
Problema de propiedad coligativa temperatura congelación de una disoluciónProblema de propiedad coligativa temperatura congelación de una disolución
Problema de propiedad coligativa temperatura congelación de una disolución
 
Cinètica química
Cinètica químicaCinètica química
Cinètica química
 
balances elementales
balances elementalesbalances elementales
balances elementales
 
Reacciones multiples (6).ppt
Reacciones multiples (6).pptReacciones multiples (6).ppt
Reacciones multiples (6).ppt
 
Métodos electroquímicos
Métodos electroquímicosMétodos electroquímicos
Métodos electroquímicos
 
Unidad iii complejometría qac ag dic 2013
Unidad iii complejometría qac ag dic 2013Unidad iii complejometría qac ag dic 2013
Unidad iii complejometría qac ag dic 2013
 
catalisis y mecanismos
catalisis y mecanismoscatalisis y mecanismos
catalisis y mecanismos
 
Electrolisis
ElectrolisisElectrolisis
Electrolisis
 
T6. Ácido Base Hidrolisis Sal de ácido débil y base débil
T6. Ácido Base Hidrolisis Sal de ácido débil y base débilT6. Ácido Base Hidrolisis Sal de ácido débil y base débil
T6. Ácido Base Hidrolisis Sal de ácido débil y base débil
 
Problemario fenomenos transporte[1]
Problemario fenomenos transporte[1]Problemario fenomenos transporte[1]
Problemario fenomenos transporte[1]
 
Pdf tabla-de-entalpias-energia-libre-de-gibbs-y-entropia compress
Pdf tabla-de-entalpias-energia-libre-de-gibbs-y-entropia compressPdf tabla-de-entalpias-energia-libre-de-gibbs-y-entropia compress
Pdf tabla-de-entalpias-energia-libre-de-gibbs-y-entropia compress
 
Problemas
ProblemasProblemas
Problemas
 
Comparación Catálisis Homogénea - Heterogénea y ventajas de la Catálisis Homo...
Comparación Catálisis Homogénea - Heterogénea y ventajas de la Catálisis Homo...Comparación Catálisis Homogénea - Heterogénea y ventajas de la Catálisis Homo...
Comparación Catálisis Homogénea - Heterogénea y ventajas de la Catálisis Homo...
 
Reactor Flujo Piston
Reactor Flujo PistonReactor Flujo Piston
Reactor Flujo Piston
 
Reactores
ReactoresReactores
Reactores
 
Practica 4
Practica  4Practica  4
Practica 4
 
Fenomeno Transporte
Fenomeno TransporteFenomeno Transporte
Fenomeno Transporte
 

Destacado

Conceptos Basicos Cinética Química
Conceptos Basicos Cinética QuímicaConceptos Basicos Cinética Química
Conceptos Basicos Cinética Química
Cabrera Miguel
 
2. componentes, momentos y elementos de la planeación didáctica
2.  componentes, momentos y elementos de la planeación didáctica2.  componentes, momentos y elementos de la planeación didáctica
2. componentes, momentos y elementos de la planeación didáctica
juankramirez
 

Destacado (11)

FÍSICA QUÍMICA CONSTANTE DE EQUILIBRIO
FÍSICA QUÍMICA CONSTANTE DE EQUILIBRIO FÍSICA QUÍMICA CONSTANTE DE EQUILIBRIO
FÍSICA QUÍMICA CONSTANTE DE EQUILIBRIO
 
Cinetica Quimica
Cinetica QuimicaCinetica Quimica
Cinetica Quimica
 
Estudio de aprendizaje basado en problemas abp
Estudio de aprendizaje basado en problemas abpEstudio de aprendizaje basado en problemas abp
Estudio de aprendizaje basado en problemas abp
 
Cinetica química
Cinetica químicaCinetica química
Cinetica química
 
Conceptos Basicos Cinética Química
Conceptos Basicos Cinética QuímicaConceptos Basicos Cinética Química
Conceptos Basicos Cinética Química
 
Cinética Química
Cinética QuímicaCinética Química
Cinética Química
 
Cinetica Quimica
Cinetica QuimicaCinetica Quimica
Cinetica Quimica
 
Cinética química. velocidad de reacción
Cinética química.   velocidad de reacciónCinética química.   velocidad de reacción
Cinética química. velocidad de reacción
 
elementos o componentes de la planificacion
 elementos o componentes  de la planificacion  elementos o componentes  de la planificacion
elementos o componentes de la planificacion
 
2. componentes, momentos y elementos de la planeación didáctica
2.  componentes, momentos y elementos de la planeación didáctica2.  componentes, momentos y elementos de la planeación didáctica
2. componentes, momentos y elementos de la planeación didáctica
 
ELEMENTOS FUNDAMENTALES DE LA PLANIFICACIÓN DE LA ENSEÑANZA
ELEMENTOS FUNDAMENTALES DE LA PLANIFICACIÓN DE LA ENSEÑANZAELEMENTOS FUNDAMENTALES DE LA PLANIFICACIÓN DE LA ENSEÑANZA
ELEMENTOS FUNDAMENTALES DE LA PLANIFICACIÓN DE LA ENSEÑANZA
 

Similar a 1. introducción cinética química

Cineticaquimica
Cineticaquimica Cineticaquimica
Cineticaquimica
x_maro_x
 
Cineticaquimica
Cineticaquimica Cineticaquimica
Cineticaquimica
x_maro_x
 
tema_6.pdf
tema_6.pdftema_6.pdf
tema_6.pdf
RoxyHernndez2
 
Microsoft PowerPoint - tema_6_nuevo.ppt [Modo de compatibilidad].pdf
Microsoft PowerPoint - tema_6_nuevo.ppt [Modo de compatibilidad].pdfMicrosoft PowerPoint - tema_6_nuevo.ppt [Modo de compatibilidad].pdf
Microsoft PowerPoint - tema_6_nuevo.ppt [Modo de compatibilidad].pdf
AngelSalomShamayre
 
Cinetica quimica
Cinetica  quimicaCinetica  quimica
Cinetica quimica
Roy Marlon
 

Similar a 1. introducción cinética química (20)

Diapositivas procesos
Diapositivas procesos Diapositivas procesos
Diapositivas procesos
 
CINETICA QUÍMICA 2013.ppt
CINETICA QUÍMICA 2013.pptCINETICA QUÍMICA 2013.ppt
CINETICA QUÍMICA 2013.ppt
 
Cinetica química
Cinetica químicaCinetica química
Cinetica química
 
21 Cinetica Quimica 9 05 05
21 Cinetica Quimica 9 05 0521 Cinetica Quimica 9 05 05
21 Cinetica Quimica 9 05 05
 
CinéTica QuíMica Clase
CinéTica QuíMica ClaseCinéTica QuíMica Clase
CinéTica QuíMica Clase
 
Cineticaquimica
Cineticaquimica Cineticaquimica
Cineticaquimica
 
Cineticaquimica
Cineticaquimica Cineticaquimica
Cineticaquimica
 
Cinticaqumica 101101203133-phpapp02
Cinticaqumica 101101203133-phpapp02Cinticaqumica 101101203133-phpapp02
Cinticaqumica 101101203133-phpapp02
 
Cinética química
Cinética químicaCinética química
Cinética química
 
CINÉTICA QUÍMICA.ppt
CINÉTICA QUÍMICA.pptCINÉTICA QUÍMICA.ppt
CINÉTICA QUÍMICA.ppt
 
tema_6.pdf
tema_6.pdftema_6.pdf
tema_6.pdf
 
Microsoft PowerPoint - tema_6_nuevo.ppt [Modo de compatibilidad].pdf
Microsoft PowerPoint - tema_6_nuevo.ppt [Modo de compatibilidad].pdfMicrosoft PowerPoint - tema_6_nuevo.ppt [Modo de compatibilidad].pdf
Microsoft PowerPoint - tema_6_nuevo.ppt [Modo de compatibilidad].pdf
 
Cinetica Quimica
Cinetica QuimicaCinetica Quimica
Cinetica Quimica
 
Cinética pdf
Cinética  pdfCinética  pdf
Cinética pdf
 
Tema11.ppt
Tema11.pptTema11.ppt
Tema11.ppt
 
Cinetica quimica
Cinetica  quimicaCinetica  quimica
Cinetica quimica
 
Tema 10 (velocidad de reacción)
Tema 10 (velocidad de reacción)Tema 10 (velocidad de reacción)
Tema 10 (velocidad de reacción)
 
TEMA_07_Cinetica_Quimica.pptx
TEMA_07_Cinetica_Quimica.pptxTEMA_07_Cinetica_Quimica.pptx
TEMA_07_Cinetica_Quimica.pptx
 
Cinetica
CineticaCinetica
Cinetica
 
Cinetica
CineticaCinetica
Cinetica
 

Más de Durvel de la Cruz (10)

Lewis Acid Catalysis by Zeolites.pdf
 Lewis Acid Catalysis by Zeolites.pdf Lewis Acid Catalysis by Zeolites.pdf
Lewis Acid Catalysis by Zeolites.pdf
 
Materiales basados en bismuto.pdf
Materiales basados en bismuto.pdfMateriales basados en bismuto.pdf
Materiales basados en bismuto.pdf
 
Practica Virtual1_ cinetica químicas.pptx.pdf
Practica Virtual1_ cinetica químicas.pptx.pdfPractica Virtual1_ cinetica químicas.pptx.pdf
Practica Virtual1_ cinetica químicas.pptx.pdf
 
Difusión de LQ .pdf
Difusión de LQ .pdfDifusión de LQ .pdf
Difusión de LQ .pdf
 
Introducción a la calidad LABORATORIO.pdf
Introducción a la calidad LABORATORIO.pdfIntroducción a la calidad LABORATORIO.pdf
Introducción a la calidad LABORATORIO.pdf
 
Calorimetría y cambios de fase
Calorimetría y cambios de faseCalorimetría y cambios de fase
Calorimetría y cambios de fase
 
Examen a
Examen aExamen a
Examen a
 
Abstract template lacp3 2017
Abstract template lacp3 2017Abstract template lacp3 2017
Abstract template lacp3 2017
 
Introducción
IntroducciónIntroducción
Introducción
 
Sintesis, caracterizacion y evaluacion fotocatalitica de oxidos mixtos titani...
Sintesis, caracterizacion y evaluacion fotocatalitica de oxidos mixtos titani...Sintesis, caracterizacion y evaluacion fotocatalitica de oxidos mixtos titani...
Sintesis, caracterizacion y evaluacion fotocatalitica de oxidos mixtos titani...
 

Último

RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACIONRESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
amelia poma
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
EliaHernndez7
 

Último (20)

Interpretación de cortes geológicos 2024
Interpretación de cortes geológicos 2024Interpretación de cortes geológicos 2024
Interpretación de cortes geológicos 2024
 
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdfFICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
 
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACIONRESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
 
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptxCONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
 
Power Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptxPower Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptx
 
1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...
1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...
1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...
 
Actividades para el 11 de Mayo día del himno.docx
Actividades para el 11 de Mayo día del himno.docxActividades para el 11 de Mayo día del himno.docx
Actividades para el 11 de Mayo día del himno.docx
 
Sesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdfSesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdf
 
prostitución en España: una mirada integral!
prostitución en España: una mirada integral!prostitución en España: una mirada integral!
prostitución en España: una mirada integral!
 
Biografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdfBiografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdf
 
Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024
 
Tema 11. Dinámica de la hidrosfera 2024
Tema 11.  Dinámica de la hidrosfera 2024Tema 11.  Dinámica de la hidrosfera 2024
Tema 11. Dinámica de la hidrosfera 2024
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
 
La Evaluacion Formativa SM6 Ccesa007.pdf
La Evaluacion Formativa SM6  Ccesa007.pdfLa Evaluacion Formativa SM6  Ccesa007.pdf
La Evaluacion Formativa SM6 Ccesa007.pdf
 
Los avatares para el juego dramático en entornos virtuales
Los avatares para el juego dramático en entornos virtualesLos avatares para el juego dramático en entornos virtuales
Los avatares para el juego dramático en entornos virtuales
 
PLAN LECTOR 2024 integrado nivel inicial-miercoles 10.pptx
PLAN LECTOR 2024  integrado nivel inicial-miercoles 10.pptxPLAN LECTOR 2024  integrado nivel inicial-miercoles 10.pptx
PLAN LECTOR 2024 integrado nivel inicial-miercoles 10.pptx
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
 
Usos y desusos de la inteligencia artificial en revistas científicas
Usos y desusos de la inteligencia artificial en revistas científicasUsos y desusos de la inteligencia artificial en revistas científicas
Usos y desusos de la inteligencia artificial en revistas científicas
 
Código Civil de la República Bolivariana de Venezuela
Código Civil de la República Bolivariana de VenezuelaCódigo Civil de la República Bolivariana de Venezuela
Código Civil de la República Bolivariana de Venezuela
 

1. introducción cinética química

  • 2. Cinética química Termodinámica: ¿ tiene lugar una reacción? Cinética: ¿qué tan rápido procede una reacción? Velocidad de reacción es el cambio en la concentración de un reactivo o un producto con respecto al tiempo (M/s). A B velocidad = - ∆[A] ∆t velocidad = ∆[B] ∆t ∆[A] = cambios en la concentración de A sobre un periodo de tiempo ∆t ∆[B] = cambios en la concentración de B sobre un periodo de tiempo ∆t Porque [A] disminuye con el tiempo, ∆[A] es negativa.
  • 3. A B velocidad = - ∆[A] ∆t velocidad = ∆[B] ∆t tiempo moléculas B moléculas A
  • 4. Br2 (ac) + HCOOH (ac) 2Br- (ac) + 2H+ (ac) + CO2 (g) tiempo 393 nm luz Detector ∆[Br2] α ∆ Absorción 393nm Br2 (ac) Longitud de onda (nm) Absorción
  • 5. Br2 (aq) + HCOOH (aq) 2Br- (aq) + 2H+ (aq) + CO2 (g) velocidad promedio = - ∆[Br2] ∆t = - [Br2]final – [Br2]inicial tfinal - tinicial pendiente de la tangente pendiente de la tangente pendiente de la tangente velocidad instantánea = velocidad para un momento específico Tiempo(s)
  • 6. velocidad α [Br2] velocidad = k [Br2] k = velocidad [Br2] = constante de velocidad = 3.50 x 10-3 s-1
  • 7. 2H2O2 (ac) 2H2O (l) + O2 (g) PV = nRT P = RT = [O2]RT n V [O2] = P RT 1 velocidad = ∆[O2] ∆t RT 1 ∆P ∆t = medir ∆P con el tiempo
  • 8. 2H2O2 (aq) 2H2O (l) + O2 (g) Pendiente = 0.12 mmHg/ min
  • 9. Velocidad de reacción y estequiometría 2A B Dos moles de A desaparecen por cada mole de B que se forma. velocidad = ∆[B] ∆t velocidad = - ∆[A] ∆t 1 2 aA + bB cC + dD velocidad = - ∆[A] ∆t 1 a = - ∆[B] ∆t 1 b = ∆[C] ∆t 1 c = ∆[D] ∆t 1 d
  • 10. Escriba la expresión de velocidad para la reacción siguiente : CH4 (g) + 2O2 (g) CO2 (g) + 2H2O (g) velocidad = - ∆[CH4] ∆t = - ∆[O2] ∆t 1 2 = ∆[H2O] ∆t 1 2 = ∆[CO2] ∆t
  • 11. La ley de la velocidad La ley de la velocidad expresa la relación de la velocidad de una reacción con la constante de velocidad y la concentración de los reactivos elevados a alguna potencia. aA + bB cC + dD Velocidad = k [A]x [B]y La reacción es de orden x en A La reacción es de orden y en B La reacción es de orden (x +y) global
  • 12. F2 (g) + 2ClO2 (g) 2FClO2 (g) velocidad = k [F2]x [ClO2]y Doble [F2] con [ClO2] constante Velocidad doble x = 1 Cuadruple [ClO2] con [F2] constante Velocidad cuádruple y = 1 velocidad = k [F2][ClO2]
  • 13. F2 (g) + 2ClO2 (g) 2FClO2 (g) velocidad = k [F2][ClO2] Leyes de la velocidad • Las leyes de la velocidad siempre se determinan experimentalmente. • El orden de la reacción siempre se define en términos de las concentraciones de los reactivos (no de los productos). • El orden de un reactivo no está relacionado con el coeficiente estequiométrico del reactivo en la ecuación química balanceada. 1
  • 14. Determine la ley de la velocidad y calcule la constante de velocidad para la reacción siguiente de los datos siguientes: S2O8 2- (ac) + 3I- (ac) 2SO4 2- (ac) + I3 - (ac) Experimento [S2O8 2- ] [I- ] Velocidad inicial (M/s) 1 0.08 0.034 2.2 x 10-4 2 0.08 0.017 1.1 x 10-4 3 0.16 0.017 2.2 x 10-4 velocidad = k [S2O8 2- ]x [I- ]y Doble [I- ], velocidad doble (experimento 1 y 2) y = 1 Doble [S2O8 2- ], velocidad doble (experimento 2 y 3) x = 1 k = velocidad [S2O8 2- ][I- ] = 2.2 x 10-4 M/s (0.08 M)(0.034 M) = 0.08/M•s velocidad = k [S2O8 2- ][I- ]
  • 15. Reacciones de primer orden A producto velocidad = - ∆[A] ∆t velocidad = k [A] k = velocidad [A] = 1/s o s-1M/s M = ∆[A] ∆t = k [A]- [A] es la concentración de A en algún tiempo t [A]0 es la concentración de A en el tiempo t=0 [A] = [A]0exp(-kt) ln[A] = ln[A]0 - kt
  • 16. La reacción 2A B es de primer orden en A con una constante de velocidad de 2.8 x 10-2 s-1 en 800 C. ¿Cuánto tiempo tomará para A disminuir de 0.88 M a 0.14 M ? ln[A] = ln[A]0 - kt kt = ln[A]0 – ln[A] t = ln[A]0 – ln[A] k = 66 s [A]0 = 0.88 M [A] = 0.14 M ln [A]0 [A] k = ln 0.88 M 0.14 M 2.8 x 10-2 s-1 =
  • 17. Reacciones de primer orden La vida media, t½, es el tiempo requerido para que la concentración de un reactivo disminuya a la mitad de su concentración inicial. t½ = t cuando [A] = [A]0/2 ln [A]0 [A]0/2 k =t½ ln2 k = 0.693 k = ¿Cuál es la vida media de N2O5 si la descomposición con una constante de velocidad de 5.7 x 10-4 s-1 ? t½ ln2 k = 0.693 5.7 x 10-4 s-1 = = 1200 s = 20 minutos ¿Cómo sabe que la descomposición es de primer orden? unidades de k (s-1 )
  • 18. A producto Reacción de primer orden # vidas medias [A] = [A]0/n 1 2 3 4 2 4 8 16 Concentración Número de medias vidas transcurridas
  • 19. Reacciones de segundo orden A producto velocidad = - ∆[A] ∆t velocidad = k [A]2 k = rate [A]2 = 1/M•s M/s M2= ∆[A] ∆t = k [A]2- [A] es la concentración de A en algún tiempo t [A]0 es la concentración de A en el tiempo t=0 1 [A] = 1 [A]0 + kt t½ = t cuando [A] = [A]0/2 t½ = 1 k[A]0
  • 20. Reacciones de orden cero A producto velocidad = - ∆[A] ∆t velocidad = k [A]0 = k k = rate [A]0 = M/s ∆[A] ∆t = k- [A] es la concentración de A en algún tiempo t [A]0 es la concentración de A en el tiempo t=0 t½ = t cuando [A] = [A]0/2 t½ = [A]0 2k [A] = [A]0 - kt
  • 21. Resumen de la cinética para las reacciones de orden cero, primer orden y de segundo orden Orden Ley de la velocidad Ecuación Concentración-Tiempo Vida media 0 1 2 velocidad = k velocidad = k [A] velocidad = k [A]2 ln[A] = ln[A]0 - kt 1 [A] = 1 [A]0 + kt [A] = [A]0 - kt t½ ln2 k = t½ = [A]0 2k t½ = 1 k[A]0
  • 22. A + B C + D Reacción exotérmica Reacción endotérmica La energía de activación (Ea) es la mínima cantidad de energía requerida para iniciar una reacción química. Avance de la reacción Avance de la reacción Energíapotencial Energíapotencial Complejo activado Complejo activado
  • 23. Dependencia de la constante de velocidad respecto a la temperatura k = A • exp( -Ea/RT ) Ea es la energía de activación (J/mol) R es la constante de gas (8.314 J/K•mol T es la temperatura absoluta A es el factor de frecuencia lnk = - Ea R 1 T + lnA (Ecuación de Arrhenius) Temperatura Constantedevelocidad
  • 25. Mecanismos de reacción El avance de una reacción química global puede representarse a nivel molecular por una serie de pasos elementales simples o reacciones elementales. La secuencia de pasos elementales que conduce a la formación del producto es el mecanismo de reacción . 2NO (g) + O2 (g) 2NO2 (g) N2O2 ¡se detecta durante la reacción! Paso elemental : NO + NO N2O2 Paso elemental : N2O2 + O2 2NO2 Reacción global: 2NO + O2 2NO2 +
  • 26. Paso elemental : NO + NO N2O2 Paso elemental : N2O2 + O2 2NO2 Reacción global : 2NO + O2 2NO2 + Intermediarios son especies que aparecen en el mecanismo de reacción pero no en la ecuación global balanceada. Un intermediario siempre se forma en un paso elemental inicial y se consume en un paso elemental más tarde. La molecularidad de una reacción es el número de moléculas reaccionando en un paso elemental • Reacción unimolecular – paso elemental con 1 molécula • Reacción bimolecular– paso elemental con 2 moléculas • Reacción termolecular– paso elemental con 3 moléculas
  • 27. Reacción unimolecular A productos velocidad = k [A] Reacción bimolecular A + B productos velocidad = k [A][B] Reacción bimolecular A + A productos velocidad = k [A]2 Las leyes de velocidad y los pasos elementales Pasos de los mecanismos de reacción verosímil: • La suma de los pasos elementales debe dar la ecuación balanceada global para la reacción . • El paso determinante de la velocidad debe predecir la misma ley de la velocidad que es experimentalmente determinada . El paso determinante de la velocidad es el paso más lento en la secuencia de pasos que conducen a la formación del producto.
  • 28. La ley de la velocidad experimental para la reacción entre NO2 y CO para producir NO y CO2 es la velocidad = k[NO2]2 . Se cree que la reacción ocurre vía dos pasos: Paso 1: NO2 + NO2 NO + NO3 Paso 2: NO3 + CO NO2 + CO2 ¿Cuál es la ecuación para la reacción global? NO2+ CO NO + CO2 ¿Cuál es el intermedio? NO3 ¿Qué puede decir sobre las velocidades relativas de los pasos 1 y 2? velocidad = k[NO2]2 es la ley de la velocidad para el paso 1, así el paso 1 debe ser más lento que el paso 2
  • 29. El catalizador es una sustancia que aumenta la velocidad de una reacción química sin consumirse a sí mismo. k = A • exp( -Ea/RT ) Ea k sin catalizador catalizador velocidadcon catalizador > velocidadsin catalizador Ea < Ea‘ Avance de la reacción Avance de la reacción Energíapotencial Energíapotencial
  • 30. En la catálisis heterogénea, los reactivos y el catalizador están en diferentes fases. En la catálisis homogénea, los reactivos y el catalizador están dispersos en una sola fase, generalmente líquida. • Síntesis de Haber para el amoniaco • El proceso Ostwald para la producción del ácido nítrico • Convertidores catalíticos • Catálisis ácida • Catálisis básica
  • 31. N2 (g) + 3H2 (g) 2NH3 (g) Fe/Al2O3/K2O catalizador Proceso de Haber
  • 32. Proceso Ostwald Un alambre caliente Pt sobre una disolución NH3 Pt-Rh catalizador usado en el proceso Ostwald 4NH3 (g) + 5O2 (g) 4NO (g) + 6H2O (g) Pt catalizador 2NO (g) + O2 (g) 2NO2 (g) 2NO2 (g) + H2O (l) HNO2 (ac) + HNO3 (ac)
  • 33. Convertidores catalíticos CO + Hidrocarburos no quemados + O2 CO2 + H2O convertidor catalítico 2NO + 2NO2 2N2 + 3O2 convertidor catalítico Colector de gases de escape Tubo de escape Convertidores catalíticos Compresor de aire; Fuente secundaria de aire Salida de tubo de escape
  • 35. sin catalizador enzima catalizada Avance de la reacciónAvance de la reacción Energíapotencial Energíapotencial Velocidaddeformacióndelproducto A esta concentración del sustrato, y a concentraciones mayores,todos los sitios activos están ocupados