SlideShare una empresa de Scribd logo
1 de 33
Universidad Nacional Autonoma de Nicaragua
Unan – Managua
Facultad Regional Multidisciplinaria de Esteli
Unan – Farem – Esteli
Recinto Universitario Leonel Rugama
Departamento de Ciencias de la Educacion y Humanidades
Módulo de Estructuras Numéricas
Autor: Msc. Víctor Manuel Valdivia
Estelí, marzo de 2015
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 2
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 3
Introducción
Los sistemas numéricos son instrumentos idóneos para transmitir la amenidad, formalidad
y el carácter lúdico que tienen las matemáticas (Universidad Nacional Autonoma de
Nicaragua, Managua , 1999).
Con el presente modulo se pretende que como estudiantes de la carrera de física matemática
se apropien de los diferentes conjuntos numéricos y sus principales propiedades.
Se pretende con el material a disposición alcancen un mejor nivel de preparación
académica en la asignatura de estructuras numéricas no dejando de lado la auto preparación
y los deseos por ampliar más los conocimientos en dicha asignatura, pues en presente
material se verán algunos tópicos fundamentales, por tanto se insta a que como estudiantes
amplíen sus conocimientos mediante el autoestudio.
Los números son una inagotable veta de actividades lúdicas, aptas para implementar en
todos los niveles educativos del país.
La estructura del módulo consiste en seis unidades temáticas:
I Unidad: Números enteros naturales
II Unidad: Números enteros relativos
III Unidad: Números enteros primos
IV Unidad: Números Reales
V Unidad: El cuerpo de los complejos
VI Unidad: Aplicaciones de los complejos
En el cual se empleara la metodología activa participativa de manera conferencial donde se
tratara de que todos los estudiantes se involucren en el descubrimiento y manipulación de
los diferentes dominios numéricos
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 4
Objetivos Generales de la Asignatura
1. Conocer el proceso genético de ampliación de los dominios numéricos más
representativos
2. Dominar la metodología de la ampliación algebraica de los dominios numéricos
3. Reconocer la faceta estructural algebraica de los dominios numéricos.
4. Demostrar las propiedades algebraicas básicas de los dominios numéricos que
se enseñan en la secundaria
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 5
I Unidad: Números enteros naturales
Introducción:
Antes de que surgieran los números para la representación de cantidades, el ser humano usó
otros métodos para contar, utilizando para ello objetos como piedras, palitos de madera,
nudos de cuerdas, o simplemente los dedos. Más adelante comenzaron a aparecer los
símbolos gráficos como señales para contar, por ejemplo marcas en una vara o simplemente
trazos específicos sobre la arena. Pero fue en Mesopotamia alrededor del año 4.000 a. C.
donde aparecen los primeros vestigios de los números que consistieron en grabados de
señales en formas de cuñas sobre pequeños tableros de arcilla empleando para ello un palito
aguzado. De aquí el nombre de escritura cuneiforme. Este sistema de numeración fue
adoptado más tarde, aunque con símbolos gráficos diferentes, en la Grecia Antigua y en la
Antigua Roma. En la Grecia antigua se empleaban simplemente las letras de su alfabeto,
mientras que en la antigua Roma además de las letras, se utilizaron algunos símbolos.
Quien colocó al conjunto de los números naturales sobre lo que comenzaba a ser una base
sólida, fue Richard Dedekind en el siglo XIX. Que después precisó Peano dentro de una
lógica de segundo orden, resultando así los famosos cinco postulados que llevan su nombre.
Frege fue superior a ambos, demostrando la existencia del sistema de números naturales
partiendo de principios más fuertes. Lamentablemente la teoría de Frege perdió, por así
decirlo, su credibilidad y hubo que buscar un nuevo método. Fue Zermelo quien demostró
la existencia del conjunto de números naturales, dentro de su teoría de conjuntos y
principalmente mediante el uso del axioma de infinitud que, con una modificación de este
hecha por Adolf Fraenkel, permite construir el conjunto de números naturales como
ordinales según von Neumann
Desde hace mucho tiempo, tantos que quizás no puedas recordar desde cuándo, sabes como
“funcionan” los números naturales: 0; 1; 2, 3; …, es decir, sabes operar con ellos, conoces y
aplicas las propiedades de la adición y la multiplicación y hasta incluso manejas bien las
desigualdades.
Lo que nos proponemos ahora es investigar qué cosa son los números naturales, o mejor
dicho, qué es el sistema de los números naturales
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 6
Objetivos de la unidad:
- Conocer las propiedades principales de las operaciones en el conjunto de los naturales
- Utilizar métodos de recurrencia en la demostración de propiedades con números naturales
- Conocer y demostrar los axiomas de Peano
- Definir el concepto de sucesión numérica
- Establecer matemáticamente la diferencia entre conjuntos finitos e infinitos
Contenidos de la unidad:
1. Propiedades del conjunto de los números naturales
2. Principio de recurrencia
3. Propiedades recurrentes
4. Axiomas de Peano: Adición, Multiplicación, Orden
5. Axiomática ordinal de ℕ
6. Sucesiones numéricas
7. Conjuntos finitos e infinitos
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 7
1. PROPIEDADES DEL CONJUNTO DE LOS NÚMEROS NATURALES
1.1 Números naturales
Un número natural es cualquiera de los números que se usan para contar los elementos de
un conjunto. Reciben ese nombre porque fueron los primeros que utilizó el ser humano para
contar objetos.
El conjunto de los números naturales se representa por y corresponde al siguiente conjunto
numérico:
Los números naturales son un conjunto cerrado para las operaciones de la adición y la
multiplicación, ya que al operar con cualquiera de sus elementos, resulta siempre un
número perteneciente a.
Uso de los números naturales: Los números naturales, son usados para dos propósitos
fundamentalmente: para describir la posición de un elemento en una secuencia ordenada,
como se generaliza con el concepto de número ordinal, y para especificar el tamaño de un
conjunto finito, que a su vez se generaliza en el concepto de número cardinal.
1.2 Propiedades de los números naturales
Propiedades de la adición de Números Naturales
La adición de números naturales cumple las propiedades asociativa, conmutativa y
elemento neutro.
1.- Asociativa:
Si 𝑎, 𝑏, 𝑐 son números naturales cualesquiera se cumple que:
(𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐)
Por ejemplo:
(7 + 4) + 5 = 11 + 5 = 16
7 + (4 + 5) = 7 + 9 = 16
Los resultados coinciden, es decir,
(7 + 4) + 5 = 7 + (4 + 5)
2.-Conmutativa
Si 𝑎, 𝑏 son números naturales cualesquiera se cumple que:
𝑎 + 𝑏 = 𝑏 + 𝑎
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 8
En particular, para los números 7 y 4, se verifica que:
7 + 4 = 4 + 7
Gracias a las propiedades asociativa y conmutativa de la adición se pueden efectuar largas
sumas de números naturales sin utilizar paréntesis y sin tener en cuenta el orden.
3.- Elemento neutro
El 0 es el elemento neutro de la suma de enteros porque, cualquiera que sea el número
natural a, se cumple que:
𝑎 + 0 = 𝑎
Propiedades de la Multiplicación de Números Naturales
La multiplicación de números naturales cumple las propiedades asociativa, conmutativa,
elemento neutro y distributiva del producto respecto de la suma.
1.-Asociativa
Si 𝑎, 𝑏, 𝑐 son números naturales cualesquiera se cumple que:
( 𝑎 × 𝑏)× 𝑐 = 𝑎 × (𝑏 × 𝑐)
Por ejemplo:
(3 × 5) × 2 = 15× 2 = 30
3 × (5 × 2) = 3 × 10 = 30
Los resultados coinciden, es decir,
(3 × 5) × 22 = 3 × (5 × 2)
2.- Conmutativa
Si 𝑎, 𝑏 son números naturales cualesquiera se cumple que:
𝑎 × 𝑏 = 𝑏 × 𝑎
Por ejemplo:
5 × 8 = 8 × 5 = 40
3.-Elemento neutro
El 1 es el elemento neutro de la multiplicación porque, cualquiera que sea el número natural
𝑎, se cumple que:
𝑎 × 1 = 𝑎
4.- Distributiva del producto respecto de la suma
Si 𝑎, 𝑏, 𝑐 son números naturales cualesquiera se cumple que:
𝑎 × (𝑏 + 𝑐) = 𝑎 × 𝑏 + 𝑎 × 𝑐
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 9
Por ejemplo:
5 × (3 + 8) = 5 × 11 = 55
5 × 3 + 5 × 8 = 15 + 40 = 55
Los resultados coinciden, es decir,
5 × (3 + 8) = 5 × 3 + 5 × 8
Propiedades de la Sustracción de Números Naturales
Igual que la suma la resta es una operación que se deriva de la operación de contar.
Si tenemos 6 ovejas y los lobos se comen 2 ovejas ¿cuantas ovejas tenemos? Una forma de
hacerlo sería volver a contar todas las ovejas, pero alguien que hubiese contado varias
veces el mismo caso, recordaría el resultado y no necesitaría volver a contar las ovejas.
Sabría que 6 - 2 = 4.
Los términos de la resta se llaman minuendo (las ovejas que tenemos) y sustraendo (las
ovejas que se comieron los lobos).
Propiedades de la resta:
La resta no tiene la propiedad conmutativa (no es lo mismo 𝑎 − 𝑏 que 𝑏 − 𝑎)
Propiedades de la División de Números Naturales
La división es la operación que tenemos que hacer para repartir un número de cosas entre
un número de personas.
Los términos de la división se llaman dividendo (el número de cosas), divisor (el número de
personas), cociente (el número que le corresponde a cada persona) y resto (lo que sobra).
Si el resto es cero la división se llama exacta y en caso contrario inexacta.
Propiedades de la división
La división no tiene la propiedad conmutativa. No es lo mismo 𝑎/𝑏 que 𝑏/𝑎
2. PRINCIPIO DE RECURRENCIA
2.1 El principio de recurrencia (o de inducción completa).
Supongamos que un conjunto de números naturales contiene al 0, y que por el hecho de
contener a un natural n se puede deducir que contiene a 𝑛 + 1 (o sea a su siguiente). Es
fácil, imaginar entonces que en ese conjunto, si esta el 0, deberá estar el 0 + 1 = 1 y si está
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 10
el 1, deberá estar el 1+1=2; y si está el 2 también estará el 3; el 4… etc., por el mismo
argumento.
Entonces hemos de concluir que en ese conjunto están todos los números naturales, ya que
el conjunto de los números naturales es generable por la adición reiterada del 1.
3. PROPIEDADES RECURRENTES
3.1 El principio de recurrencia
Asegura entonces:
Un conjunto S de números naturales con las siguientes dos propiedades, contiene a todos
los números naturales:
1) 0 ∈ S.
2) Si el conjunto S contiene al natural n, entonces contiene a 𝑛 + 1.
Este principio se aplica para probar ciertas proposiciones relacionadas con los números
naturales. Se dice en ese caso que la demostración se realiza por recurrencia o inducción.
Estrechamente vinculado a este principio se encuentra el llamado Principio de la buena
ordenación que expresa que en todo conjunto no vacío de números naturales existe uno que
es el menor de todos.
Este principio cuyo enunciado parece muy ingenuo, es a la hora de justificar algunas
propiedades básicas de los números naturales.
3.2 Principio de la buena ordenación de los números naturales:
Cualquier subconjunto no vacío del conjunto de los números naturales ℕ tiene mínimo.
Demostración.
Supongamos que 𝑋 es un subconjunto de números naturales no vacío que no tiene mínimo,
y sea 𝑆 𝑛 la proposición Sn: ningún número natural menor o igual a n pertenece a X.
Como X no tiene mínimo, 𝑆 1es verdadera (porque si 𝑆 1 fuera falsa entonces 1 sería el
mínimo de X) y suponiendo que 𝑆 𝑛 es verdadera también lo es 𝑆 𝑛+1 (porque si 𝑆 𝑛+1 fuera
falsa entonces 𝑛 + 1 sería el mínimo de X). Luego por el principio de inducción todas las
afirmaciones 𝑆 𝑛 son verdaderas, lo que implica que no existe ningún número natural en X,
en contradicción con el hecho de que X es no vacío.
3.3 El razonamiento por recurrencia.
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 11
La inducción matemática es un método para la demostración de una propiedad 𝑆(𝑛) que
depende de una variable natural.
3.4 Demostrar por recurrencia.
Para demostrar que una propiedad, que depende de un número natural 𝑛, es verdadera para
todo natural 𝑛 ≥ 𝑛0 (𝑛0 es un natural dado), se procede en tres etapas.
1) Base inductiva: Se muestra que la propiedad es válida cuando 𝑛 = 𝑛0.
2. Paso inductivo: Se prueba que SI la propiedad es verdadera para un natural 𝑘 ≥ 𝑛0 (es
la hipótesis de recurrencia), ENTONCES ella es verdadera para el natural siguiente 𝑘 + 1.
3) Conclusión: la propiedad es verdadera para todo natural 𝑛 ≥ 𝑛0.
En la práctica, para demostrar por recurrencia que una proposición 𝑃𝑛 es verdadera, se
procede en tres etapas:
• Se verifica que es verdadera (corrientemente es la parte más fácil);
• Se supone que 𝑃𝑛 es verdadera para un natural cualquiera 𝑛 ≥ 𝑛0. (es la hipótesis de
recurrencia) y se demuestra entonces que 𝑃 𝑛+1es verdadera, se dice que la propiedad es
hereditaria;
• Se concluye: para todo natural 𝑛 ≥ 𝑛0, 𝑃𝑛 es verdadera.
Ejemplo 1: La suma de los 𝒏 primeros números.
Demostrar por recurrencia que 1 + 2 + 3 + … + 𝑛 =
𝑛( 𝑛+1)
2
, 𝑛 ∈ ℕ∗
.
• Base inductiva:
Se muestra que la proposición es verdadera para 𝑛 = 1:
1 =
1(1 + 1)
2
Ya que la suma se reduce al primer término 1; la proposición es entonces verdadera para
𝑛 = 1.
• Paso inductivo: se supone que la proposición es verdadera para un 𝑛 fijo (𝑛 ∈ ℕ∗
):
1 + 2 + 3 + … + 𝑛 =
𝑛( 𝑛 + 1)
2
Se debe demostrar que la proposición es verdadera para 𝑛 + 1.
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 12
La proposición es verdadera para 𝑛 + 1.
• Conclusión:
La propiedad se verifica para 𝑛 = 1, y como ella es «hereditaria» entonces es verdadera
ara todo natural no nulo,
1 + 2 + 3 + … + 𝑛 =
𝑛( 𝑛 + 1)
2
Ejemplo 2: La suma de los n primeros números impares.
¿Sabrías demostrar que la suma de los 𝑛 primeros números impares resulta ser un cuadrado
perfecto?
Para todo natural 𝑛 ≥ 1:
𝟏 + 𝟑 + 𝟓 + … + (𝟐𝒏 – 𝟏) = 𝒏 𝟐
Realicemos la justificación de esta igualdad por inducción. La cosa va bien para el primer
impar:
• Base inductiva: 𝑆1 = 1 = 12
• Paso inductivo: Supongamos que es cierto que, cuando sumamos los 𝑛 primeros impares,
resulta
𝑆 𝑛 = 1 + 3 + 5 +.. . + 2𝑛 − 3 + 2𝑛 − 1 = 𝑛2
Veamos que pasa con los 𝑛 + 1 primeros impares. ¿Cuál es su suma?
𝑆 𝑛+1 = 1 + 3 + 5 + ⋯ + 2𝑛 − 3 + 2𝑛 − 1 + 2𝑛 + 1
Usando la hipótesis inductiva resulta que:
𝑆 𝑛+1 = 𝑆𝑛 + (2𝑛 + 1) = 𝑛2
+ 2𝑛 + 1 = (𝑛 + 1)2
• Conclusión:
Por tanto, al ser cierto que𝑆 𝑛+1 = (𝑛 + 1)2
, es cierto para todo natural la propiedad:
1 + 3 + 5 + ⋯ + 2𝑛 − 3 + 2𝑛 − 1 = 𝑛2
3.5 Definiciones por recurrencia.
1. El factorial de n.
Además de las demostraciones por inducción o recurrencia están las definiciones
recursivas. Así por ejemplo, el número 𝑛!, que se lee factorial de n se define como el
producto de todos los números naturales, no nulos, menores o iguales a él:
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 13
𝑛! = 1 × 2 × 3 × … × (𝑛 − 1) × 𝑛
Por ejemplo: 3! = 6; 2! = 2; 5! = 120.
Sin embargo se puede definir recursivamente para evitar esos misteriosos puntos
suspensivos y para que quede definido para todo número natural inclusive el 0;
0 = {
0! = 1
( 𝑛 + 1)! = 𝑛! × (𝑛 + 1)
2. Potencia de un número real.
Sabes de cursos anteriores que si a es un número 𝑎0
= 1 y que si n un natural mayor que
uno, entonces: 𝑎 𝑛
= 𝑎 × 𝑎 × … × 𝑎 × 𝑎 (n factores).
Ahora estamos en condiciones de reformular la definición del siguiente modo:
Si 𝑎 ∈ ℝ y n es un natural, se define la potencia de base a y de exponente n inductivamente
de la manera siguiente:
{ 𝑎0
= 1
𝑎 𝑛+1
= 𝑎 𝑛
× 𝑎
si 𝑎 ≠ 0 es habitual usar la notación 𝑎−1
para expresar
1
𝑎
y 𝑎−𝑛
representa
(
1
𝑎
)
𝑛
3. El símbolo de sumatoria.
Otra definición que encierra una notación conveniente para escribir una suma de n
términos:
𝑎0 + 𝑎1 + 𝑎2 + … + 𝑎 𝑛−1
Es mediante el símbolo de sumatoria:
∑ 𝑎𝑖
𝑖=𝑛−1
𝑖=1
Empleando la letra griega sigma mayúscula, Σ, para designar la suma de los números
obtenidos variando i desde 0 hasta n − 1.
Así por ejemplo:
∑ 𝑖2
𝑖=4
𝑖=1
= 12
+ 22
+ 32
+ 42
= 1 + 4 + 9 + 16 = 30
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 14
Para definir el símbolo de sumatoria con más precisión nos hace falta una definición
recursiva:
{
𝑖 = 0
∑ 𝑎𝑖 = 0
𝑖=0
∑ 𝑎𝑖 = ∑ 𝑎𝑖 + 𝑎 𝑛+1
𝑖=𝑛
𝑖=0
𝑖=𝑛−1
𝑖=1
4. AXIOMAS DE PEANO: ADICIÓN, MULTIPLICACIÓN, ORDEN
El conjunto ℕ de los números naturales puede ser introducido de forma natural como el
conjunto de los cardinales de los conjuntos entre sí coordinables, en el sentido de
Dedekind:
0 = 𝑐𝑎𝑟𝑑(𝜑 ),1 = 𝑐𝑎𝑟𝑑({𝜑}), 2 = 𝑐𝑎𝑟𝑑({𝜑 , {𝜑}}), . . .
Sin embargo, resulta equivalente introducirlos desde el punto de vista de un lenguaje
formalizado, desde la lógica matemática, mediante un conjunto de axiomas o condiciones
postuladas. En 1989 Giusepe Peano propuso un conjunto de nueve axiomas (que después
de algunas correcciones quedarían en solo cinco) con los cuales es posible deducir en ℕ
tanto las propiedades de las operaciones internas de suma y multiplicación como su orden
total.
En la presentación que sigue exponemos los cinco postulados de Peano y la derivación de
las propiedades básicas para la suma y la multiplicación en ℕ, así como su ordenación.
4.1 Los axiomas de Peano:
Se define el conjunto N de los números naturales como un conjunto que verifica las cinco
condiciones siguientes:
1) Existe un elemento de ℕ al que llamaremos cero (0), esto es, 0 ∈ ℕ
2) Existe la llamada aplicación siguiente 𝜙 ∶ ℕ → ℕ :
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 15
𝜙 ∶ ℕ → ℕ ,∀𝑛 ∈ ℕ, 𝜙 (𝑛) ∈ ℕ
3) El cero no es imagen por la aplicación siguiente:
∀𝑛 ∈ ℕ, 𝜙 (𝑛) ≠ 0
4) La aplicación siguiente es inyectiva:
𝑛, 𝑚 ∈ ℕ × ℕ, 𝜙 (𝑛) = 𝜙 (𝑚) → 𝑛 = 𝑚
5) Se verifica la inducción completa:
1) 0 ∈ 𝐴
2) ∀𝑛 ∈ 𝐴 → 𝜑(𝑛) ∈ 𝐴
} ⇒ 𝐴 = ℕ
Resumiendo lo que afirman estos postulados o axiomas, podemos entender que se trata de
un conjunto que tiene un elemento, el cero (Ax.1), que no es siguiente de ningún otro (𝐴 ×
. 3), es decir, se trata del primer elemento del conjunto, y todos los demás elementos tienen
cada uno un elemento siguiente (𝐴 ×. 2), de modo que dos elementos distintos tienen
siguientes distintos (𝐴 × .4). El quinto postulado es de suma importancia por dotarnos de
un método de demostración de propiedades, ya que nos indica que todo conjunto 𝐴 al que
pertenezca el cero, y tal que todo elemento de 𝐴 tiene siguiente en 𝐴, necesariamente ha de
coincidir con el conjunto ℕ de los números naturales. Es lo que se acostumbra a denominar
método simple de inducción completa.
A partir de estas cinco condiciones, y usando sistemáticamente el quinto axioma, de la
inducción completa, podemos probar todas las propiedades del conjunto ℕ
Teorema 1.1:
Ningún número natural coincide con su siguiente, ∀𝑛 ∈ ℕ, 𝑛 ≠ 𝜙 (𝑛).
Teorema 1.2:
Si dos aplicaciones de N en N conmutan con la aplicación siguiente y tienen la misma
imagen para el cero, entonces ambas coinciden. Es decir:
𝑓, 𝑔 ∈
𝐴𝑝(ℕ) 𝑓 ∘ 𝜑 = 𝜑 ∘ 𝑓
𝑔 ∘ 𝜑 = 𝜑 ∘ 𝑔
} ∧ 𝑓(0) = 𝑔(0) ⇒ 𝑓( 𝑛) = 𝑔(𝑛 =, ∀𝑛 ∈ ℕ
Donde hemos llamado 𝐴𝑝(ℕ) al conjunto de las aplicaciones de ℕ en ℕ
Teorema 1.3:
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 16
Si dos aplicaciones de ℕ en ℕ, f , 𝑔 ∈ 𝐴𝑝(ℕ) , tienen la misma imagen para el cero y
existe alguna aplicación 𝜌 de ℕ en ℕ tal que 𝑓 𝑜𝜙 = 𝜌 𝑜 𝑓 , 𝑔 𝑜𝜙 = 𝜌 𝑜 𝑔 , entonces
ambas aplicaciones coinciden, esto es, 𝑓 (𝑛) = 𝑔(𝑛),∀𝑛 ∈ ℕ
4.2 La suma o adición de números naturales:
Definición 2.1:
Definimos la suma de números naturales como una aplicación 𝑆 ∶ ℕ × ℕ → 𝑁 , de modo
que para ∀𝑛, 𝑚 ∈ ℕ × ℕ, 𝑆(𝑛, 𝑚) ∈ ℕ se cumple que:
1) 𝑆(0, 𝑚) = 𝑚
2) 𝑆(𝜙 (𝑛), 𝑚) = 𝜙[𝑆(𝑛, 𝑚)].
Teorema 2.1:
La definición de suma es única, es decir, si 𝑆1, 𝑆2 son sumas, entonces 𝑆1, = 𝑆2 .
Demostración:
Definamos dos aplicaciones, f y g, mediante 𝑆1 y 𝑆2, y veamos a continuación que han de
coincidir.
Sea 𝑓 ∶ ℕ → ℕ definida para ∀𝑛 ∈ ℕ, 𝑓 (𝑛) = 𝑆1 (𝑛, 𝑚), 𝑚 ∈ ℕ
Sea 𝑔 ∶ ℕ → ℕ definida para ∀𝑛 ∈ ℕ, 𝑔(𝑛) = 𝑆2 (𝑛, 𝑚), 𝑚 ∈ ℕ
Entonces:
Es decir, las dos aplicaciones, f y g, son tales que tienen la misma imagen para el cero y
además conmutan con la aplicación siguiente, por lo que, aplicando el teorema 1.2,
𝑓 (𝑛) = 𝑔(𝑛),∀𝑛 ∈ 𝑁 𝑒𝑠 𝑑𝑒𝑐𝑖𝑟, 𝑆1 (𝑛, 𝑚) = 𝑆2 (𝑛, 𝑚), 𝑛, 𝑚 ∈ ℕ
NOTACIÓN: Representaremos en adelante la suma de dos elementos de ℕ, 𝑚 y 𝑛, en la
manera habitual:
𝑆(𝑛, 𝑚) = 𝑛 + 𝑚
y las dos condiciones de la definición serían, con esta notación:
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 17
1) 0 + 𝑚 = 𝑚
2) 𝜙 (𝑛) + 𝑚 = 𝜙 (𝑛 + 𝑚)
Teorema 2.2:
Se verifican las propiedades asociativa, conmutativa y cancelativa para la suma de números
naturales:
Propiedad asociativa: ∀𝑎, 𝑏, 𝑐 ∈ ℕ,(𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐)
Propiedad conmutativa: ∀𝑎, 𝑏 ∈ ℕ, 𝑎 + 𝑏 = 𝑏 + 𝑎
Propiedad cancelativa: ∀𝑎, 𝑏, 𝑐 ∈ ℕ, 𝑎 + 𝑐 = 𝑏 + 𝑐 → 𝑎 = 𝑏 (también llamada
propiedad simplificativa de la suma)
Demostración:
4.3 La multiplicación o producto de números naturales:
Definición 3.1:
Definimos la multiplicación de números naturales como una aplicación 𝑃 ∶ ℕ × ℕ → ℕ
de modo que para ∀𝑛, 𝑚 ∈ ℕ × ℕ, 𝑃(𝑛, 𝑚) ∈ ℕ se cumple que:
1) 𝑃(0, 𝑚) = 0
2) 𝑃(𝜙 (𝑛), 𝑚) = 𝑃(𝑛, 𝑚) + 𝑚
Teorema 3.1:
La definición de multiplicación es única, es decir, si 𝑃1, 𝑃2 son multiplicaciones, entonces
𝑃1 = 𝑃2
Demostración:
Definamos dos aplicaciones, f y g, mediante 𝑃1 y 𝑃2, y veamos a continuación que han de
coincidir.
Sea 𝑓 ∶ ℕ → ℕ definida para ∀𝑛 ∈ ℕ, 𝑓 (𝑛) = 𝑃1(𝑛, 𝑚), 𝑚 ∈ ℕ
Sea g : ℕ → ℕdefinida para ∀𝑛 ∈ ℕ, 𝑔(𝑛) = 𝑃2 (𝑛, 𝑚), 𝑚 ∈ ℕ
Definamos también 𝜌 ∶ ℕ → ℕ ∶ ∀𝑛 ∈ ℕ, 𝜌 (𝑛) = 𝑛 + 𝑚, 𝑚 ∈ ℕ
Entonces:
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 18
Es decir, las dos aplicaciones, f y g, son tales que tienen la misma imagen para el cero y
además existe una aplicación 𝜌 de ℕ en ℕ tal que 𝑓 𝑜𝜙 = 𝜌 𝑜 𝑓 , 𝑔 𝑜𝜙 = 𝜌 𝑜 𝑔 , por lo
que, teniendo en cuenta el teorema 1.3, ambas aplicaciones coinciden, 𝑓 (𝑛) = 𝑔(𝑛),∀𝑛 ∈
ℕ es decir, 𝑃1(𝑛, 𝑚) = 𝑃2 (𝑛, 𝑚), 𝑛, 𝑚 ∈ ℕ
NOTACIÓN: Representaremos en adelante la multiplicación de dos elementos de ℕ, m y n,
en la manera habitual:
𝑃(𝑛, 𝑚) = 𝑛. 𝑚
y las dos condiciones de la definición serían, con esta notación:
1) 0 × 𝑚 = 0
2) 𝜙 (𝑛)× 𝑚 = 𝑛 × 𝑚 + 𝑚
Teorema 3.2:
Se verifican las propiedades distributiva respecto de la suma, asociativa, conmutativa y
cancelativa para la multiplicación de números naturales:
Propiedad distributiva respecto de la suma: ∀𝑎, 𝑏, 𝑐 ∈ ℕ, 𝑎 × (𝑏 + 𝑐) = 𝑎 × 𝑏 + 𝑎 × 𝑐
Propiedad conmutativa: ∀𝑎, 𝑏 ∈ ℕ, 𝑎 × 𝑏 = 𝑏 × 𝑎
Propiedad asociativa: ∀𝑎, 𝑏, 𝑐 ∈ ℕ,(𝑎 × 𝑏) × 𝑐 = 𝑎 × (𝑏 × 𝑐)
Propiedad cancelativa: ∀𝑎, 𝑏, 𝑐 ∈ ℕ, 𝑎 × 𝑐 = 𝑏 × 𝑐 → 𝑎 = 𝑏
Demostración:
5. AXIOMÁTICA ORDINAL DE ℕ
De los axiomas de Peano sabemos que todo número natural tiene un siguiente.
Veamos, que cualquier número natural, salvo el cero, es siguiente de otro número natural,
mediante una sencilla proposición.
Teorema 4.1:
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 19
Todo número natural distinto del cero es el siguiente de otro número natural:
∀𝑛 ∈ ℕ / 𝑛 ≠ 0,∃𝑚 ∈ ℕ /𝜙 (𝑚) = 𝑛
Demostración:
Consideremos el conjunto 𝛢 = {𝑛 ∈ ℕ / 𝑛 = 0 ∨ ∃𝑚 ∈ ℕ /𝜙 (𝑚) = 𝑛}, y veamos
que ha de coincidir con ℕ usando el axioma 5 de la inducción completa.
- 0 ∈ 𝛢 , por construcción de 𝛢 .
- ∀𝑛 ∈ 𝛢, ∃𝑚 ∈ ℕ /𝜙 (𝑚) = 𝑛 → 𝜙[𝜙 (𝑚)] = 𝜙 (𝑛) → ∃𝜙 (𝑚) /𝜙[𝜙 (𝑚)] =
𝜙 (𝑛) → 𝜙 (𝑛) ∈ 𝛢
O sea, 1) 0 ∈ 𝛢, ∀𝑛 ∈ 𝛢 → 𝜙 (𝑛) ∈ 𝛢, lo que implica que 𝛢 = ℕ , y, por consiguiente,
todo número natural n distinto del cero es el siguiente de otro número natural m, que,
además, es único, pues por el axioma 4, 𝜙 (𝑎) = 𝜙 (𝑏) → 𝑎 = 𝑏
Definición 4.1:
a) Se define la relación “menor o igual que” (≤) del modo siguiente:
∀𝑎, 𝑏 ∈ ℕ, 𝑎 ≤ 𝑏 ↔ ∃𝑞 ∈ ℕ / 𝑎 + 𝑞 = 𝑏
b) Se define la relación “mayor o igual que” (≥) de la forma:
∀𝑎, 𝑏 ∈ ℕ, 𝑎 ≥ 𝑏 ↔ 𝑏 ≤ 𝑎
c) Se define la relación “menor estrictamente que” (<):
∀𝑎, 𝑏 ∈ ℕ, 𝑎 < 𝑏 ↔ 𝑎 ≤ 𝑏 ∧ 𝑎 ≠ 𝑏
d) Se define la relación “mayor estrictamente que” (>):
∀𝑎, 𝑏 ∈ ℕ, 𝑎 > 𝑏 ↔ 𝑏 < 𝑎
Teorema 4.2:
La relación “menor o igual que” es relación de orden, es decir, es reflexiva, anti simétrica y
transitiva.
Demostración:
a) es reflexiva:
∀𝑎 ∈ ℕ,∃0 ∈ ℕ / 𝑎 + 0 = 0 + 𝑎 = 𝑎 → 𝑎 ≤ 𝑎
b) es antisimétrica:
𝑎 ≤ 𝑏
𝑏 ≤ 𝑎
} →
∃𝑝 ∈ ℕ ∕ 𝑎 + 𝑝 = 𝑏
∃𝑞 ∈ ℕ ∕ 𝑏 + 𝑞 = 𝑎
} → 𝑏 = 𝑎 + 𝑝 = 𝑏 + 𝑞 = 𝑏 + ( 𝑝 + 𝑞) → 𝑏 = 𝑏 + (𝑝 + 𝑞)
c) es transitiva:
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 20
𝑎 ≤ 𝑏
𝑏 ≤ 𝑎
} →
∃𝑝 ∈ ℕ ∕ 𝑎 + 𝑝 = 𝑏
∃𝑞 ∈ ℕ ∕ 𝑏 + 𝑞 = 𝑐
} → 𝑐 = 𝑏 + 𝑞 = 𝑎 + 𝑝 + 𝑞 = 𝑎 + ( 𝑝 + 𝑞) → 𝑐
= 𝑎 + (𝑝 + 𝑞) → ∃(𝑝 + 𝑞) ∈ ℕ ∕ 𝑎 + (𝑝 + 𝑞) = 𝑐 → 𝑎 ≤ 𝑐
Corolario 1:
a) La relación “mayor o igual que” es también relación de orden.
b) La relación “menor estrictamente que” es relación de orden estricto.
c) La relación “mayor estrictamente que” es relación de orden estricto.
Demostración:
Es trivial, en los tres casos, a la vista del teorema.
Corolario 2:
Todo número natural es estrictamente menor que su siguiente: ∀𝑎 ∈ ℕ, 𝑎 < 𝜙 (𝑎)
Demostración:
𝜙 (𝑎) = 𝜙 (0 + 𝑎) = 𝜙 (0) + 𝑎 → ∃𝜙 (0) ∈ ℕ / 𝑎 + 𝜙 (0) = 𝜙 (𝑎) → 𝑎 ≤ 𝜙 (𝑎)
Por teorema 1.1 sabemos que 𝑎 ≠ 𝜙 (𝑎) , por tanto:
𝑎 ≤ 𝜙 (𝑎) ∧ 𝑎 ≠ 𝜙 (𝑎) → 𝑎 < 𝜙 (𝑎)
Corolario 3:
El cero es menor estrictamente que cualquier otro número natural: 0 < 𝑛, ∀𝑛 ≠ 0
Demostración:
Por teorema 4.1 ∀𝑛 ∈ 𝑁 / 𝑛 ≠ 0, ∃𝑚 ∈ ℕ /𝜙 (𝑚) = 𝑛 .
Si 𝑚 = 0 → 𝑚 = 0 ∧ 𝑚 < 𝜙 (𝑚) = 𝑛 → 0 < 𝜙 (0) → 0 < 𝑛
Si 𝑚 ≠ 0 → ∃𝑝 ∈ ℕ /𝜙 ( 𝑝) = 𝑚
Si 𝑝 = 0 → 𝑝 = 0 ∧ 𝑝 < 𝜙 ( 𝑝) = 𝑚 → 0 < 𝜙 (0) → 0 < 𝑚 < 𝑛
Si 𝑝 ≠ 0 → ∃𝑞 ∈ ℕ /𝜙 (𝑞) = 𝑝
Y así, podríamos continuar el proceso, con lo que aplicando la propiedad transitiva,
encontramos que 0 < 𝑛, ∀𝑛 ≠ 0 .
Teorema 4.3:
Se verifica la alternativa siguiente:
∀𝑎, 𝑏 ∈ ℕ, 𝑎 < 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑎 > 𝑏 (Propiedad de tricotomía).
(Esto es lo mismo que afirmar que ∀𝑎, 𝑏 ∈ ℕ, 𝑎 ≤ 𝑏 ∨ 𝑏 ≤ 𝑎 , es decir, que la relación
de orden “≤" es un orden total)
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 21
Demostración:
Fijemos el elemento a y definamos los tres conjuntos que establecen la tricotomía:
𝛢1 = {𝑎}, 𝛢2 = {𝑏 ∈ ℕ /𝑏 < 𝑎}, 𝛢3 = {𝑏 ∈ ℕ /𝑏 > 𝑎} . Como veremos, los tres
conjuntos son disjuntos dos a dos.
El teorema quedará probado si:
ℕ = ⋃ 𝐴𝑖
3
𝑖=1
Siendo 𝛢𝑖 ∩ 𝛢𝑗 = ∅, 𝑖 ≠ 𝑗
Veámoslo suponiendo en primer lugar que es 𝑎 = 0 y luego para 𝑎 ≠ 0.
a) Si es 𝑎 = 0: 𝐴1 = {0}, 𝛢2 = ∅, 𝛢3 = { 𝑏 ∈ ℕ / 𝑏 > 0} = { 𝑏 ∈ ℕ / 𝑏 ≠ 0} .
Obviamente, en este caso se verifica que ℕ = {0} ∪ ∅ ∪ { 𝑏 ∈ ℕ/𝑏 ≠ 0} = 𝐴1 ∪ 𝛢2 ∪ 𝛢3 ,
verificándose también que:
𝐴1 ∩ 𝛢2 = {0} ∩ ∅ = ∅
𝐴1 ∩ 𝛢3 = {0} ∩ { 𝑏 ∈ ℕ / 𝑏 ≠ 0} = ∅
𝐴2 ∩ 𝛢3 = { 𝑏 ∈ ℕ / 𝑏 < 𝑎} ∩ { 𝑏 ∈ ℕ / 𝑏 > 𝑎} = ∅
b) Si es 𝑎 ≠ 0 , como es 𝑎 > 0, entonces 0 ∈ 𝛢2
Consideremos el conjunto 𝛢 = 𝛢1 ∪ 𝛢2 ∪ 𝛢3 a fin de aplicar la inducción completa:
- 0 ∈ 𝛢, pues 0 ∈ 𝛢2
− ∀𝑏 ∈ 𝛢 → 𝑏 ∈ 𝛢1 ∨ 𝑏 ∈ 𝛢2 ∨ 𝑏 ∈ 𝛢3
- Si 𝑏 ∈ 𝛢1 →= 𝑎 → 𝜑( 𝑏) > 𝑏 → 𝜑( 𝑏) > 𝑎 → 𝜑(𝑏) ∈ 𝐴3 → 𝜑(𝑏) ∈ 𝐴
- Si 𝑏 ∈ 𝛢2 → 𝑏 < 𝑎 → ∃𝑝 ∈ ℕ 𝑏⁄ + 𝑝 = 𝑎, 𝑝 ≠ 0
Si 𝑝 = 𝜑(0) → 𝑏 + 𝜑 (0) = 𝑎 → 𝜑 (𝑏 ) = 𝑎 → 𝜑 (𝑏 ) ∈ 𝛢1 → 𝜑(𝑏 ) ∈ 𝛢
Si 𝑝 ≠ 𝜑 (0) → ∃𝑟 ∈ ℕ / 𝑝 = 𝑟 + 𝜑 (0) → 𝑏 + 𝑝 = 𝑏 + 𝑟 + 𝜑 (0) →
→ (𝑏 + 𝜑(0) + 𝑟 = 𝑎 → 𝜑( 𝑏) + 𝑟 = 𝑎 → 𝜑( 𝑏) < 𝑎 → 𝜑(𝑏) ∈ 𝐴2
→ 𝜑(𝑏) ∈ 𝐴
− 𝑆𝑖 𝑏 ∈ 𝛢3 → 𝑏 > 𝑎 → 𝜑(𝑏) > 𝑏 > 𝑎 → 𝜑(𝑏) > 𝑎 → 𝜑(𝑏) ∈ 𝛢3 → 𝜑(𝑏) ∈ 𝐴
→ 𝜑 (𝑏) ∈ 𝛢
En definitiva, ∀𝑏 ∈ 𝛢 → 𝜑(𝑏) ∈ 𝛢. En consecuencia es 𝛢 = ℕ por el axioma 5.
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 22
Verificándose que
𝛢1 ∩ 𝛢2 = { 𝑎} ∩ { 𝑏 ∈ ℕ 𝑏⁄ < 𝑎} = ∅
𝛢1 ∩ 𝛢3 = { 𝑎} ∩ { 𝑏 ∈ ℕ 𝑏⁄ > 𝑎} = ∅
𝛢2 ∩ 𝛢3 = { 𝑏 ∈ ℕ 𝑏⁄ < 𝑎} ∩ { 𝑏 ∈ ℕ 𝑏⁄ > 𝑎} = ∅
Es obvio que las dos primeras intersecciones son el vacío. Veamos que también se verifica
la tercera mediante una reducción al absurdo. Supongamos que existe un número 𝑞 ∈ 𝛢2 ∩
𝛢3 :
𝑞 ∈ 𝛢2 ∩ 𝛢3 → 𝑞 ∈ 𝛢2 ∧ 𝑞 ∈ 𝛢3 → 𝑞 < 𝑎 ∧ 𝑞 > 𝑎 → 𝑞 > 𝑞
Lo que es absurdo
Teorema 4.4:
∀𝑎, 𝑏 ∈ ℕ, 𝑎 < 𝑏 →
𝑎 + 𝑝 < 𝑏 + 𝑝,∀𝑝 ∈ ℕ
𝑎 × 𝑝 < 𝑏 × 𝑝, ∀𝑝 ∈ ℕ, 𝑝 ≠ 0
}
Demostración:
Teorema 4.5:
1) ∀𝑝 ∈ ℕ, 𝑎 + 𝑝 < 𝑏 + 𝑝 → 𝑎 < 𝑏
2) ∀𝑝 ∈ ℕ, 𝑝 ≠ 0, 𝑎 × 𝑝 < 𝑏 × 𝑝 → 𝑎 < 𝑏
Demostración:
Teorema 4.6:
∀𝑎, 𝑏 ∈ ℕ, 𝑎 > 𝑏 →
𝑎 + 𝑝 > 𝑏 + 𝑝,∀𝑝 ∈ ℕ
𝑎 × 𝑝 > 𝑏 × 𝑝, ∀𝑝 ∈ ℕ, 𝑝 ≠ 0
}
Demostración:
Teorema 4.7:
1) ∀𝑝 ∈ ℕ, 𝑎 + 𝑝 > 𝑏 + 𝑝 → 𝑎 > 𝑏
2) ∀𝑝 ∈ ℕ, 𝑝 ≠ 0, 𝑎 × 𝑝 > 𝑏 × 𝑝 → 𝑎 > 𝑏
Demostracion:
En consecuencia, los cinco axiomas de Peano permiten construir el conjunto ℕ de los
números naturales y establecer su estructura algebraica como la de un semianillo
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 23
conmutativo con elemento unidad y totalmente ordenado, en donde es el cero el elemento
neutro de la suma o ley aditiva del semianillo y 𝜑 (0) el elemento unidad, neutro para la
multiplicación o ley multiplicativa del semianillo.
∀𝑎 ∈ ℕ, 𝑎 + 0 = 0 + 𝑎 = 𝑎
∀𝑎 ∈ ℕ, 𝑎 × 𝜑 (0) = 𝜑 (0)× 𝑎 = 𝑎
(ℕ,+, . , ≤) es semianillo conmutativo con elemento unidad totalmente ordenado.
6. SUCESIONES NUMÉRICAS
6.1 Sucesiones numéricas.
Imaginemos el recorrido que efectúa un balón que se ha lanzado al suelo y midamos las
distancias entre bote y bote:
Las distancias forman una sucesión de números: 40, 35, 30,25, ….
Una SUCESIÓN NUMÉRICA es un conjunto ordenado de números, que se llaman
TÉRMINOS de la sucesión.
Cada término se representa por una letra y un subíndice que indica el lugar que ocupa
dentro de ella.
En nuestro ejemplo, tenemos:
𝑎1 = 40; 𝑎2 = 35; 𝑎3 = 30; 𝑎4 = 25, …
Aquí, la distancia recorrida en cada bote es 5 cm. menor que la anterior. Podemos calcular
así más términos de la sucesión: 40,35, 30, 25,20, 15, …
Esta sucesión tiene un número finito de términos. Se dice que es una SUCESIÓN FINITA.
Las que tienen infinitos términos se dicen SUCESIONES INFINITAS.
Un ejemplo de una sucesión infinita sería la formada por los cuadrados perfectos:
1, 4, 9, 16,25, 36, 49,64, 81, 100,121, 144,169, 196,225, …..
EJERCICIO 1. Escribe los 10 primeros términos de las sucesiones formadas por:
a) Los números pares : 2, 4, 6, 8, 10, 12, 14, 16, 18, 20
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 24
b) La suma de cada natural y su cuadrado: 2, 6, 12, 20, 30, 42, 56, 72, 90, 110
EJERCICIO 2. Completa los términos que faltan en las siguientes sucesiones:
a) 11, 14, 17, 20, 23, 26, 29, 32 c) 1, 3, 6, 10,15, 21, 28, 36 , 45, 55
b) 105, 100, 95, 90, 85, 80, 75, 70 d) 1, 8, 27, 64, 125, 216
6.2 Término general de una sucesión.
El TÉRMINO GENERAL ( o TÉRMINO n-ÉSIMO ) , n a , de una sucesión es una fórmula
que nos permite calcular cualquier término de la sucesión en función del lugar que ocupa.
Por ejemplo, en la sucesión de los cuadrados perfectos, cada término se obtiene elevando al
cuadrado el lugar que ocupa en ella:
En esta sucesión, el término general será: 𝑎 𝑛 = 𝑛2
6.3 Cálculo del término general de una sucesión.
Dados los términos de una sucesión, para calcular su término general tenemos que buscar
una regla que relacione el valor de cada término con el lugar que ocupa en la sucesión. Para
hallar esta relación debemos descomponer los términos en expresiones numéricas que
tengan la misma estructura dependiendo del lugar que ocupan.
EJEMPLO:
Consideremos la siguiente sucesión: 2, 5, 10, 17,26, 37… ..
Para calcular el término general nos ayudamos de la siguiente tabla:
LUGAR 1 2 3 4 5 6 … 𝑛 …
TÉRMINO 2 = 12
+ 1
= 22
+ 1
10 = 32
+ 1
17 = 42
+ 1
𝑛2
+ 1
6.4 Sucesiones recurrentes.
Una SUCESIÓN es RECURRENTE cuando todos sus términos se pueden calcular a partir
de uno dado.
La fórmula mediante la cual se pueden calcular los términos se llama LEY DE
RECURRENCIA.
EJEMPLO: 𝑎 𝑛 = 𝑎 𝑛−1 + 𝑛
Si sólo nos dan esta fórmula no podemos hacer nada. Pero si se añade el dato 𝑎1 = 4 ,
entonces ya podemos obtener el resto de los términos de la sucesión:
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 25
La ley de recurrencia sería:
7. CONJUNTOS FINITOS E INFINITOS
Sea 𝐼 𝑛 = {1,2, . . . , 𝑛} ⊆ ℕ.
Un conjunto X es finito, si 𝑋 = ∅ o existe para algún 𝑛 ∈ ℕ una biyección 𝜑 ∶ 𝐼 𝑛 → 𝑋.
En el primer caso, decimos que X no posee elementos y el segundo decimos que X posee n
elementos. Es claro que:
(a) 𝐼 𝑛 es finito y posee n elementos.
(b) Si 𝜑: 𝑋 → 𝑌 es una biyección, entonces uno de los conjuntos es finito si y solo si el
otro lo es, y además, si esto ocurre, ellos poseen el mismo número de elementos.
Una biyección 𝜑 ∶ 𝐼 𝑛 → 𝑋 significa una enumeración de los elementos de X, escribiendo
𝜑(1) = 𝑥1, 𝜙(2) = 𝑥2,. . . , 𝜑( 𝑛) = 𝑥 𝑛, tenemos que 𝑋 = { 𝑥1, 𝑥2, . . . , 𝑥 𝑛}.
(c) 𝜑 ∶ 𝐼 𝑛 → 𝑋y 𝜑 ∶ 𝐼 𝑚 → 𝑋 son bisecciones, entonces 𝑚 = 𝑛. En efecto, considerando
la función compuesta 𝑓 = 𝜓−1
∘ 𝜑 ∶ 𝐼𝑛 → 𝐼𝑚 debemos probar que si existe una
biyección 𝑓 ∶ 𝐼 𝑛 → 𝐼 𝑚, entonces 𝑚 = 𝑛.
Para ello tenemos el siguiente teorema
Teorema 1.7. Sea 𝐴 ⊆ 𝐼 𝑛. Si existe una biyección 𝑓 ∶ 𝐼 𝑛 → 𝐴, entonces 𝐴 = 𝐼 𝑛 .
Demostración. Por inducción sobre n. Para 𝑛 = 1, el resultado es obvio.
Supongamos que es verdadero para 𝑛 ∈ ℕ Consideremos una biyección
𝑓 ∶ 𝐼 𝑛+1 → 𝐴. Sea 𝑎 = 𝑓(𝑛 + 1), la restriccion de f a 𝐼 𝑛 es una biyección
𝑓 ∶ 𝐼 𝑛 → 𝐴 − {𝑎}. Si 𝐴 − {𝑎} ⊆ 𝐼 𝑛entonces por la hipótesis de inducción, se tiene que
𝐼 𝑛 = 𝐴 − {𝑎}, de donde 𝑎 = 𝑛 + 1 y 𝐴 = 𝐼 𝑛+1.
Si no se cumple que 𝐴 − {𝑎} ⊂ 𝐼 𝑛, en este caso existe 𝑝 ∈ 𝐼 𝑛 tal que |𝑓(𝑝) = 𝑛 + 1.
Definimos una nueva biyeccion 𝑔 ∶ 𝐼 𝑛+1 → 𝐴 como 𝑔(𝑥) = 𝑓(𝑥) si 𝑥 ≠ 𝑝 y 𝑥 ≠ 𝑛 +
1, 𝑔(𝑝) = 𝑎, y 𝑔(𝑛 + 1) = 𝑛 + 1. Ahora la restricción g a 𝐼 𝑛 es una biyección 𝑔 ∶
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 26
𝐼 𝑛 → 𝐴 − {𝑛 + 1}, 𝑦 𝐴 − {𝑛 + 1} ⊆ 𝐼 𝑛. Luego, por hipótesis de inducción 𝐴 −
{𝑛 + 1} = 𝐼 𝑛 , de donde 𝐴 = 𝐼 𝑛+1.
Corolario 1.8. No puede existir una biyección desde un conjunto finito sobre una parte
propia de él.
Teorema 1.9. Todo subconjunto de un conjunto finito es finito.
Demostración. Inmediata.
Corolario 1.10. Sea 𝑓 ∶ 𝑋 → 𝑌 una función inyectiva. Si Y es finito, entonces X es finito,
y el número de elementos de X no puede exceder el número de elementos de Y.
Corolario 1.11. Sea 𝑓 ∶ 𝑋 → 𝑌 una función sobreyectiva. Si X es finito, entonces Y es
finito y su número de elementos no excede al de X.
Un conjunto X es infinito, si no es finito, es decir, X es no vacío y para cualquier 𝑛 ∈ ℕ no
existe una biyección 𝜑 ∶ 𝐼 𝑛 → 𝑋.
Del Corolario 1.8, se sigue que si existe una biyección entre 𝑋 un subconjunto propio de
este, entonces 𝑋 es infinito. Usamos esto para los siguientes ejemplos.
Ejemplo. ℕ es infinito.
En efecto, sea 𝜑 ∶ ℕ → 𝑃 = {2𝑛 ∶ 𝑛 ∈ ℕ} (conjunto de los números naturales pares),
definida por 𝜑(𝑛) = 2𝑛. Tenemos que𝜑 es inyectiva, pues si 𝜑(𝑛) ≠ 𝜔(𝑚) se sigue que
2𝑛 = 2𝑚 y por la Ley de Corte, concluimos que 𝑛 = 𝑚. Por otra parte, es inmediato que
𝜑 es sobreyectiva. Resumiendo, 𝜑 es una biyección entre los números naturales y los
números naturales pares, por lo tanto N es infinito, pues P es un subconjunto propio de ℕ.
Definición 1.2. Decimos que un conjunto X es numerable si es vacío o existe una biyección
𝜑 ∶ ℕ1 → 𝑋, donde ℕ1 ⊂ ℕ.
Por ejemplo, ℕ,ℤ y ℚ son numerables.
Tenemos el siguiente resultado.
Teorema 1.12. Todo subconjunto de un conjunto numerable es numerable
Demostración. Inmediata.
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 27
8. APLICACIONES DE CONOCIMIENTO
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 28
7. Se deja a demostración de los estudiantes los teoremas de Peano que no están
demostrados
8. Sucesiones numéricas
1. El número que sigue en la secuencia:
3; 5; 7; 11; 17; 27; ….. es:
A) 37 B) 44 C) 39
D) 43 E) 45
2. ¿Cuál es el noveno término en la siguiente secuencia numérica?
3; 4; 6; 9; 13; ….
A) 40 B) 30 C) 39
D) 50 E) 59
3. Calcule el número que sigue en la siguiente secuencia y da como respuesta la suma de
las cifras del valor encontrado
A)7 B) 8 C) 9
D)10 E) 13
4. ¿Qué número continúa la secuencia?
1 ; 4 ; 11 ; 34 ; 101 ;
A) 302 B) 404 C) 292
D) 304 E) 284
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 29
5. Determine el valor de x y en la siguiente sucesión:
4 ; 14 ; 7 ; 12 ; 11 ; 9 ; x ; y
A) 19 B) 20 C) 21
D) 22 E) 23
6. Determine el número que continúa en la sucesión:
2
3
;
3
5
;
5
7
;
8
9
;
a
b
A) 12 B) 23 C) 11
D) 14 E) 52
7. Indique la alternativa que completa la siguiente sucesión:
10 ; 8 ; 16 ; 13 ; 39 ; 35 ;
A) 140 B) 70 C) 105
D) 65 E) 79
8. Indique la alternativa que completa la siguiente sucesión:
1 ; 3 ; 4 ; 7 ; 11 ; 18 ;
A) 26 B) 27 C) 28
D) 29 E) 30
9. Señale el número que completa la sucesión mostrada:
1 ; 3 ; 7 ; ; 31
A) 14 B) 15 C) 16
D) 17 E) 19
10. Indique la alternativa que completa la siguiente sucesión:
2 ; 3 ; 7 ; 25 ; 121 ;
A) 361 B) 484 C) 721
D) 726 E) 842
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 30
11. Indique la alternativa que completa la siguiente sucesión:
4 ; 9 ; 25 ; 49 ; 121 ; 169 ;
A) 289 B) 256 C) 225
D) 196 E) 361
12. ¿Qué número continúa en la siguiente sucesión?
2 ; 10 ; 30 ; 68 ;
A) 98 B) 116 C) 130
D) 136 E) 142
13. ¿Qué número continúa en la siguiente sucesión?
2 ; 2 ; 3 ; 7 ; 25 ;
A) 49 B) 121 C) 84
D) 61 E) 53
14. Determine el número que completa la sucesión mostrada:
16 ; 15 ; 30 ; 10 ; 8 ; 24 ; 6 ; 3 ;
A) 12 B) 15 C) 9
D) 5 E) 4
15. Indique la alternativa que continúa en la siguiente sucesión:
10 ; 13 ; 15 ; 15 ; 12 ;
A) 10 B) 5 C) 9
D) 2 E) 7
16. Señale el valor de m n en la sucesión mostrada:
1 ; 2 ; 2 ; 3 ; 4 ; 5 ; 8; 7 ; m ; n
A) 19 B) 21 C) 23
D) 25 E) 27
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 31
17. Indique la alternativa que continúa en la siguiente sucesión:
1 ; 9 ; 49 ; 225 ;
A) 1 089 B) 961 C) 841
D) 729 E) 625
18. En la sucesión mostrada determine el valor de M N
4 ; 4 ; 12 ; 8 ; 20 ; 12 ; M ; N
A) 40 B) 42 C) 44
D) 48 E) 52
19. Señale la alternativa que continúa correctamente la siguiente sucesión:
2 ; 3 ; 6 ; 9 ; 36 ; 41 ; 246 ;
A) 252 B) 253 C) 255
D) 738 E) 1722
20. Indique la alternativa que continúa correctamente la siguiente sucesión:
2 ; 3 ; 6 ; 15 ; 45 ;
A) 126 B) 132 C) 144,5
D) 151 E) 157,5
21. En la sucesión mostrada indique el valor de x y :
2 ; 5 ; 2 ; 6 ; 4 ; 8 ; 12 ; 11 ; x ; y
A) 57 B) 63 C) 68
D) 38 E) 31
22. Indique la alternativa que continúa coherentemente la siguiente sucesión:
2 ; 9 ; 28 ; 65 ;
A) 114 B) 121 C) 126
D) 137 E) 144
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 32
23. ¿Qué número continúa en la siguiente sucesión?
1 ; 2 ; 4 ; 10 ; 34 ;
A) 154 B) 144 C) 121
D) 96 E) 81
24. ¿Qué número continúa en la sucesión mostrada?
1 ; 2 ; 4 ; 7 ; 8 ; 10 ;
A) 12 B) 13 C) 14
D) 15 E) 16
25. ¿Qué número continúa en la siguiente sucesión?
1 ; 2 ; 4 ; 3 ; 7 ; 4 ;
A) 6 B) 8 C) 9
D) 10 E) 11
26. ¿Qué número continúa en la siguiente sucesión?
12 ; 30 ; 75 ;
A) 132 B) 147 C) 112,5
D) 157 E) 187,5
9. Usando inducción matemática, pruebe cada una de las siguientes proposiciones
referentes a los números naturales
Estructuras Numéricas 2015
MSc. Víctor Manuel Valdivia Página 33

Más contenido relacionado

La actualidad más candente

Actividades para estimular el pensamiento numerico
Actividades para estimular el pensamiento numericoActividades para estimular el pensamiento numerico
Actividades para estimular el pensamiento numerico
Andrea Gelves
 
Paso de fracciones a común denominador
Paso de fracciones a común denominadorPaso de fracciones a común denominador
Paso de fracciones a común denominador
Sara Gutierrez Bermejo
 
Evaluacion de los numeros naturales
Evaluacion de los numeros naturalesEvaluacion de los numeros naturales
Evaluacion de los numeros naturales
Ivan Andres
 
Guía ecosistema e interacciones interespecíficas
Guía  ecosistema e interacciones interespecíficasGuía  ecosistema e interacciones interespecíficas
Guía ecosistema e interacciones interespecíficas
Leyla González
 
Estandares de ciencias naturales 1°
Estandares de ciencias naturales 1°Estandares de ciencias naturales 1°
Estandares de ciencias naturales 1°
Carmen Alicia Pacheco
 
Logros promocionales de matematicas
Logros promocionales de matematicasLogros promocionales de matematicas
Logros promocionales de matematicas
andavipe
 
Propiedades de la adición - Grado 3
Propiedades de la adición - Grado 3Propiedades de la adición - Grado 3
Propiedades de la adición - Grado 3
Paola1721
 
24404 proyecto de aula función lineal.
24404 proyecto de aula función lineal.24404 proyecto de aula función lineal.
24404 proyecto de aula función lineal.
osvaldohernandez92
 

La actualidad más candente (20)

Actividades para estimular el pensamiento numerico
Actividades para estimular el pensamiento numericoActividades para estimular el pensamiento numerico
Actividades para estimular el pensamiento numerico
 
Maquinas simples taller
Maquinas simples   tallerMaquinas simples   taller
Maquinas simples taller
 
Evaluación matemática segundo
Evaluación matemática segundoEvaluación matemática segundo
Evaluación matemática segundo
 
Taller de combinaciones
Taller de combinacionesTaller de combinaciones
Taller de combinaciones
 
Actividades sobre tabla periódica
Actividades sobre tabla periódicaActividades sobre tabla periódica
Actividades sobre tabla periódica
 
Plan de clase organización de datos
Plan de clase organización de datosPlan de clase organización de datos
Plan de clase organización de datos
 
Paso de fracciones a común denominador
Paso de fracciones a común denominadorPaso de fracciones a común denominador
Paso de fracciones a común denominador
 
Evaluacion de los numeros naturales
Evaluacion de los numeros naturalesEvaluacion de los numeros naturales
Evaluacion de los numeros naturales
 
Guía ecosistema e interacciones interespecíficas
Guía  ecosistema e interacciones interespecíficasGuía  ecosistema e interacciones interespecíficas
Guía ecosistema e interacciones interespecíficas
 
Estandares de ciencias naturales 1°
Estandares de ciencias naturales 1°Estandares de ciencias naturales 1°
Estandares de ciencias naturales 1°
 
Ficha tabla-periodica-de-los-elementos-quimicos
Ficha tabla-periodica-de-los-elementos-quimicosFicha tabla-periodica-de-los-elementos-quimicos
Ficha tabla-periodica-de-los-elementos-quimicos
 
Plan de grado 9 quimica
Plan de grado 9 quimicaPlan de grado 9 quimica
Plan de grado 9 quimica
 
Plan de recuperacion matematicas
Plan de recuperacion matematicasPlan de recuperacion matematicas
Plan de recuperacion matematicas
 
Logros promocionales de matematicas
Logros promocionales de matematicasLogros promocionales de matematicas
Logros promocionales de matematicas
 
1° geografia cuadernillo remedial - alumno (3)
1° geografia  cuadernillo  remedial - alumno (3)1° geografia  cuadernillo  remedial - alumno (3)
1° geografia cuadernillo remedial - alumno (3)
 
Propiedades de la adición - Grado 3
Propiedades de la adición - Grado 3Propiedades de la adición - Grado 3
Propiedades de la adición - Grado 3
 
guia de la energia para 0 1 y 2
guia de la energia para 0 1 y 2guia de la energia para 0 1 y 2
guia de la energia para 0 1 y 2
 
Plan de Unidad Temática. Matemática. Primero de bachillerato
Plan de Unidad Temática. Matemática. Primero de bachilleratoPlan de Unidad Temática. Matemática. Primero de bachillerato
Plan de Unidad Temática. Matemática. Primero de bachillerato
 
Estadistica 6 a 9
Estadistica 6 a 9Estadistica 6 a 9
Estadistica 6 a 9
 
24404 proyecto de aula función lineal.
24404 proyecto de aula función lineal.24404 proyecto de aula función lineal.
24404 proyecto de aula función lineal.
 

Similar a Modulo estructuras numéricas

Tema22citicen
Tema22citicenTema22citicen
Tema22citicen
maiz28
 
Tema22citicen 110426005651-phpapp02
Tema22citicen 110426005651-phpapp02Tema22citicen 110426005651-phpapp02
Tema22citicen 110426005651-phpapp02
Movb Glez
 
Unidad nº1 naturales 1º ciclo básico
Unidad nº1 naturales 1º ciclo básicoUnidad nº1 naturales 1º ciclo básico
Unidad nº1 naturales 1º ciclo básico
matematicacbcolonia
 
Programa De MatemáTicas I
Programa De MatemáTicas IPrograma De MatemáTicas I
Programa De MatemáTicas I
salgonsan
 
Los numeros naturales maryuri
Los numeros naturales maryuriLos numeros naturales maryuri
Los numeros naturales maryuri
maryuricarrillo
 
Curso de nivelación Matemática
Curso de nivelación MatemáticaCurso de nivelación Matemática
Curso de nivelación Matemática
Mabel Gay
 

Similar a Modulo estructuras numéricas (20)

trabajo final
trabajo finaltrabajo final
trabajo final
 
Tema22citicen
Tema22citicenTema22citicen
Tema22citicen
 
Tema22citicen 110426005651-phpapp02
Tema22citicen 110426005651-phpapp02Tema22citicen 110426005651-phpapp02
Tema22citicen 110426005651-phpapp02
 
Ingreso2013
Ingreso2013Ingreso2013
Ingreso2013
 
Ingreso2013
Ingreso2013Ingreso2013
Ingreso2013
 
Numeros naturales
Numeros naturalesNumeros naturales
Numeros naturales
 
Unidad nº1 naturales 1º ciclo básico
Unidad nº1 naturales 1º ciclo básicoUnidad nº1 naturales 1º ciclo básico
Unidad nº1 naturales 1º ciclo básico
 
Números Complejos 1.2
Números Complejos 1.2Números Complejos 1.2
Números Complejos 1.2
 
Programa De MatemáTicas I
Programa De MatemáTicas IPrograma De MatemáTicas I
Programa De MatemáTicas I
 
Numeros naturales i_etapa_educ_basica
Numeros naturales i_etapa_educ_basicaNumeros naturales i_etapa_educ_basica
Numeros naturales i_etapa_educ_basica
 
277525521-numeros-naturalespdf matemática
277525521-numeros-naturalespdf matemática277525521-numeros-naturalespdf matemática
277525521-numeros-naturalespdf matemática
 
Aritmética
AritméticaAritmética
Aritmética
 
Números reales y su clasificación
Números reales y su clasificaciónNúmeros reales y su clasificación
Números reales y su clasificación
 
Presentación1
Presentación1Presentación1
Presentación1
 
Los numeros naturales maryuri
Los numeros naturales maryuriLos numeros naturales maryuri
Los numeros naturales maryuri
 
Tema 1 numeros naturales
Tema 1 numeros naturalesTema 1 numeros naturales
Tema 1 numeros naturales
 
Naturales repaso
Naturales   repasoNaturales   repaso
Naturales repaso
 
Libro de conjuntos
Libro de conjuntosLibro de conjuntos
Libro de conjuntos
 
Números Naturales
Números NaturalesNúmeros Naturales
Números Naturales
 
Curso de nivelación Matemática
Curso de nivelación MatemáticaCurso de nivelación Matemática
Curso de nivelación Matemática
 

Más de Cliffor Jerry Herrera Castrillo

Más de Cliffor Jerry Herrera Castrillo (20)

Clase 5, Estadísticas 2024 Universidad I.pptx
Clase 5, Estadísticas 2024 Universidad  I.pptxClase 5, Estadísticas 2024 Universidad  I.pptx
Clase 5, Estadísticas 2024 Universidad I.pptx
 
Clase 1 - Ingeniería y Arquitectura 2024.pptx
Clase 1 - Ingeniería y Arquitectura 2024.pptxClase 1 - Ingeniería y Arquitectura 2024.pptx
Clase 1 - Ingeniería y Arquitectura 2024.pptx
 
Clase 6- Ingeniería y Arquitectura 2024.pptx
Clase 6- Ingeniería y Arquitectura 2024.pptxClase 6- Ingeniería y Arquitectura 2024.pptx
Clase 6- Ingeniería y Arquitectura 2024.pptx
 
Clase 5- Ingeniería y Arquitectura 2024.pptx
Clase 5- Ingeniería y Arquitectura 2024.pptxClase 5- Ingeniería y Arquitectura 2024.pptx
Clase 5- Ingeniería y Arquitectura 2024.pptx
 
Teorema Fundamental del Álgebra Álgebra .pptx
Teorema Fundamental del Álgebra Álgebra .pptxTeorema Fundamental del Álgebra Álgebra .pptx
Teorema Fundamental del Álgebra Álgebra .pptx
 
Integrador - Intercambio de Experiencias.pptx
Integrador - Intercambio de Experiencias.pptxIntegrador - Intercambio de Experiencias.pptx
Integrador - Intercambio de Experiencias.pptx
 
Capacitacion modelo por competencia.pptx
Capacitacion modelo por competencia.pptxCapacitacion modelo por competencia.pptx
Capacitacion modelo por competencia.pptx
 
Clase 3- Ingeniería y Arquitectura 2024.pptx
Clase 3- Ingeniería y Arquitectura 2024.pptxClase 3- Ingeniería y Arquitectura 2024.pptx
Clase 3- Ingeniería y Arquitectura 2024.pptx
 
Clase 2- Ingeniería y Arquitectura 2024.pptx
Clase 2- Ingeniería y Arquitectura 2024.pptxClase 2- Ingeniería y Arquitectura 2024.pptx
Clase 2- Ingeniería y Arquitectura 2024.pptx
 
Plantilla-Presentación de investigación.pptx
Plantilla-Presentación de investigación.pptxPlantilla-Presentación de investigación.pptx
Plantilla-Presentación de investigación.pptx
 
BOA 4 y 5 - Integrador V - 06 y 13 05 2023.pptx
BOA 4 y 5 - Integrador V - 06 y 13 05 2023.pptxBOA 4 y 5 - Integrador V - 06 y 13 05 2023.pptx
BOA 4 y 5 - Integrador V - 06 y 13 05 2023.pptx
 
Clase de Estadística para ingeniería 2024
Clase de Estadística para ingeniería 2024Clase de Estadística para ingeniería 2024
Clase de Estadística para ingeniería 2024
 
PLANTILLA UNAN Managua CUR Estelí 2023 Utilizar
PLANTILLA UNAN Managua CUR Estelí 2023 UtilizarPLANTILLA UNAN Managua CUR Estelí 2023 Utilizar
PLANTILLA UNAN Managua CUR Estelí 2023 Utilizar
 
ANÁLISIS CUANTITATIVO II PARA CCNN EXTRAORDINARIO I SEMESTRE 2024_102842.pdf
ANÁLISIS CUANTITATIVO II PARA CCNN EXTRAORDINARIO I SEMESTRE 2024_102842.pdfANÁLISIS CUANTITATIVO II PARA CCNN EXTRAORDINARIO I SEMESTRE 2024_102842.pdf
ANÁLISIS CUANTITATIVO II PARA CCNN EXTRAORDINARIO I SEMESTRE 2024_102842.pdf
 
Método resolución de problemas - copia.pptx
Método resolución de problemas - copia.pptxMétodo resolución de problemas - copia.pptx
Método resolución de problemas - copia.pptx
 
presentacion del prototipo integrador IV.pptx
presentacion del prototipo integrador IV.pptxpresentacion del prototipo integrador IV.pptx
presentacion del prototipo integrador IV.pptx
 
Formulario de Electricidad.pdf
Formulario de Electricidad.pdfFormulario de Electricidad.pdf
Formulario de Electricidad.pdf
 
Distribución de partículas en los Sistemas
Distribución de partículas en los SistemasDistribución de partículas en los Sistemas
Distribución de partículas en los Sistemas
 
Técnicas e instrumentos de recolección de datos
Técnicas e instrumentos de recolección de datosTécnicas e instrumentos de recolección de datos
Técnicas e instrumentos de recolección de datos
 
Diseños de investigación cualitativa .pptx
Diseños de investigación cualitativa .pptxDiseños de investigación cualitativa .pptx
Diseños de investigación cualitativa .pptx
 

Último

Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Fernando Solis
 
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
jlorentemartos
 
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdfPROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
EduardoJosVargasCama1
 

Último (20)

ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
 
Supuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docxSupuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docx
 
Biografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdfBiografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdf
 
AEC 2. Aventura en el Antiguo Egipto.pptx
AEC 2. Aventura en el Antiguo Egipto.pptxAEC 2. Aventura en el Antiguo Egipto.pptx
AEC 2. Aventura en el Antiguo Egipto.pptx
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdfPlan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
 
Lecciones 06 Esc. Sabática. Los dos testigos
Lecciones 06 Esc. Sabática. Los dos testigosLecciones 06 Esc. Sabática. Los dos testigos
Lecciones 06 Esc. Sabática. Los dos testigos
 
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptPINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
 
Posición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptxPosición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptx
 
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
 
Factores que intervienen en la Administración por Valores.pdf
Factores que intervienen en la Administración por Valores.pdfFactores que intervienen en la Administración por Valores.pdf
Factores que intervienen en la Administración por Valores.pdf
 
La Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalLa Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración Ambiental
 
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdfPROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
 
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIASISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
 
Los dos testigos. Testifican de la Verdad
Los dos testigos. Testifican de la VerdadLos dos testigos. Testifican de la Verdad
Los dos testigos. Testifican de la Verdad
 
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxPLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
 
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPCTRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
 
Los avatares para el juego dramático en entornos virtuales
Los avatares para el juego dramático en entornos virtualesLos avatares para el juego dramático en entornos virtuales
Los avatares para el juego dramático en entornos virtuales
 

Modulo estructuras numéricas

  • 1. Universidad Nacional Autonoma de Nicaragua Unan – Managua Facultad Regional Multidisciplinaria de Esteli Unan – Farem – Esteli Recinto Universitario Leonel Rugama Departamento de Ciencias de la Educacion y Humanidades Módulo de Estructuras Numéricas Autor: Msc. Víctor Manuel Valdivia Estelí, marzo de 2015
  • 2. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 2
  • 3. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 3 Introducción Los sistemas numéricos son instrumentos idóneos para transmitir la amenidad, formalidad y el carácter lúdico que tienen las matemáticas (Universidad Nacional Autonoma de Nicaragua, Managua , 1999). Con el presente modulo se pretende que como estudiantes de la carrera de física matemática se apropien de los diferentes conjuntos numéricos y sus principales propiedades. Se pretende con el material a disposición alcancen un mejor nivel de preparación académica en la asignatura de estructuras numéricas no dejando de lado la auto preparación y los deseos por ampliar más los conocimientos en dicha asignatura, pues en presente material se verán algunos tópicos fundamentales, por tanto se insta a que como estudiantes amplíen sus conocimientos mediante el autoestudio. Los números son una inagotable veta de actividades lúdicas, aptas para implementar en todos los niveles educativos del país. La estructura del módulo consiste en seis unidades temáticas: I Unidad: Números enteros naturales II Unidad: Números enteros relativos III Unidad: Números enteros primos IV Unidad: Números Reales V Unidad: El cuerpo de los complejos VI Unidad: Aplicaciones de los complejos En el cual se empleara la metodología activa participativa de manera conferencial donde se tratara de que todos los estudiantes se involucren en el descubrimiento y manipulación de los diferentes dominios numéricos
  • 4. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 4 Objetivos Generales de la Asignatura 1. Conocer el proceso genético de ampliación de los dominios numéricos más representativos 2. Dominar la metodología de la ampliación algebraica de los dominios numéricos 3. Reconocer la faceta estructural algebraica de los dominios numéricos. 4. Demostrar las propiedades algebraicas básicas de los dominios numéricos que se enseñan en la secundaria
  • 5. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 5 I Unidad: Números enteros naturales Introducción: Antes de que surgieran los números para la representación de cantidades, el ser humano usó otros métodos para contar, utilizando para ello objetos como piedras, palitos de madera, nudos de cuerdas, o simplemente los dedos. Más adelante comenzaron a aparecer los símbolos gráficos como señales para contar, por ejemplo marcas en una vara o simplemente trazos específicos sobre la arena. Pero fue en Mesopotamia alrededor del año 4.000 a. C. donde aparecen los primeros vestigios de los números que consistieron en grabados de señales en formas de cuñas sobre pequeños tableros de arcilla empleando para ello un palito aguzado. De aquí el nombre de escritura cuneiforme. Este sistema de numeración fue adoptado más tarde, aunque con símbolos gráficos diferentes, en la Grecia Antigua y en la Antigua Roma. En la Grecia antigua se empleaban simplemente las letras de su alfabeto, mientras que en la antigua Roma además de las letras, se utilizaron algunos símbolos. Quien colocó al conjunto de los números naturales sobre lo que comenzaba a ser una base sólida, fue Richard Dedekind en el siglo XIX. Que después precisó Peano dentro de una lógica de segundo orden, resultando así los famosos cinco postulados que llevan su nombre. Frege fue superior a ambos, demostrando la existencia del sistema de números naturales partiendo de principios más fuertes. Lamentablemente la teoría de Frege perdió, por así decirlo, su credibilidad y hubo que buscar un nuevo método. Fue Zermelo quien demostró la existencia del conjunto de números naturales, dentro de su teoría de conjuntos y principalmente mediante el uso del axioma de infinitud que, con una modificación de este hecha por Adolf Fraenkel, permite construir el conjunto de números naturales como ordinales según von Neumann Desde hace mucho tiempo, tantos que quizás no puedas recordar desde cuándo, sabes como “funcionan” los números naturales: 0; 1; 2, 3; …, es decir, sabes operar con ellos, conoces y aplicas las propiedades de la adición y la multiplicación y hasta incluso manejas bien las desigualdades. Lo que nos proponemos ahora es investigar qué cosa son los números naturales, o mejor dicho, qué es el sistema de los números naturales
  • 6. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 6 Objetivos de la unidad: - Conocer las propiedades principales de las operaciones en el conjunto de los naturales - Utilizar métodos de recurrencia en la demostración de propiedades con números naturales - Conocer y demostrar los axiomas de Peano - Definir el concepto de sucesión numérica - Establecer matemáticamente la diferencia entre conjuntos finitos e infinitos Contenidos de la unidad: 1. Propiedades del conjunto de los números naturales 2. Principio de recurrencia 3. Propiedades recurrentes 4. Axiomas de Peano: Adición, Multiplicación, Orden 5. Axiomática ordinal de ℕ 6. Sucesiones numéricas 7. Conjuntos finitos e infinitos
  • 7. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 7 1. PROPIEDADES DEL CONJUNTO DE LOS NÚMEROS NATURALES 1.1 Números naturales Un número natural es cualquiera de los números que se usan para contar los elementos de un conjunto. Reciben ese nombre porque fueron los primeros que utilizó el ser humano para contar objetos. El conjunto de los números naturales se representa por y corresponde al siguiente conjunto numérico: Los números naturales son un conjunto cerrado para las operaciones de la adición y la multiplicación, ya que al operar con cualquiera de sus elementos, resulta siempre un número perteneciente a. Uso de los números naturales: Los números naturales, son usados para dos propósitos fundamentalmente: para describir la posición de un elemento en una secuencia ordenada, como se generaliza con el concepto de número ordinal, y para especificar el tamaño de un conjunto finito, que a su vez se generaliza en el concepto de número cardinal. 1.2 Propiedades de los números naturales Propiedades de la adición de Números Naturales La adición de números naturales cumple las propiedades asociativa, conmutativa y elemento neutro. 1.- Asociativa: Si 𝑎, 𝑏, 𝑐 son números naturales cualesquiera se cumple que: (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) Por ejemplo: (7 + 4) + 5 = 11 + 5 = 16 7 + (4 + 5) = 7 + 9 = 16 Los resultados coinciden, es decir, (7 + 4) + 5 = 7 + (4 + 5) 2.-Conmutativa Si 𝑎, 𝑏 son números naturales cualesquiera se cumple que: 𝑎 + 𝑏 = 𝑏 + 𝑎
  • 8. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 8 En particular, para los números 7 y 4, se verifica que: 7 + 4 = 4 + 7 Gracias a las propiedades asociativa y conmutativa de la adición se pueden efectuar largas sumas de números naturales sin utilizar paréntesis y sin tener en cuenta el orden. 3.- Elemento neutro El 0 es el elemento neutro de la suma de enteros porque, cualquiera que sea el número natural a, se cumple que: 𝑎 + 0 = 𝑎 Propiedades de la Multiplicación de Números Naturales La multiplicación de números naturales cumple las propiedades asociativa, conmutativa, elemento neutro y distributiva del producto respecto de la suma. 1.-Asociativa Si 𝑎, 𝑏, 𝑐 son números naturales cualesquiera se cumple que: ( 𝑎 × 𝑏)× 𝑐 = 𝑎 × (𝑏 × 𝑐) Por ejemplo: (3 × 5) × 2 = 15× 2 = 30 3 × (5 × 2) = 3 × 10 = 30 Los resultados coinciden, es decir, (3 × 5) × 22 = 3 × (5 × 2) 2.- Conmutativa Si 𝑎, 𝑏 son números naturales cualesquiera se cumple que: 𝑎 × 𝑏 = 𝑏 × 𝑎 Por ejemplo: 5 × 8 = 8 × 5 = 40 3.-Elemento neutro El 1 es el elemento neutro de la multiplicación porque, cualquiera que sea el número natural 𝑎, se cumple que: 𝑎 × 1 = 𝑎 4.- Distributiva del producto respecto de la suma Si 𝑎, 𝑏, 𝑐 son números naturales cualesquiera se cumple que: 𝑎 × (𝑏 + 𝑐) = 𝑎 × 𝑏 + 𝑎 × 𝑐
  • 9. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 9 Por ejemplo: 5 × (3 + 8) = 5 × 11 = 55 5 × 3 + 5 × 8 = 15 + 40 = 55 Los resultados coinciden, es decir, 5 × (3 + 8) = 5 × 3 + 5 × 8 Propiedades de la Sustracción de Números Naturales Igual que la suma la resta es una operación que se deriva de la operación de contar. Si tenemos 6 ovejas y los lobos se comen 2 ovejas ¿cuantas ovejas tenemos? Una forma de hacerlo sería volver a contar todas las ovejas, pero alguien que hubiese contado varias veces el mismo caso, recordaría el resultado y no necesitaría volver a contar las ovejas. Sabría que 6 - 2 = 4. Los términos de la resta se llaman minuendo (las ovejas que tenemos) y sustraendo (las ovejas que se comieron los lobos). Propiedades de la resta: La resta no tiene la propiedad conmutativa (no es lo mismo 𝑎 − 𝑏 que 𝑏 − 𝑎) Propiedades de la División de Números Naturales La división es la operación que tenemos que hacer para repartir un número de cosas entre un número de personas. Los términos de la división se llaman dividendo (el número de cosas), divisor (el número de personas), cociente (el número que le corresponde a cada persona) y resto (lo que sobra). Si el resto es cero la división se llama exacta y en caso contrario inexacta. Propiedades de la división La división no tiene la propiedad conmutativa. No es lo mismo 𝑎/𝑏 que 𝑏/𝑎 2. PRINCIPIO DE RECURRENCIA 2.1 El principio de recurrencia (o de inducción completa). Supongamos que un conjunto de números naturales contiene al 0, y que por el hecho de contener a un natural n se puede deducir que contiene a 𝑛 + 1 (o sea a su siguiente). Es fácil, imaginar entonces que en ese conjunto, si esta el 0, deberá estar el 0 + 1 = 1 y si está
  • 10. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 10 el 1, deberá estar el 1+1=2; y si está el 2 también estará el 3; el 4… etc., por el mismo argumento. Entonces hemos de concluir que en ese conjunto están todos los números naturales, ya que el conjunto de los números naturales es generable por la adición reiterada del 1. 3. PROPIEDADES RECURRENTES 3.1 El principio de recurrencia Asegura entonces: Un conjunto S de números naturales con las siguientes dos propiedades, contiene a todos los números naturales: 1) 0 ∈ S. 2) Si el conjunto S contiene al natural n, entonces contiene a 𝑛 + 1. Este principio se aplica para probar ciertas proposiciones relacionadas con los números naturales. Se dice en ese caso que la demostración se realiza por recurrencia o inducción. Estrechamente vinculado a este principio se encuentra el llamado Principio de la buena ordenación que expresa que en todo conjunto no vacío de números naturales existe uno que es el menor de todos. Este principio cuyo enunciado parece muy ingenuo, es a la hora de justificar algunas propiedades básicas de los números naturales. 3.2 Principio de la buena ordenación de los números naturales: Cualquier subconjunto no vacío del conjunto de los números naturales ℕ tiene mínimo. Demostración. Supongamos que 𝑋 es un subconjunto de números naturales no vacío que no tiene mínimo, y sea 𝑆 𝑛 la proposición Sn: ningún número natural menor o igual a n pertenece a X. Como X no tiene mínimo, 𝑆 1es verdadera (porque si 𝑆 1 fuera falsa entonces 1 sería el mínimo de X) y suponiendo que 𝑆 𝑛 es verdadera también lo es 𝑆 𝑛+1 (porque si 𝑆 𝑛+1 fuera falsa entonces 𝑛 + 1 sería el mínimo de X). Luego por el principio de inducción todas las afirmaciones 𝑆 𝑛 son verdaderas, lo que implica que no existe ningún número natural en X, en contradicción con el hecho de que X es no vacío. 3.3 El razonamiento por recurrencia.
  • 11. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 11 La inducción matemática es un método para la demostración de una propiedad 𝑆(𝑛) que depende de una variable natural. 3.4 Demostrar por recurrencia. Para demostrar que una propiedad, que depende de un número natural 𝑛, es verdadera para todo natural 𝑛 ≥ 𝑛0 (𝑛0 es un natural dado), se procede en tres etapas. 1) Base inductiva: Se muestra que la propiedad es válida cuando 𝑛 = 𝑛0. 2. Paso inductivo: Se prueba que SI la propiedad es verdadera para un natural 𝑘 ≥ 𝑛0 (es la hipótesis de recurrencia), ENTONCES ella es verdadera para el natural siguiente 𝑘 + 1. 3) Conclusión: la propiedad es verdadera para todo natural 𝑛 ≥ 𝑛0. En la práctica, para demostrar por recurrencia que una proposición 𝑃𝑛 es verdadera, se procede en tres etapas: • Se verifica que es verdadera (corrientemente es la parte más fácil); • Se supone que 𝑃𝑛 es verdadera para un natural cualquiera 𝑛 ≥ 𝑛0. (es la hipótesis de recurrencia) y se demuestra entonces que 𝑃 𝑛+1es verdadera, se dice que la propiedad es hereditaria; • Se concluye: para todo natural 𝑛 ≥ 𝑛0, 𝑃𝑛 es verdadera. Ejemplo 1: La suma de los 𝒏 primeros números. Demostrar por recurrencia que 1 + 2 + 3 + … + 𝑛 = 𝑛( 𝑛+1) 2 , 𝑛 ∈ ℕ∗ . • Base inductiva: Se muestra que la proposición es verdadera para 𝑛 = 1: 1 = 1(1 + 1) 2 Ya que la suma se reduce al primer término 1; la proposición es entonces verdadera para 𝑛 = 1. • Paso inductivo: se supone que la proposición es verdadera para un 𝑛 fijo (𝑛 ∈ ℕ∗ ): 1 + 2 + 3 + … + 𝑛 = 𝑛( 𝑛 + 1) 2 Se debe demostrar que la proposición es verdadera para 𝑛 + 1.
  • 12. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 12 La proposición es verdadera para 𝑛 + 1. • Conclusión: La propiedad se verifica para 𝑛 = 1, y como ella es «hereditaria» entonces es verdadera ara todo natural no nulo, 1 + 2 + 3 + … + 𝑛 = 𝑛( 𝑛 + 1) 2 Ejemplo 2: La suma de los n primeros números impares. ¿Sabrías demostrar que la suma de los 𝑛 primeros números impares resulta ser un cuadrado perfecto? Para todo natural 𝑛 ≥ 1: 𝟏 + 𝟑 + 𝟓 + … + (𝟐𝒏 – 𝟏) = 𝒏 𝟐 Realicemos la justificación de esta igualdad por inducción. La cosa va bien para el primer impar: • Base inductiva: 𝑆1 = 1 = 12 • Paso inductivo: Supongamos que es cierto que, cuando sumamos los 𝑛 primeros impares, resulta 𝑆 𝑛 = 1 + 3 + 5 +.. . + 2𝑛 − 3 + 2𝑛 − 1 = 𝑛2 Veamos que pasa con los 𝑛 + 1 primeros impares. ¿Cuál es su suma? 𝑆 𝑛+1 = 1 + 3 + 5 + ⋯ + 2𝑛 − 3 + 2𝑛 − 1 + 2𝑛 + 1 Usando la hipótesis inductiva resulta que: 𝑆 𝑛+1 = 𝑆𝑛 + (2𝑛 + 1) = 𝑛2 + 2𝑛 + 1 = (𝑛 + 1)2 • Conclusión: Por tanto, al ser cierto que𝑆 𝑛+1 = (𝑛 + 1)2 , es cierto para todo natural la propiedad: 1 + 3 + 5 + ⋯ + 2𝑛 − 3 + 2𝑛 − 1 = 𝑛2 3.5 Definiciones por recurrencia. 1. El factorial de n. Además de las demostraciones por inducción o recurrencia están las definiciones recursivas. Así por ejemplo, el número 𝑛!, que se lee factorial de n se define como el producto de todos los números naturales, no nulos, menores o iguales a él:
  • 13. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 13 𝑛! = 1 × 2 × 3 × … × (𝑛 − 1) × 𝑛 Por ejemplo: 3! = 6; 2! = 2; 5! = 120. Sin embargo se puede definir recursivamente para evitar esos misteriosos puntos suspensivos y para que quede definido para todo número natural inclusive el 0; 0 = { 0! = 1 ( 𝑛 + 1)! = 𝑛! × (𝑛 + 1) 2. Potencia de un número real. Sabes de cursos anteriores que si a es un número 𝑎0 = 1 y que si n un natural mayor que uno, entonces: 𝑎 𝑛 = 𝑎 × 𝑎 × … × 𝑎 × 𝑎 (n factores). Ahora estamos en condiciones de reformular la definición del siguiente modo: Si 𝑎 ∈ ℝ y n es un natural, se define la potencia de base a y de exponente n inductivamente de la manera siguiente: { 𝑎0 = 1 𝑎 𝑛+1 = 𝑎 𝑛 × 𝑎 si 𝑎 ≠ 0 es habitual usar la notación 𝑎−1 para expresar 1 𝑎 y 𝑎−𝑛 representa ( 1 𝑎 ) 𝑛 3. El símbolo de sumatoria. Otra definición que encierra una notación conveniente para escribir una suma de n términos: 𝑎0 + 𝑎1 + 𝑎2 + … + 𝑎 𝑛−1 Es mediante el símbolo de sumatoria: ∑ 𝑎𝑖 𝑖=𝑛−1 𝑖=1 Empleando la letra griega sigma mayúscula, Σ, para designar la suma de los números obtenidos variando i desde 0 hasta n − 1. Así por ejemplo: ∑ 𝑖2 𝑖=4 𝑖=1 = 12 + 22 + 32 + 42 = 1 + 4 + 9 + 16 = 30
  • 14. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 14 Para definir el símbolo de sumatoria con más precisión nos hace falta una definición recursiva: { 𝑖 = 0 ∑ 𝑎𝑖 = 0 𝑖=0 ∑ 𝑎𝑖 = ∑ 𝑎𝑖 + 𝑎 𝑛+1 𝑖=𝑛 𝑖=0 𝑖=𝑛−1 𝑖=1 4. AXIOMAS DE PEANO: ADICIÓN, MULTIPLICACIÓN, ORDEN El conjunto ℕ de los números naturales puede ser introducido de forma natural como el conjunto de los cardinales de los conjuntos entre sí coordinables, en el sentido de Dedekind: 0 = 𝑐𝑎𝑟𝑑(𝜑 ),1 = 𝑐𝑎𝑟𝑑({𝜑}), 2 = 𝑐𝑎𝑟𝑑({𝜑 , {𝜑}}), . . . Sin embargo, resulta equivalente introducirlos desde el punto de vista de un lenguaje formalizado, desde la lógica matemática, mediante un conjunto de axiomas o condiciones postuladas. En 1989 Giusepe Peano propuso un conjunto de nueve axiomas (que después de algunas correcciones quedarían en solo cinco) con los cuales es posible deducir en ℕ tanto las propiedades de las operaciones internas de suma y multiplicación como su orden total. En la presentación que sigue exponemos los cinco postulados de Peano y la derivación de las propiedades básicas para la suma y la multiplicación en ℕ, así como su ordenación. 4.1 Los axiomas de Peano: Se define el conjunto N de los números naturales como un conjunto que verifica las cinco condiciones siguientes: 1) Existe un elemento de ℕ al que llamaremos cero (0), esto es, 0 ∈ ℕ 2) Existe la llamada aplicación siguiente 𝜙 ∶ ℕ → ℕ :
  • 15. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 15 𝜙 ∶ ℕ → ℕ ,∀𝑛 ∈ ℕ, 𝜙 (𝑛) ∈ ℕ 3) El cero no es imagen por la aplicación siguiente: ∀𝑛 ∈ ℕ, 𝜙 (𝑛) ≠ 0 4) La aplicación siguiente es inyectiva: 𝑛, 𝑚 ∈ ℕ × ℕ, 𝜙 (𝑛) = 𝜙 (𝑚) → 𝑛 = 𝑚 5) Se verifica la inducción completa: 1) 0 ∈ 𝐴 2) ∀𝑛 ∈ 𝐴 → 𝜑(𝑛) ∈ 𝐴 } ⇒ 𝐴 = ℕ Resumiendo lo que afirman estos postulados o axiomas, podemos entender que se trata de un conjunto que tiene un elemento, el cero (Ax.1), que no es siguiente de ningún otro (𝐴 × . 3), es decir, se trata del primer elemento del conjunto, y todos los demás elementos tienen cada uno un elemento siguiente (𝐴 ×. 2), de modo que dos elementos distintos tienen siguientes distintos (𝐴 × .4). El quinto postulado es de suma importancia por dotarnos de un método de demostración de propiedades, ya que nos indica que todo conjunto 𝐴 al que pertenezca el cero, y tal que todo elemento de 𝐴 tiene siguiente en 𝐴, necesariamente ha de coincidir con el conjunto ℕ de los números naturales. Es lo que se acostumbra a denominar método simple de inducción completa. A partir de estas cinco condiciones, y usando sistemáticamente el quinto axioma, de la inducción completa, podemos probar todas las propiedades del conjunto ℕ Teorema 1.1: Ningún número natural coincide con su siguiente, ∀𝑛 ∈ ℕ, 𝑛 ≠ 𝜙 (𝑛). Teorema 1.2: Si dos aplicaciones de N en N conmutan con la aplicación siguiente y tienen la misma imagen para el cero, entonces ambas coinciden. Es decir: 𝑓, 𝑔 ∈ 𝐴𝑝(ℕ) 𝑓 ∘ 𝜑 = 𝜑 ∘ 𝑓 𝑔 ∘ 𝜑 = 𝜑 ∘ 𝑔 } ∧ 𝑓(0) = 𝑔(0) ⇒ 𝑓( 𝑛) = 𝑔(𝑛 =, ∀𝑛 ∈ ℕ Donde hemos llamado 𝐴𝑝(ℕ) al conjunto de las aplicaciones de ℕ en ℕ Teorema 1.3:
  • 16. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 16 Si dos aplicaciones de ℕ en ℕ, f , 𝑔 ∈ 𝐴𝑝(ℕ) , tienen la misma imagen para el cero y existe alguna aplicación 𝜌 de ℕ en ℕ tal que 𝑓 𝑜𝜙 = 𝜌 𝑜 𝑓 , 𝑔 𝑜𝜙 = 𝜌 𝑜 𝑔 , entonces ambas aplicaciones coinciden, esto es, 𝑓 (𝑛) = 𝑔(𝑛),∀𝑛 ∈ ℕ 4.2 La suma o adición de números naturales: Definición 2.1: Definimos la suma de números naturales como una aplicación 𝑆 ∶ ℕ × ℕ → 𝑁 , de modo que para ∀𝑛, 𝑚 ∈ ℕ × ℕ, 𝑆(𝑛, 𝑚) ∈ ℕ se cumple que: 1) 𝑆(0, 𝑚) = 𝑚 2) 𝑆(𝜙 (𝑛), 𝑚) = 𝜙[𝑆(𝑛, 𝑚)]. Teorema 2.1: La definición de suma es única, es decir, si 𝑆1, 𝑆2 son sumas, entonces 𝑆1, = 𝑆2 . Demostración: Definamos dos aplicaciones, f y g, mediante 𝑆1 y 𝑆2, y veamos a continuación que han de coincidir. Sea 𝑓 ∶ ℕ → ℕ definida para ∀𝑛 ∈ ℕ, 𝑓 (𝑛) = 𝑆1 (𝑛, 𝑚), 𝑚 ∈ ℕ Sea 𝑔 ∶ ℕ → ℕ definida para ∀𝑛 ∈ ℕ, 𝑔(𝑛) = 𝑆2 (𝑛, 𝑚), 𝑚 ∈ ℕ Entonces: Es decir, las dos aplicaciones, f y g, son tales que tienen la misma imagen para el cero y además conmutan con la aplicación siguiente, por lo que, aplicando el teorema 1.2, 𝑓 (𝑛) = 𝑔(𝑛),∀𝑛 ∈ 𝑁 𝑒𝑠 𝑑𝑒𝑐𝑖𝑟, 𝑆1 (𝑛, 𝑚) = 𝑆2 (𝑛, 𝑚), 𝑛, 𝑚 ∈ ℕ NOTACIÓN: Representaremos en adelante la suma de dos elementos de ℕ, 𝑚 y 𝑛, en la manera habitual: 𝑆(𝑛, 𝑚) = 𝑛 + 𝑚 y las dos condiciones de la definición serían, con esta notación:
  • 17. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 17 1) 0 + 𝑚 = 𝑚 2) 𝜙 (𝑛) + 𝑚 = 𝜙 (𝑛 + 𝑚) Teorema 2.2: Se verifican las propiedades asociativa, conmutativa y cancelativa para la suma de números naturales: Propiedad asociativa: ∀𝑎, 𝑏, 𝑐 ∈ ℕ,(𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) Propiedad conmutativa: ∀𝑎, 𝑏 ∈ ℕ, 𝑎 + 𝑏 = 𝑏 + 𝑎 Propiedad cancelativa: ∀𝑎, 𝑏, 𝑐 ∈ ℕ, 𝑎 + 𝑐 = 𝑏 + 𝑐 → 𝑎 = 𝑏 (también llamada propiedad simplificativa de la suma) Demostración: 4.3 La multiplicación o producto de números naturales: Definición 3.1: Definimos la multiplicación de números naturales como una aplicación 𝑃 ∶ ℕ × ℕ → ℕ de modo que para ∀𝑛, 𝑚 ∈ ℕ × ℕ, 𝑃(𝑛, 𝑚) ∈ ℕ se cumple que: 1) 𝑃(0, 𝑚) = 0 2) 𝑃(𝜙 (𝑛), 𝑚) = 𝑃(𝑛, 𝑚) + 𝑚 Teorema 3.1: La definición de multiplicación es única, es decir, si 𝑃1, 𝑃2 son multiplicaciones, entonces 𝑃1 = 𝑃2 Demostración: Definamos dos aplicaciones, f y g, mediante 𝑃1 y 𝑃2, y veamos a continuación que han de coincidir. Sea 𝑓 ∶ ℕ → ℕ definida para ∀𝑛 ∈ ℕ, 𝑓 (𝑛) = 𝑃1(𝑛, 𝑚), 𝑚 ∈ ℕ Sea g : ℕ → ℕdefinida para ∀𝑛 ∈ ℕ, 𝑔(𝑛) = 𝑃2 (𝑛, 𝑚), 𝑚 ∈ ℕ Definamos también 𝜌 ∶ ℕ → ℕ ∶ ∀𝑛 ∈ ℕ, 𝜌 (𝑛) = 𝑛 + 𝑚, 𝑚 ∈ ℕ Entonces:
  • 18. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 18 Es decir, las dos aplicaciones, f y g, son tales que tienen la misma imagen para el cero y además existe una aplicación 𝜌 de ℕ en ℕ tal que 𝑓 𝑜𝜙 = 𝜌 𝑜 𝑓 , 𝑔 𝑜𝜙 = 𝜌 𝑜 𝑔 , por lo que, teniendo en cuenta el teorema 1.3, ambas aplicaciones coinciden, 𝑓 (𝑛) = 𝑔(𝑛),∀𝑛 ∈ ℕ es decir, 𝑃1(𝑛, 𝑚) = 𝑃2 (𝑛, 𝑚), 𝑛, 𝑚 ∈ ℕ NOTACIÓN: Representaremos en adelante la multiplicación de dos elementos de ℕ, m y n, en la manera habitual: 𝑃(𝑛, 𝑚) = 𝑛. 𝑚 y las dos condiciones de la definición serían, con esta notación: 1) 0 × 𝑚 = 0 2) 𝜙 (𝑛)× 𝑚 = 𝑛 × 𝑚 + 𝑚 Teorema 3.2: Se verifican las propiedades distributiva respecto de la suma, asociativa, conmutativa y cancelativa para la multiplicación de números naturales: Propiedad distributiva respecto de la suma: ∀𝑎, 𝑏, 𝑐 ∈ ℕ, 𝑎 × (𝑏 + 𝑐) = 𝑎 × 𝑏 + 𝑎 × 𝑐 Propiedad conmutativa: ∀𝑎, 𝑏 ∈ ℕ, 𝑎 × 𝑏 = 𝑏 × 𝑎 Propiedad asociativa: ∀𝑎, 𝑏, 𝑐 ∈ ℕ,(𝑎 × 𝑏) × 𝑐 = 𝑎 × (𝑏 × 𝑐) Propiedad cancelativa: ∀𝑎, 𝑏, 𝑐 ∈ ℕ, 𝑎 × 𝑐 = 𝑏 × 𝑐 → 𝑎 = 𝑏 Demostración: 5. AXIOMÁTICA ORDINAL DE ℕ De los axiomas de Peano sabemos que todo número natural tiene un siguiente. Veamos, que cualquier número natural, salvo el cero, es siguiente de otro número natural, mediante una sencilla proposición. Teorema 4.1:
  • 19. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 19 Todo número natural distinto del cero es el siguiente de otro número natural: ∀𝑛 ∈ ℕ / 𝑛 ≠ 0,∃𝑚 ∈ ℕ /𝜙 (𝑚) = 𝑛 Demostración: Consideremos el conjunto 𝛢 = {𝑛 ∈ ℕ / 𝑛 = 0 ∨ ∃𝑚 ∈ ℕ /𝜙 (𝑚) = 𝑛}, y veamos que ha de coincidir con ℕ usando el axioma 5 de la inducción completa. - 0 ∈ 𝛢 , por construcción de 𝛢 . - ∀𝑛 ∈ 𝛢, ∃𝑚 ∈ ℕ /𝜙 (𝑚) = 𝑛 → 𝜙[𝜙 (𝑚)] = 𝜙 (𝑛) → ∃𝜙 (𝑚) /𝜙[𝜙 (𝑚)] = 𝜙 (𝑛) → 𝜙 (𝑛) ∈ 𝛢 O sea, 1) 0 ∈ 𝛢, ∀𝑛 ∈ 𝛢 → 𝜙 (𝑛) ∈ 𝛢, lo que implica que 𝛢 = ℕ , y, por consiguiente, todo número natural n distinto del cero es el siguiente de otro número natural m, que, además, es único, pues por el axioma 4, 𝜙 (𝑎) = 𝜙 (𝑏) → 𝑎 = 𝑏 Definición 4.1: a) Se define la relación “menor o igual que” (≤) del modo siguiente: ∀𝑎, 𝑏 ∈ ℕ, 𝑎 ≤ 𝑏 ↔ ∃𝑞 ∈ ℕ / 𝑎 + 𝑞 = 𝑏 b) Se define la relación “mayor o igual que” (≥) de la forma: ∀𝑎, 𝑏 ∈ ℕ, 𝑎 ≥ 𝑏 ↔ 𝑏 ≤ 𝑎 c) Se define la relación “menor estrictamente que” (<): ∀𝑎, 𝑏 ∈ ℕ, 𝑎 < 𝑏 ↔ 𝑎 ≤ 𝑏 ∧ 𝑎 ≠ 𝑏 d) Se define la relación “mayor estrictamente que” (>): ∀𝑎, 𝑏 ∈ ℕ, 𝑎 > 𝑏 ↔ 𝑏 < 𝑎 Teorema 4.2: La relación “menor o igual que” es relación de orden, es decir, es reflexiva, anti simétrica y transitiva. Demostración: a) es reflexiva: ∀𝑎 ∈ ℕ,∃0 ∈ ℕ / 𝑎 + 0 = 0 + 𝑎 = 𝑎 → 𝑎 ≤ 𝑎 b) es antisimétrica: 𝑎 ≤ 𝑏 𝑏 ≤ 𝑎 } → ∃𝑝 ∈ ℕ ∕ 𝑎 + 𝑝 = 𝑏 ∃𝑞 ∈ ℕ ∕ 𝑏 + 𝑞 = 𝑎 } → 𝑏 = 𝑎 + 𝑝 = 𝑏 + 𝑞 = 𝑏 + ( 𝑝 + 𝑞) → 𝑏 = 𝑏 + (𝑝 + 𝑞) c) es transitiva:
  • 20. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 20 𝑎 ≤ 𝑏 𝑏 ≤ 𝑎 } → ∃𝑝 ∈ ℕ ∕ 𝑎 + 𝑝 = 𝑏 ∃𝑞 ∈ ℕ ∕ 𝑏 + 𝑞 = 𝑐 } → 𝑐 = 𝑏 + 𝑞 = 𝑎 + 𝑝 + 𝑞 = 𝑎 + ( 𝑝 + 𝑞) → 𝑐 = 𝑎 + (𝑝 + 𝑞) → ∃(𝑝 + 𝑞) ∈ ℕ ∕ 𝑎 + (𝑝 + 𝑞) = 𝑐 → 𝑎 ≤ 𝑐 Corolario 1: a) La relación “mayor o igual que” es también relación de orden. b) La relación “menor estrictamente que” es relación de orden estricto. c) La relación “mayor estrictamente que” es relación de orden estricto. Demostración: Es trivial, en los tres casos, a la vista del teorema. Corolario 2: Todo número natural es estrictamente menor que su siguiente: ∀𝑎 ∈ ℕ, 𝑎 < 𝜙 (𝑎) Demostración: 𝜙 (𝑎) = 𝜙 (0 + 𝑎) = 𝜙 (0) + 𝑎 → ∃𝜙 (0) ∈ ℕ / 𝑎 + 𝜙 (0) = 𝜙 (𝑎) → 𝑎 ≤ 𝜙 (𝑎) Por teorema 1.1 sabemos que 𝑎 ≠ 𝜙 (𝑎) , por tanto: 𝑎 ≤ 𝜙 (𝑎) ∧ 𝑎 ≠ 𝜙 (𝑎) → 𝑎 < 𝜙 (𝑎) Corolario 3: El cero es menor estrictamente que cualquier otro número natural: 0 < 𝑛, ∀𝑛 ≠ 0 Demostración: Por teorema 4.1 ∀𝑛 ∈ 𝑁 / 𝑛 ≠ 0, ∃𝑚 ∈ ℕ /𝜙 (𝑚) = 𝑛 . Si 𝑚 = 0 → 𝑚 = 0 ∧ 𝑚 < 𝜙 (𝑚) = 𝑛 → 0 < 𝜙 (0) → 0 < 𝑛 Si 𝑚 ≠ 0 → ∃𝑝 ∈ ℕ /𝜙 ( 𝑝) = 𝑚 Si 𝑝 = 0 → 𝑝 = 0 ∧ 𝑝 < 𝜙 ( 𝑝) = 𝑚 → 0 < 𝜙 (0) → 0 < 𝑚 < 𝑛 Si 𝑝 ≠ 0 → ∃𝑞 ∈ ℕ /𝜙 (𝑞) = 𝑝 Y así, podríamos continuar el proceso, con lo que aplicando la propiedad transitiva, encontramos que 0 < 𝑛, ∀𝑛 ≠ 0 . Teorema 4.3: Se verifica la alternativa siguiente: ∀𝑎, 𝑏 ∈ ℕ, 𝑎 < 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑎 > 𝑏 (Propiedad de tricotomía). (Esto es lo mismo que afirmar que ∀𝑎, 𝑏 ∈ ℕ, 𝑎 ≤ 𝑏 ∨ 𝑏 ≤ 𝑎 , es decir, que la relación de orden “≤" es un orden total)
  • 21. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 21 Demostración: Fijemos el elemento a y definamos los tres conjuntos que establecen la tricotomía: 𝛢1 = {𝑎}, 𝛢2 = {𝑏 ∈ ℕ /𝑏 < 𝑎}, 𝛢3 = {𝑏 ∈ ℕ /𝑏 > 𝑎} . Como veremos, los tres conjuntos son disjuntos dos a dos. El teorema quedará probado si: ℕ = ⋃ 𝐴𝑖 3 𝑖=1 Siendo 𝛢𝑖 ∩ 𝛢𝑗 = ∅, 𝑖 ≠ 𝑗 Veámoslo suponiendo en primer lugar que es 𝑎 = 0 y luego para 𝑎 ≠ 0. a) Si es 𝑎 = 0: 𝐴1 = {0}, 𝛢2 = ∅, 𝛢3 = { 𝑏 ∈ ℕ / 𝑏 > 0} = { 𝑏 ∈ ℕ / 𝑏 ≠ 0} . Obviamente, en este caso se verifica que ℕ = {0} ∪ ∅ ∪ { 𝑏 ∈ ℕ/𝑏 ≠ 0} = 𝐴1 ∪ 𝛢2 ∪ 𝛢3 , verificándose también que: 𝐴1 ∩ 𝛢2 = {0} ∩ ∅ = ∅ 𝐴1 ∩ 𝛢3 = {0} ∩ { 𝑏 ∈ ℕ / 𝑏 ≠ 0} = ∅ 𝐴2 ∩ 𝛢3 = { 𝑏 ∈ ℕ / 𝑏 < 𝑎} ∩ { 𝑏 ∈ ℕ / 𝑏 > 𝑎} = ∅ b) Si es 𝑎 ≠ 0 , como es 𝑎 > 0, entonces 0 ∈ 𝛢2 Consideremos el conjunto 𝛢 = 𝛢1 ∪ 𝛢2 ∪ 𝛢3 a fin de aplicar la inducción completa: - 0 ∈ 𝛢, pues 0 ∈ 𝛢2 − ∀𝑏 ∈ 𝛢 → 𝑏 ∈ 𝛢1 ∨ 𝑏 ∈ 𝛢2 ∨ 𝑏 ∈ 𝛢3 - Si 𝑏 ∈ 𝛢1 →= 𝑎 → 𝜑( 𝑏) > 𝑏 → 𝜑( 𝑏) > 𝑎 → 𝜑(𝑏) ∈ 𝐴3 → 𝜑(𝑏) ∈ 𝐴 - Si 𝑏 ∈ 𝛢2 → 𝑏 < 𝑎 → ∃𝑝 ∈ ℕ 𝑏⁄ + 𝑝 = 𝑎, 𝑝 ≠ 0 Si 𝑝 = 𝜑(0) → 𝑏 + 𝜑 (0) = 𝑎 → 𝜑 (𝑏 ) = 𝑎 → 𝜑 (𝑏 ) ∈ 𝛢1 → 𝜑(𝑏 ) ∈ 𝛢 Si 𝑝 ≠ 𝜑 (0) → ∃𝑟 ∈ ℕ / 𝑝 = 𝑟 + 𝜑 (0) → 𝑏 + 𝑝 = 𝑏 + 𝑟 + 𝜑 (0) → → (𝑏 + 𝜑(0) + 𝑟 = 𝑎 → 𝜑( 𝑏) + 𝑟 = 𝑎 → 𝜑( 𝑏) < 𝑎 → 𝜑(𝑏) ∈ 𝐴2 → 𝜑(𝑏) ∈ 𝐴 − 𝑆𝑖 𝑏 ∈ 𝛢3 → 𝑏 > 𝑎 → 𝜑(𝑏) > 𝑏 > 𝑎 → 𝜑(𝑏) > 𝑎 → 𝜑(𝑏) ∈ 𝛢3 → 𝜑(𝑏) ∈ 𝐴 → 𝜑 (𝑏) ∈ 𝛢 En definitiva, ∀𝑏 ∈ 𝛢 → 𝜑(𝑏) ∈ 𝛢. En consecuencia es 𝛢 = ℕ por el axioma 5.
  • 22. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 22 Verificándose que 𝛢1 ∩ 𝛢2 = { 𝑎} ∩ { 𝑏 ∈ ℕ 𝑏⁄ < 𝑎} = ∅ 𝛢1 ∩ 𝛢3 = { 𝑎} ∩ { 𝑏 ∈ ℕ 𝑏⁄ > 𝑎} = ∅ 𝛢2 ∩ 𝛢3 = { 𝑏 ∈ ℕ 𝑏⁄ < 𝑎} ∩ { 𝑏 ∈ ℕ 𝑏⁄ > 𝑎} = ∅ Es obvio que las dos primeras intersecciones son el vacío. Veamos que también se verifica la tercera mediante una reducción al absurdo. Supongamos que existe un número 𝑞 ∈ 𝛢2 ∩ 𝛢3 : 𝑞 ∈ 𝛢2 ∩ 𝛢3 → 𝑞 ∈ 𝛢2 ∧ 𝑞 ∈ 𝛢3 → 𝑞 < 𝑎 ∧ 𝑞 > 𝑎 → 𝑞 > 𝑞 Lo que es absurdo Teorema 4.4: ∀𝑎, 𝑏 ∈ ℕ, 𝑎 < 𝑏 → 𝑎 + 𝑝 < 𝑏 + 𝑝,∀𝑝 ∈ ℕ 𝑎 × 𝑝 < 𝑏 × 𝑝, ∀𝑝 ∈ ℕ, 𝑝 ≠ 0 } Demostración: Teorema 4.5: 1) ∀𝑝 ∈ ℕ, 𝑎 + 𝑝 < 𝑏 + 𝑝 → 𝑎 < 𝑏 2) ∀𝑝 ∈ ℕ, 𝑝 ≠ 0, 𝑎 × 𝑝 < 𝑏 × 𝑝 → 𝑎 < 𝑏 Demostración: Teorema 4.6: ∀𝑎, 𝑏 ∈ ℕ, 𝑎 > 𝑏 → 𝑎 + 𝑝 > 𝑏 + 𝑝,∀𝑝 ∈ ℕ 𝑎 × 𝑝 > 𝑏 × 𝑝, ∀𝑝 ∈ ℕ, 𝑝 ≠ 0 } Demostración: Teorema 4.7: 1) ∀𝑝 ∈ ℕ, 𝑎 + 𝑝 > 𝑏 + 𝑝 → 𝑎 > 𝑏 2) ∀𝑝 ∈ ℕ, 𝑝 ≠ 0, 𝑎 × 𝑝 > 𝑏 × 𝑝 → 𝑎 > 𝑏 Demostracion: En consecuencia, los cinco axiomas de Peano permiten construir el conjunto ℕ de los números naturales y establecer su estructura algebraica como la de un semianillo
  • 23. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 23 conmutativo con elemento unidad y totalmente ordenado, en donde es el cero el elemento neutro de la suma o ley aditiva del semianillo y 𝜑 (0) el elemento unidad, neutro para la multiplicación o ley multiplicativa del semianillo. ∀𝑎 ∈ ℕ, 𝑎 + 0 = 0 + 𝑎 = 𝑎 ∀𝑎 ∈ ℕ, 𝑎 × 𝜑 (0) = 𝜑 (0)× 𝑎 = 𝑎 (ℕ,+, . , ≤) es semianillo conmutativo con elemento unidad totalmente ordenado. 6. SUCESIONES NUMÉRICAS 6.1 Sucesiones numéricas. Imaginemos el recorrido que efectúa un balón que se ha lanzado al suelo y midamos las distancias entre bote y bote: Las distancias forman una sucesión de números: 40, 35, 30,25, …. Una SUCESIÓN NUMÉRICA es un conjunto ordenado de números, que se llaman TÉRMINOS de la sucesión. Cada término se representa por una letra y un subíndice que indica el lugar que ocupa dentro de ella. En nuestro ejemplo, tenemos: 𝑎1 = 40; 𝑎2 = 35; 𝑎3 = 30; 𝑎4 = 25, … Aquí, la distancia recorrida en cada bote es 5 cm. menor que la anterior. Podemos calcular así más términos de la sucesión: 40,35, 30, 25,20, 15, … Esta sucesión tiene un número finito de términos. Se dice que es una SUCESIÓN FINITA. Las que tienen infinitos términos se dicen SUCESIONES INFINITAS. Un ejemplo de una sucesión infinita sería la formada por los cuadrados perfectos: 1, 4, 9, 16,25, 36, 49,64, 81, 100,121, 144,169, 196,225, ….. EJERCICIO 1. Escribe los 10 primeros términos de las sucesiones formadas por: a) Los números pares : 2, 4, 6, 8, 10, 12, 14, 16, 18, 20
  • 24. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 24 b) La suma de cada natural y su cuadrado: 2, 6, 12, 20, 30, 42, 56, 72, 90, 110 EJERCICIO 2. Completa los términos que faltan en las siguientes sucesiones: a) 11, 14, 17, 20, 23, 26, 29, 32 c) 1, 3, 6, 10,15, 21, 28, 36 , 45, 55 b) 105, 100, 95, 90, 85, 80, 75, 70 d) 1, 8, 27, 64, 125, 216 6.2 Término general de una sucesión. El TÉRMINO GENERAL ( o TÉRMINO n-ÉSIMO ) , n a , de una sucesión es una fórmula que nos permite calcular cualquier término de la sucesión en función del lugar que ocupa. Por ejemplo, en la sucesión de los cuadrados perfectos, cada término se obtiene elevando al cuadrado el lugar que ocupa en ella: En esta sucesión, el término general será: 𝑎 𝑛 = 𝑛2 6.3 Cálculo del término general de una sucesión. Dados los términos de una sucesión, para calcular su término general tenemos que buscar una regla que relacione el valor de cada término con el lugar que ocupa en la sucesión. Para hallar esta relación debemos descomponer los términos en expresiones numéricas que tengan la misma estructura dependiendo del lugar que ocupan. EJEMPLO: Consideremos la siguiente sucesión: 2, 5, 10, 17,26, 37… .. Para calcular el término general nos ayudamos de la siguiente tabla: LUGAR 1 2 3 4 5 6 … 𝑛 … TÉRMINO 2 = 12 + 1 = 22 + 1 10 = 32 + 1 17 = 42 + 1 𝑛2 + 1 6.4 Sucesiones recurrentes. Una SUCESIÓN es RECURRENTE cuando todos sus términos se pueden calcular a partir de uno dado. La fórmula mediante la cual se pueden calcular los términos se llama LEY DE RECURRENCIA. EJEMPLO: 𝑎 𝑛 = 𝑎 𝑛−1 + 𝑛 Si sólo nos dan esta fórmula no podemos hacer nada. Pero si se añade el dato 𝑎1 = 4 , entonces ya podemos obtener el resto de los términos de la sucesión:
  • 25. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 25 La ley de recurrencia sería: 7. CONJUNTOS FINITOS E INFINITOS Sea 𝐼 𝑛 = {1,2, . . . , 𝑛} ⊆ ℕ. Un conjunto X es finito, si 𝑋 = ∅ o existe para algún 𝑛 ∈ ℕ una biyección 𝜑 ∶ 𝐼 𝑛 → 𝑋. En el primer caso, decimos que X no posee elementos y el segundo decimos que X posee n elementos. Es claro que: (a) 𝐼 𝑛 es finito y posee n elementos. (b) Si 𝜑: 𝑋 → 𝑌 es una biyección, entonces uno de los conjuntos es finito si y solo si el otro lo es, y además, si esto ocurre, ellos poseen el mismo número de elementos. Una biyección 𝜑 ∶ 𝐼 𝑛 → 𝑋 significa una enumeración de los elementos de X, escribiendo 𝜑(1) = 𝑥1, 𝜙(2) = 𝑥2,. . . , 𝜑( 𝑛) = 𝑥 𝑛, tenemos que 𝑋 = { 𝑥1, 𝑥2, . . . , 𝑥 𝑛}. (c) 𝜑 ∶ 𝐼 𝑛 → 𝑋y 𝜑 ∶ 𝐼 𝑚 → 𝑋 son bisecciones, entonces 𝑚 = 𝑛. En efecto, considerando la función compuesta 𝑓 = 𝜓−1 ∘ 𝜑 ∶ 𝐼𝑛 → 𝐼𝑚 debemos probar que si existe una biyección 𝑓 ∶ 𝐼 𝑛 → 𝐼 𝑚, entonces 𝑚 = 𝑛. Para ello tenemos el siguiente teorema Teorema 1.7. Sea 𝐴 ⊆ 𝐼 𝑛. Si existe una biyección 𝑓 ∶ 𝐼 𝑛 → 𝐴, entonces 𝐴 = 𝐼 𝑛 . Demostración. Por inducción sobre n. Para 𝑛 = 1, el resultado es obvio. Supongamos que es verdadero para 𝑛 ∈ ℕ Consideremos una biyección 𝑓 ∶ 𝐼 𝑛+1 → 𝐴. Sea 𝑎 = 𝑓(𝑛 + 1), la restriccion de f a 𝐼 𝑛 es una biyección 𝑓 ∶ 𝐼 𝑛 → 𝐴 − {𝑎}. Si 𝐴 − {𝑎} ⊆ 𝐼 𝑛entonces por la hipótesis de inducción, se tiene que 𝐼 𝑛 = 𝐴 − {𝑎}, de donde 𝑎 = 𝑛 + 1 y 𝐴 = 𝐼 𝑛+1. Si no se cumple que 𝐴 − {𝑎} ⊂ 𝐼 𝑛, en este caso existe 𝑝 ∈ 𝐼 𝑛 tal que |𝑓(𝑝) = 𝑛 + 1. Definimos una nueva biyeccion 𝑔 ∶ 𝐼 𝑛+1 → 𝐴 como 𝑔(𝑥) = 𝑓(𝑥) si 𝑥 ≠ 𝑝 y 𝑥 ≠ 𝑛 + 1, 𝑔(𝑝) = 𝑎, y 𝑔(𝑛 + 1) = 𝑛 + 1. Ahora la restricción g a 𝐼 𝑛 es una biyección 𝑔 ∶
  • 26. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 26 𝐼 𝑛 → 𝐴 − {𝑛 + 1}, 𝑦 𝐴 − {𝑛 + 1} ⊆ 𝐼 𝑛. Luego, por hipótesis de inducción 𝐴 − {𝑛 + 1} = 𝐼 𝑛 , de donde 𝐴 = 𝐼 𝑛+1. Corolario 1.8. No puede existir una biyección desde un conjunto finito sobre una parte propia de él. Teorema 1.9. Todo subconjunto de un conjunto finito es finito. Demostración. Inmediata. Corolario 1.10. Sea 𝑓 ∶ 𝑋 → 𝑌 una función inyectiva. Si Y es finito, entonces X es finito, y el número de elementos de X no puede exceder el número de elementos de Y. Corolario 1.11. Sea 𝑓 ∶ 𝑋 → 𝑌 una función sobreyectiva. Si X es finito, entonces Y es finito y su número de elementos no excede al de X. Un conjunto X es infinito, si no es finito, es decir, X es no vacío y para cualquier 𝑛 ∈ ℕ no existe una biyección 𝜑 ∶ 𝐼 𝑛 → 𝑋. Del Corolario 1.8, se sigue que si existe una biyección entre 𝑋 un subconjunto propio de este, entonces 𝑋 es infinito. Usamos esto para los siguientes ejemplos. Ejemplo. ℕ es infinito. En efecto, sea 𝜑 ∶ ℕ → 𝑃 = {2𝑛 ∶ 𝑛 ∈ ℕ} (conjunto de los números naturales pares), definida por 𝜑(𝑛) = 2𝑛. Tenemos que𝜑 es inyectiva, pues si 𝜑(𝑛) ≠ 𝜔(𝑚) se sigue que 2𝑛 = 2𝑚 y por la Ley de Corte, concluimos que 𝑛 = 𝑚. Por otra parte, es inmediato que 𝜑 es sobreyectiva. Resumiendo, 𝜑 es una biyección entre los números naturales y los números naturales pares, por lo tanto N es infinito, pues P es un subconjunto propio de ℕ. Definición 1.2. Decimos que un conjunto X es numerable si es vacío o existe una biyección 𝜑 ∶ ℕ1 → 𝑋, donde ℕ1 ⊂ ℕ. Por ejemplo, ℕ,ℤ y ℚ son numerables. Tenemos el siguiente resultado. Teorema 1.12. Todo subconjunto de un conjunto numerable es numerable Demostración. Inmediata.
  • 27. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 27 8. APLICACIONES DE CONOCIMIENTO
  • 28. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 28 7. Se deja a demostración de los estudiantes los teoremas de Peano que no están demostrados 8. Sucesiones numéricas 1. El número que sigue en la secuencia: 3; 5; 7; 11; 17; 27; ….. es: A) 37 B) 44 C) 39 D) 43 E) 45 2. ¿Cuál es el noveno término en la siguiente secuencia numérica? 3; 4; 6; 9; 13; …. A) 40 B) 30 C) 39 D) 50 E) 59 3. Calcule el número que sigue en la siguiente secuencia y da como respuesta la suma de las cifras del valor encontrado A)7 B) 8 C) 9 D)10 E) 13 4. ¿Qué número continúa la secuencia? 1 ; 4 ; 11 ; 34 ; 101 ; A) 302 B) 404 C) 292 D) 304 E) 284
  • 29. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 29 5. Determine el valor de x y en la siguiente sucesión: 4 ; 14 ; 7 ; 12 ; 11 ; 9 ; x ; y A) 19 B) 20 C) 21 D) 22 E) 23 6. Determine el número que continúa en la sucesión: 2 3 ; 3 5 ; 5 7 ; 8 9 ; a b A) 12 B) 23 C) 11 D) 14 E) 52 7. Indique la alternativa que completa la siguiente sucesión: 10 ; 8 ; 16 ; 13 ; 39 ; 35 ; A) 140 B) 70 C) 105 D) 65 E) 79 8. Indique la alternativa que completa la siguiente sucesión: 1 ; 3 ; 4 ; 7 ; 11 ; 18 ; A) 26 B) 27 C) 28 D) 29 E) 30 9. Señale el número que completa la sucesión mostrada: 1 ; 3 ; 7 ; ; 31 A) 14 B) 15 C) 16 D) 17 E) 19 10. Indique la alternativa que completa la siguiente sucesión: 2 ; 3 ; 7 ; 25 ; 121 ; A) 361 B) 484 C) 721 D) 726 E) 842
  • 30. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 30 11. Indique la alternativa que completa la siguiente sucesión: 4 ; 9 ; 25 ; 49 ; 121 ; 169 ; A) 289 B) 256 C) 225 D) 196 E) 361 12. ¿Qué número continúa en la siguiente sucesión? 2 ; 10 ; 30 ; 68 ; A) 98 B) 116 C) 130 D) 136 E) 142 13. ¿Qué número continúa en la siguiente sucesión? 2 ; 2 ; 3 ; 7 ; 25 ; A) 49 B) 121 C) 84 D) 61 E) 53 14. Determine el número que completa la sucesión mostrada: 16 ; 15 ; 30 ; 10 ; 8 ; 24 ; 6 ; 3 ; A) 12 B) 15 C) 9 D) 5 E) 4 15. Indique la alternativa que continúa en la siguiente sucesión: 10 ; 13 ; 15 ; 15 ; 12 ; A) 10 B) 5 C) 9 D) 2 E) 7 16. Señale el valor de m n en la sucesión mostrada: 1 ; 2 ; 2 ; 3 ; 4 ; 5 ; 8; 7 ; m ; n A) 19 B) 21 C) 23 D) 25 E) 27
  • 31. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 31 17. Indique la alternativa que continúa en la siguiente sucesión: 1 ; 9 ; 49 ; 225 ; A) 1 089 B) 961 C) 841 D) 729 E) 625 18. En la sucesión mostrada determine el valor de M N 4 ; 4 ; 12 ; 8 ; 20 ; 12 ; M ; N A) 40 B) 42 C) 44 D) 48 E) 52 19. Señale la alternativa que continúa correctamente la siguiente sucesión: 2 ; 3 ; 6 ; 9 ; 36 ; 41 ; 246 ; A) 252 B) 253 C) 255 D) 738 E) 1722 20. Indique la alternativa que continúa correctamente la siguiente sucesión: 2 ; 3 ; 6 ; 15 ; 45 ; A) 126 B) 132 C) 144,5 D) 151 E) 157,5 21. En la sucesión mostrada indique el valor de x y : 2 ; 5 ; 2 ; 6 ; 4 ; 8 ; 12 ; 11 ; x ; y A) 57 B) 63 C) 68 D) 38 E) 31 22. Indique la alternativa que continúa coherentemente la siguiente sucesión: 2 ; 9 ; 28 ; 65 ; A) 114 B) 121 C) 126 D) 137 E) 144
  • 32. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 32 23. ¿Qué número continúa en la siguiente sucesión? 1 ; 2 ; 4 ; 10 ; 34 ; A) 154 B) 144 C) 121 D) 96 E) 81 24. ¿Qué número continúa en la sucesión mostrada? 1 ; 2 ; 4 ; 7 ; 8 ; 10 ; A) 12 B) 13 C) 14 D) 15 E) 16 25. ¿Qué número continúa en la siguiente sucesión? 1 ; 2 ; 4 ; 3 ; 7 ; 4 ; A) 6 B) 8 C) 9 D) 10 E) 11 26. ¿Qué número continúa en la siguiente sucesión? 12 ; 30 ; 75 ; A) 132 B) 147 C) 112,5 D) 157 E) 187,5 9. Usando inducción matemática, pruebe cada una de las siguientes proposiciones referentes a los números naturales
  • 33. Estructuras Numéricas 2015 MSc. Víctor Manuel Valdivia Página 33