MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 1
FECHA: MAYO 2011
SOLUCIÓN NUMÉRICA PÉNDULO ELÁSTICO OSCILANTE CON RUNGE ...
MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 2
FECHA: MAYO 2011
alguna manera estas ecuaciones
diferenciales, razón por...
MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 3
FECHA: MAYO 2011
̈ = ̇ + − ( − ) (7)
De donde:
L : Longitud sin deformar...
MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 4
FECHA: MAYO 2011
%Resultados: T, vector de los nodos,
Z=[x1(t)... xn(t)]...
MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 5
FECHA: MAYO 2011
0.3050 0.6173 0.2185 0.4599 -3.1142
0.3100 0.6184 0.198...
MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 6
FECHA: MAYO 2011
Si deseamos saber la posición de r
cuando el péndulo ll...
MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 7
FECHA: MAYO 2011
4. CONCLUSIONES
En este trabajo, se pudo demostrar que ...
Próxima SlideShare
Cargando en…5
×

PENDULO ELASTICO METODO RUNGE KUTTA 4 CON MATLAB

2.037 visualizaciones

Publicado el

SOLUCION NUMERICA DE UN PENDULO ELASTICO DE UNA GRADO DE LIBERTAD APLICANDO LA TEORIA DE RUNGE KUTTA 4 EN MATLAB

Publicado en: Ingeniería
  • Sé el primero en comentar

PENDULO ELASTICO METODO RUNGE KUTTA 4 CON MATLAB

  1. 1. MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 1 FECHA: MAYO 2011 SOLUCIÓN NUMÉRICA PÉNDULO ELÁSTICO OSCILANTE CON RUNGE KUTTA 4 EN MATLAB Ccarita Cruz Fredy Alan, Hugo Reymundo Alvarez Profesor: Mgt. Roy Sánchez Gutiérrez Pontificia Universidad Católica del Perú, Maestría en Ingeniería Mecánica, Métodos Matemáticos y Numéricos para Ingeniería Lima: 27.05.2011 RESUMEN En este estudio sobre péndulo elástico muelle-masa que se investiga. Con el fin de resolver un sistema de ecuaciones diferenciales no lineales que se obtienen de la aplicación de la segunda ley de newton que representan el fenómeno físico y que no es posible determinar la solución por los métodos analíticos, considerando solucionarlo y demostrar que si es posible con los métodos numéricos y en este caso utilizaremos el método numérico de Runge Kutta 4 para sistemas con ayuda del software Matlab, se hará la demostración para dos variaciones de longitud del péndulo y ver que eventos se producen por estas variaciones, los resultados se compararan con otros trabajos para verificar los mismo, al final quedamos conforme con el trabajo porque lo dicho anteriormente ha podido ser demostrado. Palabras claves: péndulo elástico, la oscilación no lineal, la técnica de simulación, Matlab, Runge - Kutta ABSTRACT In this study of elastic spring-mass pendulum is investigated. In order to solve a system of nonlinear differential equations obtained from the application of Newton's second law to represent the physical phenomenon and it is not possible to determine the solution by analytical methods, considering solutions and demonstrate that it is possible with numerical methods and in this case we use the numerical method of Runge Kutta 4 for systems using the Matlab software, will show for two variations of length of the pendulum and see what events are produced by these variations, the results were compared with other papers for the same in the end we were satisfied with the work because of the above has been demonstrated . Keywords: elastic pendulum, nonlinear oscillation, the technique of simulation, Matlab, Runge – Kutta 4 1. INTRODUCION La aplicación de las ecuaciones diferenciales dentro de la ingeniería Mecanica para determinar las ecuaciones que gobiernan los fenómenos físicos de estudio son muchísimas por no decir infinitas, pero la gran mayoría de estas no tienen solución numérica es por esa razón que se ha hecho necesario solucionar de
  2. 2. MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 2 FECHA: MAYO 2011 alguna manera estas ecuaciones diferenciales, razón por la cual hoy en día hay muchos métodos como el Método de Elementos Finitos (FEM), Diferencias Finitas (FDM), Método de Variación Iteracional (VIM), Método de Perturbación Homotropica (HPM) etc etc, para nuestro caso utilizaremos el método de Runge Kutta 4 en Matlab. 2. ECUACIONES QUE GOBIERNAN EL SISTEMA Aplicando la segunda ley de Newton y trabajando en coordenadas cilíndricas (r,θ) tendríamos lo siguiente: Ahora podemos escribir Σ : − sin = (1) : = 2 ̇ ̇ + ̇ (2) − sinθ = m 2 ̇ ̇ + ̈ − = 2 ̇ ̇ + ̈ ̈ = − − 2 ̇ ̇ ̈ = − − 2 ̇ ̇ (3) Σ : cos − = (4) : = − ( − ) (5) = ̈ − ̇ (6) − [− ( − )] = + ( − ) = ̈ − ̇ − ( − ) = ̈ − ̇ ̈ = ̇ + − ( − ) Figura 1 . Diagrama de cuerpo libre péndulo elástico en el punto 2
  3. 3. MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 3 FECHA: MAYO 2011 ̈ = ̇ + − ( − ) (7) De donde: L : Longitud sin deformar. r : Radio. ̇ : Velocidad radial. ̈ : Asceleración radial. : Posición angular. ̇ : Velocidad Angular. ̈ : Asceleración Angular. k : Constante de Rigidez m : Masa. g : gravedad. t : tiempo. El sistema es conservador porque no hay amortiguación. Por lo tanto la energía total (energía cinética y energía potencial) del sistema es siempre constante y el tiempo invariante (holonómica). Con el fin de investigar los comportamientos de la elástica del péndulo, algunos parámetros se deben dar. Por esta razón, la frecuencia natural del resorte y el péndulo respectivamente, como sigue: = = 12.64; = = 19.61 Por otra parte determinaremos una constante: = = = 0.35 3. SOLUCIÓN NUMÉRICA Para la solución numérica con Runge Kutta 4 para sistemas, debemos de utilizar las ecuaciones (3) y (7), pero antes debemos de trasformar estas ecuaciones a un sistema de ecuaciones diferenciales: Creación de la matriz μ = ̇ ̇ ′ = ̇ ̈ ̇ ̈ ′ = + ( ) − ( − ) −2 − ( ) Para la solución de este problema debemos de dar los siguientes datos: g=9.80665 m/s2 ; k=40N/m; L=0.5m, m=0.25Kg Tendremos lo siguiente: ′ = + 9.80665 ( ) − 160 + 80 −2 − 9.80665 ( ) Con las siguientes condiciones iniciales: = 0.5 0 3 0 = ̇ ̇ Una vez reemplazado las variables ahora debemos de utilizar el método de Runge Kutta 4 para sistemas: RUNGE-KUTTA 4 PARA SISTEMAS "POR FILAS" DE ECUACIONES DIFERENCIALES Function A=rks4M(F,a,b,Za,M) %Datos: F es la función vectorial, el intervalo [a b] %Za=[x1(a)...xn(a)] es la condición inicial y M es el número de pasos.
  4. 4. MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 4 FECHA: MAYO 2011 %Resultados: T, vector de los nodos, Z=[x1(t)... xn(t)],las aproximaciones h=(b-a)/M; T=zeros(1,M+1); Z=zeros(M+1,length(Za)); T=a:h:b; Z(1,:)=Za; for j=1:M k1=h*feval(F,T(j),Z(j,:)); k2=h*feval(F,T(j)+h/2,Z(j,:)+k1/2); k3=h*feval(F,T(j)+h/2,Z(j,:)+k2/2); k4=h*feval(F,T(j)+h,Z(j,:)+k3); Z(j+1,:)=Z(j,:)+(k1+2*k2+2*k3+k4)/6; end A=[T' Z]; End Antes de ello debemos de definir lo siguiente F,a,b,Za,M F function Z=Fs5(t,Z) a=Z(1); b=Z(2); c=Z(3); d=Z(4); Z=[b a*d.^2+9.80665*cos(c)-160*a+80 d - 2*b*d./a-9.80665*sin(c)./a]; a=0 ; b=0.5 ; Za= 0.5 0 3 0 ; M=100 Por lo tanto tendríamos: A=rks4M('Fs5',0,0.5,[0.5 0 pi/3 0],100) Que resulta: A = t r ̇ ̇ 0 0.5000 0 1.0472 0 0.0050 0.5001 0.0245 1.0470 -0.0849 0.0100 0.5002 0.0490 1.0463 -0.1697 0.0150 0.5006 0.0734 1.0453 -0.2542 0.0200 0.5010 0.0976 1.0438 -0.3384 0.0250 0.5015 0.1217 1.0419 -0.4221 0.0300 0.5022 0.1455 1.0396 -0.5051 0.0350 0.5030 0.1691 1.0369 -0.5875 0.0400 0.5039 0.1924 1.0337 -0.6690 0.0450 0.5049 0.2153 1.0302 -0.7495 0.0500 0.5060 0.2378 1.0262 -0.8291 0.0550 0.5073 0.2599 1.0219 -0.9075 0.0600 0.5086 0.2815 1.0171 -0.9847 0.0650 0.5101 0.3026 1.0120 -1.0605 0.0700 0.5117 0.3231 1.0065 -1.1351 0.0750 0.5133 0.3429 1.0007 -1.2081 0.0800 0.5151 0.3621 0.9945 -1.2797 0.0850 0.5169 0.3807 0.9879 -1.3498 0.0900 0.5189 0.3984 0.9810 -1.4182 0.0950 0.5209 0.4154 0.9737 -1.4850 0.1000 0.5230 0.4315 0.9661 -1.5502 0.1050 0.5252 0.4468 0.9582 -1.6137 0.1100 0.5275 0.4612 0.9500 -1.6755 0.1150 0.5299 0.4746 0.9415 -1.7356 0.1200 0.5323 0.4871 0.9326 -1.7940 0.1250 0.5347 0.4986 0.9235 -1.8508 0.1300 0.5372 0.5090 0.9141 -1.9058 0.1350 0.5398 0.5184 0.9045 -1.9592 0.1400 0.5424 0.5266 0.8945 -2.0110 0.1450 0.5451 0.5338 0.8844 -2.0612 0.1500 0.5478 0.5398 0.8739 -2.1098 0.1550 0.5505 0.5447 0.8633 -2.1569 0.1600 0.5532 0.5484 0.8524 -2.2025 0.1650 0.5560 0.5509 0.8412 -2.2467 0.1700 0.5587 0.5523 0.8299 -2.2895 0.1750 0.5615 0.5525 0.8183 -2.3310 0.1800 0.5642 0.5515 0.8066 -2.3712 0.1850 0.5670 0.5493 0.7946 -2.4101 0.1900 0.5697 0.5459 0.7825 -2.4479 0.1950 0.5724 0.5414 0.7702 -2.4846 0.2000 0.5751 0.5358 0.7576 -2.5202 0.2050 0.5778 0.5290 0.7450 -2.5548 0.2100 0.5804 0.5211 0.7321 -2.5885 0.2150 0.5830 0.5121 0.7191 -2.6213 0.2200 0.5855 0.5021 0.7059 -2.6533 0.2250 0.5880 0.4911 0.6925 -2.6845 0.2300 0.5905 0.4791 0.6790 -2.7149 0.2350 0.5928 0.4662 0.6654 -2.7447 0.2400 0.5951 0.4525 0.6516 -2.7739 0.2450 0.5973 0.4378 0.6377 -2.8025 0.2500 0.5995 0.4224 0.6236 -2.8306 0.2550 0.6016 0.4063 0.6094 -2.8582 0.2600 0.6036 0.3895 0.5950 -2.8853 0.2650 0.6055 0.3721 0.5805 -2.9120 0.2700 0.6073 0.3541 0.5659 -2.9383 0.2750 0.6090 0.3357 0.5511 -2.9643 0.2800 0.6106 0.3168 0.5362 -2.9900 0.2850 0.6122 0.2976 0.5212 -3.0153 0.2900 0.6136 0.2781 0.5061 -3.0404 0.2950 0.6149 0.2583 0.4908 -3.0653 0.3000 0.6162 0.2385 0.4754 -3.0899
  5. 5. MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 5 FECHA: MAYO 2011 0.3050 0.6173 0.2185 0.4599 -3.1142 0.3100 0.6184 0.1985 0.4443 -3.1383 0.3150 0.6193 0.1786 0.4285 -3.1622 0.3200 0.6202 0.1587 0.4127 -3.1859 0.3250 0.6209 0.1391 0.3967 -3.2093 0.3300 0.6216 0.1197 0.3806 -3.2325 0.3350 0.6221 0.1006 0.3644 -3.2555 0.3400 0.6226 0.0819 0.3480 -3.2782 0.3450 0.6229 0.0636 0.3316 -3.3006 0.3500 0.6232 0.0458 0.3150 -3.3227 0.3550 0.6234 0.0286 0.2983 -3.3444 0.3600 0.6235 0.0119 0.2816 -3.3658 0.3650 0.6235 -0.0041 0.2647 -3.3868 0.3700 0.6234 -0.0195 0.2477 -3.4074 0.3750 0.6233 -0.0342 0.2306 -3.4275 0.3800 0.6231 -0.0481 0.2134 -3.4471 0.3850 0.6228 -0.0612 0.1961 -3.4662 0.3900 0.6225 -0.0736 0.1788 -3.4846 0.3950 0.6221 -0.0851 0.1613 -3.5024 0.4000 0.6216 -0.0958 0.1437 -3.5195 0.4050 0.6211 -0.1057 0.1261 -3.5358 0.4100 0.6206 -0.1147 0.1084 -3.5514 0.4150 0.6200 -0.1229 0.0906 -3.5660 0.4200 0.6194 -0.1302 0.0727 -3.5798 0.4250 0.6187 -0.1367 0.0548 -3.5926 0.4300 0.6180 -0.1423 0.0368 -3.6043 0.4350 0.6173 -0.1472 0.0188 -3.6150 0.4400 0.6165 -0.1513 0.0007 -3.6245 0.4450 0.6158 -0.1546 -0.0175 -3.6329 0.4500 0.6150 -0.1572 -0.0357 -3.6400 0.4550 0.6142 -0.1591 -0.0539 -3.6458 0.4600 0.6134 -0.1603 -0.0721 -3.6502 0.4650 0.6126 -0.1610 -0.0904 -3.6533 0.4700 0.6118 -0.1611 -0.1087 -3.6550 0.4750 0.6110 -0.1606 -0.1269 -3.6552 0.4800 0.6102 -0.1597 -0.1452 -3.6539 0.4850 0.6094 -0.1584 -0.1635 -3.6510 0.4900 0.6086 -0.1568 -0.1817 -3.6466 0.4950 0.6078 -0.1548 -0.1999 -3.6407 0.5000 0.6070 -0.1526 -0.2181 -3.6331 >> plot(A(:,1),180*A(:,4)/pi,'r') (Tiempo * Grados sexagecimales) grid on axis on >> plot(A(:,1),A(:,2),'r') xlabel('tiempo') ylabel('radio') Figura 2 . Diagrama de Posición en función del tiempo – Péndulo Elástico
  6. 6. MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 6 FECHA: MAYO 2011 Si deseamos saber la posición de r cuando el péndulo llega a 0°, se tendría lo siguiente: El tiempo que la masa del péndulo llega a la posición: Θ=0° t=0.44 s. Figura 3. Diagrama de radio en función del tiempo – Péndulo Elástico. Figura 4. Diagrama para determinar el tiempo cuando Θ=0°
  7. 7. MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 7 FECHA: MAYO 2011 4. CONCLUSIONES En este trabajo, se pudo demostrar que si es posible solucionar ecuaciones diferenciales por métodos numéricos que en este caso el Runge Kutta 4, aplicado al péndulo elástico, también se demostró que cuando se hace la variación de la longitud “L”, la intensidad del movimiento oscilatorio aumenta con una mayor elongación de la cuerda elástica, dentro del campo de las vibraciones este péndulo se consideraría como un sistema con dos grados de libertar clasificado como una vibración libre debido por solo a la presencia de las fuerzas gravitatorias y elásticas, 5. REFERENCIAS Zekeyra Girgin, Ersin Demir 2008, Investigation of elastic pendulum oscillations by simulation technique, 81- 86. Jorge Rodriguez Hernandez, 2010, Dinamica, Cap II, Cap X Chang, C.L and Lee 2004, Applyng the double side method to solution no linear pendulum problem, Appl. Math Comput 149, 613-624 Georgiou, I. T. 1999. On the global geometric structure of the dynamics of the elastic pendulum, Nonlinear Dynam. 18, 51-68 . Girgin, Z. 2008. Combining differential quadrature method with simulation technique to solve nonlinear differential equations, Int. J. Numer. Meth. Eng. 75 (6), 722-734. Figura 5. Diagrama de comparación – para dos casos de L (L1=0.5m y L2=0.575m)

×