SlideShare una empresa de Scribd logo
1 de 11
Introducción al Calculo Numérico
y Manejo de Errores
Alumna: María de los Ángeles Tovar Izarza
CI: 26.142.416
Sección: SAIA-A
Profesor: Domingo Méndez
Universidad Fermín Toro
Vicerrectorado Académico
Sistema de Aprendizaje Interactivo a Distancia
Cabudare
Análisis Numérico
Definición
El Análisis numérico es una rama de las matemáticas cuyos límites no son del todo precisos. De una
forma rigurosa, se puede definir como la disciplina ocupada de describir, analizar y crear algoritmos
numéricos que nos permitan resolver problemas matemáticos, en los que estén involucradas
cantidades numéricas, con una precisión determinada. En el contexto del cálculo numérico, un
algoritmo es un procedimiento que nos puede llevar a una solución aproximada de un problema
mediante un número de pasos finitos que pueden ejecutarse de manera lógica. En algunos casos, se les
da el nombre de métodos constructivos a estos algoritmos numéricos. El análisis numérico cobra
especial importancia con la llegada de los ordenadores
Gran parte de la tecnología actual depende de la solución de modelos matemáticos, desde la
programación empotrada de una calculadora científica y el calculo estructural de un edificio
multinivel con estructuras de acero, hasta el diseño y simulación de aeronaves y vuelos espaciales. La
solución de un modelo matemático relativamente sencillo puede obtenerse de manera analítica.
Sin embargo, para la gran mayoría de los modelos matemáticos del mundo real, las soluciones
analíticas pueden no existir o ser extremadamente complejas, por lo cual se recurre a métodos
numéricos que aproximen las soluciones dentro de ciertos márgenes de tolerancia. El análisis de los
métodos numéricos nos permite realizar estimación es tanto de la eficiencia o complejidad de los
algoritmos asociados, as ́ı como dela confiabilidad de los resultados numéricos obtenidos durante su
aplicación
Importancia
Métodos Numéricos
Definición
Un método numérico es un procedimiento mediante el cual se obtiene, casi siempre de manera
aproximada, la solución de ciertos problemas realizando cálculos puramente aritméticos y lógicos
(operaciones aritméticas elementales, cálculo de funciones, consulta de una tabla de valores, cálculo
preposicional, etc.). Un tal procedimiento consiste de una lista finita de instrucciones precisas que
especifican una secuencia de operaciones algebraicas y lógicas (algoritmo), que producen o bien una
aproximación de la solución del problema (solución numérica) o bien un mensaje. La eficiencia en el
cálculo de dicha aproximación depende, en parte, de la facilidad de implementación del algoritmo y de
las características especiales y limitaciones de los instrumentos de cálculo (los computadores).
Desde finales de la década de los cuarenta, la amplia disponibilidad de las computadoras digitales han
llevado a una verdadera explosión en el uso y desarrollo de los métodos numéricos. Al principio, este
crecimiento estaba limitado por el costo de procesamiento de las grandes computadoras
(mainframes), por lo que muchos ingenieros seguían usando simples procedimientos analíticos en
una buena parte de su trabajo. Vale la pena mencionar que la reciente evolución de computadoras
personales de bajo costo ha permitido el acceso, de mucha gente, a las poderosas capacidades de
cómputo. Además, existen diversas razones por las cuales se deben estudiar los métodos numéricos:
Practica en la ingeniería
Números de Máquinas
Definición
Definición de Número Máquina "Es un sistema numérico que consta de dos dígitos: Ceros (0) y unos (1)
de base 2". El término "representación máquina" o "representación binaria" significa que es de base 2, la
más pequeña posible; este tipo de representación requiere de menos dígitos, pero en lugar de un
número decimal exige de más lugares. Esto se relaciona con el hecho de que la unidad lógica primaria de
las computadoras digitales usan componentes de apagado/prendido, o para una conexión eléctrica
abierta/cerrada. Esto se comprenderá mejor en ejemplos prácticos.
Ejemplo
Para representar un número en binario se descompone el número en potencias de 2 y sólo se escribe
utilizando los dígitos 0 y 1.
"Son aquellos números cuya representación viene dada de la siguiente forma: ± 0,d1 d2 d3 ... dk x
10 n, 1£ d1 £ 9, 1£ dk £ 9 para cada i=2, 3, 4, ..., k";
De lo antes descrito, se indica que las maxicomputadoras IBM (mainframes) tienen aproximadamente
k= 6 y –78 £ n £ 76.
Definición
Número Máquina Decimal
Ejemplos
Transformar el número decimal 131 en binario. El método es muy simple:
131 dividido entre 2 da 65 y el residuo es igual a 1
65 dividido entre 2 da 32 y el residuo es igual a 1
32 dividido entre 2 da 16 y el residuo es igual a 0
16 dividido entre 2 da 8 y el residuo es igual a 0
8 dividido entre 2 da 4 y el residuo es igual a 0
4 dividido entre 2 da 2 y el residuo es igual a 0
2 dividido entre 2 da 1 y el residuo es igual a 0
1 dividido entre 2 da 0 y el residuo es igual a 1
Finalmente, ordenamos los residuos, del último al primero: 10000011
Errores absolutos y relativos
Error Absoluto (EA)
Es el valor absoluto de la diferencia entre el valor de la medida y el valor tomado como exacto. Puede ser positivo o
negativo, según si la medida es superior al valor real o inferior (la resta sale positiva o negativa). Tiene unidades, las
mismas que las de la medida.
Formula
𝐸𝐴 = 𝑉𝑟 − 𝑉𝑎 𝑝𝑟𝑜𝑥
Error relativo(Er)
Formula
Es el cociente entre el error absoluto y el valor exacto. Si se multiplica por 100 se obtiene el tanto por ciento (%) de
error. Al igual que el error absoluto puede ser positivo o negativo (según lo sea el error absoluto) porque puede ser
por exceso o por defecto. no tiene unidades.
𝐸𝑟 =
𝐸𝐴
𝑉𝑟
𝑥100%
Ejemplo
Para determinar la longitud de una mesa se han realizado cuatro mediciones con una cinta métrica. Los
valores obtenidos son los siguientes:
75,2 cm; 74,8 cm; 75,1 cm; y 74,9 cm.
Expresa el resultado de la medida acompañado del error absoluto.
Solución
(75.2+74.8+75.1+74.9)/4=75
Errores absoluto y relativo de cada medida:
Medidas Errores absolutos Errores relativos
75.2 cm 75.2 - 75= 0.2 cm 0.2/75x100=0.27%
74.8 cm 74.8 - 75 = -0.2 cm -0.2/75x100=-0.27%
75.1 cm 75.1 - 75 = 0.1 cm 0.1/75x100=0.13%
74.9 cm 74.9 - 75 = -0.1 cm -0.1/75x100=-0.13%
Errores absolutos y relativos
Cota de errores absolutos y relativos
Cotas de error:
1. Cota de error absoluto <½ unidad del orden de la última cifra significativa
2. Una cota para el error relativo es:
Cota de error relativo=cota del error absoluto /valor real
Ejemplos
Da una cota para el error absoluto y otra para el error relativo cometidos al hacer las siguientes
aproximaciones:
Radio de la tierra 150000000 km
|Error absoluto| < 5000000 km
error relativo <5000000km/150000000km = 0.033
Volumen de una gota de aceite de aviones 0.4 mm3
|Error absoluto| < 0.05 mm3
error relativo <0.05 mm3 /0.4 mm3 =0.13
Fuentes básica de los errores
Existen dos causas principales de errores en los cálculos numéricos: Error de truncamiento y error de redondeo. El
Error de Redondeo se asocia con el número limitado de dígitos con que se representan los números en una PC (para
comprender la naturaleza de estos errores es necesario conocer las formas en que se almacenan los números y como
se llevan a cabo las sumas y restas dentro de una PC). El Error de Truncamiento, se debe a las aproximaciones
utilizadas en la fórmula matemática del modelo (la serie de Taylor es el medio más importante que se emplea para
obtener modelos numéricos y analizar los errores de truncamiento). Otro caso donde aparecen errores de
truncamiento es al aproximar un proceso infinito por uno finito (por ejemplo, truncando los términos de una serie).
Error de Redondeo
"Cualquier número real positivo y puede ser normalizado a:
y= 0,d1 d2 d3 ..., dk, dk+1, dk+2, . . . x 10 n.
El procedimiento se basa en agregar 5 x 10 n - (k+1) a yy después truncar para que resulte un número de la forma
fl = 0,d1 d2 d3 ..., dk, x 10 n.
El último método comúnmente se designa por redondeo. En este método, si dk+1 ³ 5, se agrega uno (1) a d k para
obtener a fl ; esto es, redondeamos hacia arriba. Si dk+1 < 5, simplemente truncamos después de los primeros k
dígitos; se redondea así hacia abajo
Para que obtengas información, esta es la conexión:
Error De Truncamiento
"Cualquier número real positivo y puede ser normalizado a:
y= 0, d1 d2 d3 ..., dk, dk+1, dk+2, . . . x 10 n.
Si y está dentro del rango numérico de la máquina, la forma de punto flotante de y, que se representará por fl , se
obtiene terminando la mantisa de y en kcifras decimales. Existen dos formas de llevar a cabo la terminación. Un
método es simplemente truncar los dígitos dk+1,dk+2, . . . para obtener
fl = 0,d1 d2 d3 ..., dk, x 10 n.
Este método es bastante preciso y se llama truncar el número.
Ejemplos
Encontrar el error de redondeo y truncamiento de los siguientes números
Número
Orden de
aproximación
Error de Truncamiento Error de Redondeo
123.456543 Milécimas 123.456 123.457
995 Decenas 990 1000
321123 Centenas 321100 321100
Errores de suma y resta
En esta sección estudiamos el problema de sumar y restar muchos números en la computadora. Como cada suma
introduce un error, proporcional al epsilon de la máquina, queremos ver como estos errores se acumulan durante el
proceso. El análisis que presentamos generaliza al problema del cálculo de productos interiores.
En la práctica muchas computadoras realizarán operaciones aritméticas en registros especiales que más bits que los
números de máquinas usuales. Estos bits extras se llaman bits de protección y permiten que los números existan
temporalmente con una precisión adicional. Se deben evitar situaciones en las que la exactitud se puede ver
comprometida al restar cantidades casi iguales o la división de un número muy grande entre un número muy
pequeño, lo cual trae como consecuencias valores de errores relativos y absolutos poco relevantes.
Estabilidad e Inestabilidad
La condición de un problema matemático relaciona a su sensibilidad los cambios en los datos de entrada. Puede
decirse que un cálculo es numéricamente inestable si la incertidumbre de los valores de entrada aumentan
considerablemente por el método numérico. Un proceso numérico es inestable cuando los pequeños errores que se
producen en alguna de sus etapas, se agrandan en etapas posteriores y degradan seriamente la exactitud del cálculo
en su conjunto. El que un proceso sea numéricamente estable o inestable debería decidirse con base en los errores
relativos, es decir investigar la inestabilidad o mal condicionamiento, lo cual significa que un cambio relativamente
pequeño en la entrada, digamos del 0,01%, produce un cambio relativamente grande en la salida, digamos del 1% o
más. Una fórmula puede ser inestable sin importar con qué precisión se realicen los cálculos.
Condicionamiento
Las palabras condición y condicionamiento se usan de manera informal para indicar cuan sensible es la solución de un
problema respecto de pequeños cambios relativos en los datos de entrada. Un problema está mal condicionado si
pequeños cambios en los datos pueden dar lugar a grandes cambios en las respuestas. Para ciertos tipos de
problemas se puede definir un número de condición: "Un número condicionado puede definirse como la razón de los
errores relativos". Si el número de condición es grande significa que se tiene un problema mal condicionado; se debe
tomar en cuenta que para cada caso se establece un número de condición, es decir para la evaluación de una función
se asocia un número condicionado, para la solución de sistemas de ecuaciones lineales se establece otro tipo de
número de condición; el número condicionado proporciona una medida de hasta qué punto la incertidumbre
aumenta.

Más contenido relacionado

La actualidad más candente

Constante de equilibrio químico en sistemas homogéneos
Constante de equilibrio químico en sistemas homogéneosConstante de equilibrio químico en sistemas homogéneos
Constante de equilibrio químico en sistemas homogéneoscecymedinagcia
 
Superficiees extendidas (aletas)
Superficiees extendidas (aletas)Superficiees extendidas (aletas)
Superficiees extendidas (aletas)Norman Rivera
 
Thermodynamics of solutions. Solved problems (Spanish)
Thermodynamics of solutions. Solved problems (Spanish)Thermodynamics of solutions. Solved problems (Spanish)
Thermodynamics of solutions. Solved problems (Spanish)Angel Darío González-Delgado
 
Electroquímica celdas ecuación de nerst-leyes de faraday
Electroquímica celdas ecuación de nerst-leyes de faradayElectroquímica celdas ecuación de nerst-leyes de faraday
Electroquímica celdas ecuación de nerst-leyes de faradayJackmadmax Thano
 
La emisividad y absortividad
La emisividad y absortividadLa emisividad y absortividad
La emisividad y absortividadmanguera21
 
Aplicaciones de las ecuaciones diferenciales de primer orden en la química
Aplicaciones de las ecuaciones diferenciales de primer orden en la químicaAplicaciones de las ecuaciones diferenciales de primer orden en la química
Aplicaciones de las ecuaciones diferenciales de primer orden en la químicaNancy Garcia Guzman
 
Aplicaciones crecimiento poblacional Ecuaciones Diferenciales
Aplicaciones crecimiento poblacional Ecuaciones DiferencialesAplicaciones crecimiento poblacional Ecuaciones Diferenciales
Aplicaciones crecimiento poblacional Ecuaciones DiferencialesCindy Adriana Bohórquez Santana
 
Calculo de la conductividad termica liquido y gases
Calculo de la conductividad termica liquido y gasesCalculo de la conductividad termica liquido y gases
Calculo de la conductividad termica liquido y gasesmichael1220
 
Aplicaciones reales de la Transformada de Laplace
Aplicaciones reales de la Transformada de LaplaceAplicaciones reales de la Transformada de Laplace
Aplicaciones reales de la Transformada de LaplaceJoanny Ibarbia Pardo
 
Balance de energía en un proceso con una reacción química
Balance de energía en un proceso con una reacción químicaBalance de energía en un proceso con una reacción química
Balance de energía en un proceso con una reacción químicaKiomasa
 
Problemas calor trabajo primera ley
Problemas calor trabajo primera leyProblemas calor trabajo primera ley
Problemas calor trabajo primera leycharliebm7512
 
G2 monografia transformada de laplace
G2 monografia transformada de laplaceG2 monografia transformada de laplace
G2 monografia transformada de laplaceCentro de Multimedios
 
Capacidad calorifica de gases
Capacidad calorifica de gasesCapacidad calorifica de gases
Capacidad calorifica de gasesdaszemog
 
Tabla de entalpias
Tabla de entalpiasTabla de entalpias
Tabla de entalpiasmario011995
 
Informe de Viscosidad, Mecánica de fluidos
Informe de Viscosidad, Mecánica de fluidosInforme de Viscosidad, Mecánica de fluidos
Informe de Viscosidad, Mecánica de fluidosAlexander Alvarado
 
Guia resuelta de destilación fraccionada
Guia resuelta de destilación fraccionadaGuia resuelta de destilación fraccionada
Guia resuelta de destilación fraccionadaStephanie Melo Cruz
 
Reacción química 5.Equilibrios físicos - Ejercicio 02 Cálculo de la presion...
Reacción química   5.Equilibrios físicos - Ejercicio 02 Cálculo de la presion...Reacción química   5.Equilibrios físicos - Ejercicio 02 Cálculo de la presion...
Reacción química 5.Equilibrios físicos - Ejercicio 02 Cálculo de la presion...Triplenlace Química
 
Reacciones químicas de segundo orden
Reacciones químicas de segundo ordenReacciones químicas de segundo orden
Reacciones químicas de segundo ordenHumberto Cruz
 
1 sistemas multicompuestos
1 sistemas multicompuestos1 sistemas multicompuestos
1 sistemas multicompuestosDiego Puerto
 

La actualidad más candente (20)

Constante de equilibrio químico en sistemas homogéneos
Constante de equilibrio químico en sistemas homogéneosConstante de equilibrio químico en sistemas homogéneos
Constante de equilibrio químico en sistemas homogéneos
 
Superficiees extendidas (aletas)
Superficiees extendidas (aletas)Superficiees extendidas (aletas)
Superficiees extendidas (aletas)
 
Equilibrio quimico presentacion
Equilibrio quimico presentacionEquilibrio quimico presentacion
Equilibrio quimico presentacion
 
Thermodynamics of solutions. Solved problems (Spanish)
Thermodynamics of solutions. Solved problems (Spanish)Thermodynamics of solutions. Solved problems (Spanish)
Thermodynamics of solutions. Solved problems (Spanish)
 
Electroquímica celdas ecuación de nerst-leyes de faraday
Electroquímica celdas ecuación de nerst-leyes de faradayElectroquímica celdas ecuación de nerst-leyes de faraday
Electroquímica celdas ecuación de nerst-leyes de faraday
 
La emisividad y absortividad
La emisividad y absortividadLa emisividad y absortividad
La emisividad y absortividad
 
Aplicaciones de las ecuaciones diferenciales de primer orden en la química
Aplicaciones de las ecuaciones diferenciales de primer orden en la químicaAplicaciones de las ecuaciones diferenciales de primer orden en la química
Aplicaciones de las ecuaciones diferenciales de primer orden en la química
 
Aplicaciones crecimiento poblacional Ecuaciones Diferenciales
Aplicaciones crecimiento poblacional Ecuaciones DiferencialesAplicaciones crecimiento poblacional Ecuaciones Diferenciales
Aplicaciones crecimiento poblacional Ecuaciones Diferenciales
 
Calculo de la conductividad termica liquido y gases
Calculo de la conductividad termica liquido y gasesCalculo de la conductividad termica liquido y gases
Calculo de la conductividad termica liquido y gases
 
Aplicaciones reales de la Transformada de Laplace
Aplicaciones reales de la Transformada de LaplaceAplicaciones reales de la Transformada de Laplace
Aplicaciones reales de la Transformada de Laplace
 
Balance de energía en un proceso con una reacción química
Balance de energía en un proceso con una reacción químicaBalance de energía en un proceso con una reacción química
Balance de energía en un proceso con una reacción química
 
Problemas calor trabajo primera ley
Problemas calor trabajo primera leyProblemas calor trabajo primera ley
Problemas calor trabajo primera ley
 
G2 monografia transformada de laplace
G2 monografia transformada de laplaceG2 monografia transformada de laplace
G2 monografia transformada de laplace
 
Capacidad calorifica de gases
Capacidad calorifica de gasesCapacidad calorifica de gases
Capacidad calorifica de gases
 
Tabla de entalpias
Tabla de entalpiasTabla de entalpias
Tabla de entalpias
 
Informe de Viscosidad, Mecánica de fluidos
Informe de Viscosidad, Mecánica de fluidosInforme de Viscosidad, Mecánica de fluidos
Informe de Viscosidad, Mecánica de fluidos
 
Guia resuelta de destilación fraccionada
Guia resuelta de destilación fraccionadaGuia resuelta de destilación fraccionada
Guia resuelta de destilación fraccionada
 
Reacción química 5.Equilibrios físicos - Ejercicio 02 Cálculo de la presion...
Reacción química   5.Equilibrios físicos - Ejercicio 02 Cálculo de la presion...Reacción química   5.Equilibrios físicos - Ejercicio 02 Cálculo de la presion...
Reacción química 5.Equilibrios físicos - Ejercicio 02 Cálculo de la presion...
 
Reacciones químicas de segundo orden
Reacciones químicas de segundo ordenReacciones químicas de segundo orden
Reacciones químicas de segundo orden
 
1 sistemas multicompuestos
1 sistemas multicompuestos1 sistemas multicompuestos
1 sistemas multicompuestos
 

Similar a Analisis numerico

Similar a Analisis numerico (20)

Calculo numerico y manejo de errores
Calculo numerico y manejo de erroresCalculo numerico y manejo de errores
Calculo numerico y manejo de errores
 
Investigacion
InvestigacionInvestigacion
Investigacion
 
Analisis
Analisis Analisis
Analisis
 
Presentacion analisis numericos
Presentacion analisis numericosPresentacion analisis numericos
Presentacion analisis numericos
 
Analisis numerico
Analisis numericoAnalisis numerico
Analisis numerico
 
Presentacion analisis numerico
Presentacion analisis numericoPresentacion analisis numerico
Presentacion analisis numerico
 
Analisis numerico (maria daniela alvarado) i
Analisis numerico (maria daniela alvarado) iAnalisis numerico (maria daniela alvarado) i
Analisis numerico (maria daniela alvarado) i
 
Análisis numérico y teorias de errores
Análisis numérico y teorias de erroresAnálisis numérico y teorias de errores
Análisis numérico y teorias de errores
 
Analisis numerico.
Analisis numerico.Analisis numerico.
Analisis numerico.
 
TRABAJO ANALISIS NUMERICO
TRABAJO ANALISIS NUMERICOTRABAJO ANALISIS NUMERICO
TRABAJO ANALISIS NUMERICO
 
Analisis numerico
Analisis numericoAnalisis numerico
Analisis numerico
 
Materia: Analisis Numerico
Materia: Analisis NumericoMateria: Analisis Numerico
Materia: Analisis Numerico
 
Erasmo avellaneda tbj 1 an
Erasmo avellaneda tbj 1 anErasmo avellaneda tbj 1 an
Erasmo avellaneda tbj 1 an
 
Erasmo avellaneda tbj 1 an
Erasmo avellaneda tbj 1 anErasmo avellaneda tbj 1 an
Erasmo avellaneda tbj 1 an
 
Angelica garcia
Angelica garciaAngelica garcia
Angelica garcia
 
Oreanna Yaraure.
Oreanna Yaraure.Oreanna Yaraure.
Oreanna Yaraure.
 
Analisis numerico
Analisis numericoAnalisis numerico
Analisis numerico
 
Analisis numerico
Analisis numericoAnalisis numerico
Analisis numerico
 
Calculo numerico y manejo de errores.
Calculo numerico y manejo de errores.Calculo numerico y manejo de errores.
Calculo numerico y manejo de errores.
 
Analisis numerco
Analisis numercoAnalisis numerco
Analisis numerco
 

Último

Tippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.ppt
Tippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.pptTippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.ppt
Tippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.pptNombre Apellidos
 
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJODIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJOJimyAMoran
 
Análisis de Costos y Presupuestos CAPECO
Análisis de Costos y Presupuestos CAPECOAnálisis de Costos y Presupuestos CAPECO
Análisis de Costos y Presupuestos CAPECOFernando Bravo
 
Auditoría de Sistemas de Gestión
Auditoría    de   Sistemas     de GestiónAuditoría    de   Sistemas     de Gestión
Auditoría de Sistemas de GestiónYanet Caldas
 
docsity-manzaneo-y-lotizacion para habilitacopm urbana
docsity-manzaneo-y-lotizacion para habilitacopm urbanadocsity-manzaneo-y-lotizacion para habilitacopm urbana
docsity-manzaneo-y-lotizacion para habilitacopm urbanaArnolVillalobos
 
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHTAPORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHTElisaLen4
 
Tipos de suelo y su clasificación y ejemplos
Tipos de suelo y su clasificación y ejemplosTipos de suelo y su clasificación y ejemplos
Tipos de suelo y su clasificación y ejemplosandersonsubero28
 
portafolio final manco 2 1816827 portafolio de evidencias
portafolio final manco 2 1816827 portafolio de evidenciasportafolio final manco 2 1816827 portafolio de evidencias
portafolio final manco 2 1816827 portafolio de evidenciasIANMIKELMIRANDAGONZA
 
Aportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der RoheAportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der RoheElisaLen4
 
GUIA DE SEGURIDAD PARA VENTILACION DE MINAS-POSITIVA.pdf
GUIA DE SEGURIDAD PARA VENTILACION DE MINAS-POSITIVA.pdfGUIA DE SEGURIDAD PARA VENTILACION DE MINAS-POSITIVA.pdf
GUIA DE SEGURIDAD PARA VENTILACION DE MINAS-POSITIVA.pdfWILLIAMSTAYPELLOCCLL1
 
sistema de CLORACIÓN DE AGUA POTABLE gst
sistema de CLORACIÓN DE AGUA POTABLE gstsistema de CLORACIÓN DE AGUA POTABLE gst
sistema de CLORACIÓN DE AGUA POTABLE gstDavidRojas870673
 
3er Informe Laboratorio Quimica General (2) (1).pdf
3er Informe Laboratorio Quimica General  (2) (1).pdf3er Informe Laboratorio Quimica General  (2) (1).pdf
3er Informe Laboratorio Quimica General (2) (1).pdfSantiagoRodriguez598818
 
EFICIENCIA ENERGETICA-ISO50001_INTEC_2.pptx
EFICIENCIA ENERGETICA-ISO50001_INTEC_2.pptxEFICIENCIA ENERGETICA-ISO50001_INTEC_2.pptx
EFICIENCIA ENERGETICA-ISO50001_INTEC_2.pptxfranklingerardoloma
 
ATS-FORMATO cara.pdf PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf  PARA TRABAJO SEGUROATS-FORMATO cara.pdf  PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf PARA TRABAJO SEGUROalejandrocrisostomo2
 
2. Cristaloquimica. ingenieria geologica
2. Cristaloquimica. ingenieria geologica2. Cristaloquimica. ingenieria geologica
2. Cristaloquimica. ingenieria geologicaJUDITHYEMELINHUARIPA
 
libro de ingeniería de petróleos y operaciones
libro de ingeniería de petróleos y operacioneslibro de ingeniería de petróleos y operaciones
libro de ingeniería de petróleos y operacionesRamon Bartolozzi
 
5. MATERIALES petreos para concreto.pdf.
5. MATERIALES petreos para concreto.pdf.5. MATERIALES petreos para concreto.pdf.
5. MATERIALES petreos para concreto.pdf.davidtonconi
 
Clasificación de Equipos e Instrumentos en Electricidad.docx
Clasificación de Equipos e Instrumentos en Electricidad.docxClasificación de Equipos e Instrumentos en Electricidad.docx
Clasificación de Equipos e Instrumentos en Electricidad.docxwilliam801689
 
TAIICHI OHNO, historia, obras, reconocimientos
TAIICHI OHNO, historia, obras, reconocimientosTAIICHI OHNO, historia, obras, reconocimientos
TAIICHI OHNO, historia, obras, reconocimientoscuentaparainvestigac
 
Presentación de Redes de alcantarillado y agua potable
Presentación de Redes de alcantarillado y agua potablePresentación de Redes de alcantarillado y agua potable
Presentación de Redes de alcantarillado y agua potableFabricioMogroMantill
 

Último (20)

Tippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.ppt
Tippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.pptTippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.ppt
Tippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.ppt
 
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJODIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
 
Análisis de Costos y Presupuestos CAPECO
Análisis de Costos y Presupuestos CAPECOAnálisis de Costos y Presupuestos CAPECO
Análisis de Costos y Presupuestos CAPECO
 
Auditoría de Sistemas de Gestión
Auditoría    de   Sistemas     de GestiónAuditoría    de   Sistemas     de Gestión
Auditoría de Sistemas de Gestión
 
docsity-manzaneo-y-lotizacion para habilitacopm urbana
docsity-manzaneo-y-lotizacion para habilitacopm urbanadocsity-manzaneo-y-lotizacion para habilitacopm urbana
docsity-manzaneo-y-lotizacion para habilitacopm urbana
 
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHTAPORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
 
Tipos de suelo y su clasificación y ejemplos
Tipos de suelo y su clasificación y ejemplosTipos de suelo y su clasificación y ejemplos
Tipos de suelo y su clasificación y ejemplos
 
portafolio final manco 2 1816827 portafolio de evidencias
portafolio final manco 2 1816827 portafolio de evidenciasportafolio final manco 2 1816827 portafolio de evidencias
portafolio final manco 2 1816827 portafolio de evidencias
 
Aportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der RoheAportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
 
GUIA DE SEGURIDAD PARA VENTILACION DE MINAS-POSITIVA.pdf
GUIA DE SEGURIDAD PARA VENTILACION DE MINAS-POSITIVA.pdfGUIA DE SEGURIDAD PARA VENTILACION DE MINAS-POSITIVA.pdf
GUIA DE SEGURIDAD PARA VENTILACION DE MINAS-POSITIVA.pdf
 
sistema de CLORACIÓN DE AGUA POTABLE gst
sistema de CLORACIÓN DE AGUA POTABLE gstsistema de CLORACIÓN DE AGUA POTABLE gst
sistema de CLORACIÓN DE AGUA POTABLE gst
 
3er Informe Laboratorio Quimica General (2) (1).pdf
3er Informe Laboratorio Quimica General  (2) (1).pdf3er Informe Laboratorio Quimica General  (2) (1).pdf
3er Informe Laboratorio Quimica General (2) (1).pdf
 
EFICIENCIA ENERGETICA-ISO50001_INTEC_2.pptx
EFICIENCIA ENERGETICA-ISO50001_INTEC_2.pptxEFICIENCIA ENERGETICA-ISO50001_INTEC_2.pptx
EFICIENCIA ENERGETICA-ISO50001_INTEC_2.pptx
 
ATS-FORMATO cara.pdf PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf  PARA TRABAJO SEGUROATS-FORMATO cara.pdf  PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf PARA TRABAJO SEGURO
 
2. Cristaloquimica. ingenieria geologica
2. Cristaloquimica. ingenieria geologica2. Cristaloquimica. ingenieria geologica
2. Cristaloquimica. ingenieria geologica
 
libro de ingeniería de petróleos y operaciones
libro de ingeniería de petróleos y operacioneslibro de ingeniería de petróleos y operaciones
libro de ingeniería de petróleos y operaciones
 
5. MATERIALES petreos para concreto.pdf.
5. MATERIALES petreos para concreto.pdf.5. MATERIALES petreos para concreto.pdf.
5. MATERIALES petreos para concreto.pdf.
 
Clasificación de Equipos e Instrumentos en Electricidad.docx
Clasificación de Equipos e Instrumentos en Electricidad.docxClasificación de Equipos e Instrumentos en Electricidad.docx
Clasificación de Equipos e Instrumentos en Electricidad.docx
 
TAIICHI OHNO, historia, obras, reconocimientos
TAIICHI OHNO, historia, obras, reconocimientosTAIICHI OHNO, historia, obras, reconocimientos
TAIICHI OHNO, historia, obras, reconocimientos
 
Presentación de Redes de alcantarillado y agua potable
Presentación de Redes de alcantarillado y agua potablePresentación de Redes de alcantarillado y agua potable
Presentación de Redes de alcantarillado y agua potable
 

Analisis numerico

  • 1. Introducción al Calculo Numérico y Manejo de Errores Alumna: María de los Ángeles Tovar Izarza CI: 26.142.416 Sección: SAIA-A Profesor: Domingo Méndez Universidad Fermín Toro Vicerrectorado Académico Sistema de Aprendizaje Interactivo a Distancia Cabudare
  • 2. Análisis Numérico Definición El Análisis numérico es una rama de las matemáticas cuyos límites no son del todo precisos. De una forma rigurosa, se puede definir como la disciplina ocupada de describir, analizar y crear algoritmos numéricos que nos permitan resolver problemas matemáticos, en los que estén involucradas cantidades numéricas, con una precisión determinada. En el contexto del cálculo numérico, un algoritmo es un procedimiento que nos puede llevar a una solución aproximada de un problema mediante un número de pasos finitos que pueden ejecutarse de manera lógica. En algunos casos, se les da el nombre de métodos constructivos a estos algoritmos numéricos. El análisis numérico cobra especial importancia con la llegada de los ordenadores Gran parte de la tecnología actual depende de la solución de modelos matemáticos, desde la programación empotrada de una calculadora científica y el calculo estructural de un edificio multinivel con estructuras de acero, hasta el diseño y simulación de aeronaves y vuelos espaciales. La solución de un modelo matemático relativamente sencillo puede obtenerse de manera analítica. Sin embargo, para la gran mayoría de los modelos matemáticos del mundo real, las soluciones analíticas pueden no existir o ser extremadamente complejas, por lo cual se recurre a métodos numéricos que aproximen las soluciones dentro de ciertos márgenes de tolerancia. El análisis de los métodos numéricos nos permite realizar estimación es tanto de la eficiencia o complejidad de los algoritmos asociados, as ́ı como dela confiabilidad de los resultados numéricos obtenidos durante su aplicación Importancia
  • 3. Métodos Numéricos Definición Un método numérico es un procedimiento mediante el cual se obtiene, casi siempre de manera aproximada, la solución de ciertos problemas realizando cálculos puramente aritméticos y lógicos (operaciones aritméticas elementales, cálculo de funciones, consulta de una tabla de valores, cálculo preposicional, etc.). Un tal procedimiento consiste de una lista finita de instrucciones precisas que especifican una secuencia de operaciones algebraicas y lógicas (algoritmo), que producen o bien una aproximación de la solución del problema (solución numérica) o bien un mensaje. La eficiencia en el cálculo de dicha aproximación depende, en parte, de la facilidad de implementación del algoritmo y de las características especiales y limitaciones de los instrumentos de cálculo (los computadores). Desde finales de la década de los cuarenta, la amplia disponibilidad de las computadoras digitales han llevado a una verdadera explosión en el uso y desarrollo de los métodos numéricos. Al principio, este crecimiento estaba limitado por el costo de procesamiento de las grandes computadoras (mainframes), por lo que muchos ingenieros seguían usando simples procedimientos analíticos en una buena parte de su trabajo. Vale la pena mencionar que la reciente evolución de computadoras personales de bajo costo ha permitido el acceso, de mucha gente, a las poderosas capacidades de cómputo. Además, existen diversas razones por las cuales se deben estudiar los métodos numéricos: Practica en la ingeniería
  • 4. Números de Máquinas Definición Definición de Número Máquina "Es un sistema numérico que consta de dos dígitos: Ceros (0) y unos (1) de base 2". El término "representación máquina" o "representación binaria" significa que es de base 2, la más pequeña posible; este tipo de representación requiere de menos dígitos, pero en lugar de un número decimal exige de más lugares. Esto se relaciona con el hecho de que la unidad lógica primaria de las computadoras digitales usan componentes de apagado/prendido, o para una conexión eléctrica abierta/cerrada. Esto se comprenderá mejor en ejemplos prácticos. Ejemplo Para representar un número en binario se descompone el número en potencias de 2 y sólo se escribe utilizando los dígitos 0 y 1.
  • 5. "Son aquellos números cuya representación viene dada de la siguiente forma: ± 0,d1 d2 d3 ... dk x 10 n, 1£ d1 £ 9, 1£ dk £ 9 para cada i=2, 3, 4, ..., k"; De lo antes descrito, se indica que las maxicomputadoras IBM (mainframes) tienen aproximadamente k= 6 y –78 £ n £ 76. Definición Número Máquina Decimal Ejemplos Transformar el número decimal 131 en binario. El método es muy simple: 131 dividido entre 2 da 65 y el residuo es igual a 1 65 dividido entre 2 da 32 y el residuo es igual a 1 32 dividido entre 2 da 16 y el residuo es igual a 0 16 dividido entre 2 da 8 y el residuo es igual a 0 8 dividido entre 2 da 4 y el residuo es igual a 0 4 dividido entre 2 da 2 y el residuo es igual a 0 2 dividido entre 2 da 1 y el residuo es igual a 0 1 dividido entre 2 da 0 y el residuo es igual a 1 Finalmente, ordenamos los residuos, del último al primero: 10000011
  • 6. Errores absolutos y relativos Error Absoluto (EA) Es el valor absoluto de la diferencia entre el valor de la medida y el valor tomado como exacto. Puede ser positivo o negativo, según si la medida es superior al valor real o inferior (la resta sale positiva o negativa). Tiene unidades, las mismas que las de la medida. Formula 𝐸𝐴 = 𝑉𝑟 − 𝑉𝑎 𝑝𝑟𝑜𝑥 Error relativo(Er) Formula Es el cociente entre el error absoluto y el valor exacto. Si se multiplica por 100 se obtiene el tanto por ciento (%) de error. Al igual que el error absoluto puede ser positivo o negativo (según lo sea el error absoluto) porque puede ser por exceso o por defecto. no tiene unidades. 𝐸𝑟 = 𝐸𝐴 𝑉𝑟 𝑥100%
  • 7. Ejemplo Para determinar la longitud de una mesa se han realizado cuatro mediciones con una cinta métrica. Los valores obtenidos son los siguientes: 75,2 cm; 74,8 cm; 75,1 cm; y 74,9 cm. Expresa el resultado de la medida acompañado del error absoluto. Solución (75.2+74.8+75.1+74.9)/4=75 Errores absoluto y relativo de cada medida: Medidas Errores absolutos Errores relativos 75.2 cm 75.2 - 75= 0.2 cm 0.2/75x100=0.27% 74.8 cm 74.8 - 75 = -0.2 cm -0.2/75x100=-0.27% 75.1 cm 75.1 - 75 = 0.1 cm 0.1/75x100=0.13% 74.9 cm 74.9 - 75 = -0.1 cm -0.1/75x100=-0.13% Errores absolutos y relativos
  • 8. Cota de errores absolutos y relativos Cotas de error: 1. Cota de error absoluto <½ unidad del orden de la última cifra significativa 2. Una cota para el error relativo es: Cota de error relativo=cota del error absoluto /valor real Ejemplos Da una cota para el error absoluto y otra para el error relativo cometidos al hacer las siguientes aproximaciones: Radio de la tierra 150000000 km |Error absoluto| < 5000000 km error relativo <5000000km/150000000km = 0.033 Volumen de una gota de aceite de aviones 0.4 mm3 |Error absoluto| < 0.05 mm3 error relativo <0.05 mm3 /0.4 mm3 =0.13
  • 9. Fuentes básica de los errores Existen dos causas principales de errores en los cálculos numéricos: Error de truncamiento y error de redondeo. El Error de Redondeo se asocia con el número limitado de dígitos con que se representan los números en una PC (para comprender la naturaleza de estos errores es necesario conocer las formas en que se almacenan los números y como se llevan a cabo las sumas y restas dentro de una PC). El Error de Truncamiento, se debe a las aproximaciones utilizadas en la fórmula matemática del modelo (la serie de Taylor es el medio más importante que se emplea para obtener modelos numéricos y analizar los errores de truncamiento). Otro caso donde aparecen errores de truncamiento es al aproximar un proceso infinito por uno finito (por ejemplo, truncando los términos de una serie). Error de Redondeo "Cualquier número real positivo y puede ser normalizado a: y= 0,d1 d2 d3 ..., dk, dk+1, dk+2, . . . x 10 n. El procedimiento se basa en agregar 5 x 10 n - (k+1) a yy después truncar para que resulte un número de la forma fl = 0,d1 d2 d3 ..., dk, x 10 n. El último método comúnmente se designa por redondeo. En este método, si dk+1 ³ 5, se agrega uno (1) a d k para obtener a fl ; esto es, redondeamos hacia arriba. Si dk+1 < 5, simplemente truncamos después de los primeros k dígitos; se redondea así hacia abajo Para que obtengas información, esta es la conexión: Error De Truncamiento "Cualquier número real positivo y puede ser normalizado a: y= 0, d1 d2 d3 ..., dk, dk+1, dk+2, . . . x 10 n. Si y está dentro del rango numérico de la máquina, la forma de punto flotante de y, que se representará por fl , se obtiene terminando la mantisa de y en kcifras decimales. Existen dos formas de llevar a cabo la terminación. Un método es simplemente truncar los dígitos dk+1,dk+2, . . . para obtener fl = 0,d1 d2 d3 ..., dk, x 10 n. Este método es bastante preciso y se llama truncar el número.
  • 10. Ejemplos Encontrar el error de redondeo y truncamiento de los siguientes números Número Orden de aproximación Error de Truncamiento Error de Redondeo 123.456543 Milécimas 123.456 123.457 995 Decenas 990 1000 321123 Centenas 321100 321100 Errores de suma y resta En esta sección estudiamos el problema de sumar y restar muchos números en la computadora. Como cada suma introduce un error, proporcional al epsilon de la máquina, queremos ver como estos errores se acumulan durante el proceso. El análisis que presentamos generaliza al problema del cálculo de productos interiores. En la práctica muchas computadoras realizarán operaciones aritméticas en registros especiales que más bits que los números de máquinas usuales. Estos bits extras se llaman bits de protección y permiten que los números existan temporalmente con una precisión adicional. Se deben evitar situaciones en las que la exactitud se puede ver comprometida al restar cantidades casi iguales o la división de un número muy grande entre un número muy pequeño, lo cual trae como consecuencias valores de errores relativos y absolutos poco relevantes.
  • 11. Estabilidad e Inestabilidad La condición de un problema matemático relaciona a su sensibilidad los cambios en los datos de entrada. Puede decirse que un cálculo es numéricamente inestable si la incertidumbre de los valores de entrada aumentan considerablemente por el método numérico. Un proceso numérico es inestable cuando los pequeños errores que se producen en alguna de sus etapas, se agrandan en etapas posteriores y degradan seriamente la exactitud del cálculo en su conjunto. El que un proceso sea numéricamente estable o inestable debería decidirse con base en los errores relativos, es decir investigar la inestabilidad o mal condicionamiento, lo cual significa que un cambio relativamente pequeño en la entrada, digamos del 0,01%, produce un cambio relativamente grande en la salida, digamos del 1% o más. Una fórmula puede ser inestable sin importar con qué precisión se realicen los cálculos. Condicionamiento Las palabras condición y condicionamiento se usan de manera informal para indicar cuan sensible es la solución de un problema respecto de pequeños cambios relativos en los datos de entrada. Un problema está mal condicionado si pequeños cambios en los datos pueden dar lugar a grandes cambios en las respuestas. Para ciertos tipos de problemas se puede definir un número de condición: "Un número condicionado puede definirse como la razón de los errores relativos". Si el número de condición es grande significa que se tiene un problema mal condicionado; se debe tomar en cuenta que para cada caso se establece un número de condición, es decir para la evaluación de una función se asocia un número condicionado, para la solución de sistemas de ecuaciones lineales se establece otro tipo de número de condición; el número condicionado proporciona una medida de hasta qué punto la incertidumbre aumenta.