SlideShare una empresa de Scribd logo
1 de 10
FORMACIÓN DEL
SISTEMA SOLAR
PLANETESIMALES
EN EL SISTEMA
SOLAR
COLISIÓN DE LOS
PLANETESIMALES
OCÉANO DE MAGMA
ORIGEN DE LA TIERRA
La Tierra primigenia se formó, como el resto de planetas
del Sistema Solar, a partir de los materiales de la nebulosa
inicial. En concreto, del gas y polvo que formaban el
disco plano que giraba alrededor del núcleo de
condensación que dio lugar al Sol. Las partículas que
formaban este disco comenzaron a agregarse. Estos
agregados chocaban entre sí sumando su materia y
formando cuerpos de mayor tamaño denominados
planetesimales. Estos planetesimales, a su vez, también
colisionaban entre sí y formaron los planetas del sistema
solar (proceso de acreción)
Al colisionar, los planetesimales se unían y fusionaban debido a la enorme cantidad de calor que se
generaba en cada impacto. El resultado fue una Tierra primigenia muy caliente cubierta por un
océano de magma, de hasta 1000 km de profundidad, que permitió su diferenciación en capas (núcleo,
manto y corteza).
DIFERENCIACIÓN EN CAPAS DE LA TIERRA
La masa rocosa que se formó, la prototierra, debido a al calor
generado por los continuos impactos de fragmentos rocosos, la
contracción gravitatoria y el calor desprendido por la
desintegración radiactiva de algunos elementos, se calentó
tanto que llegó a fundirse. Como consecuencia se produjo
una reorganización de los materiales de todo el planeta y
los materiales se fueron disponiendo por orden de densidad:
El hierro fundido, mas pesado, se hundió hacia el centro y formó el núcleo del planeta.
Los materiales rocosos formaron las capas más externas de la Tierra. De ellos, los materiales rocosos más
ligeros ascendieron y formaron la corteza, mientras que los más densos quedaron en las capas intermedias
formando el manto.
APARICIÓN DE LA ATMÓSFERA PRIMITIVA
Simultáneamente, del magma y de la gran
actividad volcánica existente escapaban gran
cantidad de gases (proceso de
desgasificación) que, atrapados por la
gravedad terrestre quedaron formando una
primera capa gaseosa alrededor de la geosfera.
Nace así la primera atmósfera primitiva, cuya
composición era muy diferente a la atmósfera
actual: No había oxígeno y era muy rica en vapor
de agua y CO2. Además contenía otros gases
como H2, N2, metano (CH4), amoníaco (NH3) y
otros en menor cantidad (CO, SO2, H2S, etc.)
CORTEZA PRIMITIVA
(muy delgada, con
abundante actividad
volcánica)
A medida que los impactos de los planetesimales cesaron al ir
agotándose, la Tierra primigenia comenzó a enfriarse
lentamente. Se formaron las primeros esbozos de tierra firme, y
la corteza, primero muy fina, fue progresivamente haciéndose
más gruesa a medida que se enfriaban los materiales hacia el
interior de la Tierra.
En la atmósfera comenzaron a formarse grandes nubes por
condensación de la enorme cantidad de vapor de agua que
contenía. A medida que continuaba el enfriamiento, la nubes
bajaron y comenzaron a producir lluvia, esta lluvia enfriaba
todavía más la superficie terrestre y generaba más lluvia. Y llovió
y llovió, no sabemos a ciencia cierta cuantos años, hasta que las
nubes se deshicieron y volvió a salir el Sol, pero ahora sobre los
océanos recién formados.
APARICIÓN DE LOS OCÉANOS
Hace 4500 ma:
Formación de la
Tierra
ESTRUCTURA DE LA TIERRA La Tierra tiene un radio medio de
6.373 km. Hay dos modelos o
divisiones de la Tierra en capas
según el criterio que se utilice:
MODELO DINÁMICO,
basado en el
comportamiento de las
capas, las divide en
litosfera, astenosfera
(actualmente
descartada), mesosfera
y endosfera
MODELO ESTATICO O
GEOQUÍMICO, basado
en la composición
química de los materiales
de las capas, las divide
en corteza, manto y
núcleo
CORTEZA CONTINENTAL CORTEZA OCEÁNICA
GROSOR GRUESA, variable (33 - 80 Km bajo cordilleras) FINA, casi constante (5 -10 Km)
COMPOSICIÓN Granítica principalmente Basáltica (lava enfriada)
DENSIDAD Poco densa (2,7 g/m3) Más densa (3,0 g/m3)
ANTIGÜEDAD Zonas de gran antigüedad, casi 4000 m.a. JOVEN, máximo 180 m.a.
La corteza es la capa rocosa más
superficial y mas delgada de la
Tierra (si comparamos la Tierra con
un huevo, las corteza tendría el
espesor de la cáscara). Su grosor
medio varia entre 5-10 km en los
océanos y alrededor de 33 km en los
continentes, aunque aumenta
considerablemente bajo las cadenas
montañosas (a mayor altitud de
éstas, mayores “raíces” hay bajo el
continente). Se han llegado a medir
espesores de más 80 km bajo el
Himalaya. Existen por tanto dos
tipos de corteza, la continental y la
oceánica, con las siguientes
características diferenciales:
LA CORTEZA CONTINENTAL Y OCEÁNICA
LAS CAPAS DE LA TIERRA
- La corteza continental ocupa los continentes, es decir la tierra firme y su prolongación bajo el mar hasta
llegar al fondo oceánico. En este borde continental se distinguen dos zonas: la plataforma continental,
zona de poca profundidad (hasta 200m) y de poca inclinación que puede ser mas o menos extensa según
zonas; A continuación se encuentra el talud continental, una fuerte pendiente que da paso al fondo
oceánico.
- La corteza oceánica comprende los grandes fondos marinos de 3000 m de profundidad como media.
Plataforma y talud continental
EL MANTO
El manto es la capa intermedia de Tierra, llega hasta los
2.900 km de profundidad y su temperatura está
comprendida entre los 1000ºC y los 3.700ºC. Aunque su
composición química es homogénea (una roca
denominada peridotita), su estado físico varia mucho
según la profundidad, de modo que distinguimos varias
zonas:
La región superior pegada a la corteza es rígida y forma,
junto con la corteza una unidad estructural de unos 100-
300 km de espesor (según zonas) denominada litosfera.
Esta litosfera es rígida y forma las placas tectónicas
Por debajo es encuentra el manto inferior,
de peridotita más densa (debido a la
presión).
En el límite manto-núcleo se encuentra
una capa de unos 200 km de espesor
denominada capa D, constituida por
material fundido, que asciende en forma
de penachos o plumas que pueden llegar
hasta la superficie.
Por debajo de la litosfera, la roca peridotita se encuentra en un
estado semisólido, con cierta plasticidad (capacidad de
desplazamiento). A esta región del manto se le denominó
astenosfera, pero actualmente esta denominación esta en desuso.
Esta zona pertenece al manto superior y alcanza los 670 km de
profundidad
EL NÚCLEO Y EL CAMPO MAGNÉTICO TERRESTRE
El núcleo se extiende desde los 2900 km de profundidad hasta el
centro de la Tierra. Es una capa muy densa y se encuentra a
una presión y temperatura muy elevadas. Esta constituido
principalmente por hierro, aunque también contiene níquel y
otros elementos como oxígeno, azufre y silicio.
En él se diferencian dos zonas: el núcleo externo, fluido,
donde los materiales se agitan en fuertes corrientes de
convección y el núcleo interno, que es sólido (debido a la
mayor presión).
El campo magnético terrestre se origina debido al movimiento de las masas de hierro fundido del
núcleo externo, que generan corrientes eléctricas alrededor de la masa de hierro sólido del núcleo interno.
En conjunto el núcleo terrestre se comporta como un gigantesco electroimán, en un proceso conocido como
efecto dinamo.
La Tierra se comporta como un imán cuyos polo norte y
sur magnéticos no coinciden con los geográficos y ,
además, su posición cambia a lo largo del tiempo. En la
actualidad, el polo norte magnético se encuentra a unos
1.800km del geográfico y se está desplazando por la zona
norte de Canadá en dirección a Alaska.
Hay que destacar, que cuando hablamos de polos magnéticos
terrestres, llamamos polo norte magnético al que está próximo
al polo norte geográfico y, polo sur magnético al próximo al
polo sur geográfico; sin embargo, su magnetismo real es
opuesto al que indican sus nombres, al menos en la actualidad,
ya que la polaridad del campo magnético terrestre se ha
invertido muchas veces a lo largo de la historia de la
Tierra, sin un patrón, ni motivo conocido hasta el momento.
En la Tierra, como en cualquier imán, las líneas del
campo van del polo norte magnético hacia el polo sur
El campo magnético terrestre crea un espacio, la
magnetosfera, que es esférica hacia el Sol y
alargada en la dirección opuesta. Se extiende hasta
unos 60.000km de la Tierra en la dirección al Sol y a
mucha más distancia en dirección opuesta. La
magnetosfera actúa como una pantalla protectora
que desvía la mayor parte del viento solar (iones y
electrones libres emitidos por el Sol) que de no
existir, arrastraría los gases atmosféricos haciendo
imposible la vida sobre la Tierra.
En los polos magnéticos, donde penetran las líneas del campo magnético terrestre, entran las partículas
cargadas eléctricamente del viento solar y chocan con los átomos y moléculas de las capas altas de la
atmosfera, produciendo un fenómeno luminoso conocido como las auroras boreales o australes y
causando interferencias en las comunicaciones
Las auroras se producen cuando en la superficie del sol
tiene lugar las conocidas manchas solares, zonas del
Sol donde se producen tremendas explosiones, con
llamaradas de cientos de miles de kilómetros de longitud
(más fuertes que la explosión de 1000 bombas atómicas
simultáneas), que lanzan al espacio partículas
cargadas eléctricamente formando el llamado viento
solar.
El Sol tiene una actividad cíclica, de modo que cada
11 años aproximadamente alcanza un máximo de
manchas solares. El año 2013 fue uno de esos máximos
de actividad solar, en la que algunas de la tormentas
solares fueron tan intensas que tuvieron que desactivarse
satélites o voltearlos para impedir que se dañaran.
Se han podido observar
auroras gemelas,
simultaneas en ambos
polos, cuando se
producen estas tormentas
solares. Sin embargo,
llegar a detectar ambas
auroras ha sido muy
laborioso debido a que
sólo son visibles durante
la noche y hay muy pocos
días al año en que hay
“noche” en ambos polos a
la vez.

Más contenido relacionado

La actualidad más candente

Ppt litósfera y atmósfera
Ppt litósfera y atmósferaPpt litósfera y atmósfera
Ppt litósfera y atmósfera
ccccc B J
 
Conocer El Interior Terrestre
Conocer El Interior TerrestreConocer El Interior Terrestre
Conocer El Interior Terrestre
IES LA GRANJA
 
Consulta de la estructura interna de la tierra
Consulta de la estructura interna de la tierraConsulta de la estructura interna de la tierra
Consulta de la estructura interna de la tierra
santiago echeverri
 
Ud 13 estructura interna de la tierra
Ud 13 estructura interna de la tierraUd 13 estructura interna de la tierra
Ud 13 estructura interna de la tierra
majomiralles
 
Estructura interna de la tierra
Estructura interna de la tierraEstructura interna de la tierra
Estructura interna de la tierra
jovamiranda16
 
Estructura Y ComposiciÓn De La Tierra
Estructura Y ComposiciÓn De La TierraEstructura Y ComposiciÓn De La Tierra
Estructura Y ComposiciÓn De La Tierra
monicaocampo
 

La actualidad más candente (20)

Estructura interna de la tierra
Estructura interna de la tierraEstructura interna de la tierra
Estructura interna de la tierra
 
02 - Origen y estructura de la Tierra
02 - Origen y estructura de la Tierra02 - Origen y estructura de la Tierra
02 - Origen y estructura de la Tierra
 
Estructura geodinamica
Estructura geodinamicaEstructura geodinamica
Estructura geodinamica
 
Dinamica de la tierra
Dinamica de la tierraDinamica de la tierra
Dinamica de la tierra
 
Estructura geoquimica
Estructura geoquimicaEstructura geoquimica
Estructura geoquimica
 
Geología general6
Geología general6Geología general6
Geología general6
 
Ppt litósfera y atmósfera
Ppt litósfera y atmósferaPpt litósfera y atmósfera
Ppt litósfera y atmósfera
 
Estructura interna geosfera
Estructura  interna geosferaEstructura  interna geosfera
Estructura interna geosfera
 
Estructura De La Tierra
Estructura De La TierraEstructura De La Tierra
Estructura De La Tierra
 
Conocer El Interior Terrestre
Conocer El Interior TerrestreConocer El Interior Terrestre
Conocer El Interior Terrestre
 
Origen y evolución del planeta tierra.
Origen y evolución del planeta tierra.Origen y evolución del planeta tierra.
Origen y evolución del planeta tierra.
 
Estructura y composición de la tierra
Estructura y composición de la tierraEstructura y composición de la tierra
Estructura y composición de la tierra
 
Consulta de la estructura interna de la tierra
Consulta de la estructura interna de la tierraConsulta de la estructura interna de la tierra
Consulta de la estructura interna de la tierra
 
Estructura interna tierra. placas tectonicas
Estructura interna tierra. placas tectonicasEstructura interna tierra. placas tectonicas
Estructura interna tierra. placas tectonicas
 
Ud 13 estructura interna de la tierra
Ud 13 estructura interna de la tierraUd 13 estructura interna de la tierra
Ud 13 estructura interna de la tierra
 
Estructura interna de la tierra
Estructura interna de la tierraEstructura interna de la tierra
Estructura interna de la tierra
 
Estructura de la tierra 2
Estructura de la tierra 2Estructura de la tierra 2
Estructura de la tierra 2
 
La tierra y su entorno
La tierra y su entornoLa tierra y su entorno
La tierra y su entorno
 
Geosfera
GeosferaGeosfera
Geosfera
 
Estructura Y ComposiciÓn De La Tierra
Estructura Y ComposiciÓn De La TierraEstructura Y ComposiciÓn De La Tierra
Estructura Y ComposiciÓn De La Tierra
 

Similar a Cmc.t1.la tierra

Similar a Cmc.t1.la tierra (20)

Tema 04 gg-la tierra como planeta
Tema 04 gg-la tierra como planetaTema 04 gg-la tierra como planeta
Tema 04 gg-la tierra como planeta
 
Geosfera como sistema
Geosfera como sistemaGeosfera como sistema
Geosfera como sistema
 
Sol y tierra
Sol y tierraSol y tierra
Sol y tierra
 
Estructura de la tierra.pptx
Estructura de la tierra.pptxEstructura de la tierra.pptx
Estructura de la tierra.pptx
 
U3 t1 geosfera compressed
U3 t1 geosfera compressedU3 t1 geosfera compressed
U3 t1 geosfera compressed
 
"LA TIERRA" Recurso para la act. Modulo 5
"LA TIERRA" Recurso para la act. Modulo 5"LA TIERRA" Recurso para la act. Modulo 5
"LA TIERRA" Recurso para la act. Modulo 5
 
La Atmosfera
La Atmosfera La Atmosfera
La Atmosfera
 
Creado por Valentina Troya
Creado por Valentina TroyaCreado por Valentina Troya
Creado por Valentina Troya
 
Estructura interna de la tierra
Estructura interna de la tierraEstructura interna de la tierra
Estructura interna de la tierra
 
Origen de nuestro planeta.
Origen de nuestro planeta.Origen de nuestro planeta.
Origen de nuestro planeta.
 
La Tierra
La TierraLa Tierra
La Tierra
 
La litosfera
La litosferaLa litosfera
La litosfera
 
Tectónica placas ESO
Tectónica placas ESOTectónica placas ESO
Tectónica placas ESO
 
I unidad guia principios de biologia guia estudiantes convertido
I unidad  guia principios de biologia guia estudiantes convertidoI unidad  guia principios de biologia guia estudiantes convertido
I unidad guia principios de biologia guia estudiantes convertido
 
Universo
UniversoUniverso
Universo
 
Tierras solidas y fluidas
Tierras solidas y  fluidasTierras solidas y  fluidas
Tierras solidas y fluidas
 
La Litosfera
La LitosferaLa Litosfera
La Litosfera
 
Primera Unidad Sociales 9º.
Primera Unidad Sociales 9º.Primera Unidad Sociales 9º.
Primera Unidad Sociales 9º.
 
Tema 2 tectónica de placas, una teoría global
Tema 2 tectónica de placas, una teoría globalTema 2 tectónica de placas, una teoría global
Tema 2 tectónica de placas, una teoría global
 
Biología y geología Tema 3. tectónica de placas
Biología y geología Tema 3. tectónica de placasBiología y geología Tema 3. tectónica de placas
Biología y geología Tema 3. tectónica de placas
 

Último

6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
Wilian24
 
informe-de-laboratorio-metodos-de-separacion-de-mezclas.pdf
informe-de-laboratorio-metodos-de-separacion-de-mezclas.pdfinforme-de-laboratorio-metodos-de-separacion-de-mezclas.pdf
informe-de-laboratorio-metodos-de-separacion-de-mezclas.pdf
AndreaTurell
 
Apunte clase teorica propiedades de la Madera.pdf
Apunte clase teorica propiedades de la Madera.pdfApunte clase teorica propiedades de la Madera.pdf
Apunte clase teorica propiedades de la Madera.pdf
Gonella
 
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
Lineamientos de la Escuela de la Confianza  SJA  Ccesa.pptxLineamientos de la Escuela de la Confianza  SJA  Ccesa.pptx
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
Demetrio Ccesa Rayme
 

Último (20)

FICHA CUENTO BUSCANDO UNA MAMÁ 2024 MAESTRA JANET.pdf
FICHA CUENTO BUSCANDO UNA MAMÁ  2024 MAESTRA JANET.pdfFICHA CUENTO BUSCANDO UNA MAMÁ  2024 MAESTRA JANET.pdf
FICHA CUENTO BUSCANDO UNA MAMÁ 2024 MAESTRA JANET.pdf
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
 
TÉCNICAS OBSERVACIONALES Y TEXTUALES.pdf
TÉCNICAS OBSERVACIONALES Y TEXTUALES.pdfTÉCNICAS OBSERVACIONALES Y TEXTUALES.pdf
TÉCNICAS OBSERVACIONALES Y TEXTUALES.pdf
 
La Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalLa Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración Ambiental
 
animalesdelaproincia de beunos aires.pdf
animalesdelaproincia de beunos aires.pdfanimalesdelaproincia de beunos aires.pdf
animalesdelaproincia de beunos aires.pdf
 
informe-de-laboratorio-metodos-de-separacion-de-mezclas.pdf
informe-de-laboratorio-metodos-de-separacion-de-mezclas.pdfinforme-de-laboratorio-metodos-de-separacion-de-mezclas.pdf
informe-de-laboratorio-metodos-de-separacion-de-mezclas.pdf
 
Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024
 
UNIDAD 3 -MAYO - IV CICLO para cuarto grado
UNIDAD 3 -MAYO - IV CICLO para cuarto gradoUNIDAD 3 -MAYO - IV CICLO para cuarto grado
UNIDAD 3 -MAYO - IV CICLO para cuarto grado
 
REGLAMENTO FINAL DE EVALUACIÓN 2024 pdf.pdf
REGLAMENTO  FINAL DE EVALUACIÓN 2024 pdf.pdfREGLAMENTO  FINAL DE EVALUACIÓN 2024 pdf.pdf
REGLAMENTO FINAL DE EVALUACIÓN 2024 pdf.pdf
 
sesion de aprendizaje 1 SEC. 13- 17 MAYO 2024 comunicación.pdf
sesion de aprendizaje 1 SEC. 13- 17  MAYO  2024 comunicación.pdfsesion de aprendizaje 1 SEC. 13- 17  MAYO  2024 comunicación.pdf
sesion de aprendizaje 1 SEC. 13- 17 MAYO 2024 comunicación.pdf
 
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
 
AEC 2. Aventura en el Antiguo Egipto.pptx
AEC 2. Aventura en el Antiguo Egipto.pptxAEC 2. Aventura en el Antiguo Egipto.pptx
AEC 2. Aventura en el Antiguo Egipto.pptx
 
Apunte clase teorica propiedades de la Madera.pdf
Apunte clase teorica propiedades de la Madera.pdfApunte clase teorica propiedades de la Madera.pdf
Apunte clase teorica propiedades de la Madera.pdf
 
AEC2. Egipto Antiguo. Adivina, Adivinanza.pptx
AEC2. Egipto Antiguo. Adivina, Adivinanza.pptxAEC2. Egipto Antiguo. Adivina, Adivinanza.pptx
AEC2. Egipto Antiguo. Adivina, Adivinanza.pptx
 
1ERGRA~2.PDF EVALUACION DIAGNOSTICA 2024
1ERGRA~2.PDF EVALUACION DIAGNOSTICA 20241ERGRA~2.PDF EVALUACION DIAGNOSTICA 2024
1ERGRA~2.PDF EVALUACION DIAGNOSTICA 2024
 
activ4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdfactiv4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdf
 
12 - Planetas Extrasolares - Seminario de las Aulas de la Experiencia UPV/EHU
12 - Planetas Extrasolares - Seminario de las Aulas de la Experiencia UPV/EHU12 - Planetas Extrasolares - Seminario de las Aulas de la Experiencia UPV/EHU
12 - Planetas Extrasolares - Seminario de las Aulas de la Experiencia UPV/EHU
 
10-08 Avances tecnológicos del siglo XXI.pdf
10-08 Avances tecnológicos del siglo XXI.pdf10-08 Avances tecnológicos del siglo XXI.pdf
10-08 Avances tecnológicos del siglo XXI.pdf
 
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
Lineamientos de la Escuela de la Confianza  SJA  Ccesa.pptxLineamientos de la Escuela de la Confianza  SJA  Ccesa.pptx
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
 

Cmc.t1.la tierra

  • 1. FORMACIÓN DEL SISTEMA SOLAR PLANETESIMALES EN EL SISTEMA SOLAR COLISIÓN DE LOS PLANETESIMALES OCÉANO DE MAGMA ORIGEN DE LA TIERRA La Tierra primigenia se formó, como el resto de planetas del Sistema Solar, a partir de los materiales de la nebulosa inicial. En concreto, del gas y polvo que formaban el disco plano que giraba alrededor del núcleo de condensación que dio lugar al Sol. Las partículas que formaban este disco comenzaron a agregarse. Estos agregados chocaban entre sí sumando su materia y formando cuerpos de mayor tamaño denominados planetesimales. Estos planetesimales, a su vez, también colisionaban entre sí y formaron los planetas del sistema solar (proceso de acreción) Al colisionar, los planetesimales se unían y fusionaban debido a la enorme cantidad de calor que se generaba en cada impacto. El resultado fue una Tierra primigenia muy caliente cubierta por un océano de magma, de hasta 1000 km de profundidad, que permitió su diferenciación en capas (núcleo, manto y corteza).
  • 2. DIFERENCIACIÓN EN CAPAS DE LA TIERRA La masa rocosa que se formó, la prototierra, debido a al calor generado por los continuos impactos de fragmentos rocosos, la contracción gravitatoria y el calor desprendido por la desintegración radiactiva de algunos elementos, se calentó tanto que llegó a fundirse. Como consecuencia se produjo una reorganización de los materiales de todo el planeta y los materiales se fueron disponiendo por orden de densidad: El hierro fundido, mas pesado, se hundió hacia el centro y formó el núcleo del planeta. Los materiales rocosos formaron las capas más externas de la Tierra. De ellos, los materiales rocosos más ligeros ascendieron y formaron la corteza, mientras que los más densos quedaron en las capas intermedias formando el manto. APARICIÓN DE LA ATMÓSFERA PRIMITIVA Simultáneamente, del magma y de la gran actividad volcánica existente escapaban gran cantidad de gases (proceso de desgasificación) que, atrapados por la gravedad terrestre quedaron formando una primera capa gaseosa alrededor de la geosfera. Nace así la primera atmósfera primitiva, cuya composición era muy diferente a la atmósfera actual: No había oxígeno y era muy rica en vapor de agua y CO2. Además contenía otros gases como H2, N2, metano (CH4), amoníaco (NH3) y otros en menor cantidad (CO, SO2, H2S, etc.) CORTEZA PRIMITIVA (muy delgada, con abundante actividad volcánica)
  • 3. A medida que los impactos de los planetesimales cesaron al ir agotándose, la Tierra primigenia comenzó a enfriarse lentamente. Se formaron las primeros esbozos de tierra firme, y la corteza, primero muy fina, fue progresivamente haciéndose más gruesa a medida que se enfriaban los materiales hacia el interior de la Tierra. En la atmósfera comenzaron a formarse grandes nubes por condensación de la enorme cantidad de vapor de agua que contenía. A medida que continuaba el enfriamiento, la nubes bajaron y comenzaron a producir lluvia, esta lluvia enfriaba todavía más la superficie terrestre y generaba más lluvia. Y llovió y llovió, no sabemos a ciencia cierta cuantos años, hasta que las nubes se deshicieron y volvió a salir el Sol, pero ahora sobre los océanos recién formados. APARICIÓN DE LOS OCÉANOS Hace 4500 ma: Formación de la Tierra
  • 4. ESTRUCTURA DE LA TIERRA La Tierra tiene un radio medio de 6.373 km. Hay dos modelos o divisiones de la Tierra en capas según el criterio que se utilice: MODELO DINÁMICO, basado en el comportamiento de las capas, las divide en litosfera, astenosfera (actualmente descartada), mesosfera y endosfera MODELO ESTATICO O GEOQUÍMICO, basado en la composición química de los materiales de las capas, las divide en corteza, manto y núcleo
  • 5. CORTEZA CONTINENTAL CORTEZA OCEÁNICA GROSOR GRUESA, variable (33 - 80 Km bajo cordilleras) FINA, casi constante (5 -10 Km) COMPOSICIÓN Granítica principalmente Basáltica (lava enfriada) DENSIDAD Poco densa (2,7 g/m3) Más densa (3,0 g/m3) ANTIGÜEDAD Zonas de gran antigüedad, casi 4000 m.a. JOVEN, máximo 180 m.a. La corteza es la capa rocosa más superficial y mas delgada de la Tierra (si comparamos la Tierra con un huevo, las corteza tendría el espesor de la cáscara). Su grosor medio varia entre 5-10 km en los océanos y alrededor de 33 km en los continentes, aunque aumenta considerablemente bajo las cadenas montañosas (a mayor altitud de éstas, mayores “raíces” hay bajo el continente). Se han llegado a medir espesores de más 80 km bajo el Himalaya. Existen por tanto dos tipos de corteza, la continental y la oceánica, con las siguientes características diferenciales: LA CORTEZA CONTINENTAL Y OCEÁNICA LAS CAPAS DE LA TIERRA
  • 6. - La corteza continental ocupa los continentes, es decir la tierra firme y su prolongación bajo el mar hasta llegar al fondo oceánico. En este borde continental se distinguen dos zonas: la plataforma continental, zona de poca profundidad (hasta 200m) y de poca inclinación que puede ser mas o menos extensa según zonas; A continuación se encuentra el talud continental, una fuerte pendiente que da paso al fondo oceánico. - La corteza oceánica comprende los grandes fondos marinos de 3000 m de profundidad como media. Plataforma y talud continental
  • 7. EL MANTO El manto es la capa intermedia de Tierra, llega hasta los 2.900 km de profundidad y su temperatura está comprendida entre los 1000ºC y los 3.700ºC. Aunque su composición química es homogénea (una roca denominada peridotita), su estado físico varia mucho según la profundidad, de modo que distinguimos varias zonas: La región superior pegada a la corteza es rígida y forma, junto con la corteza una unidad estructural de unos 100- 300 km de espesor (según zonas) denominada litosfera. Esta litosfera es rígida y forma las placas tectónicas Por debajo es encuentra el manto inferior, de peridotita más densa (debido a la presión). En el límite manto-núcleo se encuentra una capa de unos 200 km de espesor denominada capa D, constituida por material fundido, que asciende en forma de penachos o plumas que pueden llegar hasta la superficie. Por debajo de la litosfera, la roca peridotita se encuentra en un estado semisólido, con cierta plasticidad (capacidad de desplazamiento). A esta región del manto se le denominó astenosfera, pero actualmente esta denominación esta en desuso. Esta zona pertenece al manto superior y alcanza los 670 km de profundidad
  • 8. EL NÚCLEO Y EL CAMPO MAGNÉTICO TERRESTRE El núcleo se extiende desde los 2900 km de profundidad hasta el centro de la Tierra. Es una capa muy densa y se encuentra a una presión y temperatura muy elevadas. Esta constituido principalmente por hierro, aunque también contiene níquel y otros elementos como oxígeno, azufre y silicio. En él se diferencian dos zonas: el núcleo externo, fluido, donde los materiales se agitan en fuertes corrientes de convección y el núcleo interno, que es sólido (debido a la mayor presión). El campo magnético terrestre se origina debido al movimiento de las masas de hierro fundido del núcleo externo, que generan corrientes eléctricas alrededor de la masa de hierro sólido del núcleo interno. En conjunto el núcleo terrestre se comporta como un gigantesco electroimán, en un proceso conocido como efecto dinamo. La Tierra se comporta como un imán cuyos polo norte y sur magnéticos no coinciden con los geográficos y , además, su posición cambia a lo largo del tiempo. En la actualidad, el polo norte magnético se encuentra a unos 1.800km del geográfico y se está desplazando por la zona norte de Canadá en dirección a Alaska. Hay que destacar, que cuando hablamos de polos magnéticos terrestres, llamamos polo norte magnético al que está próximo al polo norte geográfico y, polo sur magnético al próximo al polo sur geográfico; sin embargo, su magnetismo real es opuesto al que indican sus nombres, al menos en la actualidad, ya que la polaridad del campo magnético terrestre se ha invertido muchas veces a lo largo de la historia de la Tierra, sin un patrón, ni motivo conocido hasta el momento. En la Tierra, como en cualquier imán, las líneas del campo van del polo norte magnético hacia el polo sur
  • 9. El campo magnético terrestre crea un espacio, la magnetosfera, que es esférica hacia el Sol y alargada en la dirección opuesta. Se extiende hasta unos 60.000km de la Tierra en la dirección al Sol y a mucha más distancia en dirección opuesta. La magnetosfera actúa como una pantalla protectora que desvía la mayor parte del viento solar (iones y electrones libres emitidos por el Sol) que de no existir, arrastraría los gases atmosféricos haciendo imposible la vida sobre la Tierra. En los polos magnéticos, donde penetran las líneas del campo magnético terrestre, entran las partículas cargadas eléctricamente del viento solar y chocan con los átomos y moléculas de las capas altas de la atmosfera, produciendo un fenómeno luminoso conocido como las auroras boreales o australes y causando interferencias en las comunicaciones
  • 10. Las auroras se producen cuando en la superficie del sol tiene lugar las conocidas manchas solares, zonas del Sol donde se producen tremendas explosiones, con llamaradas de cientos de miles de kilómetros de longitud (más fuertes que la explosión de 1000 bombas atómicas simultáneas), que lanzan al espacio partículas cargadas eléctricamente formando el llamado viento solar. El Sol tiene una actividad cíclica, de modo que cada 11 años aproximadamente alcanza un máximo de manchas solares. El año 2013 fue uno de esos máximos de actividad solar, en la que algunas de la tormentas solares fueron tan intensas que tuvieron que desactivarse satélites o voltearlos para impedir que se dañaran. Se han podido observar auroras gemelas, simultaneas en ambos polos, cuando se producen estas tormentas solares. Sin embargo, llegar a detectar ambas auroras ha sido muy laborioso debido a que sólo son visibles durante la noche y hay muy pocos días al año en que hay “noche” en ambos polos a la vez.