Expresiones Algebraicas

J

Guía de expresiones algebraicas

REPUBLICA BOLIVARIANA DE VENEZUELA
MINISTERIOS DEL PODER POPULAR PARA LA EDUCACION
UNIVERSIDAD POLITECNICA TERRITORIAL “ANDRES ELOY BLANCO”
BARQUISIMETO ESTADO “LARA”
BARQUISIMETO, FEBRERO DEL 2023
Autor:
JENDERSSON ANDRES RODRIGUEZ
ALVARADO
C.I.: 28.019.297
U.C: Matemáticas
PNF: Entrenamiento Deportivo
Expresiones Algebraicas
Una expresión algebraica es una combinación de letras y números unidos por
medio de las operaciones: suma, resta, multiplicación, división, potenciación o
radiación, de manera infinita. Sirven para resolver problemas complejos en los que
se tiene que diseñar una ecuación.
Suma: para sumar dos o más expresiones algebraicas con uno o más
términos semejantes que existan, en uno solo. Se puede aplicar la propiedad
distributiva de la multiplicación con respecto de la suma.
Suma de monomio: cuando los factores son iguales, por ejemplo, la suma
4x+5x= (4+5) x = 9x.
Suma de polinomios: un polinomio es una expresión algebraica que está
formada por sumas y restas de los diferentes términos que conforman el
polinomio. Para sumar dos polinomios, podemos seguir los siguientes pasos:
p(x) + q(x) = 2x+5+ (5x+4)
= 2x+5x+5+4
= 7x+9
Resta: con la resta algebraica sustraemos el valor de una expresión
algebraica de otra. Por ser expresiones.
Resta de monomios: restaremos solo los términos numéricos, ya que en
ambos casos, es lo mismo que multiplicar por x:
4x-5x= -x
Resta de polinomios: Está formada por sumas y restas de los términos con
diferentes literales:
P(x)= 2x+5 Q(x)= 5x+4
P(x) - Q(x)= 2x+5 – (5x+4)
=2x+5 - 5x-4
=2x-5x + 5-4
= -3x+1
Valor Numérico
El valor numérico de una expresión algebraica, para un determinado
valor, es el número que se obtiene al sustituir en esta por valor numérico
dado y realizar las operaciones indicadas.
Valor numérico de un polinomio: El valor numérico de un polinomio es el
resultado que obtenemos al sustituir la variable x por un número cualquiera.
P(x)=2x3+5x-3; x-1
Multiplicación
Es una operación matemática que consiste en obtener un resultado
llamado producto a partir de dos factores algebraicos llamada multiplicanda
y multiplicador.
*Entre monomios:
1- Primero multiplicamos los coeficientes de cada monomio.
2- luego multiplicamos la parte literal, esto es las variables según las leyes
de los exponentes.
3- Aplicamos la ley distributiva.
4- Por ultimo aplicamos finalmente las leyes de los signos.
Ejemplo: multiplicar 3x2 y 4x4
Solución: (3x2) (4x4)= (3.4)(x2 . x4)= (12) (x2+ 5)= 12x7
*Entre polinomios: Solo debemos tener en cuenta la propiedad, la ley de
signos y las leyes de la potenciación.
La forma más básica o reducida de la multiplicación entre dos polinomios es
de la forma (a+b) (c+d)= ac+bc+ad+bd
Ejemplo: multiplicar (x-3)(x4)=
x.x+x.4+(-3).x.4=x2+4x+(-3x)+(-12)=
x2+4x-3x-12= x2+x-12
Division
La división de expresiones algebraicas consta de las mismas partes que la división
aritmética, así que si hay 2 expresiones algebraicas, p(x) dividiendo y q(y) siendo el
divisor, de modo que el grado de p(x) sea mayor o igual a.0 siempre hallaremos a 2
expresiones algebraicas dividiéndose.
*División de monomios: Se dividen los coeficientes y las literales se restan junto
con sus exponentes.
Ejemplos: -5xm+2y4z/-4xm-4y3z= 5/4 x6y
*División de polinomios: Para dividir un polinomio entre otro polinomio es
necesario seguir los siguientes pasos:
1- Se ordenan los 2 polinomios n orden descendente y alfabético.
2- Se divide el primer término del divisor.
3- Se multiplica el primer término del coeficiente por el divisor y el producto
obtenido se resta el dividendo, obteniendo un nuevo dividendo.
4- Se repite los paso 2 y 3 hasta que el resultado sea 0 o de menor exponente que
el dividendo.
Ejemplo: -15x2+22xy-8y2/ -3x+2y=5x-4y
Producto Notable
Es el nombre que reciben multiplicaciones con expresiones algebraicas cuto
resultado se puede escribir mediante simple inspección, sin verificar la
multiplicación que cumplen ciertas reglas fijas. Cada producto notable corresponde
a una formula de factorización.
Ejemplo: multiplicar 3xy ; x+y
Solución: 3xy(x+y)= 3xy x+3xy.y= 3x2y+3xy2
Factorización Por Producto Notable
Es el proceso de encontrar dos o más expresiones cuyo producto sea igual a
una expresión dada: es decir, consiste en transformar a dicho polinomio como el
producto de dos o más factores. Encontrar los polinomios raíz e otros mas
complejos.
Factor Común Monomio:
1. Descomponer en factores a 2 + 2 a
a2 y 2a contienen el factor común a. Escribimos el factor común a como
coeficiente de un paréntesis dentro del cual escribimos los cocientes
obtenidos de dividir a 2+a = a y a2+ 2a =a (a+2)
Factor Común Polinomio
1. Descomponer x( a+b) +m (a+b). Estos dos términos tienen como factor
común el binomio (a+b), por lo que podemos (a+b) como coeficiente de
un paréntesis dentro del cual escribimos los coeficientes de x(a+b)=
m(a+b)(x+m) y tendremos :
X(a+b)+m(a+b)=(a+b)=(x+m)
Simplificación De Fracciones Algebraicas
Suma Y Resta
Simplificar una expresión algebraica consiste en escribirla de la forma
más sencilla posible.
Para simplificar una fracción algebraica se divide el numedor y el
dominador de la fracción por un polinomio que sea factor común de
ambos.
X2+4x+4= (x+2)2 = (x+2)
X2-4 (x+2).(x-2) (x-2)
Factorización Por Resolvente Cuadrática
La resolvente cuadrática se considera la ecuación con forma de un cuadrado
igual a constante, un producto de factores lineales igual a cero y la forma general
que usa la formula cuadrática o resolvente. si una ecuación cuadrática no está en
alguna de estas formas entonces se intenta llevar a alguna de ellas.
Factorización Por El Método De Ruffini
Ruffini es un método algorítmico que sistematiza la factorización de polinomios
con raíces enteras y fraccionarias. Lo mecánico de su aplicación hace que sea
accesible su aplicación, salvo que no se denominen las operaciones elementales
con números enteros y fraccionarios.
Radiación
Es la operación inversa a la potenciación y consiste en quedar dos números,
llamados radicando e índice, hallar un tercero, llamada raíz, tal que, elevado al
índice, sea igual al radicando.
Multiplicación Y División De Radicales
Para poder multiplicar y dividir radicales es necesario que tengan el mismo
índice. Cuando no tienen el mismo índice hay que reducirlos antes. El producto de
radicales con el mismo índice y cuyo radicando se obtiene de multiplicar los
radicandos.
Expresiones Conjugadas
Llamaremos expresión conjugada de una expresión de dos términos, a la que se
obtiene de esta, combinando el signo del segundo término. Por ejemplo, la
expresión conjugada de a+b es a-b. Entre otros.
Ejercicios
Sumas y restas de monomios
1- 3xy+5xy= 8xy
2- 3xyz+5xyz-xyz= 7xyz
Sumas y restas de polinomios
1- P(x)= 2x+5 Q(x)=5x+4
P(x)+q(x)=2x+5+5+5x+4
2x+5x+5+4
7x+9
2- P(x)- q(x)= 2x+5-(5x+4)
2x+5-5x-4
2x-5x+5-4
-3x+1
Multiplicación De Monomios
1- 3x2 . 7x= 3.7.x2.x= 21x3
4x2y5 . (-3) x3y4
4.(-3)x2.x3.y5.y4
-12x5.y9
Multiplicación De Polinomios
1- X2(-x2+3x+1)
X2(-x2)+x2.3x+x2.1
-x4+3x3+x2
2- (x+1)(x-1)= x (x-1)+1 (x-1)
x.x-x.1+x-11
x2-x+x-1
x2-1
Productos Notables
(a+b)2= a2+b2+2ab
1- (3X+2Y)2= (3X)2+(2Y)2+2.3X.2X
9X2+4Y2+12XY
(a-b)2=a2.b2-2.a.b
(a+b)2= a2+b2-2ab
2- (7x-2y)2=7(x)2+(2y)2-27x.2y
49x2+4y2-28xy
División
1- (5x2-7x-10) : (x-2)
5x2-7x-10 x – 2
-5x+10x 5x+3
3x-10
-3x+6
-4
Método de Ruffini
4x3-5x2-7x+1: (x+1)
4 -5 -7 1
-4 9 -2
4 -9 2
Bibliografía
 https://www.ejemplo.com/5-matematicas/4670-ejemplo-de-suma-
algebraica.html
 https://sites.google.com/site/algebra2611/unidad-2/productos-notable
 https://www.ejemplode.com/5-matematicas/4671-ejemplo-de-resta-
algebraica.html

Recomendados

trabajo de algebra.pdf por
trabajo de algebra.pdftrabajo de algebra.pdf
trabajo de algebra.pdfAriannyManzanarezCam
18 vistas10 diapositivas
Teoría Expresiones Algebraicas por
Teoría Expresiones Algebraicas Teoría Expresiones Algebraicas
Teoría Expresiones Algebraicas Anderson González
51 vistas12 diapositivas
Expresiones algebra Rosalbo.pdf por
Expresiones algebra Rosalbo.pdfExpresiones algebra Rosalbo.pdf
Expresiones algebra Rosalbo.pdfRosalbo2
6 vistas13 diapositivas
Expresiones Algebraicas Cesar.pdf por
Expresiones Algebraicas Cesar.pdfExpresiones Algebraicas Cesar.pdf
Expresiones Algebraicas Cesar.pdfCesarParra79
7 vistas14 diapositivas
Expresiones algebraicas.docx por
Expresiones algebraicas.docxExpresiones algebraicas.docx
Expresiones algebraicas.docxNaiyerlis
4 vistas11 diapositivas
expreciones algebraicas. maria carreño ci.31.113.411.docx por
expreciones algebraicas. maria carreño ci.31.113.411.docxexpreciones algebraicas. maria carreño ci.31.113.411.docx
expreciones algebraicas. maria carreño ci.31.113.411.docxmariacarreo43
7 vistas9 diapositivas

Más contenido relacionado

Similar a Expresiones Algebraicas

Actividad de Matemáticas.pptx por
Actividad de Matemáticas.pptxActividad de Matemáticas.pptx
Actividad de Matemáticas.pptxMariaVictoriaRojasCo
17 vistas15 diapositivas
Expresiones algebraicas por
Expresiones algebraicas Expresiones algebraicas
Expresiones algebraicas yohelizerpa
39 vistas11 diapositivas
informe de expreciones algebraicas.docx por
informe de expreciones algebraicas.docxinforme de expreciones algebraicas.docx
informe de expreciones algebraicas.docxNaihyvismujicafonsec
6 vistas12 diapositivas
Expresiones Algebraicas por
Expresiones AlgebraicasExpresiones Algebraicas
Expresiones AlgebraicasOrlibetCarolinaMogol
7 vistas11 diapositivas
Expresiones algebraicas por
Expresiones algebraicasExpresiones algebraicas
Expresiones algebraicasHervinValles
26 vistas9 diapositivas
Expresiones Algebraicas por
Expresiones Algebraicas Expresiones Algebraicas
Expresiones Algebraicas gnesisparrapiero
145 vistas16 diapositivas

Similar a Expresiones Algebraicas (20)

Expresiones algebraicas por yohelizerpa
Expresiones algebraicas Expresiones algebraicas
Expresiones algebraicas
yohelizerpa39 vistas
Expresiones algebraicas por HervinValles
Expresiones algebraicasExpresiones algebraicas
Expresiones algebraicas
HervinValles26 vistas
matemática Expresiones algebraicas. por DianisMontilla
matemática Expresiones algebraicas.matemática Expresiones algebraicas.
matemática Expresiones algebraicas.
DianisMontilla93 vistas
EXPRESIONES ALGEBRAICAS.docx por RafaelGoyo1
EXPRESIONES ALGEBRAICAS.docxEXPRESIONES ALGEBRAICAS.docx
EXPRESIONES ALGEBRAICAS.docx
RafaelGoyo13 vistas
Co 0101 piedra catherine marin miguel por CatherinePiedra
Co 0101 piedra catherine marin miguelCo 0101 piedra catherine marin miguel
Co 0101 piedra catherine marin miguel
CatherinePiedra62 vistas

Último

Contrato de aprendizaje y evaluación por
Contrato de aprendizaje y evaluación Contrato de aprendizaje y evaluación
Contrato de aprendizaje y evaluación LauraJuarez87
74 vistas7 diapositivas
0 - Organología - Presentación.pptx por
0 - Organología - Presentación.pptx0 - Organología - Presentación.pptx
0 - Organología - Presentación.pptxVICENTEJIMENEZAYALA
122 vistas10 diapositivas
DEPORTES DE RAQUETA .pdf por
DEPORTES DE RAQUETA .pdfDEPORTES DE RAQUETA .pdf
DEPORTES DE RAQUETA .pdfMiguel Lopez Marin
25 vistas11 diapositivas
Muestra Anual de Literatura Clásica y Latín.pptx por
Muestra Anual de Literatura Clásica y Latín.pptxMuestra Anual de Literatura Clásica y Latín.pptx
Muestra Anual de Literatura Clásica y Latín.pptxMaría Roxana
108 vistas19 diapositivas
Concepto de determinación de necesidades.pdf por
Concepto de determinación de necesidades.pdfConcepto de determinación de necesidades.pdf
Concepto de determinación de necesidades.pdfLauraJuarez87
29 vistas6 diapositivas
Aprendiendo a leer :Ma me mi mo mu..pdf por
Aprendiendo a leer :Ma me mi mo mu..pdfAprendiendo a leer :Ma me mi mo mu..pdf
Aprendiendo a leer :Ma me mi mo mu..pdfcamiloandres593920
23 vistas14 diapositivas

Último(20)

Contrato de aprendizaje y evaluación por LauraJuarez87
Contrato de aprendizaje y evaluación Contrato de aprendizaje y evaluación
Contrato de aprendizaje y evaluación
LauraJuarez8774 vistas
Muestra Anual de Literatura Clásica y Latín.pptx por María Roxana
Muestra Anual de Literatura Clásica y Latín.pptxMuestra Anual de Literatura Clásica y Latín.pptx
Muestra Anual de Literatura Clásica y Latín.pptx
María Roxana108 vistas
Concepto de determinación de necesidades.pdf por LauraJuarez87
Concepto de determinación de necesidades.pdfConcepto de determinación de necesidades.pdf
Concepto de determinación de necesidades.pdf
LauraJuarez8729 vistas
Unicómic 25 años: líneas de investigación para la Didáctica de la Lengua y la... por IGNACIO BALLESTER PARDO
Unicómic 25 años: líneas de investigación para la Didáctica de la Lengua y la...Unicómic 25 años: líneas de investigación para la Didáctica de la Lengua y la...
Unicómic 25 años: líneas de investigación para la Didáctica de la Lengua y la...
Mujeres privadas de libertad en Bolivia 2022 por LuisFernando672460
Mujeres privadas de libertad en Bolivia 2022Mujeres privadas de libertad en Bolivia 2022
Mujeres privadas de libertad en Bolivia 2022
LuisFernando672460110 vistas
Recreos musicales.pdf por arribaletur
Recreos musicales.pdfRecreos musicales.pdf
Recreos musicales.pdf
arribaletur143 vistas
Infografia Planificación didactica por Maria Marquez .pdf por marialauramarquez3
Infografia Planificación didactica por Maria Marquez .pdfInfografia Planificación didactica por Maria Marquez .pdf
Infografia Planificación didactica por Maria Marquez .pdf
marialauramarquez339 vistas
Presentación de Proyecto Creativo Doodle Azul.pdf por LauraJuarez87
Presentación de Proyecto Creativo Doodle Azul.pdfPresentación de Proyecto Creativo Doodle Azul.pdf
Presentación de Proyecto Creativo Doodle Azul.pdf
LauraJuarez8725 vistas
5°_GRADO_-_ACTIVIDAD_DEL_24_DE_NOVIEMBRE.doc por josetejada220380
5°_GRADO_-_ACTIVIDAD_DEL_24_DE_NOVIEMBRE.doc5°_GRADO_-_ACTIVIDAD_DEL_24_DE_NOVIEMBRE.doc
5°_GRADO_-_ACTIVIDAD_DEL_24_DE_NOVIEMBRE.doc
josetejada22038023 vistas
Semana de Gestion Escolar Final 2023 GE Ccesa007.pdf por Demetrio Ccesa Rayme
Semana de Gestion Escolar Final 2023  GE  Ccesa007.pdfSemana de Gestion Escolar Final 2023  GE  Ccesa007.pdf
Semana de Gestion Escolar Final 2023 GE Ccesa007.pdf
Norma de Evaluacion de Educacion Secundaria LSB-2023 Ccesa007.pdf por Demetrio Ccesa Rayme
Norma de Evaluacion de  Educacion Secundaria LSB-2023  Ccesa007.pdfNorma de Evaluacion de  Educacion Secundaria LSB-2023  Ccesa007.pdf
Norma de Evaluacion de Educacion Secundaria LSB-2023 Ccesa007.pdf
S1_CPL.pdf por Conecta13
S1_CPL.pdfS1_CPL.pdf
S1_CPL.pdf
Conecta1347 vistas
DESERCIÓN ESCOLAR.pptx por recwebleta
DESERCIÓN ESCOLAR.pptxDESERCIÓN ESCOLAR.pptx
DESERCIÓN ESCOLAR.pptx
recwebleta49 vistas

Expresiones Algebraicas

  • 1. REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIOS DEL PODER POPULAR PARA LA EDUCACION UNIVERSIDAD POLITECNICA TERRITORIAL “ANDRES ELOY BLANCO” BARQUISIMETO ESTADO “LARA” BARQUISIMETO, FEBRERO DEL 2023 Autor: JENDERSSON ANDRES RODRIGUEZ ALVARADO C.I.: 28.019.297 U.C: Matemáticas PNF: Entrenamiento Deportivo
  • 2. Expresiones Algebraicas Una expresión algebraica es una combinación de letras y números unidos por medio de las operaciones: suma, resta, multiplicación, división, potenciación o radiación, de manera infinita. Sirven para resolver problemas complejos en los que se tiene que diseñar una ecuación. Suma: para sumar dos o más expresiones algebraicas con uno o más términos semejantes que existan, en uno solo. Se puede aplicar la propiedad distributiva de la multiplicación con respecto de la suma. Suma de monomio: cuando los factores son iguales, por ejemplo, la suma 4x+5x= (4+5) x = 9x. Suma de polinomios: un polinomio es una expresión algebraica que está formada por sumas y restas de los diferentes términos que conforman el polinomio. Para sumar dos polinomios, podemos seguir los siguientes pasos: p(x) + q(x) = 2x+5+ (5x+4) = 2x+5x+5+4 = 7x+9 Resta: con la resta algebraica sustraemos el valor de una expresión algebraica de otra. Por ser expresiones. Resta de monomios: restaremos solo los términos numéricos, ya que en ambos casos, es lo mismo que multiplicar por x: 4x-5x= -x Resta de polinomios: Está formada por sumas y restas de los términos con diferentes literales: P(x)= 2x+5 Q(x)= 5x+4 P(x) - Q(x)= 2x+5 – (5x+4) =2x+5 - 5x-4 =2x-5x + 5-4 = -3x+1
  • 3. Valor Numérico El valor numérico de una expresión algebraica, para un determinado valor, es el número que se obtiene al sustituir en esta por valor numérico dado y realizar las operaciones indicadas. Valor numérico de un polinomio: El valor numérico de un polinomio es el resultado que obtenemos al sustituir la variable x por un número cualquiera. P(x)=2x3+5x-3; x-1 Multiplicación Es una operación matemática que consiste en obtener un resultado llamado producto a partir de dos factores algebraicos llamada multiplicanda y multiplicador. *Entre monomios: 1- Primero multiplicamos los coeficientes de cada monomio. 2- luego multiplicamos la parte literal, esto es las variables según las leyes de los exponentes. 3- Aplicamos la ley distributiva. 4- Por ultimo aplicamos finalmente las leyes de los signos. Ejemplo: multiplicar 3x2 y 4x4 Solución: (3x2) (4x4)= (3.4)(x2 . x4)= (12) (x2+ 5)= 12x7 *Entre polinomios: Solo debemos tener en cuenta la propiedad, la ley de signos y las leyes de la potenciación. La forma más básica o reducida de la multiplicación entre dos polinomios es de la forma (a+b) (c+d)= ac+bc+ad+bd
  • 4. Ejemplo: multiplicar (x-3)(x4)= x.x+x.4+(-3).x.4=x2+4x+(-3x)+(-12)= x2+4x-3x-12= x2+x-12 Division La división de expresiones algebraicas consta de las mismas partes que la división aritmética, así que si hay 2 expresiones algebraicas, p(x) dividiendo y q(y) siendo el divisor, de modo que el grado de p(x) sea mayor o igual a.0 siempre hallaremos a 2 expresiones algebraicas dividiéndose. *División de monomios: Se dividen los coeficientes y las literales se restan junto con sus exponentes. Ejemplos: -5xm+2y4z/-4xm-4y3z= 5/4 x6y *División de polinomios: Para dividir un polinomio entre otro polinomio es necesario seguir los siguientes pasos: 1- Se ordenan los 2 polinomios n orden descendente y alfabético. 2- Se divide el primer término del divisor. 3- Se multiplica el primer término del coeficiente por el divisor y el producto obtenido se resta el dividendo, obteniendo un nuevo dividendo. 4- Se repite los paso 2 y 3 hasta que el resultado sea 0 o de menor exponente que el dividendo. Ejemplo: -15x2+22xy-8y2/ -3x+2y=5x-4y
  • 5. Producto Notable Es el nombre que reciben multiplicaciones con expresiones algebraicas cuto resultado se puede escribir mediante simple inspección, sin verificar la multiplicación que cumplen ciertas reglas fijas. Cada producto notable corresponde a una formula de factorización. Ejemplo: multiplicar 3xy ; x+y Solución: 3xy(x+y)= 3xy x+3xy.y= 3x2y+3xy2 Factorización Por Producto Notable Es el proceso de encontrar dos o más expresiones cuyo producto sea igual a una expresión dada: es decir, consiste en transformar a dicho polinomio como el producto de dos o más factores. Encontrar los polinomios raíz e otros mas complejos. Factor Común Monomio: 1. Descomponer en factores a 2 + 2 a a2 y 2a contienen el factor común a. Escribimos el factor común a como coeficiente de un paréntesis dentro del cual escribimos los cocientes obtenidos de dividir a 2+a = a y a2+ 2a =a (a+2)
  • 6. Factor Común Polinomio 1. Descomponer x( a+b) +m (a+b). Estos dos términos tienen como factor común el binomio (a+b), por lo que podemos (a+b) como coeficiente de un paréntesis dentro del cual escribimos los coeficientes de x(a+b)= m(a+b)(x+m) y tendremos : X(a+b)+m(a+b)=(a+b)=(x+m) Simplificación De Fracciones Algebraicas Suma Y Resta Simplificar una expresión algebraica consiste en escribirla de la forma más sencilla posible. Para simplificar una fracción algebraica se divide el numedor y el dominador de la fracción por un polinomio que sea factor común de ambos. X2+4x+4= (x+2)2 = (x+2) X2-4 (x+2).(x-2) (x-2) Factorización Por Resolvente Cuadrática La resolvente cuadrática se considera la ecuación con forma de un cuadrado igual a constante, un producto de factores lineales igual a cero y la forma general que usa la formula cuadrática o resolvente. si una ecuación cuadrática no está en alguna de estas formas entonces se intenta llevar a alguna de ellas.
  • 7. Factorización Por El Método De Ruffini Ruffini es un método algorítmico que sistematiza la factorización de polinomios con raíces enteras y fraccionarias. Lo mecánico de su aplicación hace que sea accesible su aplicación, salvo que no se denominen las operaciones elementales con números enteros y fraccionarios. Radiación Es la operación inversa a la potenciación y consiste en quedar dos números, llamados radicando e índice, hallar un tercero, llamada raíz, tal que, elevado al índice, sea igual al radicando. Multiplicación Y División De Radicales Para poder multiplicar y dividir radicales es necesario que tengan el mismo índice. Cuando no tienen el mismo índice hay que reducirlos antes. El producto de radicales con el mismo índice y cuyo radicando se obtiene de multiplicar los radicandos. Expresiones Conjugadas Llamaremos expresión conjugada de una expresión de dos términos, a la que se obtiene de esta, combinando el signo del segundo término. Por ejemplo, la expresión conjugada de a+b es a-b. Entre otros.
  • 8. Ejercicios Sumas y restas de monomios 1- 3xy+5xy= 8xy 2- 3xyz+5xyz-xyz= 7xyz Sumas y restas de polinomios 1- P(x)= 2x+5 Q(x)=5x+4 P(x)+q(x)=2x+5+5+5x+4 2x+5x+5+4 7x+9 2- P(x)- q(x)= 2x+5-(5x+4) 2x+5-5x-4 2x-5x+5-4 -3x+1 Multiplicación De Monomios 1- 3x2 . 7x= 3.7.x2.x= 21x3 4x2y5 . (-3) x3y4 4.(-3)x2.x3.y5.y4 -12x5.y9
  • 9. Multiplicación De Polinomios 1- X2(-x2+3x+1) X2(-x2)+x2.3x+x2.1 -x4+3x3+x2 2- (x+1)(x-1)= x (x-1)+1 (x-1) x.x-x.1+x-11 x2-x+x-1 x2-1 Productos Notables (a+b)2= a2+b2+2ab 1- (3X+2Y)2= (3X)2+(2Y)2+2.3X.2X 9X2+4Y2+12XY (a-b)2=a2.b2-2.a.b (a+b)2= a2+b2-2ab 2- (7x-2y)2=7(x)2+(2y)2-27x.2y 49x2+4y2-28xy
  • 10. División 1- (5x2-7x-10) : (x-2) 5x2-7x-10 x – 2 -5x+10x 5x+3 3x-10 -3x+6 -4 Método de Ruffini 4x3-5x2-7x+1: (x+1) 4 -5 -7 1 -4 9 -2 4 -9 2