SlideShare una empresa de Scribd logo
1 de 14
Descargar para leer sin conexión
República Bolivariana de Venezuela
Ministerio Del Poder Popular Para la Educación
Universidad Politécnica Territorial Andrés Eloy Blanco
Barquisimeto – Estado – Lara
Participante:
Cesar Parra
C.I: 30.042.258
U.C: Matemática
PNF. Entrenamiento Deportivo
Barquisimeto, Febrero de 2023
Una expresión algebraica es una combinación de letras y números unidos por
medio de las operaciones: suma, resta, multiplicación, división, potenciación o
radiación, de manera infinita. Sirven para resolver problemas complejos en los que
se tiene que diseñar una ecuación.
Suma: para sumar dos o más expresiones algebraicas con uno o más
términos semejantes que existan, en uno solo. Se puede aplicar la
propiedad distributiva de la multiplicación con respecto de la suma.
Suma de monomio: cuando los factores son iguales, por ejemplo, la suma
4x+5x= (4+5) x = 9x.
Suma de polinomios: un polinomio es una expresión algebraica que está
formada por sumas y restas de los diferentes términos que conforman el
polinomio. Para sumar dos polinomios, podemos seguir los siguientes
pasos: p(x) + q(x) = 2x+5+(5x+4)
= 2x+5x+5+4
= 7x+9
Resta: con la resta algebraica sustraemos el valor de una expresión
algebraica de otra. Por ser expresiones.
Resta de monomios: restaremos solo los términos numéricos, ya que en
ambos casos, es lo mismo que multiplicar por x :
4x-5x= -x
Expresiones
Algebraicas
Resta de polinomios: Esta formada por sumas y restas de los términos con
diferentes literales:
p(x)= 2x+5
Q(x)= 5x+4
P(x)-q(x)= 2x+5 – (5x+4)
=2x+5-5x-4
=2x-5x+5-4
= -3x+1
El valor numérico de una expresión algebraica, para un determinado
valor, es el número que se obtiene al sustituir en esta por valor numérico
dado y realizar las operaciones indicadas.
Valor numérico de un polinomio: El valor numérico de un polinomio es el
resultado que obtenemos al sustituir la variable x por un número cualquiera.
P(x)=2x3+5x-3 ; x-1
Es una operación matemática que consiste en obtener un resultado
llamado producto a partir de dos factores algebraicos llamada multiplicando
y multiplicador.
Valor
Numérico
Multiplicación
*Entre monomios:
1- Primero multiplicamos los coeficientes de cada monomio.
2- luego mulplitiplicamos la parte literal, esto es las variables según las
leyes de los exponentes.
3- Aplicamos la ley distributiva.
4- Por ultimo aplicamos finalmente las leyes de los signos.
Ejemplo: multiplicar 3x2 y 4x4
Solución: (3x2) (4x4)= (3.4)(x2 . x4)= (12) (x2+ 5)= 12x7
*Entre polinomios: Solo debemos tener en cuenta la propiedad, la ley de
signos y las leyes de la potenciación.
La forma más básica o reducida de la multiplicación entre dos polinomios es
de la forma (a+b) (c+d)= ac+bc+ad+bd
Ejemplo: multiplicar (x-3)(x4)=
x.x+x.4+(-3).x.4=x2+4x+(-3x)+(-12)=
x2+4x-3x-12= x2+x-12
La división de expresiones algebraicas consta de las mismas partes que la
división aritmética, así que si hay 2 expresiones algebraicas, p(x) dividiendo y q(y)
siendo el divisor, de modo que el grado de p(x) sea mayor o igual a.0 siempre
hallaremos a 2 expresiones algebraicas dividiéndose.
*División de monomios: Se dividen los coeficientes y las literales se restan junto
con sus exponentes.
División
Ejemplos: -5xm+2y4z/-4xm-4y3z= 5/4 x6y
*División de polinomios: Para dividir un polinomio entre otro polinomio es
necesario seguir los siguientes pasos:
1- Se ordenan los 2 polinomios n orden descendente y alfabético.
2- Se divide el primer término del divisor.
3- Se multiplica el primer término del coeficiente por el divisor y el producto
obtenido se resta el dividendo, obteniendo un nuevo dividendo.
4- Se repite los paso 2 y 3 hasta que el resultado sea 0 o de menor exponente que
el dividendo.
Ejemplo: -15x2+22xy-8y2/ -3x+2y=5x-4y
Es el nombre que reciben multiplicaciones con expresiones algebraicas cuto
resultado se puede escribir mediante simple inspección, sin verificar la
multiplicación que cumplen ciertas reglas fijas. Cada producto notable corresponde
a una formula de factorización.
Ejemplo: multiplicar 3xy ; x+y
Solución: 3xy(x+y)= 3xy x+3xy.y = 3x2y+3xy2
Producto
Notable
Es el proceso de encontrar dos o más expresiones cuyo producto sea igual a una
expresión dada: es decir, consiste en transformar a dicho polinomio como el
producto de dos o más factores. Encontrar los polinomios raíz e otros más
complejos.
1. Descomponer en factores a 2 + 2 a
a2 y 2a contienen el factor común a. Escribimos el factor común a como
coeficiente de un paréntesis dentro del cual escribimos los cocientes
obtenidos de dividir a 2+a = a y a2+ 2a =a (a+2)
1. Descomponer x( a+b) +m (a+b). Estos dos términos tienen como factor
común el binomio (a+b), por lo que podemos (a+b) como coeficiente de
un paréntesis dentro del cual escribimos los coeficientes de x(a+b)=
m(a+b)(x+m) y tendremos :
Factorización por
producto notable
Factor Común
Monomio
Factor Común
Polinomio
X(a+b)+m(a+b)=(a+b)=(x+m)
Simplificar una expresión algebraica consiste en escribirla de la forma
más sencilla posible.
Para simplificar una fracción algebraica se divide el numedor y el
dominador de la fracción por un polinomio que sea factor común de
ambos.
X2+4x+4= (x+2)2 = (x+2)
X2-4 (x+2).(x-2) (x-2)
La resolvente cuadrática se considera la ecuación con forma de un cuadrado
igual a constante, un producto de factores lineales igual a cero y la forma general
que usa la formula cuadrática o resolvente. si una ecuación cuadrática no está en
alguna de estas formas entonces se intenta llevar a alguna de ellas.
Simplificación de
Fracciones Algebraicas
Sumas y Restas
Factorización por
Resolvente Cuadrática
Ruffini es un método algorítmico que sistematiza la factorización de polinomios
con raíces enteras y fraccionarias. Lo mecánico de su aplicación hace que sea
accesible su aplicación, salvo que no se denominen las operaciones elementales
con números enteros y fraccionarios.
Es la operación inversa a la potenciación y consiste en quedar dos números,
llamados radicando e índice, hallar un tercero, llamada raíz, tal que, elevado al
índice, sea igual al radicando.
Para poder multiplicar y dividir radicales es necesario que tengan el mismo
índice. Cuando no tienen el mismo índice hay que reducirlos antes. El producto de
radicales con el mismo índice y cuyo radicando se obtiene de multiplicar los
radicandos.
Factorización por el
Método de Ruffini
Radiación
Multiplicación y
División de
Radicales
Llamaremos expresión conjugada de una expresión de dos términos, a la que
se obtiene de esta, combinando el signo del segundo término. Por ejemplo, la
expresión conjugada de a+b es a-b. Entre otros.
Expresiones
Conjugadas
Sumas y restas de monomios
1- 3xy+5xy= 8xy
2- 3xyz+5xyz-xyz= 7xyz
Sumas y restas de polinomios
1- P(x)= 2x+5 Q(x)=5x+4
P(x)+q(x)=2x+5+5+5x+4
2x+5x+5+4
7x+9
2- 5. ( 12 – 18) – (-35 + 115) / 4
5. (-6) – (80) / 4
-30 – 20
-50
Multiplicación de monomios
1- 3x2 . 7x= 3.7.x2.x= 21x3
4x2y5 . (-3) x3y4
4.(-3)x2.x3.y5.y4
-12x5.y9
EJERCICIOS
Multiplicación polinomios
1- P (X) = -3
P(X) = -3x4
– 12x2
+ 25x3
+ 12x – 85
P(-3) = -3(-3)4
+ 25 (-3)3
– 12(-3)2
+ 12(-3) – 85
P(-3) = -3.81 + 25.(-27) -12. 9 + 12.(-3) – 85
P(-3) = -243 – 675 – 108 – 36 – 85
P(-3) = 1147
2- (x+1)(x-1)= x (x-1)+1 (x-1)
x.x-x.1+x-11
x2-x+x-1
x2-1
Productos notables
(a + b)2= a2+b2+2ab
1- (3X+2Y)2= (3X)2+(2Y)2+2.3X.2X
9X2+4Y2+12XY
(a-b)2=a2.b2-2.a.b
(a + b)2= a2+b2-2ab
2- (7x-2y)2=7(x)2+(2y)2-27x.2y
49x2+4y2-28xy
División
1- (5x2-7x-10) : (x-2)
5x2-7x-10 x – 2
-5x+10x 5x+3
3x-10
-3x+6
-4
Método de Ruffini
x3
+ 2X – 5X – 6 = 0
A) Divisible ( -6) = ± 1; ± 2; ± 3; ± 6
B) 1 2 -5 -6
-1 -1 -1 6
1 1 -6 0
2 2 6
1 3 0
-3 -3
1 0
 https://www.ejemplo.com/5-matematicas/4670-ejemplo-de-suma-
algebraica.html.
 https://sites.google.com/site/algebra2611/unidad-2/productos-notable
 https://www.ejemplode.com/5-matematicas/4671-ejemplo-de-resta-
algebraica.html
Bibliografía
Expresiones Algebraicas Cesar.pdf

Más contenido relacionado

Similar a Expresiones Algebraicas Cesar.pdf

Expresiones algebraicas, Radicación y Factorizacion.pdf
Expresiones algebraicas, Radicación y Factorizacion.pdfExpresiones algebraicas, Radicación y Factorizacion.pdf
Expresiones algebraicas, Radicación y Factorizacion.pdf
GabrielaYacobucci
 

Similar a Expresiones Algebraicas Cesar.pdf (20)

Actividad de Matemáticas.pptx
Actividad de Matemáticas.pptxActividad de Matemáticas.pptx
Actividad de Matemáticas.pptx
 
Expresiones Algebraicas
Expresiones Algebraicas Expresiones Algebraicas
Expresiones Algebraicas
 
Presentación Wirliannys.pptx
Presentación Wirliannys.pptxPresentación Wirliannys.pptx
Presentación Wirliannys.pptx
 
Trabajo matematica completo
Trabajo matematica completoTrabajo matematica completo
Trabajo matematica completo
 
expresiones algebraicas
expresiones algebraicasexpresiones algebraicas
expresiones algebraicas
 
trabajo expresion algebraica fabiana yari TU123.pptx
trabajo expresion algebraica  fabiana yari TU123.pptxtrabajo expresion algebraica  fabiana yari TU123.pptx
trabajo expresion algebraica fabiana yari TU123.pptx
 
Expresiones algebraicas
Expresiones algebraicas Expresiones algebraicas
Expresiones algebraicas
 
Expresiones algebraicas, Radicación y Factorizacion.pdf
Expresiones algebraicas, Radicación y Factorizacion.pdfExpresiones algebraicas, Radicación y Factorizacion.pdf
Expresiones algebraicas, Radicación y Factorizacion.pdf
 
Expresiones algebraicas.docx
Expresiones algebraicas.docxExpresiones algebraicas.docx
Expresiones algebraicas.docx
 
Co 0101 piedra catherine marin miguel
Co 0101 piedra catherine marin miguelCo 0101 piedra catherine marin miguel
Co 0101 piedra catherine marin miguel
 
Expresiones algebra
Expresiones algebraExpresiones algebra
Expresiones algebra
 
Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion
 
EXPRESIONES ALGEBRAICAS.docx
EXPRESIONES ALGEBRAICAS.docxEXPRESIONES ALGEBRAICAS.docx
EXPRESIONES ALGEBRAICAS.docx
 
Expresiones algebraicas
Expresiones algebraicasExpresiones algebraicas
Expresiones algebraicas
 
Expresiones algebraicas
Expresiones algebraicasExpresiones algebraicas
Expresiones algebraicas
 
Trabajo matematica..pdf
Trabajo matematica..pdfTrabajo matematica..pdf
Trabajo matematica..pdf
 
Presentación Leydi Timaure.docx
Presentación Leydi Timaure.docxPresentación Leydi Timaure.docx
Presentación Leydi Timaure.docx
 
Expresiones Algebraicas, Radicalizacion y factorizacion
Expresiones Algebraicas, Radicalizacion y factorizacionExpresiones Algebraicas, Radicalizacion y factorizacion
Expresiones Algebraicas, Radicalizacion y factorizacion
 
trabajo de junior.docx
trabajo de junior.docxtrabajo de junior.docx
trabajo de junior.docx
 
trabajo de junior.docx
trabajo de junior.docxtrabajo de junior.docx
trabajo de junior.docx
 

Último

🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
EliaHernndez7
 
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
jlorentemartos
 
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACIONRESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
amelia poma
 

Último (20)

Novena de Pentecostés con textos de san Juan Eudes
Novena de Pentecostés con textos de san Juan EudesNovena de Pentecostés con textos de san Juan Eudes
Novena de Pentecostés con textos de san Juan Eudes
 
Posición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptxPosición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptx
 
Lecciones 06 Esc. Sabática. Los dos testigos
Lecciones 06 Esc. Sabática. Los dos testigosLecciones 06 Esc. Sabática. Los dos testigos
Lecciones 06 Esc. Sabática. Los dos testigos
 
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptPINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
 
Biografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdfBiografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdf
 
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
 
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdfPlan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
 
Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024
 
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptxLA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
 
PLAN LECTOR 2024 integrado nivel inicial-miercoles 10.pptx
PLAN LECTOR 2024  integrado nivel inicial-miercoles 10.pptxPLAN LECTOR 2024  integrado nivel inicial-miercoles 10.pptx
PLAN LECTOR 2024 integrado nivel inicial-miercoles 10.pptx
 
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptxCONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
 
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
 
Factores que intervienen en la Administración por Valores.pdf
Factores que intervienen en la Administración por Valores.pdfFactores que intervienen en la Administración por Valores.pdf
Factores que intervienen en la Administración por Valores.pdf
 
Sesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdfSesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdf
 
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACIONRESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
 
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPCTRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
 
Power Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptxPower Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptx
 
La Evaluacion Formativa SM6 Ccesa007.pdf
La Evaluacion Formativa SM6  Ccesa007.pdfLa Evaluacion Formativa SM6  Ccesa007.pdf
La Evaluacion Formativa SM6 Ccesa007.pdf
 

Expresiones Algebraicas Cesar.pdf

  • 1. República Bolivariana de Venezuela Ministerio Del Poder Popular Para la Educación Universidad Politécnica Territorial Andrés Eloy Blanco Barquisimeto – Estado – Lara Participante: Cesar Parra C.I: 30.042.258 U.C: Matemática PNF. Entrenamiento Deportivo Barquisimeto, Febrero de 2023
  • 2. Una expresión algebraica es una combinación de letras y números unidos por medio de las operaciones: suma, resta, multiplicación, división, potenciación o radiación, de manera infinita. Sirven para resolver problemas complejos en los que se tiene que diseñar una ecuación. Suma: para sumar dos o más expresiones algebraicas con uno o más términos semejantes que existan, en uno solo. Se puede aplicar la propiedad distributiva de la multiplicación con respecto de la suma. Suma de monomio: cuando los factores son iguales, por ejemplo, la suma 4x+5x= (4+5) x = 9x. Suma de polinomios: un polinomio es una expresión algebraica que está formada por sumas y restas de los diferentes términos que conforman el polinomio. Para sumar dos polinomios, podemos seguir los siguientes pasos: p(x) + q(x) = 2x+5+(5x+4) = 2x+5x+5+4 = 7x+9 Resta: con la resta algebraica sustraemos el valor de una expresión algebraica de otra. Por ser expresiones. Resta de monomios: restaremos solo los términos numéricos, ya que en ambos casos, es lo mismo que multiplicar por x : 4x-5x= -x Expresiones Algebraicas
  • 3. Resta de polinomios: Esta formada por sumas y restas de los términos con diferentes literales: p(x)= 2x+5 Q(x)= 5x+4 P(x)-q(x)= 2x+5 – (5x+4) =2x+5-5x-4 =2x-5x+5-4 = -3x+1 El valor numérico de una expresión algebraica, para un determinado valor, es el número que se obtiene al sustituir en esta por valor numérico dado y realizar las operaciones indicadas. Valor numérico de un polinomio: El valor numérico de un polinomio es el resultado que obtenemos al sustituir la variable x por un número cualquiera. P(x)=2x3+5x-3 ; x-1 Es una operación matemática que consiste en obtener un resultado llamado producto a partir de dos factores algebraicos llamada multiplicando y multiplicador. Valor Numérico Multiplicación
  • 4. *Entre monomios: 1- Primero multiplicamos los coeficientes de cada monomio. 2- luego mulplitiplicamos la parte literal, esto es las variables según las leyes de los exponentes. 3- Aplicamos la ley distributiva. 4- Por ultimo aplicamos finalmente las leyes de los signos. Ejemplo: multiplicar 3x2 y 4x4 Solución: (3x2) (4x4)= (3.4)(x2 . x4)= (12) (x2+ 5)= 12x7 *Entre polinomios: Solo debemos tener en cuenta la propiedad, la ley de signos y las leyes de la potenciación. La forma más básica o reducida de la multiplicación entre dos polinomios es de la forma (a+b) (c+d)= ac+bc+ad+bd Ejemplo: multiplicar (x-3)(x4)= x.x+x.4+(-3).x.4=x2+4x+(-3x)+(-12)= x2+4x-3x-12= x2+x-12 La división de expresiones algebraicas consta de las mismas partes que la división aritmética, así que si hay 2 expresiones algebraicas, p(x) dividiendo y q(y) siendo el divisor, de modo que el grado de p(x) sea mayor o igual a.0 siempre hallaremos a 2 expresiones algebraicas dividiéndose. *División de monomios: Se dividen los coeficientes y las literales se restan junto con sus exponentes. División
  • 5. Ejemplos: -5xm+2y4z/-4xm-4y3z= 5/4 x6y *División de polinomios: Para dividir un polinomio entre otro polinomio es necesario seguir los siguientes pasos: 1- Se ordenan los 2 polinomios n orden descendente y alfabético. 2- Se divide el primer término del divisor. 3- Se multiplica el primer término del coeficiente por el divisor y el producto obtenido se resta el dividendo, obteniendo un nuevo dividendo. 4- Se repite los paso 2 y 3 hasta que el resultado sea 0 o de menor exponente que el dividendo. Ejemplo: -15x2+22xy-8y2/ -3x+2y=5x-4y Es el nombre que reciben multiplicaciones con expresiones algebraicas cuto resultado se puede escribir mediante simple inspección, sin verificar la multiplicación que cumplen ciertas reglas fijas. Cada producto notable corresponde a una formula de factorización. Ejemplo: multiplicar 3xy ; x+y Solución: 3xy(x+y)= 3xy x+3xy.y = 3x2y+3xy2 Producto Notable
  • 6. Es el proceso de encontrar dos o más expresiones cuyo producto sea igual a una expresión dada: es decir, consiste en transformar a dicho polinomio como el producto de dos o más factores. Encontrar los polinomios raíz e otros más complejos. 1. Descomponer en factores a 2 + 2 a a2 y 2a contienen el factor común a. Escribimos el factor común a como coeficiente de un paréntesis dentro del cual escribimos los cocientes obtenidos de dividir a 2+a = a y a2+ 2a =a (a+2) 1. Descomponer x( a+b) +m (a+b). Estos dos términos tienen como factor común el binomio (a+b), por lo que podemos (a+b) como coeficiente de un paréntesis dentro del cual escribimos los coeficientes de x(a+b)= m(a+b)(x+m) y tendremos : Factorización por producto notable Factor Común Monomio Factor Común Polinomio
  • 7. X(a+b)+m(a+b)=(a+b)=(x+m) Simplificar una expresión algebraica consiste en escribirla de la forma más sencilla posible. Para simplificar una fracción algebraica se divide el numedor y el dominador de la fracción por un polinomio que sea factor común de ambos. X2+4x+4= (x+2)2 = (x+2) X2-4 (x+2).(x-2) (x-2) La resolvente cuadrática se considera la ecuación con forma de un cuadrado igual a constante, un producto de factores lineales igual a cero y la forma general que usa la formula cuadrática o resolvente. si una ecuación cuadrática no está en alguna de estas formas entonces se intenta llevar a alguna de ellas. Simplificación de Fracciones Algebraicas Sumas y Restas Factorización por Resolvente Cuadrática
  • 8. Ruffini es un método algorítmico que sistematiza la factorización de polinomios con raíces enteras y fraccionarias. Lo mecánico de su aplicación hace que sea accesible su aplicación, salvo que no se denominen las operaciones elementales con números enteros y fraccionarios. Es la operación inversa a la potenciación y consiste en quedar dos números, llamados radicando e índice, hallar un tercero, llamada raíz, tal que, elevado al índice, sea igual al radicando. Para poder multiplicar y dividir radicales es necesario que tengan el mismo índice. Cuando no tienen el mismo índice hay que reducirlos antes. El producto de radicales con el mismo índice y cuyo radicando se obtiene de multiplicar los radicandos. Factorización por el Método de Ruffini Radiación Multiplicación y División de Radicales
  • 9. Llamaremos expresión conjugada de una expresión de dos términos, a la que se obtiene de esta, combinando el signo del segundo término. Por ejemplo, la expresión conjugada de a+b es a-b. Entre otros. Expresiones Conjugadas
  • 10. Sumas y restas de monomios 1- 3xy+5xy= 8xy 2- 3xyz+5xyz-xyz= 7xyz Sumas y restas de polinomios 1- P(x)= 2x+5 Q(x)=5x+4 P(x)+q(x)=2x+5+5+5x+4 2x+5x+5+4 7x+9 2- 5. ( 12 – 18) – (-35 + 115) / 4 5. (-6) – (80) / 4 -30 – 20 -50 Multiplicación de monomios 1- 3x2 . 7x= 3.7.x2.x= 21x3 4x2y5 . (-3) x3y4 4.(-3)x2.x3.y5.y4 -12x5.y9 EJERCICIOS
  • 11. Multiplicación polinomios 1- P (X) = -3 P(X) = -3x4 – 12x2 + 25x3 + 12x – 85 P(-3) = -3(-3)4 + 25 (-3)3 – 12(-3)2 + 12(-3) – 85 P(-3) = -3.81 + 25.(-27) -12. 9 + 12.(-3) – 85 P(-3) = -243 – 675 – 108 – 36 – 85 P(-3) = 1147 2- (x+1)(x-1)= x (x-1)+1 (x-1) x.x-x.1+x-11 x2-x+x-1 x2-1 Productos notables (a + b)2= a2+b2+2ab 1- (3X+2Y)2= (3X)2+(2Y)2+2.3X.2X 9X2+4Y2+12XY (a-b)2=a2.b2-2.a.b (a + b)2= a2+b2-2ab 2- (7x-2y)2=7(x)2+(2y)2-27x.2y 49x2+4y2-28xy
  • 12. División 1- (5x2-7x-10) : (x-2) 5x2-7x-10 x – 2 -5x+10x 5x+3 3x-10 -3x+6 -4 Método de Ruffini x3 + 2X – 5X – 6 = 0 A) Divisible ( -6) = ± 1; ± 2; ± 3; ± 6 B) 1 2 -5 -6 -1 -1 -1 6 1 1 -6 0 2 2 6 1 3 0 -3 -3 1 0