SlideShare una empresa de Scribd logo
1 de 5
Descargar para leer sin conexión
22
3 RAÍCES REALES DE ECUACIONES NO-LINEALES
Sea f: R→R. Dada la ecuación f(x) = 0, se debe encontrar un valor real r tal que f(r) = 0.
Entonces r es una raíz real de la ecuación
Si no es posible obtener la raíz directamente, entonces se debe recurrir a los métodos numéricos
iterativos para calcular r en forma aproximada con alguna precisión controlada. Se han creado
muchos métodos numéricos para resolver este problema clásico, pero con el uso de
computadoras para el cálculo, conviene revisar solamente algunos de estos métodos que tengan
características significativamente diferentes.
3.1 Método de la bisección
Sea f: R→R. Suponer que f es continua en [a, b], y que además f(a) y f(b) tienen signos
diferentes. Por continuidad, el intervalo (a, b) contendrá al menos una raíz real.
El siguiente teorema establece la existencia de la raíz r:
Teorema de Bolzano: Si una función f es continua en un intervalo [a, b] y f(a) tiene signo
diferente que f(b), entonces existe por lo menos un punto r en (a, b) tal que f(r)=0.
Si además f'(x) no cambia de signo en el intervalo [a, b], entonces la solución es única.
El método de la bisección es un método simple y convergente para calcular r. Consiste en
calcular el punto medio c=(a+b)/2 del intervalo [a, b] y sustituirlo por el intervalo [c, b] ó [a, c]
dependiendo de cual contiene a la raíz r. Este procedimiento se repite hasta que la distancia
entre a y b sea muy pequeña, entonces el último valor calculado c estará muy cerca de r.
Interpretación gráfica del método de la bisección
En la figura se puede observar que luego de haber calculado c, para la siguiente iteración debe
sustituirse el intervalo [a, b] por [c, b] debido a que f(a) y f(c) tienen igual signo y por lo tanto la
raíz estará en el intervalo [c, b]
3.1.1 Convergencia del método de la bisección
Sean ai, bi, ci los valores de a, b, c en cada iteración i=1, 2, 3, . . . respectivamente
El método de la bisección genera una sucesión de intervalos [a, b], [a1, b1], [a2, b2], …, [ai, bi]
tales que a ≤ a1 ≤ a2 … ≤ ai constituyen una sucesión creciente y b ≥ b1 ≥ b2 …, ≥ bi una
sucesión decreciente con ai < bi. Además por definición del método: ci, r ∈ [ai, bi] en cada
iteración i
23
Sean di = bi – ai longitud del intervalo [ai, bi] en la iteración i=1, 2, 3, . . .
d = b – a longitud del intervalo inicial
Recorrido de las iteraciones
Iteración Longitud del intervalo
1 d1 = d /2
2 d2 = d1/2 = d/2
2
3 d3 = d2/2 = d/2
3
4 d4 = d3/2 = d/2
4
. . . . . .
i di = d/2
i
Entonces
→∞ →∞ →∞
→∞
→ ⇒ → ⇒ → ⇒ → ⇒ ∃ − < εi>0i i i i ii
i i i
i
d
0 d 0 a b c r | c r |
2
para cualquier valor positivo ε
Suponer que se desea que el último valor calculado ci tenga precisión E = 0.001, entonces si el
algoritmo termina cuando bi – ai < E, se cumplirá que |ci – r| < E y ci será una aproximación
para r con un error menor que 0.0001
Ejemplo. Calcule una raíz real de f(x) = x e
x
- π = 0 en el intervalo [0, 2] con precisión 0.01
La función f es continua y además f(0)<0, f(2)>0, por lo tanto la ecuación f(x)=0 debe contener
alguna raíz real en el intervalo [0, 2]
Cálculo manual para obtener la raíz con el método de la Bisección
iteración a b c sign(f(a)) sign(f(c))
inicio 0 2 1 - -
1 1 2 1.5 - +
2 1 1.5 1.25 - +
3 1 1.25 1.125 - +
4 1 1.125 1.0625 - -
5 1.0625 1.125 1.0938 - +
6 1.0625 1.0938 1.0781 - +
7 1.0625 1.0781 1.0703 - -
8 1.0703 1.0781 1.0742
En la última iteración se observa que el intervalo que contiene a la raíz se ha reducido a
[1.0703, 1.0781], por lo tanto el último valor calculado de c = 1.0742 debe estar cerca de r con
una distancia no mayor a 0.01
24
3.1.2 Eficiencia del método de la bisección
Suponer el caso más desfavorable, en el que r está muy cerca de uno de los extremos del
intervalo [a, b]:
Sean i iE r c= − : error en la iteración i
i 1 i 1E r c+ += − : error en la iteración i+1
En cada iteración la magnitud del error se reduce en no más de la mitad respecto del error en la
iteración anterior: i 1 i
1
E E
2
+ ≤ . Esta es una relación lineal. Con la notación O( ) se puede escribir:
i 1 iE O(E )+ = . Entonces, el método de la Bisección tiene convergencia lineal o de primer orden.
Se puede predecir el número de iteraciones que se deben realizar con el método de la Bisección
para obtener la respuesta con una precisión requerida E:
En la iteración i: di = d/2
i
Se desea terminar cuando: di < E
Entonces se debe cumplir d/2
i
< E
De donde se obtiene:
log(d/E)
i
log(2)
>
Ejemplo. La ecuación f(x) = x e
x
- π = 0 tiene una raíz real en el intervalo [0, 2]. Determine
cuantas iteraciones deben realizarse con el método de la bisección para obtener un resultado
con precisión E=0.0001.
El número de iteraciones que deberán realizarse es:
i > log(2/0.0001)/log(2) ⇒ i >14.287 ⇒ 15 iteraciones
3.1.3 Algoritmo del método de la bisección
Calcular una raíz r real de la ecuación f(x) = 0 con precisión E.
f es contínua en un intervalo [a, b] tal que f(a) y f(b) tienen signos diferentes
1) Elija el intervalo inicial [a, b]
2) Calcule el punto central del intervalo: c=(a+b)/2
3) Si f(c)=0, c es la raíz y termine
4) Si la raíz se encuentra en el intervalo [a, c], sustituya b por c
5) Si la raíz se encuentra en el intervalo [c, b] sustituya a por c
6) Repita los pasos 2), 3), 4), 5) hasta que la longitud del intervalo [a,b] sea
menor que E.
El último valor calculado c estará aproximadamente a una distancia E de la raíz r.
25
3.1.4 Instrumentación computacional del método de la bisección
Calcular una raíz r real de la ecuación f(x) = 0. f es contínua en un intervalo [a, b] tal que f(a) y
f(b) tienen signos diferentes
Para instrumentar el algoritmo de este método se escribirá una función en MATLAB. El nombre
será bisección. Recibirá como parámetros f, a, b, y entregará c como aproximación a la raíz r.
Criterio para salir: Terminar cuando la longitud del intervalo sea menor que un valor pequeño e
especificado como otro parámetro para la función. Entonces el último valor c estará
aproximadamente a una distancia e de la raíz r.
function c = biseccion(f, a, b, e)
while b-a >= e
c=(a+b)/2;
if f(c)==0
return
else
if sign(f(a))==sign(f(c))
a=c;
else
b=c;
end
end
end
Ejemplo. Desde la ventana de comandos de MATLAB, use la función bisección para calcular
una raíz real de la ecuación f(x) = xe
x
- π = 0. Suponer que se desea que el error sea menor
que 0.0001.
Por simple inspección se puede observar que f es continua y además f(0) < 0, f(2) > 0. Por lo
tanto se elije como intervalo inicial: [0, 2]. También se puede previamente graficar f.
En la ventana de comandos de MATLAB se escribe:
>> syms x
>> f = x*exp(x)-pi;
>> c = biseccion(inline(f), 0, 2, 0.0001)
c =
1.073669433593750 Este es el resultado calculado
>> subs(f,x,c) Al evaluar f(c) se obtiene un valor cercano a 0
ans =
6.819373368882609e-005
En algunas versiones de MATLAB, la función inline requiere que la expresión matemática esté
definida como cadena de texto. Se puede usar la función char para convertir de tipo simbólico
matemático a cadena de caracteres. Ej.
>> c=biseccion(inline(char(f)), 0, 2, 0.0001)
26
Ejemplo. Encontrar las intersecciones en el primer cuadrante de los gráficos de las funciones:
f(x) = 4 + cos(x+1), g(x)=e
x
sen(x).
Primero se grafican las funciones para visualizar las intersecciones:
>> syms x
>> f=4+x*cos(x+1);
>> g=exp(x)*sin(x);
>> ezplot(f,[0,3.5]),grid on,hold on
>> ezplot(g,[0,3.5])
0 0.5 1 1.5 2 2.5 3 3.5
-6
-4
-2
0
2
4
6
8
x
e p( ) s ( )
Las intersecciones son las raíces de la ecuación h(x) = f(x) – g(x) = 0
El cálculo de las raíces se realiza con el método de la Bisección con un error menor a 0.0001
>> h=f-g
h =
x*cos(x + 1) - exp(x)*sin(x) + 4
>> c=biseccion(inline(h),1,1.5,0.0001)
c =
1.233726501464844
>> c=biseccion(inline(h),3,3.2,0.0001)
c =
3.040667724609375

Más contenido relacionado

La actualidad más candente

Metodo del punto fijo y de newton rapshon
Metodo del punto fijo y de newton rapshonMetodo del punto fijo y de newton rapshon
Metodo del punto fijo y de newton rapshonIsmael Campos Alanis
 
Tasas relacionadas
Tasas relacionadasTasas relacionadas
Tasas relacionadasfavalenc
 
Ecuaciones Integrodiferenciales
Ecuaciones IntegrodiferencialesEcuaciones Integrodiferenciales
Ecuaciones IntegrodiferencialesDiego Salazar
 
Diferenciación por 3 y 5 puntos
Diferenciación por 3 y 5 puntosDiferenciación por 3 y 5 puntos
Diferenciación por 3 y 5 puntosalan moreno
 
Transformadas de laplace 1
Transformadas de laplace 1Transformadas de laplace 1
Transformadas de laplace 1Utp arequipa
 
Integracion numérica
Integracion numéricaIntegracion numérica
Integracion numéricaKike Prieto
 
Ejercicios derivadas funciones trigonometricas
Ejercicios derivadas   funciones trigonometricasEjercicios derivadas   funciones trigonometricas
Ejercicios derivadas funciones trigonometricasRoberto Pradenas
 
Cuestionario
CuestionarioCuestionario
Cuestionariofavalenc
 
Ejercicios de complejos
Ejercicios de complejosEjercicios de complejos
Ejercicios de complejosNorman Rivera
 
CRITERIOS DE LA PRIMERA Y LA SEGUNDA DERIVADA
CRITERIOS DE LA PRIMERA Y LA SEGUNDA DERIVADACRITERIOS DE LA PRIMERA Y LA SEGUNDA DERIVADA
CRITERIOS DE LA PRIMERA Y LA SEGUNDA DERIVADAinnovalabcun
 
Método Bisección.pptx
Método Bisección.pptxMétodo Bisección.pptx
Método Bisección.pptxCMRergis
 
Método de variación de parámetros
Método de variación de parámetrosMétodo de variación de parámetros
Método de variación de parámetrosseralb
 
Maximos y minimos funcion de varias variables
Maximos y minimos funcion de varias variablesMaximos y minimos funcion de varias variables
Maximos y minimos funcion de varias variablesRAQUEL CARDENAS GONZALEZ
 
Ejemplo del Método de Bisección
Ejemplo del Método de BisecciónEjemplo del Método de Bisección
Ejemplo del Método de BisecciónDaniela Medina
 
5.4 integrales en_coordenadas_polares
5.4 integrales en_coordenadas_polares5.4 integrales en_coordenadas_polares
5.4 integrales en_coordenadas_polaresortari2014
 
Series de fourier - Ejemplos Resueltos
Series de fourier - Ejemplos Resueltos Series de fourier - Ejemplos Resueltos
Series de fourier - Ejemplos Resueltos Joe Arroyo Suárez
 
Solución de Sistemas de Ecuaciones por Eliminación
Solución de Sistemas de Ecuaciones por EliminaciónSolución de Sistemas de Ecuaciones por Eliminación
Solución de Sistemas de Ecuaciones por Eliminaciónoswaldoalvarado
 

La actualidad más candente (20)

Metodo del punto fijo y de newton rapshon
Metodo del punto fijo y de newton rapshonMetodo del punto fijo y de newton rapshon
Metodo del punto fijo y de newton rapshon
 
Tasas relacionadas
Tasas relacionadasTasas relacionadas
Tasas relacionadas
 
Ecuaciones Integrodiferenciales
Ecuaciones IntegrodiferencialesEcuaciones Integrodiferenciales
Ecuaciones Integrodiferenciales
 
Diferenciación por 3 y 5 puntos
Diferenciación por 3 y 5 puntosDiferenciación por 3 y 5 puntos
Diferenciación por 3 y 5 puntos
 
Transformadas de laplace 1
Transformadas de laplace 1Transformadas de laplace 1
Transformadas de laplace 1
 
Integracion numérica
Integracion numéricaIntegracion numérica
Integracion numérica
 
Ejercicios derivadas funciones trigonometricas
Ejercicios derivadas   funciones trigonometricasEjercicios derivadas   funciones trigonometricas
Ejercicios derivadas funciones trigonometricas
 
Unidad 4. integral de lebesgue
Unidad 4. integral de lebesgueUnidad 4. integral de lebesgue
Unidad 4. integral de lebesgue
 
Cuestionario
CuestionarioCuestionario
Cuestionario
 
Tema 2.4
Tema 2.4Tema 2.4
Tema 2.4
 
Ejercicios de complejos
Ejercicios de complejosEjercicios de complejos
Ejercicios de complejos
 
CRITERIOS DE LA PRIMERA Y LA SEGUNDA DERIVADA
CRITERIOS DE LA PRIMERA Y LA SEGUNDA DERIVADACRITERIOS DE LA PRIMERA Y LA SEGUNDA DERIVADA
CRITERIOS DE LA PRIMERA Y LA SEGUNDA DERIVADA
 
Método Bisección.pptx
Método Bisección.pptxMétodo Bisección.pptx
Método Bisección.pptx
 
Método de variación de parámetros
Método de variación de parámetrosMétodo de variación de parámetros
Método de variación de parámetros
 
Maximos y minimos funcion de varias variables
Maximos y minimos funcion de varias variablesMaximos y minimos funcion de varias variables
Maximos y minimos funcion de varias variables
 
Ejemplo del Método de Bisección
Ejemplo del Método de BisecciónEjemplo del Método de Bisección
Ejemplo del Método de Bisección
 
5.4 integrales en_coordenadas_polares
5.4 integrales en_coordenadas_polares5.4 integrales en_coordenadas_polares
5.4 integrales en_coordenadas_polares
 
Series de fourier - Ejemplos Resueltos
Series de fourier - Ejemplos Resueltos Series de fourier - Ejemplos Resueltos
Series de fourier - Ejemplos Resueltos
 
Longitud de arcos
Longitud de arcosLongitud de arcos
Longitud de arcos
 
Solución de Sistemas de Ecuaciones por Eliminación
Solución de Sistemas de Ecuaciones por EliminaciónSolución de Sistemas de Ecuaciones por Eliminación
Solución de Sistemas de Ecuaciones por Eliminación
 

Similar a Método de la bisección

Métodos numéricos
Métodos numéricosMétodos numéricos
Métodos numéricosLilly Kwang
 
Métodos de bisección
Métodos de bisecciónMétodos de bisección
Métodos de bisecciónjavicoxxx
 
Quiz 1 Métodos Numéricos
Quiz 1 Métodos NuméricosQuiz 1 Métodos Numéricos
Quiz 1 Métodos NuméricosDiego Perdomo
 
011 integracion grafica por-trapecios
011 integracion grafica por-trapecios011 integracion grafica por-trapecios
011 integracion grafica por-trapeciosGabriela Cellan
 
Diferenciación e integración numérica
Diferenciación e integración numéricaDiferenciación e integración numérica
Diferenciación e integración numéricaArmany1
 
Algoritmo de la biseccion y falsa posesion
Algoritmo de la biseccion y falsa posesionAlgoritmo de la biseccion y falsa posesion
Algoritmo de la biseccion y falsa posesionMakros ProsCibos
 
apuntes unidad 2 y 3.pdf
apuntes unidad 2 y 3.pdfapuntes unidad 2 y 3.pdf
apuntes unidad 2 y 3.pdfjulces4
 
Calculo 1 calculo de una variable
Calculo 1 calculo de una variableCalculo 1 calculo de una variable
Calculo 1 calculo de una variablejose_rock
 
Calculo diferencial
Calculo diferencialCalculo diferencial
Calculo diferencialJOHNNY28000
 
Integracion numerica
Integracion numericaIntegracion numerica
Integracion numericaKevinGVG
 
Asignacion 1 (Programación Numérica)
Asignacion 1 (Programación Numérica)Asignacion 1 (Programación Numérica)
Asignacion 1 (Programación Numérica)avbr_avbr
 
RAÍCES DE ECUACIONES
RAÍCES DE ECUACIONESRAÍCES DE ECUACIONES
RAÍCES DE ECUACIONESJenny López
 
NÚMEROS REALES I
NÚMEROS REALES INÚMEROS REALES I
NÚMEROS REALES ICESAR V
 

Similar a Método de la bisección (20)

03 clase3.ppt
03 clase3.ppt03 clase3.ppt
03 clase3.ppt
 
Métodos numéricos
Métodos numéricosMétodos numéricos
Métodos numéricos
 
Biseccion matlab
Biseccion matlabBiseccion matlab
Biseccion matlab
 
Métodos de bisección
Métodos de bisecciónMétodos de bisección
Métodos de bisección
 
Quiz 1 Métodos Numéricos
Quiz 1 Métodos NuméricosQuiz 1 Métodos Numéricos
Quiz 1 Métodos Numéricos
 
011 integracion grafica por-trapecios
011 integracion grafica por-trapecios011 integracion grafica por-trapecios
011 integracion grafica por-trapecios
 
integracion grafica por trapecios
integracion grafica por trapeciosintegracion grafica por trapecios
integracion grafica por trapecios
 
Integracion
IntegracionIntegracion
Integracion
 
Integracion
IntegracionIntegracion
Integracion
 
Diferenciación e integración numérica
Diferenciación e integración numéricaDiferenciación e integración numérica
Diferenciación e integración numérica
 
Algoritmo de la biseccion y falsa posesion
Algoritmo de la biseccion y falsa posesionAlgoritmo de la biseccion y falsa posesion
Algoritmo de la biseccion y falsa posesion
 
apuntes unidad 2 y 3.pdf
apuntes unidad 2 y 3.pdfapuntes unidad 2 y 3.pdf
apuntes unidad 2 y 3.pdf
 
129psr rwe
129psr rwe129psr rwe
129psr rwe
 
Calculo 1 calculo de una variable
Calculo 1 calculo de una variableCalculo 1 calculo de una variable
Calculo 1 calculo de una variable
 
Calculo diferencial
Calculo diferencialCalculo diferencial
Calculo diferencial
 
Integracion numerica
Integracion numericaIntegracion numerica
Integracion numerica
 
Taller 10-14-ii
Taller 10-14-iiTaller 10-14-ii
Taller 10-14-ii
 
Asignacion 1 (Programación Numérica)
Asignacion 1 (Programación Numérica)Asignacion 1 (Programación Numérica)
Asignacion 1 (Programación Numérica)
 
RAÍCES DE ECUACIONES
RAÍCES DE ECUACIONESRAÍCES DE ECUACIONES
RAÍCES DE ECUACIONES
 
NÚMEROS REALES I
NÚMEROS REALES INÚMEROS REALES I
NÚMEROS REALES I
 

Más de Kike Prieto

Ecuaciones Diferenciales - Ecuaciones de Segundo orden
Ecuaciones Diferenciales - Ecuaciones de Segundo ordenEcuaciones Diferenciales - Ecuaciones de Segundo orden
Ecuaciones Diferenciales - Ecuaciones de Segundo ordenKike Prieto
 
Ecuaciones Diferenciales - Ecuaciones Primer orden
Ecuaciones Diferenciales - Ecuaciones Primer ordenEcuaciones Diferenciales - Ecuaciones Primer orden
Ecuaciones Diferenciales - Ecuaciones Primer ordenKike Prieto
 
Sistema de Ecuaciones diferenciales
Sistema de Ecuaciones diferencialesSistema de Ecuaciones diferenciales
Sistema de Ecuaciones diferencialesKike Prieto
 
Ecuaciones Diferenciales - La Transformada de Laplace
Ecuaciones Diferenciales - La Transformada de LaplaceEcuaciones Diferenciales - La Transformada de Laplace
Ecuaciones Diferenciales - La Transformada de LaplaceKike Prieto
 
Soluciones por series
Soluciones por seriesSoluciones por series
Soluciones por seriesKike Prieto
 
Ecuaciones Diferenciales - Teoria de Ecuaciones Diferenciales no lineales
Ecuaciones Diferenciales - Teoria de Ecuaciones Diferenciales no linealesEcuaciones Diferenciales - Teoria de Ecuaciones Diferenciales no lineales
Ecuaciones Diferenciales - Teoria de Ecuaciones Diferenciales no linealesKike Prieto
 
Ecuaciones Diferenciales - Aplicaciones de las Ecuaciones diferenciales de Pr...
Ecuaciones Diferenciales - Aplicaciones de las Ecuaciones diferenciales de Pr...Ecuaciones Diferenciales - Aplicaciones de las Ecuaciones diferenciales de Pr...
Ecuaciones Diferenciales - Aplicaciones de las Ecuaciones diferenciales de Pr...Kike Prieto
 
Ecuaciones diferenciales - Métodos de Solución
Ecuaciones diferenciales - Métodos de SoluciónEcuaciones diferenciales - Métodos de Solución
Ecuaciones diferenciales - Métodos de SoluciónKike Prieto
 
Introduccion Ecuaciones Diferenciales
Introduccion Ecuaciones DiferencialesIntroduccion Ecuaciones Diferenciales
Introduccion Ecuaciones DiferencialesKike Prieto
 
Series numéricas
Series numéricasSeries numéricas
Series numéricasKike Prieto
 
Problemario de Series de Fourier
Problemario de Series de FourierProblemario de Series de Fourier
Problemario de Series de FourierKike Prieto
 
Fórmulas de Taylor
Fórmulas de TaylorFórmulas de Taylor
Fórmulas de TaylorKike Prieto
 
Ejercicios de series numéricas
Ejercicios de series numéricasEjercicios de series numéricas
Ejercicios de series numéricasKike Prieto
 
Desarrollos en serie de Taylor
Desarrollos en serie de TaylorDesarrollos en serie de Taylor
Desarrollos en serie de TaylorKike Prieto
 
Criterios Series infinitas
Criterios Series infinitasCriterios Series infinitas
Criterios Series infinitasKike Prieto
 
Aplicaciones de la Integral
Aplicaciones de la IntegralAplicaciones de la Integral
Aplicaciones de la IntegralKike Prieto
 
La Integral definida
La Integral definidaLa Integral definida
La Integral definidaKike Prieto
 
La Integral definida
La Integral definidaLa Integral definida
La Integral definidaKike Prieto
 

Más de Kike Prieto (20)

Ecuaciones Diferenciales - Ecuaciones de Segundo orden
Ecuaciones Diferenciales - Ecuaciones de Segundo ordenEcuaciones Diferenciales - Ecuaciones de Segundo orden
Ecuaciones Diferenciales - Ecuaciones de Segundo orden
 
Ecuaciones Diferenciales - Ecuaciones Primer orden
Ecuaciones Diferenciales - Ecuaciones Primer ordenEcuaciones Diferenciales - Ecuaciones Primer orden
Ecuaciones Diferenciales - Ecuaciones Primer orden
 
Sistema de Ecuaciones diferenciales
Sistema de Ecuaciones diferencialesSistema de Ecuaciones diferenciales
Sistema de Ecuaciones diferenciales
 
Ecuaciones Diferenciales - La Transformada de Laplace
Ecuaciones Diferenciales - La Transformada de LaplaceEcuaciones Diferenciales - La Transformada de Laplace
Ecuaciones Diferenciales - La Transformada de Laplace
 
Soluciones por series
Soluciones por seriesSoluciones por series
Soluciones por series
 
Ecuaciones Diferenciales - Teoria de Ecuaciones Diferenciales no lineales
Ecuaciones Diferenciales - Teoria de Ecuaciones Diferenciales no linealesEcuaciones Diferenciales - Teoria de Ecuaciones Diferenciales no lineales
Ecuaciones Diferenciales - Teoria de Ecuaciones Diferenciales no lineales
 
Ecuaciones Diferenciales - Aplicaciones de las Ecuaciones diferenciales de Pr...
Ecuaciones Diferenciales - Aplicaciones de las Ecuaciones diferenciales de Pr...Ecuaciones Diferenciales - Aplicaciones de las Ecuaciones diferenciales de Pr...
Ecuaciones Diferenciales - Aplicaciones de las Ecuaciones diferenciales de Pr...
 
Ecuaciones diferenciales - Métodos de Solución
Ecuaciones diferenciales - Métodos de SoluciónEcuaciones diferenciales - Métodos de Solución
Ecuaciones diferenciales - Métodos de Solución
 
Introduccion Ecuaciones Diferenciales
Introduccion Ecuaciones DiferencialesIntroduccion Ecuaciones Diferenciales
Introduccion Ecuaciones Diferenciales
 
Series numéricas
Series numéricasSeries numéricas
Series numéricas
 
Problemario de Series de Fourier
Problemario de Series de FourierProblemario de Series de Fourier
Problemario de Series de Fourier
 
Fórmulas de Taylor
Fórmulas de TaylorFórmulas de Taylor
Fórmulas de Taylor
 
Ejercicios de series numéricas
Ejercicios de series numéricasEjercicios de series numéricas
Ejercicios de series numéricas
 
Desarrollos en serie de Taylor
Desarrollos en serie de TaylorDesarrollos en serie de Taylor
Desarrollos en serie de Taylor
 
Criterios Series infinitas
Criterios Series infinitasCriterios Series infinitas
Criterios Series infinitas
 
Series
SeriesSeries
Series
 
Aplicaciones de la Integral
Aplicaciones de la IntegralAplicaciones de la Integral
Aplicaciones de la Integral
 
La Integral definida
La Integral definidaLa Integral definida
La Integral definida
 
Sucesiones
SucesionesSucesiones
Sucesiones
 
La Integral definida
La Integral definidaLa Integral definida
La Integral definida
 

Último

Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadAlejandrino Halire Ccahuana
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdfDemetrio Ccesa Rayme
 
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxPRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxinformacionasapespu
 
Herramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfHerramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfMARIAPAULAMAHECHAMOR
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosCesarFernandez937857
 
cortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuacortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuaDANNYISAACCARVAJALGA
 
texto argumentativo, ejemplos y ejercicios prácticos
texto argumentativo, ejemplos y ejercicios prácticostexto argumentativo, ejemplos y ejercicios prácticos
texto argumentativo, ejemplos y ejercicios prácticosisabeltrejoros
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxAna Fernandez
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADOJosé Luis Palma
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para eventoDiegoMtsS
 
EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.DaluiMonasterio
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptELENA GALLARDO PAÚLS
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.amayarogel
 
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptxEXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptxPryhaSalam
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptxFelicitasAsuncionDia
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADauxsoporte
 

Último (20)

Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdad
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdf
 
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxPRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
 
Herramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfHerramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdf
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos Básicos
 
cortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuacortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahua
 
texto argumentativo, ejemplos y ejercicios prácticos
texto argumentativo, ejemplos y ejercicios prácticostexto argumentativo, ejemplos y ejercicios prácticos
texto argumentativo, ejemplos y ejercicios prácticos
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docx
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para evento
 
EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.
 
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptxEXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptx
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 

Método de la bisección

  • 1. 22 3 RAÍCES REALES DE ECUACIONES NO-LINEALES Sea f: R→R. Dada la ecuación f(x) = 0, se debe encontrar un valor real r tal que f(r) = 0. Entonces r es una raíz real de la ecuación Si no es posible obtener la raíz directamente, entonces se debe recurrir a los métodos numéricos iterativos para calcular r en forma aproximada con alguna precisión controlada. Se han creado muchos métodos numéricos para resolver este problema clásico, pero con el uso de computadoras para el cálculo, conviene revisar solamente algunos de estos métodos que tengan características significativamente diferentes. 3.1 Método de la bisección Sea f: R→R. Suponer que f es continua en [a, b], y que además f(a) y f(b) tienen signos diferentes. Por continuidad, el intervalo (a, b) contendrá al menos una raíz real. El siguiente teorema establece la existencia de la raíz r: Teorema de Bolzano: Si una función f es continua en un intervalo [a, b] y f(a) tiene signo diferente que f(b), entonces existe por lo menos un punto r en (a, b) tal que f(r)=0. Si además f'(x) no cambia de signo en el intervalo [a, b], entonces la solución es única. El método de la bisección es un método simple y convergente para calcular r. Consiste en calcular el punto medio c=(a+b)/2 del intervalo [a, b] y sustituirlo por el intervalo [c, b] ó [a, c] dependiendo de cual contiene a la raíz r. Este procedimiento se repite hasta que la distancia entre a y b sea muy pequeña, entonces el último valor calculado c estará muy cerca de r. Interpretación gráfica del método de la bisección En la figura se puede observar que luego de haber calculado c, para la siguiente iteración debe sustituirse el intervalo [a, b] por [c, b] debido a que f(a) y f(c) tienen igual signo y por lo tanto la raíz estará en el intervalo [c, b] 3.1.1 Convergencia del método de la bisección Sean ai, bi, ci los valores de a, b, c en cada iteración i=1, 2, 3, . . . respectivamente El método de la bisección genera una sucesión de intervalos [a, b], [a1, b1], [a2, b2], …, [ai, bi] tales que a ≤ a1 ≤ a2 … ≤ ai constituyen una sucesión creciente y b ≥ b1 ≥ b2 …, ≥ bi una sucesión decreciente con ai < bi. Además por definición del método: ci, r ∈ [ai, bi] en cada iteración i
  • 2. 23 Sean di = bi – ai longitud del intervalo [ai, bi] en la iteración i=1, 2, 3, . . . d = b – a longitud del intervalo inicial Recorrido de las iteraciones Iteración Longitud del intervalo 1 d1 = d /2 2 d2 = d1/2 = d/2 2 3 d3 = d2/2 = d/2 3 4 d4 = d3/2 = d/2 4 . . . . . . i di = d/2 i Entonces →∞ →∞ →∞ →∞ → ⇒ → ⇒ → ⇒ → ⇒ ∃ − < εi>0i i i i ii i i i i d 0 d 0 a b c r | c r | 2 para cualquier valor positivo ε Suponer que se desea que el último valor calculado ci tenga precisión E = 0.001, entonces si el algoritmo termina cuando bi – ai < E, se cumplirá que |ci – r| < E y ci será una aproximación para r con un error menor que 0.0001 Ejemplo. Calcule una raíz real de f(x) = x e x - π = 0 en el intervalo [0, 2] con precisión 0.01 La función f es continua y además f(0)<0, f(2)>0, por lo tanto la ecuación f(x)=0 debe contener alguna raíz real en el intervalo [0, 2] Cálculo manual para obtener la raíz con el método de la Bisección iteración a b c sign(f(a)) sign(f(c)) inicio 0 2 1 - - 1 1 2 1.5 - + 2 1 1.5 1.25 - + 3 1 1.25 1.125 - + 4 1 1.125 1.0625 - - 5 1.0625 1.125 1.0938 - + 6 1.0625 1.0938 1.0781 - + 7 1.0625 1.0781 1.0703 - - 8 1.0703 1.0781 1.0742 En la última iteración se observa que el intervalo que contiene a la raíz se ha reducido a [1.0703, 1.0781], por lo tanto el último valor calculado de c = 1.0742 debe estar cerca de r con una distancia no mayor a 0.01
  • 3. 24 3.1.2 Eficiencia del método de la bisección Suponer el caso más desfavorable, en el que r está muy cerca de uno de los extremos del intervalo [a, b]: Sean i iE r c= − : error en la iteración i i 1 i 1E r c+ += − : error en la iteración i+1 En cada iteración la magnitud del error se reduce en no más de la mitad respecto del error en la iteración anterior: i 1 i 1 E E 2 + ≤ . Esta es una relación lineal. Con la notación O( ) se puede escribir: i 1 iE O(E )+ = . Entonces, el método de la Bisección tiene convergencia lineal o de primer orden. Se puede predecir el número de iteraciones que se deben realizar con el método de la Bisección para obtener la respuesta con una precisión requerida E: En la iteración i: di = d/2 i Se desea terminar cuando: di < E Entonces se debe cumplir d/2 i < E De donde se obtiene: log(d/E) i log(2) > Ejemplo. La ecuación f(x) = x e x - π = 0 tiene una raíz real en el intervalo [0, 2]. Determine cuantas iteraciones deben realizarse con el método de la bisección para obtener un resultado con precisión E=0.0001. El número de iteraciones que deberán realizarse es: i > log(2/0.0001)/log(2) ⇒ i >14.287 ⇒ 15 iteraciones 3.1.3 Algoritmo del método de la bisección Calcular una raíz r real de la ecuación f(x) = 0 con precisión E. f es contínua en un intervalo [a, b] tal que f(a) y f(b) tienen signos diferentes 1) Elija el intervalo inicial [a, b] 2) Calcule el punto central del intervalo: c=(a+b)/2 3) Si f(c)=0, c es la raíz y termine 4) Si la raíz se encuentra en el intervalo [a, c], sustituya b por c 5) Si la raíz se encuentra en el intervalo [c, b] sustituya a por c 6) Repita los pasos 2), 3), 4), 5) hasta que la longitud del intervalo [a,b] sea menor que E. El último valor calculado c estará aproximadamente a una distancia E de la raíz r.
  • 4. 25 3.1.4 Instrumentación computacional del método de la bisección Calcular una raíz r real de la ecuación f(x) = 0. f es contínua en un intervalo [a, b] tal que f(a) y f(b) tienen signos diferentes Para instrumentar el algoritmo de este método se escribirá una función en MATLAB. El nombre será bisección. Recibirá como parámetros f, a, b, y entregará c como aproximación a la raíz r. Criterio para salir: Terminar cuando la longitud del intervalo sea menor que un valor pequeño e especificado como otro parámetro para la función. Entonces el último valor c estará aproximadamente a una distancia e de la raíz r. function c = biseccion(f, a, b, e) while b-a >= e c=(a+b)/2; if f(c)==0 return else if sign(f(a))==sign(f(c)) a=c; else b=c; end end end Ejemplo. Desde la ventana de comandos de MATLAB, use la función bisección para calcular una raíz real de la ecuación f(x) = xe x - π = 0. Suponer que se desea que el error sea menor que 0.0001. Por simple inspección se puede observar que f es continua y además f(0) < 0, f(2) > 0. Por lo tanto se elije como intervalo inicial: [0, 2]. También se puede previamente graficar f. En la ventana de comandos de MATLAB se escribe: >> syms x >> f = x*exp(x)-pi; >> c = biseccion(inline(f), 0, 2, 0.0001) c = 1.073669433593750 Este es el resultado calculado >> subs(f,x,c) Al evaluar f(c) se obtiene un valor cercano a 0 ans = 6.819373368882609e-005 En algunas versiones de MATLAB, la función inline requiere que la expresión matemática esté definida como cadena de texto. Se puede usar la función char para convertir de tipo simbólico matemático a cadena de caracteres. Ej. >> c=biseccion(inline(char(f)), 0, 2, 0.0001)
  • 5. 26 Ejemplo. Encontrar las intersecciones en el primer cuadrante de los gráficos de las funciones: f(x) = 4 + cos(x+1), g(x)=e x sen(x). Primero se grafican las funciones para visualizar las intersecciones: >> syms x >> f=4+x*cos(x+1); >> g=exp(x)*sin(x); >> ezplot(f,[0,3.5]),grid on,hold on >> ezplot(g,[0,3.5]) 0 0.5 1 1.5 2 2.5 3 3.5 -6 -4 -2 0 2 4 6 8 x e p( ) s ( ) Las intersecciones son las raíces de la ecuación h(x) = f(x) – g(x) = 0 El cálculo de las raíces se realiza con el método de la Bisección con un error menor a 0.0001 >> h=f-g h = x*cos(x + 1) - exp(x)*sin(x) + 4 >> c=biseccion(inline(h),1,1.5,0.0001) c = 1.233726501464844 >> c=biseccion(inline(h),3,3.2,0.0001) c = 3.040667724609375