SlideShare una empresa de Scribd logo
1 de 8
INSTITUTO UNIVERSITARIO POLITÉCNICO
"SANTIAGO MARIÑO"
Laboratorio de Física
Practica 6
Renato Márquez C.I:16.689.241
Introducción
Un péndulo simple solo depende de la longitud de la cuerda de masa
despreciable mas no de su amplitud ni de la masa del objeto que dibuja el arco
del péndulo con su trayectoria para ello haremos uso de
nuestro conocimiento y experiencia obtenidos en las clases pasadas tales
como el uso de mínimos cuadrados, análisis de graficas, error porcentual y de
más temas que iremos viendo en el transcurso del informe.
El movimiento oscilatorio es un movimiento en torno a un punto de equilibrio
estable. Este puede ser simple o completo. Los puntos de equilibrio mecánico
son, en general, aquellos en los cuales la fuerza neta que actúa sobre la
partícula es cero. Si el equilibrio es estable, un desplazamiento de la partícula
con respecto a la posición de equilibrio (elongación) da lugar a la aparición de
una fuerza restauradora que devolverá la partícula hacia el punto de equilibrio.
En términos de la energía potencial, los puntos de equilibrio estable se
corresponden con los mínimos de la misma
Un péndulo simple se define como una partícula de masa m suspendida del
punto O por un hilo inextensible de longitud l y de masa despreciable.
Si la partícula se desplaza a una posición q0 (ángulo que hace el hilo con la
vertical) y luego se suelta, el péndulo comienza a oscilar.
El péndulo describe una trayectoria
circular, un arco de una circunferencia de
radio l. Estudiaremos su movimiento en la
dirección tangencial y en la dirección
normal.
Las fuerzas que actúan sobre la partícula
de masa m son dos
• el peso mg
• La tensión T del hilo
Descomponemos el peso en la acción simultánea de dos
componentes, mg·senq en la dirección tangencial y mg·cosq en la dirección
radial.
• Ecuación del movimiento en la dirección radial
La aceleración de la partícula es an=v2
/l dirigida radialmente hacia el centro de
su trayectoria circular.
La segunda ley de Newton se escribe
man=T-mg·cosq
Conocido el valor de la velocidad v en la posición angular q podemos
determinar la tensión T del hilo.
La tensión T del hilo es máxima, cuando el péndulo pasa por la posición de
equilibrio, T=mg+mv2
/l
Es mínima, en los extremos de su trayectoria cuando la velocidad es
cero, T=mgcosq0
• Principio de conservación de la energía
En la posición θ=θ0 el péndulo solamente tiene energía potencial, que se
transforma en energía cinética cuando el péndulo pasa por la posición de
equilibrio.
Comparemos dos posiciones del péndulo:
En la posición extrema θ=θ0, la energía es
solamente potencial.
E=mg(l-l·cosθ0)
En la posición θ, la energía del péndulo es
parte cinética y la otra parte potencial
La energía se conserva
v2
=2gl(cosθ-cosθ0)
La tensión de la cuerda es
T=mg(3cosθ-2cosθ0)
La tensión de la cuerda no es constante, sino que varía con la posición
angular θ. Su valor máximo se alcanza cuando θ=0, el péndulo pasa por la
posición de equilibrio (la velocidad es máxima). Su valor mínimo,
cuando θ=θ0 (la velocidad es nula).
• Ecuación del movimiento en la dirección tangencial
La aceleración de la partícula es at=dv/dt.
La segunda ley de Newton se escribe
mat=-mg·senq
La relación entre la aceleración tangencial at y la aceleración
angular a es at=a ·l. La ecuación del movimiento se escribe en forma
de ecuación diferencial
(1)
Medida de la aceleración de la gravedad
Cuando el ángulo q es pequeño entonces, senq » q , el péndulo
describe oscilaciones armónicas cuya ecuación es
q =q0·sen(w t+j )
de frecuencia angular w2
=g/l, o de periodo
La ley de la gravitación de Newton describe la fuerza de atracción entre dos
cuerpos de masas M y m respectivamente cuyos centros están separados una
distancia r.
La intensidad del campo gravitatorio g, o la aceleración de la gravedad en un
punto P situado a una distancia r del centro de un cuerpo celeste de masa M es
la fuerza sobre la unidad de masag=F/m colocada en dicho punto.
su dirección es radial y dirigida hacia el centro del cuerpo celeste.
En la página dedicada al estudio del Sistema Solar, proporcionamos los datos
relativos a la masa (o densidad) y radio de los distintos cuerpos celestes.
Ejemplo:
Marte tiene un radio de 3394 km y una masa de 0.11 masas terrestres
(5.98·1024
kg). La aceleración g de la gravedad en su superficie es
Tenemos dos procedimientos para medir esta aceleración
• Cinemática
Se mide con un cronómetro el tiempo t que tarda en caer una partícula desde
una altura h. Se supone que h es mucho más pequeña que el radio r del
cuerpo celeste.
• Oscilaciones
Se emplea un instrumento mucho más manejable, un péndulo simple de
longitud l. Se mide el periodo de varias oscilaciones para minimizar el error de
la medida y se calculan el periodo Pde una oscilación. Finalmente, se
despeja g de la fórmula del periodo.
De la fórmula del periodo establecemos la siguiente relación lineal.
Se representan los datos "experimentales"
en un sistema de ejes:
• P2
/(4p2
) en el eje vertical y
• La longitud del péndulo l en el eje
horizontal.
La pendiente de la recta es la inversa de la
aceleración de la gravedad g.
Ejemplos de aplicación de movimientos oscilatorios en la ingeniería
petrolera:
• Existe en sistemas de bombeo mecánico transmitida por la barra pulida
de la bomba.
• Presentes en sistemas de MWD y LWD sistemas de telemetría de pozo
de medición mientras se perfora y registro mientras se perfora en sus
siglas en ingles.
• En maquinas coladoras de sistemas de lodos donde el ripio procedente
de fondo de pozo es separado del lodo de perforación.
Conclusión.
En el movimiento amortiguado, si la fuerza de fricción es suficientemente
grande el movimiento ya no sería periódico, por lo tanto, el cuerpo simplemente
volvería a su posición original (en equilibrio). O bien, si la fuerza de fricción es
cero la amplitud del movimiento sería constante, es decir, el objeto se movería
siempre con la misma amplitud y no se detendría.
Por otro lado, en el movimiento amortiguado la energía del oscilador se disipa
gradualmente por la fricción y al cabo de un tiempo se anula.

Más contenido relacionado

La actualidad más candente

Movimiento armonico simple
Movimiento armonico simpleMovimiento armonico simple
Movimiento armonico simplemanuel macea
 
Trabajo y energía victor
Trabajo y energía victorTrabajo y energía victor
Trabajo y energía victorvictor calderon
 
Trabajo y energia victor 160207211234
Trabajo y energia victor 160207211234Trabajo y energia victor 160207211234
Trabajo y energia victor 160207211234victor calderon
 
Pendulo simple c
Pendulo simple cPendulo simple c
Pendulo simple csaliradu
 
Movimiento armã“nico simple_y_pendulo_simple[1]
Movimiento armã“nico simple_y_pendulo_simple[1]Movimiento armã“nico simple_y_pendulo_simple[1]
Movimiento armã“nico simple_y_pendulo_simple[1]Manuel Marcelo
 
Movimiento oscilatorio
Movimiento oscilatorioMovimiento oscilatorio
Movimiento oscilatorioEdgardo Cabeza
 
Movimiento armónico simple y pendulo simple
Movimiento armónico simple y pendulo simpleMovimiento armónico simple y pendulo simple
Movimiento armónico simple y pendulo simpleGabito2603
 
Movimiento armonico simple
Movimiento armonico simpleMovimiento armonico simple
Movimiento armonico simpleSaer C
 
Movimiento oscilatorio
Movimiento oscilatorioMovimiento oscilatorio
Movimiento oscilatorioMario Aguirre
 
CAPITULO VIII : MOVIMIENTO ARMONICO SIMPLE
CAPITULO VIII : MOVIMIENTO ARMONICO SIMPLECAPITULO VIII : MOVIMIENTO ARMONICO SIMPLE
CAPITULO VIII : MOVIMIENTO ARMONICO SIMPLECarlos Levano
 
Trabajo y Energia en el Movimiento Grupo 3
Trabajo y Energia en el Movimiento Grupo 3Trabajo y Energia en el Movimiento Grupo 3
Trabajo y Energia en el Movimiento Grupo 3grupo03ajs
 
V-Dinámica rotacional. 3-Leyes de Newton para la dinámica rotacional
V-Dinámica rotacional. 3-Leyes de Newton para la dinámica rotacionalV-Dinámica rotacional. 3-Leyes de Newton para la dinámica rotacional
V-Dinámica rotacional. 3-Leyes de Newton para la dinámica rotacionalJavier García Molleja
 
Movimiento oscilatorio y Péndulo simple
Movimiento oscilatorio y Péndulo simpleMovimiento oscilatorio y Péndulo simple
Movimiento oscilatorio y Péndulo simpleNehomar Narváez
 
Movimiento armónico simple
Movimiento armónico simpleMovimiento armónico simple
Movimiento armónico simpleJohel Tarazona
 

La actualidad más candente (20)

Movimiento armónico simple y pendulo simple
Movimiento armónico simple y pendulo simpleMovimiento armónico simple y pendulo simple
Movimiento armónico simple y pendulo simple
 
Pendulo compuesto
Pendulo compuestoPendulo compuesto
Pendulo compuesto
 
Movimiento armonico simple
Movimiento armonico simpleMovimiento armonico simple
Movimiento armonico simple
 
Trabajo y energía victor
Trabajo y energía victorTrabajo y energía victor
Trabajo y energía victor
 
Trabajo y energia victor 160207211234
Trabajo y energia victor 160207211234Trabajo y energia victor 160207211234
Trabajo y energia victor 160207211234
 
Pendulo simple c
Pendulo simple cPendulo simple c
Pendulo simple c
 
Movimiento armã“nico simple_y_pendulo_simple[1]
Movimiento armã“nico simple_y_pendulo_simple[1]Movimiento armã“nico simple_y_pendulo_simple[1]
Movimiento armã“nico simple_y_pendulo_simple[1]
 
Movimiento oscilatorio
Movimiento oscilatorioMovimiento oscilatorio
Movimiento oscilatorio
 
Movimiento armónico simple y pendulo simple
Movimiento armónico simple y pendulo simpleMovimiento armónico simple y pendulo simple
Movimiento armónico simple y pendulo simple
 
Movimiento armonico simple
Movimiento armonico simpleMovimiento armonico simple
Movimiento armonico simple
 
Quinta asignación
Quinta asignación Quinta asignación
Quinta asignación
 
Movimiento oscilatorio
Movimiento oscilatorioMovimiento oscilatorio
Movimiento oscilatorio
 
CAPITULO VIII : MOVIMIENTO ARMONICO SIMPLE
CAPITULO VIII : MOVIMIENTO ARMONICO SIMPLECAPITULO VIII : MOVIMIENTO ARMONICO SIMPLE
CAPITULO VIII : MOVIMIENTO ARMONICO SIMPLE
 
Pendulo Simple
Pendulo SimplePendulo Simple
Pendulo Simple
 
Trabajo y Energia en el Movimiento Grupo 3
Trabajo y Energia en el Movimiento Grupo 3Trabajo y Energia en el Movimiento Grupo 3
Trabajo y Energia en el Movimiento Grupo 3
 
V-Dinámica rotacional. 3-Leyes de Newton para la dinámica rotacional
V-Dinámica rotacional. 3-Leyes de Newton para la dinámica rotacionalV-Dinámica rotacional. 3-Leyes de Newton para la dinámica rotacional
V-Dinámica rotacional. 3-Leyes de Newton para la dinámica rotacional
 
Unidad 6: movimiento rotacional
Unidad 6: movimiento rotacionalUnidad 6: movimiento rotacional
Unidad 6: movimiento rotacional
 
Movimiento oscilatorio y Péndulo simple
Movimiento oscilatorio y Péndulo simpleMovimiento oscilatorio y Péndulo simple
Movimiento oscilatorio y Péndulo simple
 
Movimiento armónico simple
Movimiento armónico simpleMovimiento armónico simple
Movimiento armónico simple
 
Nidal suleiman pendulo simple
Nidal suleiman pendulo simpleNidal suleiman pendulo simple
Nidal suleiman pendulo simple
 

Similar a Mov.oscilatorio

Mapa conceptual informe pract 6 marian suarez 16482871
Mapa conceptual informe pract 6 marian suarez 16482871Mapa conceptual informe pract 6 marian suarez 16482871
Mapa conceptual informe pract 6 marian suarez 16482871UATIC
 
Practica 6 de fisica
Practica 6 de fisicaPractica 6 de fisica
Practica 6 de fisicaMauro Bravo
 
Pràctica individual fisica 6
Pràctica individual fisica 6Pràctica individual fisica 6
Pràctica individual fisica 6mariagmarin07
 
Dinámica rotacional
Dinámica rotacionalDinámica rotacional
Dinámica rotacionalLiz Castro
 
Pendulosimple pabloescalona19818644
Pendulosimple pabloescalona19818644Pendulosimple pabloescalona19818644
Pendulosimple pabloescalona19818644Pablo Escalona Tovar
 
Practica 6 azaelmoreno
Practica 6 azaelmorenoPractica 6 azaelmoreno
Practica 6 azaelmorenoazaelmoreno24
 
Laboratorio de fisica
Laboratorio de fisicaLaboratorio de fisica
Laboratorio de fisicaangel petit
 
Practica6 Moron_Virginia
Practica6 Moron_VirginiaPractica6 Moron_Virginia
Practica6 Moron_VirginiaVirginia Morón
 
Informe practica6 jessica garcia
Informe practica6 jessica garciaInforme practica6 jessica garcia
Informe practica6 jessica garciaJESSICA GARCIA
 
Movimiento oscilatorio
Movimiento oscilatorioMovimiento oscilatorio
Movimiento oscilatorioRonaldKalil
 
Practica 6
Practica 6Practica 6
Practica 6forex46
 
Guia 10 movimiento rotacional
Guia 10 movimiento rotacionalGuia 10 movimiento rotacional
Guia 10 movimiento rotacionalMelvinRamos18
 

Similar a Mov.oscilatorio (20)

Mapa conceptual informe pract 6 marian suarez 16482871
Mapa conceptual informe pract 6 marian suarez 16482871Mapa conceptual informe pract 6 marian suarez 16482871
Mapa conceptual informe pract 6 marian suarez 16482871
 
PRACTICA #6
PRACTICA #6PRACTICA #6
PRACTICA #6
 
Practica 6 de fisica
Practica 6 de fisicaPractica 6 de fisica
Practica 6 de fisica
 
Ensayo pendulo
Ensayo penduloEnsayo pendulo
Ensayo pendulo
 
Pràctica individual fisica 6
Pràctica individual fisica 6Pràctica individual fisica 6
Pràctica individual fisica 6
 
Dinámica rotacional
Dinámica rotacionalDinámica rotacional
Dinámica rotacional
 
Pendulosimple pabloescalona19818644
Pendulosimple pabloescalona19818644Pendulosimple pabloescalona19818644
Pendulosimple pabloescalona19818644
 
Practica 6 azaelmoreno
Practica 6 azaelmorenoPractica 6 azaelmoreno
Practica 6 azaelmoreno
 
Laboratorio de fisica
Laboratorio de fisicaLaboratorio de fisica
Laboratorio de fisica
 
Ensayo pendulo
Ensayo penduloEnsayo pendulo
Ensayo pendulo
 
Practica6 Moron_Virginia
Practica6 Moron_VirginiaPractica6 Moron_Virginia
Practica6 Moron_Virginia
 
Ensayo pendulo
Ensayo penduloEnsayo pendulo
Ensayo pendulo
 
Fis1(lab15) pendulo fisico
Fis1(lab15) pendulo fisicoFis1(lab15) pendulo fisico
Fis1(lab15) pendulo fisico
 
Fisica
FisicaFisica
Fisica
 
dinamica rotacional
 dinamica rotacional  dinamica rotacional
dinamica rotacional
 
Informe practica6 jessica garcia
Informe practica6 jessica garciaInforme practica6 jessica garcia
Informe practica6 jessica garcia
 
Lab. de fisica CM
Lab. de fisica CMLab. de fisica CM
Lab. de fisica CM
 
Movimiento oscilatorio
Movimiento oscilatorioMovimiento oscilatorio
Movimiento oscilatorio
 
Practica 6
Practica 6Practica 6
Practica 6
 
Guia 10 movimiento rotacional
Guia 10 movimiento rotacionalGuia 10 movimiento rotacional
Guia 10 movimiento rotacional
 

Último

Flujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxFlujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxEduardoSnchezHernnde5
 
Topografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasTopografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasSegundo Silva Maguiña
 
Linealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdfLinealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdfrolandolazartep
 
Sesion 02 Patentes REGISTRO EN INDECOPI PERU
Sesion 02 Patentes REGISTRO EN INDECOPI PERUSesion 02 Patentes REGISTRO EN INDECOPI PERU
Sesion 02 Patentes REGISTRO EN INDECOPI PERUMarcosAlvarezSalinas
 
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIACLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIAMayraOchoa35
 
Cadenas de Markov investigación de operaciones
Cadenas de Markov investigación de operacionesCadenas de Markov investigación de operaciones
Cadenas de Markov investigación de operacionesal21510263
 
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdf
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdfManual de Usuario Estacion total Sokkia SERIE SET10K.pdf
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdfSandXmovex
 
CE.040 DRENAJE PLUVIAL_RM 126-2021-VIVIENDA.pdf
CE.040 DRENAJE PLUVIAL_RM 126-2021-VIVIENDA.pdfCE.040 DRENAJE PLUVIAL_RM 126-2021-VIVIENDA.pdf
CE.040 DRENAJE PLUVIAL_RM 126-2021-VIVIENDA.pdfssuserc34f44
 
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaProyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaXjoseantonio01jossed
 
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfTAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfAntonioGonzalezIzqui
 
Fisiología del Potasio en Plantas p .pdf
Fisiología del Potasio en Plantas p .pdfFisiología del Potasio en Plantas p .pdf
Fisiología del Potasio en Plantas p .pdfJessLeonelVargasJimn
 
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfCONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfErikNivor
 
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptxGARCIARAMIREZCESAR
 
Parámetros de Perforación y Voladura. para Plataformas
Parámetros de  Perforación y Voladura. para PlataformasParámetros de  Perforación y Voladura. para Plataformas
Parámetros de Perforación y Voladura. para PlataformasSegundo Silva Maguiña
 
Fijaciones de balcones prefabricados de hormigón - RECENSE
Fijaciones de balcones prefabricados de hormigón - RECENSEFijaciones de balcones prefabricados de hormigón - RECENSE
Fijaciones de balcones prefabricados de hormigón - RECENSEANDECE
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPJosLuisFrancoCaldern
 
3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptx3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptxJhordanGonzalo
 
Exposicion. del documentos de YPFB corporación
Exposicion. del documentos de YPFB corporaciónExposicion. del documentos de YPFB corporación
Exposicion. del documentos de YPFB corporaciónjas021085
 
CENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdf
CENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdfCENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdf
CENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdfpaola110264
 
Uso y Manejo de Extintores Lucha contra incendios
Uso y Manejo de Extintores Lucha contra incendiosUso y Manejo de Extintores Lucha contra incendios
Uso y Manejo de Extintores Lucha contra incendioseduardochavezg1
 

Último (20)

Flujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxFlujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptx
 
Topografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasTopografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la Ingenierías
 
Linealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdfLinealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdf
 
Sesion 02 Patentes REGISTRO EN INDECOPI PERU
Sesion 02 Patentes REGISTRO EN INDECOPI PERUSesion 02 Patentes REGISTRO EN INDECOPI PERU
Sesion 02 Patentes REGISTRO EN INDECOPI PERU
 
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIACLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIA
 
Cadenas de Markov investigación de operaciones
Cadenas de Markov investigación de operacionesCadenas de Markov investigación de operaciones
Cadenas de Markov investigación de operaciones
 
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdf
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdfManual de Usuario Estacion total Sokkia SERIE SET10K.pdf
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdf
 
CE.040 DRENAJE PLUVIAL_RM 126-2021-VIVIENDA.pdf
CE.040 DRENAJE PLUVIAL_RM 126-2021-VIVIENDA.pdfCE.040 DRENAJE PLUVIAL_RM 126-2021-VIVIENDA.pdf
CE.040 DRENAJE PLUVIAL_RM 126-2021-VIVIENDA.pdf
 
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaProyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
 
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfTAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
 
Fisiología del Potasio en Plantas p .pdf
Fisiología del Potasio en Plantas p .pdfFisiología del Potasio en Plantas p .pdf
Fisiología del Potasio en Plantas p .pdf
 
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfCONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
 
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
 
Parámetros de Perforación y Voladura. para Plataformas
Parámetros de  Perforación y Voladura. para PlataformasParámetros de  Perforación y Voladura. para Plataformas
Parámetros de Perforación y Voladura. para Plataformas
 
Fijaciones de balcones prefabricados de hormigón - RECENSE
Fijaciones de balcones prefabricados de hormigón - RECENSEFijaciones de balcones prefabricados de hormigón - RECENSE
Fijaciones de balcones prefabricados de hormigón - RECENSE
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
 
3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptx3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptx
 
Exposicion. del documentos de YPFB corporación
Exposicion. del documentos de YPFB corporaciónExposicion. del documentos de YPFB corporación
Exposicion. del documentos de YPFB corporación
 
CENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdf
CENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdfCENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdf
CENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdf
 
Uso y Manejo de Extintores Lucha contra incendios
Uso y Manejo de Extintores Lucha contra incendiosUso y Manejo de Extintores Lucha contra incendios
Uso y Manejo de Extintores Lucha contra incendios
 

Mov.oscilatorio

  • 1. INSTITUTO UNIVERSITARIO POLITÉCNICO "SANTIAGO MARIÑO" Laboratorio de Física Practica 6 Renato Márquez C.I:16.689.241
  • 2. Introducción Un péndulo simple solo depende de la longitud de la cuerda de masa despreciable mas no de su amplitud ni de la masa del objeto que dibuja el arco del péndulo con su trayectoria para ello haremos uso de nuestro conocimiento y experiencia obtenidos en las clases pasadas tales como el uso de mínimos cuadrados, análisis de graficas, error porcentual y de más temas que iremos viendo en el transcurso del informe.
  • 3. El movimiento oscilatorio es un movimiento en torno a un punto de equilibrio estable. Este puede ser simple o completo. Los puntos de equilibrio mecánico son, en general, aquellos en los cuales la fuerza neta que actúa sobre la partícula es cero. Si el equilibrio es estable, un desplazamiento de la partícula con respecto a la posición de equilibrio (elongación) da lugar a la aparición de una fuerza restauradora que devolverá la partícula hacia el punto de equilibrio. En términos de la energía potencial, los puntos de equilibrio estable se corresponden con los mínimos de la misma
  • 4. Un péndulo simple se define como una partícula de masa m suspendida del punto O por un hilo inextensible de longitud l y de masa despreciable. Si la partícula se desplaza a una posición q0 (ángulo que hace el hilo con la vertical) y luego se suelta, el péndulo comienza a oscilar. El péndulo describe una trayectoria circular, un arco de una circunferencia de radio l. Estudiaremos su movimiento en la dirección tangencial y en la dirección normal. Las fuerzas que actúan sobre la partícula de masa m son dos • el peso mg • La tensión T del hilo Descomponemos el peso en la acción simultánea de dos componentes, mg·senq en la dirección tangencial y mg·cosq en la dirección radial. • Ecuación del movimiento en la dirección radial La aceleración de la partícula es an=v2 /l dirigida radialmente hacia el centro de su trayectoria circular. La segunda ley de Newton se escribe man=T-mg·cosq Conocido el valor de la velocidad v en la posición angular q podemos determinar la tensión T del hilo. La tensión T del hilo es máxima, cuando el péndulo pasa por la posición de equilibrio, T=mg+mv2 /l Es mínima, en los extremos de su trayectoria cuando la velocidad es cero, T=mgcosq0 • Principio de conservación de la energía En la posición θ=θ0 el péndulo solamente tiene energía potencial, que se transforma en energía cinética cuando el péndulo pasa por la posición de equilibrio.
  • 5. Comparemos dos posiciones del péndulo: En la posición extrema θ=θ0, la energía es solamente potencial. E=mg(l-l·cosθ0) En la posición θ, la energía del péndulo es parte cinética y la otra parte potencial La energía se conserva v2 =2gl(cosθ-cosθ0) La tensión de la cuerda es T=mg(3cosθ-2cosθ0) La tensión de la cuerda no es constante, sino que varía con la posición angular θ. Su valor máximo se alcanza cuando θ=0, el péndulo pasa por la posición de equilibrio (la velocidad es máxima). Su valor mínimo, cuando θ=θ0 (la velocidad es nula). • Ecuación del movimiento en la dirección tangencial La aceleración de la partícula es at=dv/dt. La segunda ley de Newton se escribe mat=-mg·senq La relación entre la aceleración tangencial at y la aceleración angular a es at=a ·l. La ecuación del movimiento se escribe en forma de ecuación diferencial (1) Medida de la aceleración de la gravedad Cuando el ángulo q es pequeño entonces, senq » q , el péndulo describe oscilaciones armónicas cuya ecuación es q =q0·sen(w t+j )
  • 6. de frecuencia angular w2 =g/l, o de periodo La ley de la gravitación de Newton describe la fuerza de atracción entre dos cuerpos de masas M y m respectivamente cuyos centros están separados una distancia r. La intensidad del campo gravitatorio g, o la aceleración de la gravedad en un punto P situado a una distancia r del centro de un cuerpo celeste de masa M es la fuerza sobre la unidad de masag=F/m colocada en dicho punto. su dirección es radial y dirigida hacia el centro del cuerpo celeste. En la página dedicada al estudio del Sistema Solar, proporcionamos los datos relativos a la masa (o densidad) y radio de los distintos cuerpos celestes. Ejemplo: Marte tiene un radio de 3394 km y una masa de 0.11 masas terrestres (5.98·1024 kg). La aceleración g de la gravedad en su superficie es Tenemos dos procedimientos para medir esta aceleración • Cinemática Se mide con un cronómetro el tiempo t que tarda en caer una partícula desde una altura h. Se supone que h es mucho más pequeña que el radio r del cuerpo celeste. • Oscilaciones Se emplea un instrumento mucho más manejable, un péndulo simple de longitud l. Se mide el periodo de varias oscilaciones para minimizar el error de la medida y se calculan el periodo Pde una oscilación. Finalmente, se despeja g de la fórmula del periodo. De la fórmula del periodo establecemos la siguiente relación lineal.
  • 7. Se representan los datos "experimentales" en un sistema de ejes: • P2 /(4p2 ) en el eje vertical y • La longitud del péndulo l en el eje horizontal. La pendiente de la recta es la inversa de la aceleración de la gravedad g. Ejemplos de aplicación de movimientos oscilatorios en la ingeniería petrolera: • Existe en sistemas de bombeo mecánico transmitida por la barra pulida de la bomba. • Presentes en sistemas de MWD y LWD sistemas de telemetría de pozo de medición mientras se perfora y registro mientras se perfora en sus siglas en ingles. • En maquinas coladoras de sistemas de lodos donde el ripio procedente de fondo de pozo es separado del lodo de perforación.
  • 8. Conclusión. En el movimiento amortiguado, si la fuerza de fricción es suficientemente grande el movimiento ya no sería periódico, por lo tanto, el cuerpo simplemente volvería a su posición original (en equilibrio). O bien, si la fuerza de fricción es cero la amplitud del movimiento sería constante, es decir, el objeto se movería siempre con la misma amplitud y no se detendría. Por otro lado, en el movimiento amortiguado la energía del oscilador se disipa gradualmente por la fricción y al cabo de un tiempo se anula.