SlideShare una empresa de Scribd logo
1 de 23
ADN Recombinante ADN recombinantees una molécula que proviene de la unión artificial de dosfragmentos de ADN.  Por lo tanto, la tecnología de ADN recombinantees el conjunto de técnicas que permiten aislar un gen de un organismo, para su posterior manipulación e inserción en otro diferente.  De esta manera podemos hacer que un organismo (animal, vegetal, bacteria, hongo) o un virus produzca una proteína que le sea totalmente extraña
ADN  Recombinante Estas técnicas se emplean normalmente para la producción de proteínas en gran escala, ya que podemos hacer que una bacteria produzca una proteína humana y lograr una superproducción, como en el caso de la insulina humana, que actualmente es producida por bacterias en grandes recipientes de cultivo, denominados biorreactores. Como las bacterias se multiplican muy rápidamente y pueden expresar grandes cantidades de proteínas, es posible lograr una sobreproducción de la proteína deseada.  A esto justamente se dedica la biotecnología, es decir a la utilización de organismos vivos o de sus productos con fines prácticos.
El desarrollo de la tecnología del ADN recombinante fue posible gracias a varias líneas de investigación: El conocimiento de las enzimas de restricción  La replicación y reparación de ADN La replicación de virus y plásmidos  La síntesis química de secuencias de nucleótidos
Tijeras moleculares: enzimas de restricción En 1975 Daniel Nathans y Hamilton O. Smith descubrieron un tipo de proteínas –las enzimas endonucleasas o enzimas de restricción- que actúan como “tijeras moleculares”, cortando la doble cadena de ADN a través del esqueleto de fosfatos sin dañar las bases. El descubrimiento de estas enzimas condujo a dichos microbiólogos al Nobel en 1978 y dio origen a la ingeniería genética. Daniel Nathans 			Hamilton O. Smith
Tijeras moleculares: enzimas de restricción Las enzimas de restricción son producidas por bacterias como método de defensa contra virus y degradan el ADN extraño.  A su vez, el propio genoma bacteriano está protegido contra sus enzimas de restricción mediante metilaciones (es decir, el agregado de un grupo metilo [-CH3)]) en un átomo específico de ciertos nucleótidos. Estas moléculas son indispensables para la ingeniería genética, ya que producen fragmentos que se pueden unir entre sí fácilmente (con la ayuda de la enzima ligasa).  Las enzimas de restricción cortan dejando extremos cohesivos . Generados cuando la enzima corta las dos hebras asimétricamente, dejando los extremos de cada hebra de simple cadena complementarios entre sí.
Veámoslo gráficamente para hacernos una idea más clara:
 ¿Cómo introducir ADN recombinante en las bacterias? Una vez que se supo cómo fabricar ADN recombinante usando enzimas de restricción y ligasas, el desafío siguiente fue cómo producir grandes cantidades de genes y cómo introducirlos en bacterias u otras células huésped. El primer problema fue solucionado con el uso de plásmidos, pequeñas moléculas de ADN circular presente en muchas bacterias.  Los plásmidos contienen uno o más genes de resistencia a antibióticos y son capaces de autorreplicarse, ya que contienen una secuencia de iniciación. Esto les permite replicarse de manera independiente del ADN genómico
¿Cómo introducir ADN recombinante en las bacterias? Cortamos el ADN circular del plásmido con enzimas de restricción, para generar extremos cohesivos. Cortamos el ADN que queremos multiplicar. Debemos asegurarnos de que los extremos del plásmido y los del ADN a insertar sean complementarios y puedan unirse. Unimos el gen que queremos introducir (inserto) por medio de la enzima ADN-ligasa y luego introducimos el plásmido con inserto en bacterias. Seleccionamos las bacterias que hayan introducido el plásmido con la ayuda de antibióticos. Dado que los plásmidos contienen un gen de resistencia a antibiótico, al exponer las bacterias a ese antibiótico, sólo las que hayan incorporado el plásmido (y con él la resistencia) sobrevivirán, mientras que las que no lo tengan morirán.
¿Cómo introducir ADN recombinante en las bacterias? 	Esta es una manera relativamente eficaz de obtener millones de copias del ADN incorporado. 	Dado que todas las copias del gen provienen de una sola molécula multiplicada a partir de una única bacteria que dio origen a la colonia, esta técnica lleva el nombre de clonación. 	El término clon proviene de la jardinería; desde hace siglos los jardineros generan plantas nuevas a partir de gajos. Estas plantas son genéticamente idénticas y constituyen un clon. 	Un clon es un grupo de células u organismos genéticamente idénticas.	El uso fragmentos de ADN como vectores cumple un rol fundamental en la ingeniería genética, ya que sirven para transferir material genético de un organismo a otro. Vector: cualquier organismo o virus capaz de mover genes de un organismo a otro
¿Cómo amplificar el ADN? Reacción en cadena de la polimerasa Durante las décadas de 1970-1980, la manera más práctica de hacer múltiples copias de una secuencia particular de ADN era introduciendo una molécula de ADN recombinante (un plásmido más un gen) en una célula huésped. Esto podía resultar un poco engorroso, ya que muchas veces se disponía de una cantidad muy pequeña de m A mediados de la década de los 80, la invención de una técnica capaz de generar centenares de miles de copias de una secuencia sin la necesidad de clonarla en ningún tipo de vector resolvió este problema. KaryMullis, un bioquímico americano que trabajaba sintetizando  	ADN, resolvió este problema con la invención de la reacción en cadena  	de la polimerasa moléculas de ADN para realizar pruebas
¿Cómo amplificar el ADN? Reacción en cadena de la Polimerasa
¿Cómo amplificar el ADN? Reacción en cadena de la polimerasa Esto la convierte en una importante, si no imprescindible, herramienta para el análisis de filiación o de criminalística forense, ya que con sólo una pequeñísima muestra se pueden realizar diferentes estudios comparativos que nos permiten conocer el dueño de un “rastro” genético en particular. También se usa para el desarrollo de nuevas estrategias de diagnóstico médico, como la detección de virus o de mutaciones que provocan enfermedades genéticas, a partir de una muestra de ADN tan pequeña como un cabello o una gota de sangre. Otra aplicación de la técnica de la reacción en cadena de la polimerasa es la transcripción inversa de ARNm. Mediante el uso de una enzima de origen viral denominada transcriptasa reversa puede usarse como molde una molécula de ARNm, transcribirla a una secuencia de ADN, y luego ser amplificada como cualquier otra secuencia por la reacción en cadena de la polimerasa, con lo que se obtiene una gran cantidad de ADN a partir de unas pocas moléculas de ARNm. Esta técnica es muy empleada para el estudio de expresión génica, así como para la producción de proteínas en diferentes organismos.
¿Cómo encontrar el gen adecuado? Imanes biológicos: sondas y anticuerpos Hasta hace relativamente poco, encontrar un gen en un genoma era como encontrar una aguja en un pajar. Si tuviéramos que realizar dicha tarea, probablemente usaríamos un imán para atraer la aguja (siempre y cuando esta sea de metal y posea propiedades magnéticas). De manera análoga, hoy día podemos encontrar genes o proteínas usando, respectivamente, sondas y anticuerpos, que actúan como imanes moleculares. Las sondas son fragmentos de ADN o ARN de simple cadena complementarias a la región de ADN o ARN que queremos encontrar. Contienen alguna “marca” que permite revelar su unión (hibridación) a la secuencia elegida y de esa manera revela presencia de la región buscada.
¿Cómo se marcan esas sondas o fragmentos de ácidos nucleicos? Una de las técnicas más empleadas para localizar fragmentos determinados del genoma (o la expresión de algún gen en particular por medio de la detección de la presencia de su correspondiente ARNm) es la hibridación in situ
Durante este proceso se incuba el ADN con una sonda (de ADN o ARN) complementaria a la secuencia buscada, y marcada radiactiva o químicamente.  La sonda “navega” por el interior de la célula hasta encontrar una secuencia complementaria a ella.  Una vez que esto ocurra se formará una doble cadena que permitirá no sólo detectar la presencia de esta secuencia, sino indicar el lugar específico que ocupa dentro de la célula. Si se tratara de un fragmento de un cromosoma, nos permitiría saber su localización exacta o locus. Para revelar la presencia de hibridación de la sonda, la muestra debe exponerse a una placa radiográfica; en el caso de las sondas marcadas químicamente se procede a su revelado mediante el uso de moléculas fluorescentes o que puedan ser detectadas por colorimetría (utilizando una enzima que provoque el cambio de color de un sustrato).
¿Cómo estudiar la expresión de diversos genes? Si visitamos un laboratorio de biología molecular, probablemente encontraremos una cuba con un gel al cual se le aplica una corriente eléctrica. Este método, llamado electroforesis en gel, es muy usado para separar moléculas de diversos tamaños y es la base de las técnicas que describiremos para identificar ADN, ARN, y proteínas. En los párrafos siguientes describiremos entonces la electroforesis para poder comprender luego cómo funcionan las demás técnicas. La electroforesis en gel es uno de los métodos más utilizados en los laboratorios para separar ácidos nucleicos o proteínas, de acuerdo con su tamaño.
Electroforesis en gel
¿Cómo estudiar la expresión de diversos genes? Southern, Northern y Western Blot Existen diferentes técnicas que emplean la separación en gel por electroforesis que acabamos de ver como primer paso para identificar la presencia de determinadas moléculas dentro de una muestra. Una de ellas fue inventada por Edward M. Southern en 1975 para la detección de ADN. Como por ejemplo la NorthernBlot, que consiste en que una vez finalizada la corrida en el gel, se realiza la transferencia (o blotting) de las muestras a una membrana para su posterior revelado
NorthernBlot Luego se utilizo el mismo sistema para el ARN y se le denominó NorthernBlot
Estas dos técnicas persiguen fines distintos: el SouthernBlot, que detecta la presencia de ciertas secuencias en el ADN, se usa, por ejemplo, para estudiar mutaciones en el genoma. El Northern, en cambio, permite detectar qué genes son transcriptos en determinadas condiciones. Hemos visto que dos células del mismo organismo se distinguen por los genes que expresan y no por su ADN.
Si luego queremos detectar proteínas, usaremos otra técnica similar: el Western Blot, que deriva de la electroforesis en gel y separa proteínas mediante la utilización de anticuerpos específicos.
¿Cómo sacar fotos de genes activados? Microarreglos Los ensayos con microarreglos son rápidos de realizar, pero muy engorrosos de analizar. Además, están muy limitados a los genes que ya se conocen. Permiten obtener un pantallazo rápido sobre qué está pasando en la célula en ese momento determinado, en cuanto a qué genes están encendidos y cuáles apagados. Sin embargo, los resultados obtenidos nunca deberían ser concluyentes, sino que tendrían que ser validados mediante otras técnicas (por ejemplo, NorthernBlot).
Tecnología del ADN Recombinante

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

Pcr
PcrPcr
Pcr
 
Extraccion de adn arn y proteinas
Extraccion de adn arn y proteinasExtraccion de adn arn y proteinas
Extraccion de adn arn y proteinas
 
hibridación de ácidos nucleicos
hibridación de ácidos nucleicoshibridación de ácidos nucleicos
hibridación de ácidos nucleicos
 
Tec. De Secuenciacion
Tec. De SecuenciacionTec. De Secuenciacion
Tec. De Secuenciacion
 
Northern blot
Northern blotNorthern blot
Northern blot
 
Prueba PCR (Reacción en cadena de la polimerasa)
Prueba PCR (Reacción en cadena de la polimerasa) Prueba PCR (Reacción en cadena de la polimerasa)
Prueba PCR (Reacción en cadena de la polimerasa)
 
Lab enzimas restriccion y clonacion
Lab enzimas restriccion y clonacionLab enzimas restriccion y clonacion
Lab enzimas restriccion y clonacion
 
Fish
Fish Fish
Fish
 
Generación de transfectomas
Generación de transfectomasGeneración de transfectomas
Generación de transfectomas
 
Enzimas de restriccion
Enzimas de restriccionEnzimas de restriccion
Enzimas de restriccion
 
Trabajo Escrito Adn Recombinante
Trabajo Escrito Adn RecombinanteTrabajo Escrito Adn Recombinante
Trabajo Escrito Adn Recombinante
 
Secuenciacion ADN
Secuenciacion ADNSecuenciacion ADN
Secuenciacion ADN
 
Clase 03 Tecnología del ADN Recombinante
Clase 03 Tecnología del ADN RecombinanteClase 03 Tecnología del ADN Recombinante
Clase 03 Tecnología del ADN Recombinante
 
Secuenciacion de adn
Secuenciacion de adnSecuenciacion de adn
Secuenciacion de adn
 
Ingenieria genetica
Ingenieria geneticaIngenieria genetica
Ingenieria genetica
 
Transcripcion del-adn
Transcripcion del-adnTranscripcion del-adn
Transcripcion del-adn
 
Hibridacion de acidos nucleicos
Hibridacion de acidos nucleicos Hibridacion de acidos nucleicos
Hibridacion de acidos nucleicos
 
Recombinacion
RecombinacionRecombinacion
Recombinacion
 
Aplicación de la Tecnología del DNA Recombinante.
Aplicación de la Tecnología del DNA Recombinante.Aplicación de la Tecnología del DNA Recombinante.
Aplicación de la Tecnología del DNA Recombinante.
 
Sintesís de ADN / Replicación
Sintesís de ADN / ReplicaciónSintesís de ADN / Replicación
Sintesís de ADN / Replicación
 

Similar a Tecnología del ADN Recombinante

Tecnología Adn Recombinante 2003
Tecnología Adn Recombinante 2003Tecnología Adn Recombinante 2003
Tecnología Adn Recombinante 2003Cristela
 
Tecnologia Del Adn Recombinante3
Tecnologia Del Adn Recombinante3Tecnologia Del Adn Recombinante3
Tecnologia Del Adn Recombinante3guest350e39c
 
Introdución a la tecnología del ADN recombinante
Introdución a la tecnología del ADN recombinanteIntrodución a la tecnología del ADN recombinante
Introdución a la tecnología del ADN recombinanteabcsar
 
Producción con tecnología de adn recombinante
Producción con tecnología de adn recombinanteProducción con tecnología de adn recombinante
Producción con tecnología de adn recombinanteMarinelly Palacios Torres
 
Introdución a la tecnología del ADN recombinante
Introdución a la tecnología del ADN recombinanteIntrodución a la tecnología del ADN recombinante
Introdución a la tecnología del ADN recombinanteandreasouto
 
IntroducióN A Tecnoloxia Do Adn Recombinante
IntroducióN A Tecnoloxia Do Adn RecombinanteIntroducióN A Tecnoloxia Do Adn Recombinante
IntroducióN A Tecnoloxia Do Adn RecombinanteTamara Martinez
 
La tecnología del adn recombinante
La tecnología del adn recombinanteLa tecnología del adn recombinante
La tecnología del adn recombinanteyolandacristina123
 
Tecnología del Adn Recombinante
Tecnología del Adn RecombinanteTecnología del Adn Recombinante
Tecnología del Adn Recombinanteguest815f10
 
PresentacióN1
PresentacióN1PresentacióN1
PresentacióN1buneno
 
INGENIERIA GENETICA
INGENIERIA GENETICAINGENIERIA GENETICA
INGENIERIA GENETICAjica01
 
T Ecnicas De Adn Recombinante
T Ecnicas De Adn RecombinanteT Ecnicas De Adn Recombinante
T Ecnicas De Adn Recombinanteguest940c24
 
Tema 13 el adn y la ingeniería genética
Tema 13 el adn y la ingeniería genéticaTema 13 el adn y la ingeniería genética
Tema 13 el adn y la ingeniería genéticapacozamora1
 
Unidad 4 Revolución genética
Unidad 4   Revolución genéticaUnidad 4   Revolución genética
Unidad 4 Revolución genéticaElena
 
Biotecnologas
Biotecnologas Biotecnologas
Biotecnologas mygoza
 
Tema 16: El ADN y la ingeniería genética
Tema 16: El ADN y la ingeniería genéticaTema 16: El ADN y la ingeniería genética
Tema 16: El ADN y la ingeniería genéticaEduardo Gómez
 

Similar a Tecnología del ADN Recombinante (20)

Tecnología Adn Recombinante 2003
Tecnología Adn Recombinante 2003Tecnología Adn Recombinante 2003
Tecnología Adn Recombinante 2003
 
Tecnologia Del Adn Recombinante3
Tecnologia Del Adn Recombinante3Tecnologia Del Adn Recombinante3
Tecnologia Del Adn Recombinante3
 
Introdución a la tecnología del ADN recombinante
Introdución a la tecnología del ADN recombinanteIntrodución a la tecnología del ADN recombinante
Introdución a la tecnología del ADN recombinante
 
Producción con tecnología de adn recombinante
Producción con tecnología de adn recombinanteProducción con tecnología de adn recombinante
Producción con tecnología de adn recombinante
 
Introdución a la tecnología del ADN recombinante
Introdución a la tecnología del ADN recombinanteIntrodución a la tecnología del ADN recombinante
Introdución a la tecnología del ADN recombinante
 
Tema 16 adn y la ingenieria genetica
Tema 16 adn y la ingenieria geneticaTema 16 adn y la ingenieria genetica
Tema 16 adn y la ingenieria genetica
 
IntroducióN A Tecnoloxia Do Adn Recombinante
IntroducióN A Tecnoloxia Do Adn RecombinanteIntroducióN A Tecnoloxia Do Adn Recombinante
IntroducióN A Tecnoloxia Do Adn Recombinante
 
La tecnología del adn recombinante
La tecnología del adn recombinanteLa tecnología del adn recombinante
La tecnología del adn recombinante
 
Tecnología del Adn Recombinante
Tecnología del Adn RecombinanteTecnología del Adn Recombinante
Tecnología del Adn Recombinante
 
PresentacióN1
PresentacióN1PresentacióN1
PresentacióN1
 
4. la revolución genética (parte iii)
4. la revolución genética (parte iii)4. la revolución genética (parte iii)
4. la revolución genética (parte iii)
 
INGENIERIA GENETICA
INGENIERIA GENETICAINGENIERIA GENETICA
INGENIERIA GENETICA
 
Clase 01 Biotecnologia - Ingeniería Genética
Clase 01 Biotecnologia - Ingeniería Genética Clase 01 Biotecnologia - Ingeniería Genética
Clase 01 Biotecnologia - Ingeniería Genética
 
T Ecnicas De Adn Recombinante
T Ecnicas De Adn RecombinanteT Ecnicas De Adn Recombinante
T Ecnicas De Adn Recombinante
 
Tema 13 el adn y la ingeniería genética
Tema 13 el adn y la ingeniería genéticaTema 13 el adn y la ingeniería genética
Tema 13 el adn y la ingeniería genética
 
Unidad 4 Revolución genética
Unidad 4   Revolución genéticaUnidad 4   Revolución genética
Unidad 4 Revolución genética
 
Biotecnologas
Biotecnologas Biotecnologas
Biotecnologas
 
Biotecnologías
BiotecnologíasBiotecnologías
Biotecnologías
 
Biologia del adn
Biologia del adnBiologia del adn
Biologia del adn
 
Tema 16: El ADN y la ingeniería genética
Tema 16: El ADN y la ingeniería genéticaTema 16: El ADN y la ingeniería genética
Tema 16: El ADN y la ingeniería genética
 

Último

Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Juan Martín Martín
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónLourdes Feria
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxlupitavic
 
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática5    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática5    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docxEliaHernndez7
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...JAVIER SOLIS NOYOLA
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...JAVIER SOLIS NOYOLA
 
ACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJO
ACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJOACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJO
ACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJOBRIGIDATELLOLEONARDO
 
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONALMiNeyi1
 
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
SESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.docSESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.doc
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.docRodneyFrankCUADROSMI
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxYadi Campos
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADauxsoporte
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAEl Fortí
 
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptxRigoTito
 
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfUPTAIDELTACHIRA
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...JonathanCovena1
 

Último (20)

Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
 
Unidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la InvestigaciónUnidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la Investigación
 
Sesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronósticoSesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronóstico
 
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática5    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática5    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
 
ACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJO
ACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJOACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJO
ACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJO
 
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
 
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
SESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.docSESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.doc
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
 
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
 
Power Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptxPower Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptx
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...
 

Tecnología del ADN Recombinante

  • 1. ADN Recombinante ADN recombinantees una molécula que proviene de la unión artificial de dosfragmentos de ADN. Por lo tanto, la tecnología de ADN recombinantees el conjunto de técnicas que permiten aislar un gen de un organismo, para su posterior manipulación e inserción en otro diferente. De esta manera podemos hacer que un organismo (animal, vegetal, bacteria, hongo) o un virus produzca una proteína que le sea totalmente extraña
  • 2. ADN Recombinante Estas técnicas se emplean normalmente para la producción de proteínas en gran escala, ya que podemos hacer que una bacteria produzca una proteína humana y lograr una superproducción, como en el caso de la insulina humana, que actualmente es producida por bacterias en grandes recipientes de cultivo, denominados biorreactores. Como las bacterias se multiplican muy rápidamente y pueden expresar grandes cantidades de proteínas, es posible lograr una sobreproducción de la proteína deseada. A esto justamente se dedica la biotecnología, es decir a la utilización de organismos vivos o de sus productos con fines prácticos.
  • 3. El desarrollo de la tecnología del ADN recombinante fue posible gracias a varias líneas de investigación: El conocimiento de las enzimas de restricción La replicación y reparación de ADN La replicación de virus y plásmidos La síntesis química de secuencias de nucleótidos
  • 4. Tijeras moleculares: enzimas de restricción En 1975 Daniel Nathans y Hamilton O. Smith descubrieron un tipo de proteínas –las enzimas endonucleasas o enzimas de restricción- que actúan como “tijeras moleculares”, cortando la doble cadena de ADN a través del esqueleto de fosfatos sin dañar las bases. El descubrimiento de estas enzimas condujo a dichos microbiólogos al Nobel en 1978 y dio origen a la ingeniería genética. Daniel Nathans Hamilton O. Smith
  • 5. Tijeras moleculares: enzimas de restricción Las enzimas de restricción son producidas por bacterias como método de defensa contra virus y degradan el ADN extraño. A su vez, el propio genoma bacteriano está protegido contra sus enzimas de restricción mediante metilaciones (es decir, el agregado de un grupo metilo [-CH3)]) en un átomo específico de ciertos nucleótidos. Estas moléculas son indispensables para la ingeniería genética, ya que producen fragmentos que se pueden unir entre sí fácilmente (con la ayuda de la enzima ligasa). Las enzimas de restricción cortan dejando extremos cohesivos . Generados cuando la enzima corta las dos hebras asimétricamente, dejando los extremos de cada hebra de simple cadena complementarios entre sí.
  • 6. Veámoslo gráficamente para hacernos una idea más clara:
  • 7. ¿Cómo introducir ADN recombinante en las bacterias? Una vez que se supo cómo fabricar ADN recombinante usando enzimas de restricción y ligasas, el desafío siguiente fue cómo producir grandes cantidades de genes y cómo introducirlos en bacterias u otras células huésped. El primer problema fue solucionado con el uso de plásmidos, pequeñas moléculas de ADN circular presente en muchas bacterias. Los plásmidos contienen uno o más genes de resistencia a antibióticos y son capaces de autorreplicarse, ya que contienen una secuencia de iniciación. Esto les permite replicarse de manera independiente del ADN genómico
  • 8. ¿Cómo introducir ADN recombinante en las bacterias? Cortamos el ADN circular del plásmido con enzimas de restricción, para generar extremos cohesivos. Cortamos el ADN que queremos multiplicar. Debemos asegurarnos de que los extremos del plásmido y los del ADN a insertar sean complementarios y puedan unirse. Unimos el gen que queremos introducir (inserto) por medio de la enzima ADN-ligasa y luego introducimos el plásmido con inserto en bacterias. Seleccionamos las bacterias que hayan introducido el plásmido con la ayuda de antibióticos. Dado que los plásmidos contienen un gen de resistencia a antibiótico, al exponer las bacterias a ese antibiótico, sólo las que hayan incorporado el plásmido (y con él la resistencia) sobrevivirán, mientras que las que no lo tengan morirán.
  • 9. ¿Cómo introducir ADN recombinante en las bacterias? Esta es una manera relativamente eficaz de obtener millones de copias del ADN incorporado. Dado que todas las copias del gen provienen de una sola molécula multiplicada a partir de una única bacteria que dio origen a la colonia, esta técnica lleva el nombre de clonación. El término clon proviene de la jardinería; desde hace siglos los jardineros generan plantas nuevas a partir de gajos. Estas plantas son genéticamente idénticas y constituyen un clon. Un clon es un grupo de células u organismos genéticamente idénticas. El uso fragmentos de ADN como vectores cumple un rol fundamental en la ingeniería genética, ya que sirven para transferir material genético de un organismo a otro. Vector: cualquier organismo o virus capaz de mover genes de un organismo a otro
  • 10. ¿Cómo amplificar el ADN? Reacción en cadena de la polimerasa Durante las décadas de 1970-1980, la manera más práctica de hacer múltiples copias de una secuencia particular de ADN era introduciendo una molécula de ADN recombinante (un plásmido más un gen) en una célula huésped. Esto podía resultar un poco engorroso, ya que muchas veces se disponía de una cantidad muy pequeña de m A mediados de la década de los 80, la invención de una técnica capaz de generar centenares de miles de copias de una secuencia sin la necesidad de clonarla en ningún tipo de vector resolvió este problema. KaryMullis, un bioquímico americano que trabajaba sintetizando ADN, resolvió este problema con la invención de la reacción en cadena de la polimerasa moléculas de ADN para realizar pruebas
  • 11. ¿Cómo amplificar el ADN? Reacción en cadena de la Polimerasa
  • 12. ¿Cómo amplificar el ADN? Reacción en cadena de la polimerasa Esto la convierte en una importante, si no imprescindible, herramienta para el análisis de filiación o de criminalística forense, ya que con sólo una pequeñísima muestra se pueden realizar diferentes estudios comparativos que nos permiten conocer el dueño de un “rastro” genético en particular. También se usa para el desarrollo de nuevas estrategias de diagnóstico médico, como la detección de virus o de mutaciones que provocan enfermedades genéticas, a partir de una muestra de ADN tan pequeña como un cabello o una gota de sangre. Otra aplicación de la técnica de la reacción en cadena de la polimerasa es la transcripción inversa de ARNm. Mediante el uso de una enzima de origen viral denominada transcriptasa reversa puede usarse como molde una molécula de ARNm, transcribirla a una secuencia de ADN, y luego ser amplificada como cualquier otra secuencia por la reacción en cadena de la polimerasa, con lo que se obtiene una gran cantidad de ADN a partir de unas pocas moléculas de ARNm. Esta técnica es muy empleada para el estudio de expresión génica, así como para la producción de proteínas en diferentes organismos.
  • 13. ¿Cómo encontrar el gen adecuado? Imanes biológicos: sondas y anticuerpos Hasta hace relativamente poco, encontrar un gen en un genoma era como encontrar una aguja en un pajar. Si tuviéramos que realizar dicha tarea, probablemente usaríamos un imán para atraer la aguja (siempre y cuando esta sea de metal y posea propiedades magnéticas). De manera análoga, hoy día podemos encontrar genes o proteínas usando, respectivamente, sondas y anticuerpos, que actúan como imanes moleculares. Las sondas son fragmentos de ADN o ARN de simple cadena complementarias a la región de ADN o ARN que queremos encontrar. Contienen alguna “marca” que permite revelar su unión (hibridación) a la secuencia elegida y de esa manera revela presencia de la región buscada.
  • 14. ¿Cómo se marcan esas sondas o fragmentos de ácidos nucleicos? Una de las técnicas más empleadas para localizar fragmentos determinados del genoma (o la expresión de algún gen en particular por medio de la detección de la presencia de su correspondiente ARNm) es la hibridación in situ
  • 15. Durante este proceso se incuba el ADN con una sonda (de ADN o ARN) complementaria a la secuencia buscada, y marcada radiactiva o químicamente. La sonda “navega” por el interior de la célula hasta encontrar una secuencia complementaria a ella. Una vez que esto ocurra se formará una doble cadena que permitirá no sólo detectar la presencia de esta secuencia, sino indicar el lugar específico que ocupa dentro de la célula. Si se tratara de un fragmento de un cromosoma, nos permitiría saber su localización exacta o locus. Para revelar la presencia de hibridación de la sonda, la muestra debe exponerse a una placa radiográfica; en el caso de las sondas marcadas químicamente se procede a su revelado mediante el uso de moléculas fluorescentes o que puedan ser detectadas por colorimetría (utilizando una enzima que provoque el cambio de color de un sustrato).
  • 16. ¿Cómo estudiar la expresión de diversos genes? Si visitamos un laboratorio de biología molecular, probablemente encontraremos una cuba con un gel al cual se le aplica una corriente eléctrica. Este método, llamado electroforesis en gel, es muy usado para separar moléculas de diversos tamaños y es la base de las técnicas que describiremos para identificar ADN, ARN, y proteínas. En los párrafos siguientes describiremos entonces la electroforesis para poder comprender luego cómo funcionan las demás técnicas. La electroforesis en gel es uno de los métodos más utilizados en los laboratorios para separar ácidos nucleicos o proteínas, de acuerdo con su tamaño.
  • 18. ¿Cómo estudiar la expresión de diversos genes? Southern, Northern y Western Blot Existen diferentes técnicas que emplean la separación en gel por electroforesis que acabamos de ver como primer paso para identificar la presencia de determinadas moléculas dentro de una muestra. Una de ellas fue inventada por Edward M. Southern en 1975 para la detección de ADN. Como por ejemplo la NorthernBlot, que consiste en que una vez finalizada la corrida en el gel, se realiza la transferencia (o blotting) de las muestras a una membrana para su posterior revelado
  • 19. NorthernBlot Luego se utilizo el mismo sistema para el ARN y se le denominó NorthernBlot
  • 20. Estas dos técnicas persiguen fines distintos: el SouthernBlot, que detecta la presencia de ciertas secuencias en el ADN, se usa, por ejemplo, para estudiar mutaciones en el genoma. El Northern, en cambio, permite detectar qué genes son transcriptos en determinadas condiciones. Hemos visto que dos células del mismo organismo se distinguen por los genes que expresan y no por su ADN.
  • 21. Si luego queremos detectar proteínas, usaremos otra técnica similar: el Western Blot, que deriva de la electroforesis en gel y separa proteínas mediante la utilización de anticuerpos específicos.
  • 22. ¿Cómo sacar fotos de genes activados? Microarreglos Los ensayos con microarreglos son rápidos de realizar, pero muy engorrosos de analizar. Además, están muy limitados a los genes que ya se conocen. Permiten obtener un pantallazo rápido sobre qué está pasando en la célula en ese momento determinado, en cuanto a qué genes están encendidos y cuáles apagados. Sin embargo, los resultados obtenidos nunca deberían ser concluyentes, sino que tendrían que ser validados mediante otras técnicas (por ejemplo, NorthernBlot).