SlideShare una empresa de Scribd logo
1 de 12
Descargar para leer sin conexión
.cl
open green
road
Guía Matemática
FUNCIONES
profesor: Nicol´as Melgarejo
open green
road
1. Concepto de funci´on
M´as de una vez habremos escuchado que el ´area de un cuadrado depende de la longitud de su lado;
que el costo de producci´on de un producto est´a en funci´on del precio de los materiales usados para su
fabricaci´on; o que la distancia recorrida por un autom´ovil que viaja a rapidez constante depende del
tiempo que est´a en movimiento.
Todas estas ideas apuntan a una relaci´on de dependencia entre variables. Dicha idea fue considerara
por mucho tiempo como significado del concepto de funci´on, pero no devela caracter´ısticas m´as gen´ericas,
profundas e interesantes de la relaci´on entre elementos de dos conjuntos.
Una funci´on f puede entenderse como una m´aquina que realiza un proceso de transformaci´on de
elementos de un conjunto de entrada A a otro conjunto de llegada B, donde todo elemento del conjunto
A tiene un ´unico resultado al ser transformado por f en un elemento de B. As´ı podemos decir que los
elementos de A son procesados por f para ser transformados en elementos de B.
Por ejemplo, al presionar la tecla n de un teclado de notebook estamos generando una se˜nal el´ectrica
´unica (elemento del conjunto de entrada) que es interpretada por el computador (funci´on) para entregar
finalmente la impresi´on de la letra n en la pantalla (conjunto de llegada). Ac´a la transformaci´on es desde el
conjunto de los impulsos el´ectricos del teclado hasta el conjunto de los caracteres impresos en la pantalla
LCD del notebook. Notemos que en esta experiencia cotidiana tenemos la certeza que al presionar la
tecla con el s´ımbolo m aparecer´a en la pantalla ese s´ımbolo y no otro, tanto que podemos asegurar que
todo elemento del conjunto de partida, llamado Dominio, tienen una ´unica “imagen” en el conjunto de
llegada, denominado Codominio.
Si A y B son dos conjuntos no vac´ıos, podemos definir
matem´aticamente una relaci´on f de los elementos de
A en B como una funci´on si:
El dominio coincide con el conjunto de partida
de la relaci´on, es decir Dom(f) = A.
Todo elemento del dominio posee una ´unica
imagen en el codominio.
1.1. Notaci´on
Hay variadas formas de representar una funci´on f de A en B, la que usaremos es la siguiente:
f :
A −→ B
a −→ f(a) = b
Entonces f(a) representa la transformaci´on del elemento a por la
funci´on f lo que da como resultado b. En este sentido diremos que a es
preimagen de b y a su vez b o f(a) es la imagen de a al ser procesada
por f.
Otra manera de mostrar una funci´on es mediante un diagrama
llamado sagital, en donde se representan el conjunto de partida y el de
llegada con flechas que relacionan cada preimagen con su respectiva
imagen.
2
open green
road
1.2. Dominio
Dada una funci´on f de A en B se define matem´aticamente el conjunto dominio Dom(f) como:
f :
A −→ B
a −→ f(a) = b
Entonces
Dom(f) = {a ∈ A|∃b ∈ B : f(a) = b}
Lo cual se lee “Dom(f) es igual al conjunto de todos los a en el conjunto A tal que existe un b en
el conjunto B, de tal manera que f(a) = b”. En otras palabras para f(a) = b el dominio son todos los
valores que puede tomar a en la funci´on.
1.3. Recorrido o conjunto imagen
Es el conjunto de todas las im´agenes de una funci´on. Es un subconjunto del conjunto de llegada que
denominamos anteriormente como codominio y por tal raz´on pueden ocurrir dos cosas:
que el recorrido sea un conjunto m´as peque˜no que el codominio.
que el recorrido coincida completamente con el codominio.
Matem´aticamente el recorrido Rec(f) se define como:
Rec(f) = {b ∈ B : b = f(a) ∀a ∈ A}
Lo cual se lee “Rec(f) es el conjunto de todos los b en el conjunto B tal que b es imagen de a, para
todo a en el conjunto A.”
 Ejemplo
Determinar si el siguientes diagrama sagital representa una funci´on.
Soluci´on: Para que la relaci´on f entre los conjuntos A y B sea una funci´on debe cumplir con:
Todos los elementos del conjunto de partida deben tener una imagen en el conjunto de llegada, es
decir Dom(f) = A.
Todo elemento del dominio posee una ´unica imagen en el codominio.
La primera afirmaci´on se cumple ya que todos los elementos del conjunto A tienen asociado un elemento
en el conjunto B.
Respecto al segundo punto, el elemento 1 tiene asociado las im´agenes a y d, lo cual no puede ocurrir
para que una relaci´on sea funci´on.
De acuerdo a lo anterior, el diagrama sagital no representa una funci´on.
3
open green
road
2. Clasificaci´on de funciones
Podemos clasificar las funciones de manera general en base a la relaci´on que existe entre el dominio,
codominio y recorrido. Para esto consideremos una funci´on f de A en B.
2.1. Epiyectiva o sobreyectiva
Llamamos a una funci´on epiyectiva cuando todo elemento de B es imagen de alg´un elemento de A.
Esto quiere decir que el codominio es igual al recorrido. Un ejemplo de diagrama sagital de una
funci´on epiyectiva es:
En lenguaje algebraico diremos que una funci´on f de A en B es epiyectiva cuando:
Rec(f) = B
2.2. Inyectiva
Decimos que una funci´on es inyectiva cuando cada elemento del recorrido es la imagen de s´olo un
elemento de A. En un diagrama sagital se caracteriza porque s´olo llega una flecha a cada imagen.
Notar que no es necesario que el codominio sea igual al recorrido. A las funciones inyectivas tambi´en
se les conoce como funciones uno a uno. En lenguaje algebraico diremos que una funci´on f de A en B
es inyectiva si:
f(x) = f(y) =⇒ x = y
Dicho en sentido contrario:
f(x) = f(y) =⇒ x = y
En lenguaje cotidiano podr´ıamos traducirlo de esta manera: “Si las im´agenes de dos elementos a y b
son iguales, entonces no queda otra que los elementos a y b sean iguales”.
4
open green
road
2.3. Biyectiva
Se denomina funci´on biyectiva a la funci´on que cumple con ser inyectiva y epiyectiva a la vez. Esto
quiere decir que es uno a uno y que todos los elementos del codominio tienen preimagen. Una repre-
sentaci´on sagital posible es:
Algebraicamente diremos que una funci´on es biyectiva si se cumple que:
Rec(f) = B
f(x) = f(y) =⇒ x = y
2.4. ¿C´omo hallar el dominio y el recorrido de una funci´on?
Cuando pensamos en buscar el dominio de una funci´on, estamos pensando en qu´e valores puede
y no puede tomar x. Para esto debemos fijarnos en los casos extremos, en d´onde se indeterminan
las funciones y cu´ando los valores no pertenecen al conjunto R. Por otro lado, cuando pensamos en el
recorrido de una funci´on estamos pensando en todos los valores que puede tomar b = f(a). Veamos el
siguiente ejemplo:
 Ejemplo
1. Dada la funci´on real f(x) =
1
x
a) Determine Dom(f).
Soluci´on: Notar que la funci´on es real, eso quiere decir que va de R en R, pero si x = 0,
tendremos que
f(x) =
1
x
f(0) =
1
0
Pero la divisi´on por cero no est´a definida, por lo tanto x no puede ser cero. Para los otros
valores no hay problema, entonces:
Dom(f) = R − {0}
5
open green
road
b) Determine Rec(f).
Soluci´on: Para saber qu´e valores no puede tomar y = f(x) despejamos x.
f(x) =
1
x
y =
1
x
xy = 1
x =
1
y
De este resultado podemos notar que y no puede ser cero, ya que la expesi´on se indeterminar´ıa,
entonces:
Rec(f) = R − {0}
2. Dada la funci´on real g(x) =
1
x − 1
a) Deremine Dom(g).
Soluci´on: Nos debemos fijar en los valores para los que la expresi´on
1
x − 1
se indetermina.
En el caso de las fracciones, ´estas se indeterminan cuando el denominador es cero, entonces
estamos buscando que:
x − 1 = 0
x = 1
El dominio de la funci´on ser´an todos los reales menos el valor que indetermina la funci´on:
Dom(g) = R − {1}
b) Hallar Rec(g).
Soluci´on: Para esto despejamos x recordando que g(x) = y.
g(x) =
1
x − 1
y =
1
x − 1
y(x − 1) = 1
x − 1 =
1
y
x =
1
y
+ 1
x =
1 + y
y
Notar que y no puede ser cero, entonces
Rec(g) = R − {0}
6
open green
road
3. Respecto a la funci´on real f(x) =
√
x2 − 1
a) Determine Dom(f).
Soluci´on: Las raices se indeterminan cuando la cantidad subradical es menor que cero. En-
tonces la funci´on de indeterminar´a con todos los x para los cuales la cantidad subradical sea
menor a cero.
x2
− 1  0
x2
 1
√
x2 
√
1
|x|  1
No olvidemos que por definici´on la ra´ız cuadrada de un t´ermino al cuadrado es igual al valor
absoluto del t´ermino. Adem´as hab´ıamos visto que:
|x|  a =⇒ −a  x  a
Aplicando a nuestro caso:
−1  x  1
] − 1, 1[
Para todos estos valores de x, la funci´on se indetermina, por lo tanto, el dominio ser´a igual a
todos los reales que no pertenecen al intervalo ] − 1, 1[, es decir:
Dom(f) =] − ∞, −1] ∪ [1, ∞+]
3. Composici´on de funciones
Retomando la analog´ıa de las funciones como m´aquinas que tranforman los valores de entrada, la
composici´on de funciones consistir´ıa en agregar otra transformaci´on al proceso. Por ejemplo, sea f :
A −→ B una funci´on que procesa los elementos de A y los tranforma en elementos de B mediante una
regla. Los valores de salida que entrega f podr´ıan ser procesados por otra funci´on g : B −→ C que toma
los elementos de salida de f y los lleva a un conjunto C mediante una transformaci´on dada por g.
7
open green
road
Sean A, B y C conjuntos no vac´ıos y consideremos
las funciones f : A −→ B y g : B −→ C, denotamos
a la funci´on g ◦ f como aquella que toma los valores
de f(x) y los transforma por g, de tal manera que la
podemos simbolizar de todas estas formas:
g ◦ f = (g ◦ f)(x) = g (f(x)) ∀x ∈ A
 Ejemplo
1. Sean f(x) = 2x + 1 y g(x) = x2 + 3 dos funciones reales.
a) Determinar g ◦ f.
Soluci´on: Seg´un la definici´on de composici´on g ◦ f = g (f(x)), tenemos:
g ◦ f = g (f(x))
= g (2x + 1)
= (2x + 1)2
+ 3
= (2x)2
+ 2(2x) + 12
+ 3
= 4x2
+ 4x + 4
b) Determinar (f ◦ g)(x).
Soluci´on: Seg´un la definici´on:
(f ◦ g)(x) = f (g(x))
= f x2
+ 3
= 2(x2
+ 3) + 1
= 2x2
+ 6 + 1
= 2x2
+ 7
Con este ejemplo podemos notar que la composici´on de funciones no es conmutativa, es
decir:
g ◦ f = f ◦ g
Pero la composici´on de funciones s´ı es asociativa, esto quiere decir que:
f ◦ (g ◦ h) = (f ◦ g) ◦ h
A continuaci´on presentamos un ejemplo en donde se puede comprobar el comportamiento
asociativo de la composici´on de funciones.
8
open green
road
2. Dadas las funciones reales f(x) = x2 + 2x + 1, g(x) = 2x − 3 y h(x) = x + 2
a) Determinar f ◦ (g ◦ h).
Soluci´on:
f ◦ (g ◦ h) = f(g(h(x))
= f (g(x + 2))
= f (2(x + 2) − 3)
= f(2x + 4 − 3)
= f(2x + 1)
= (2x + 1)2
+ 2(2x + 1) + 1
= 4x2
+ 4x + 1 + 4x + 2 + 1
= 4x2
+ 8x + 4
b) Determinar (f ◦ g) ◦ h.
Soluci´on:
(f ◦ g) ◦ h = f(g(x)) ◦ h(x)
= f(2x − 3) ◦ h(x)
= [(2x − 3)2
+ 2(2x − 3) + 1] ◦ h(x)
= [4x2
− 8x + 4] ◦ h(x)
= [4x2
− 8x + 4] ◦ [x + 2]
= 4(x + 2)2
− 8(x + 2) + 4
= 4x2
+ 8x + 4
Con este resultado hemos mostrado que la composici´on de funciones es asociativa.
4. Funci´on inversa
Consideremos la funci´on biyectiva f : A −→ B como en el diagrama sagital.
9
open green
road
Fijemos la mirada en alg´un elemento de B como r. Notemos que existe un elemento x en A tal que
f(x) = r, de hecho dicho elemento es 2:
f(2) = r
Para los dem´as elementos tenemos que
f(1) = p
f(2) = r
f(3) = q
f(4) = s
En base a lo anterior podemos definir una funci´on denominada f−1 que busca las preim´agenes de B
seg´un la funci´on f(x), es decir, para cada elemento y en B, esta funci´on obtiene aquel x en A tal que
y = f(x). El diagrama sagital que describe tal situaci´on para la funci´on anterior es:
Algebraicamente la funci´on inversa de:
f :
A −→ B
x −→ f(x) = y
es
f−1
:
B −→ A
y −→ f−1(y) = x
En resumen f−1(y) = x s´ı y s´olo si y = f(x)
4.1. ¿C´omo encontrar la funci´on inversa de una funci´on?
No toda funci´on tiene una inversa, ya que para que exista tal funci´on es necesario que ´esta sea
biyectiva. Veamos el siguiente ejemplo donde mostramos una t´ecnica para hallar la funci´on inversa.
 Ejemplo
Dada la funci´on f(x) = 2x + 3 definida de R en R
1. Encontrar f−1(x).
10
open green
road
Soluci´on: f(x) es biyectiva1. Para encontrar f−1 primero despejamos x en funci´on de y = f(x).
f(x) = 2x + 3
y = 2x + 3
y − 3 = 2x
y − 3
2
= x
x =
y − 3
2
Por definici´on de la funci´on inversa x = f−1(y) entonces,
x =
y − 3
2
f−1
(y) =
y − 3
2
Con esto ya hemos encontrado la funci´on inversa de f pero se acostumbra a nombrar por x a la
variable de la funci´on, por este motivo el segundo paso es renombrar la variable y por x.
f−1
(y) =
y − 3
2
f−1
(x) =
x − 3
2
2. Hallar f−1 ◦ f.
Soluci´on:
f−1
◦ f = f−1
(f(x))
= f−1
(2x + 3)
=
(2x − 3) + 3
2
=
2x − 3 + 3
2
=
2x
2
= x
Entonces f−1(f(x)) = x. Este resultado no es casualidad, de hecho se cumple para cualquier funci´on
con su funci´on inversa.
Dada una funci´on f(x) biyectiva cualquiera y su fun-
ci´on inversa f−1(x), entonces
f−1
(f(x)) = x
1
La demostraci´on la dejamos como ejercicio.
11
open green
road
5. Gr´afica de una funci´on
La gr´afica de una funci´on corresponde a la representaci´on mediante una cur-
va en el plano cartesiano. Dicha curva se compone de todos los pares ordenados
(x, y) tales que y = f(x). En lenguaje algebraico se escribe como:
Curva = {(x, y) | y = f(x)}
Las gr´aficas son igual de importantes que sus formas algebraicas porque
nos permiten apreciar el comportamiento de ´estas, identificar si tienen alguna
tendencia, d´onde se intersectan, c´uando son positivas, cu´antas veces cruzan el
eje X, el dominio y recorrido entre otras.
La gr´afica de cada funci´on la veremos en los cap´ıtulos correspondientes a
ellas.
 Ejercicios 1
1. Sea f(x) = 3x + 1 una funci´on de R en R.
a) Determinar Dom(f)
b) Determinar Rec(f)
c) Mostrar que f(x) es inyectiva
d) Mostrar que f(x) es sobreyectiva
e) Hallar f−1(x)
f ) Verificar que f−1(f(x)) = x
2. Sea f(x) =
a
1 − x
a) Defina Dom(f) en los reales
b) Defina el recorrido de f(x) en los reales
c) Calcule f ◦ f ◦ f
d) ¿Es inyectiva la funci´on?
e) ¿Es epiyectiva la funci´on?
f ) ¿Es biyectiva f(x)? y si lo es encuentre f−1(x)
Bibliograf´ıa
[1 ] Apuntes de ´Algebra I, Tomo I, Segunda edici´on 1993, Facultad de Ciencias, USACH
Antonio Orellana Lobos.
[2 ] Apuntes ´Algebra, Edici´on 2003, Facultad de Ciencias, USACH
Ricardo Santander Baeza.
12

Más contenido relacionado

La actualidad más candente

Funciones. matemática
Funciones. matemáticaFunciones. matemática
Funciones. matemáticaSorayaPrado28
 
Las funciones matemáticas
Las funciones matemáticasLas funciones matemáticas
Las funciones matemáticaseduarderic
 
Presentaciòn de funciones matemàticas..
Presentaciòn de funciones matemàticas..Presentaciòn de funciones matemàticas..
Presentaciòn de funciones matemàticas..stheprinces
 
Relaciones y funciones
Relaciones y funcionesRelaciones y funciones
Relaciones y funcionesCarlos Morales
 
Presentacion funciones
Presentacion funcionesPresentacion funciones
Presentacion funcionesJulian Andres
 
Fun. inyectivas, sobreyectivas, biyectivas, identidad y constante
Fun. inyectivas, sobreyectivas, biyectivas, identidad  y constanteFun. inyectivas, sobreyectivas, biyectivas, identidad  y constante
Fun. inyectivas, sobreyectivas, biyectivas, identidad y constanteana_delmy
 
Funciones
FuncionesFunciones
FuncionesFcachoc
 
funciones
funciones funciones
funciones scholem
 
Relaciones,Funciones y clasificación de funciones.
Relaciones,Funciones y clasificación de funciones.Relaciones,Funciones y clasificación de funciones.
Relaciones,Funciones y clasificación de funciones.josevicentt
 
Funciones Presentacion
Funciones   PresentacionFunciones   Presentacion
Funciones PresentacionSUSANA
 
Funciones Polinómicas. Introducción
Funciones Polinómicas. IntroducciónFunciones Polinómicas. Introducción
Funciones Polinómicas. IntroducciónDiana Pizzini
 
Diferencia entre una función y una relación
Diferencia entre una función y una relaciónDiferencia entre una función y una relación
Diferencia entre una función y una relaciónNazth Dleon
 
Matemáticas básicas tipos de funciones
Matemáticas básicas   tipos de funcionesMatemáticas básicas   tipos de funciones
Matemáticas básicas tipos de funcionesJardiel_Zamora
 
FUNCIONES (MATEMÁTICAS)
FUNCIONES (MATEMÁTICAS)FUNCIONES (MATEMÁTICAS)
FUNCIONES (MATEMÁTICAS)Kennia T
 
Funcion lineal
Funcion linealFuncion lineal
Funcion linealolpa12
 
Representación gráfica de los tipos funciones y Función valor Absoluto
Representación gráfica de los tipos funciones y Función valor AbsolutoRepresentación gráfica de los tipos funciones y Función valor Absoluto
Representación gráfica de los tipos funciones y Función valor Absolutositayanis
 

La actualidad más candente (20)

Funciones. matemática
Funciones. matemáticaFunciones. matemática
Funciones. matemática
 
Las funciones matemáticas
Las funciones matemáticasLas funciones matemáticas
Las funciones matemáticas
 
Presentaciòn de funciones matemàticas..
Presentaciòn de funciones matemàticas..Presentaciòn de funciones matemàticas..
Presentaciòn de funciones matemàticas..
 
Relaciones y funciones
Relaciones y funcionesRelaciones y funciones
Relaciones y funciones
 
Presentacion funciones
Presentacion funcionesPresentacion funciones
Presentacion funciones
 
Funciones
FuncionesFunciones
Funciones
 
Fun. inyectivas, sobreyectivas, biyectivas, identidad y constante
Fun. inyectivas, sobreyectivas, biyectivas, identidad  y constanteFun. inyectivas, sobreyectivas, biyectivas, identidad  y constante
Fun. inyectivas, sobreyectivas, biyectivas, identidad y constante
 
Funciones
FuncionesFunciones
Funciones
 
Elementos de la funcion
Elementos de la funcionElementos de la funcion
Elementos de la funcion
 
funciones
funciones funciones
funciones
 
Relaciones,Funciones y clasificación de funciones.
Relaciones,Funciones y clasificación de funciones.Relaciones,Funciones y clasificación de funciones.
Relaciones,Funciones y clasificación de funciones.
 
Funciones Presentacion
Funciones   PresentacionFunciones   Presentacion
Funciones Presentacion
 
Funciones Polinómicas. Introducción
Funciones Polinómicas. IntroducciónFunciones Polinómicas. Introducción
Funciones Polinómicas. Introducción
 
Diferencia entre una función y una relación
Diferencia entre una función y una relaciónDiferencia entre una función y una relación
Diferencia entre una función y una relación
 
Matemáticas básicas tipos de funciones
Matemáticas básicas   tipos de funcionesMatemáticas básicas   tipos de funciones
Matemáticas básicas tipos de funciones
 
Concepto y representación de funciones
Concepto y representación de funcionesConcepto y representación de funciones
Concepto y representación de funciones
 
FUNCIONES (MATEMÁTICAS)
FUNCIONES (MATEMÁTICAS)FUNCIONES (MATEMÁTICAS)
FUNCIONES (MATEMÁTICAS)
 
Funcion lineal
Funcion linealFuncion lineal
Funcion lineal
 
Todo sobre las funciones
Todo sobre las funcionesTodo sobre las funciones
Todo sobre las funciones
 
Representación gráfica de los tipos funciones y Función valor Absoluto
Representación gráfica de los tipos funciones y Función valor AbsolutoRepresentación gráfica de los tipos funciones y Función valor Absoluto
Representación gráfica de los tipos funciones y Función valor Absoluto
 

Destacado

Presentación de Funciones Matemáticas
Presentación de Funciones MatemáticasPresentación de Funciones Matemáticas
Presentación de Funciones MatemáticasOteroOscar
 
Taller de repaso funciones
Taller de repaso funcionesTaller de repaso funciones
Taller de repaso funcionesenriqueszyfer
 

Destacado (6)

Funciones matematicas
Funciones matematicasFunciones matematicas
Funciones matematicas
 
Presentación de Funciones Matemáticas
Presentación de Funciones MatemáticasPresentación de Funciones Matemáticas
Presentación de Funciones Matemáticas
 
Funciones Matemáticas
Funciones MatemáticasFunciones Matemáticas
Funciones Matemáticas
 
Taller de repaso funciones
Taller de repaso funcionesTaller de repaso funciones
Taller de repaso funciones
 
Funciones Matematicas
Funciones MatematicasFunciones Matematicas
Funciones Matematicas
 
Propiedades de las funciones (slide share)
Propiedades de las funciones (slide share)Propiedades de las funciones (slide share)
Propiedades de las funciones (slide share)
 

Similar a guia funciones matematicas (20)

Delavalle betina lujan act 2 u2
Delavalle betina lujan act 2 u2Delavalle betina lujan act 2 u2
Delavalle betina lujan act 2 u2
 
Funciones reales (jose valor)
Funciones reales (jose valor)Funciones reales (jose valor)
Funciones reales (jose valor)
 
Funciones
FuncionesFunciones
Funciones
 
Funciones.pdf 01
Funciones.pdf  01Funciones.pdf  01
Funciones.pdf 01
 
Funciones
FuncionesFunciones
Funciones
 
pdf-monografia-integrales.docx
pdf-monografia-integrales.docxpdf-monografia-integrales.docx
pdf-monografia-integrales.docx
 
Funciones para el jueves
Funciones para el juevesFunciones para el jueves
Funciones para el jueves
 
Tema3
Tema3Tema3
Tema3
 
Funciones y preguntas tipo test
Funciones y preguntas tipo testFunciones y preguntas tipo test
Funciones y preguntas tipo test
 
Funciones reales
Funciones realesFunciones reales
Funciones reales
 
Funciones
FuncionesFunciones
Funciones
 
Unidad1 calculo
Unidad1 calculoUnidad1 calculo
Unidad1 calculo
 
Integrales dobles
Integrales doblesIntegrales dobles
Integrales dobles
 
Tic9°
Tic9°Tic9°
Tic9°
 
Funciones
FuncionesFunciones
Funciones
 
Clase 2
Clase 2 Clase 2
Clase 2
 
FUNCIONES REALES
FUNCIONES REALESFUNCIONES REALES
FUNCIONES REALES
 
FASE DE PLANIFICACIÓN
FASE DE PLANIFICACIÓNFASE DE PLANIFICACIÓN
FASE DE PLANIFICACIÓN
 
Dominio y rango
Dominio y rangoDominio y rango
Dominio y rango
 
Funcion valor abs.
Funcion valor abs.Funcion valor abs.
Funcion valor abs.
 

Más de Pamela Elizabeth Andaeta Canio (8)

Disposiciones poder punitivo
Disposiciones poder punitivoDisposiciones poder punitivo
Disposiciones poder punitivo
 
Pauta de estudio derechos de bienes
Pauta de estudio derechos de bienesPauta de estudio derechos de bienes
Pauta de estudio derechos de bienes
 
Derechos reales
Derechos realesDerechos reales
Derechos reales
 
Conceptos de derechos reales
Conceptos de derechos realesConceptos de derechos reales
Conceptos de derechos reales
 
Fianza y solidaridad
Fianza y  solidaridadFianza y  solidaridad
Fianza y solidaridad
 
Mapa UAI
Mapa UAIMapa UAI
Mapa UAI
 
55774074 rawls-detmold-zimmermann (1)
55774074 rawls-detmold-zimmermann (1)55774074 rawls-detmold-zimmermann (1)
55774074 rawls-detmold-zimmermann (1)
 
Detalle pruebas recreativas alianzas 2014
Detalle pruebas recreativas alianzas 2014Detalle pruebas recreativas alianzas 2014
Detalle pruebas recreativas alianzas 2014
 

Último

CULTURA NAZCA, presentación en aula para compartir
CULTURA NAZCA, presentación en aula para compartirCULTURA NAZCA, presentación en aula para compartir
CULTURA NAZCA, presentación en aula para compartirPaddySydney1
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 
Flores Nacionales de América Latina - Botánica
Flores Nacionales de América Latina - BotánicaFlores Nacionales de América Latina - Botánica
Flores Nacionales de América Latina - BotánicaJuan Carlos Fonseca Mata
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxMapyMerma1
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosCesarFernandez937857
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPELaura Chacón
 
Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfsamyarrocha1
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...fcastellanos3
 
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwe
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtweBROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwe
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwealekzHuri
 
Factores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFactores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFlor Idalia Espinoza Ortega
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PCCesarFernandez937857
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para eventoDiegoMtsS
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleJonathanCovena1
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxAna Fernandez
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteJuan Hernandez
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...JAVIER SOLIS NOYOLA
 

Último (20)

Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
CULTURA NAZCA, presentación en aula para compartir
CULTURA NAZCA, presentación en aula para compartirCULTURA NAZCA, presentación en aula para compartir
CULTURA NAZCA, presentación en aula para compartir
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
Flores Nacionales de América Latina - Botánica
Flores Nacionales de América Latina - BotánicaFlores Nacionales de América Latina - Botánica
Flores Nacionales de América Latina - Botánica
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptx
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos Básicos
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPE
 
Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdf
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
 
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwe
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtweBROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwe
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwe
 
Factores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFactores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamica
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PC
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para evento
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo Sostenible
 
La Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdfLa Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdf
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docx
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parte
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
Sesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdfSesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdf
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
 

guia funciones matematicas

  • 2. open green road 1. Concepto de funci´on M´as de una vez habremos escuchado que el ´area de un cuadrado depende de la longitud de su lado; que el costo de producci´on de un producto est´a en funci´on del precio de los materiales usados para su fabricaci´on; o que la distancia recorrida por un autom´ovil que viaja a rapidez constante depende del tiempo que est´a en movimiento. Todas estas ideas apuntan a una relaci´on de dependencia entre variables. Dicha idea fue considerara por mucho tiempo como significado del concepto de funci´on, pero no devela caracter´ısticas m´as gen´ericas, profundas e interesantes de la relaci´on entre elementos de dos conjuntos. Una funci´on f puede entenderse como una m´aquina que realiza un proceso de transformaci´on de elementos de un conjunto de entrada A a otro conjunto de llegada B, donde todo elemento del conjunto A tiene un ´unico resultado al ser transformado por f en un elemento de B. As´ı podemos decir que los elementos de A son procesados por f para ser transformados en elementos de B. Por ejemplo, al presionar la tecla n de un teclado de notebook estamos generando una se˜nal el´ectrica ´unica (elemento del conjunto de entrada) que es interpretada por el computador (funci´on) para entregar finalmente la impresi´on de la letra n en la pantalla (conjunto de llegada). Ac´a la transformaci´on es desde el conjunto de los impulsos el´ectricos del teclado hasta el conjunto de los caracteres impresos en la pantalla LCD del notebook. Notemos que en esta experiencia cotidiana tenemos la certeza que al presionar la tecla con el s´ımbolo m aparecer´a en la pantalla ese s´ımbolo y no otro, tanto que podemos asegurar que todo elemento del conjunto de partida, llamado Dominio, tienen una ´unica “imagen” en el conjunto de llegada, denominado Codominio. Si A y B son dos conjuntos no vac´ıos, podemos definir matem´aticamente una relaci´on f de los elementos de A en B como una funci´on si: El dominio coincide con el conjunto de partida de la relaci´on, es decir Dom(f) = A. Todo elemento del dominio posee una ´unica imagen en el codominio. 1.1. Notaci´on Hay variadas formas de representar una funci´on f de A en B, la que usaremos es la siguiente: f : A −→ B a −→ f(a) = b Entonces f(a) representa la transformaci´on del elemento a por la funci´on f lo que da como resultado b. En este sentido diremos que a es preimagen de b y a su vez b o f(a) es la imagen de a al ser procesada por f. Otra manera de mostrar una funci´on es mediante un diagrama llamado sagital, en donde se representan el conjunto de partida y el de llegada con flechas que relacionan cada preimagen con su respectiva imagen. 2
  • 3. open green road 1.2. Dominio Dada una funci´on f de A en B se define matem´aticamente el conjunto dominio Dom(f) como: f : A −→ B a −→ f(a) = b Entonces Dom(f) = {a ∈ A|∃b ∈ B : f(a) = b} Lo cual se lee “Dom(f) es igual al conjunto de todos los a en el conjunto A tal que existe un b en el conjunto B, de tal manera que f(a) = b”. En otras palabras para f(a) = b el dominio son todos los valores que puede tomar a en la funci´on. 1.3. Recorrido o conjunto imagen Es el conjunto de todas las im´agenes de una funci´on. Es un subconjunto del conjunto de llegada que denominamos anteriormente como codominio y por tal raz´on pueden ocurrir dos cosas: que el recorrido sea un conjunto m´as peque˜no que el codominio. que el recorrido coincida completamente con el codominio. Matem´aticamente el recorrido Rec(f) se define como: Rec(f) = {b ∈ B : b = f(a) ∀a ∈ A} Lo cual se lee “Rec(f) es el conjunto de todos los b en el conjunto B tal que b es imagen de a, para todo a en el conjunto A.” Ejemplo Determinar si el siguientes diagrama sagital representa una funci´on. Soluci´on: Para que la relaci´on f entre los conjuntos A y B sea una funci´on debe cumplir con: Todos los elementos del conjunto de partida deben tener una imagen en el conjunto de llegada, es decir Dom(f) = A. Todo elemento del dominio posee una ´unica imagen en el codominio. La primera afirmaci´on se cumple ya que todos los elementos del conjunto A tienen asociado un elemento en el conjunto B. Respecto al segundo punto, el elemento 1 tiene asociado las im´agenes a y d, lo cual no puede ocurrir para que una relaci´on sea funci´on. De acuerdo a lo anterior, el diagrama sagital no representa una funci´on. 3
  • 4. open green road 2. Clasificaci´on de funciones Podemos clasificar las funciones de manera general en base a la relaci´on que existe entre el dominio, codominio y recorrido. Para esto consideremos una funci´on f de A en B. 2.1. Epiyectiva o sobreyectiva Llamamos a una funci´on epiyectiva cuando todo elemento de B es imagen de alg´un elemento de A. Esto quiere decir que el codominio es igual al recorrido. Un ejemplo de diagrama sagital de una funci´on epiyectiva es: En lenguaje algebraico diremos que una funci´on f de A en B es epiyectiva cuando: Rec(f) = B 2.2. Inyectiva Decimos que una funci´on es inyectiva cuando cada elemento del recorrido es la imagen de s´olo un elemento de A. En un diagrama sagital se caracteriza porque s´olo llega una flecha a cada imagen. Notar que no es necesario que el codominio sea igual al recorrido. A las funciones inyectivas tambi´en se les conoce como funciones uno a uno. En lenguaje algebraico diremos que una funci´on f de A en B es inyectiva si: f(x) = f(y) =⇒ x = y Dicho en sentido contrario: f(x) = f(y) =⇒ x = y En lenguaje cotidiano podr´ıamos traducirlo de esta manera: “Si las im´agenes de dos elementos a y b son iguales, entonces no queda otra que los elementos a y b sean iguales”. 4
  • 5. open green road 2.3. Biyectiva Se denomina funci´on biyectiva a la funci´on que cumple con ser inyectiva y epiyectiva a la vez. Esto quiere decir que es uno a uno y que todos los elementos del codominio tienen preimagen. Una repre- sentaci´on sagital posible es: Algebraicamente diremos que una funci´on es biyectiva si se cumple que: Rec(f) = B f(x) = f(y) =⇒ x = y 2.4. ¿C´omo hallar el dominio y el recorrido de una funci´on? Cuando pensamos en buscar el dominio de una funci´on, estamos pensando en qu´e valores puede y no puede tomar x. Para esto debemos fijarnos en los casos extremos, en d´onde se indeterminan las funciones y cu´ando los valores no pertenecen al conjunto R. Por otro lado, cuando pensamos en el recorrido de una funci´on estamos pensando en todos los valores que puede tomar b = f(a). Veamos el siguiente ejemplo: Ejemplo 1. Dada la funci´on real f(x) = 1 x a) Determine Dom(f). Soluci´on: Notar que la funci´on es real, eso quiere decir que va de R en R, pero si x = 0, tendremos que f(x) = 1 x f(0) = 1 0 Pero la divisi´on por cero no est´a definida, por lo tanto x no puede ser cero. Para los otros valores no hay problema, entonces: Dom(f) = R − {0} 5
  • 6. open green road b) Determine Rec(f). Soluci´on: Para saber qu´e valores no puede tomar y = f(x) despejamos x. f(x) = 1 x y = 1 x xy = 1 x = 1 y De este resultado podemos notar que y no puede ser cero, ya que la expesi´on se indeterminar´ıa, entonces: Rec(f) = R − {0} 2. Dada la funci´on real g(x) = 1 x − 1 a) Deremine Dom(g). Soluci´on: Nos debemos fijar en los valores para los que la expresi´on 1 x − 1 se indetermina. En el caso de las fracciones, ´estas se indeterminan cuando el denominador es cero, entonces estamos buscando que: x − 1 = 0 x = 1 El dominio de la funci´on ser´an todos los reales menos el valor que indetermina la funci´on: Dom(g) = R − {1} b) Hallar Rec(g). Soluci´on: Para esto despejamos x recordando que g(x) = y. g(x) = 1 x − 1 y = 1 x − 1 y(x − 1) = 1 x − 1 = 1 y x = 1 y + 1 x = 1 + y y Notar que y no puede ser cero, entonces Rec(g) = R − {0} 6
  • 7. open green road 3. Respecto a la funci´on real f(x) = √ x2 − 1 a) Determine Dom(f). Soluci´on: Las raices se indeterminan cuando la cantidad subradical es menor que cero. En- tonces la funci´on de indeterminar´a con todos los x para los cuales la cantidad subradical sea menor a cero. x2 − 1 0 x2 1 √ x2 √ 1 |x| 1 No olvidemos que por definici´on la ra´ız cuadrada de un t´ermino al cuadrado es igual al valor absoluto del t´ermino. Adem´as hab´ıamos visto que: |x| a =⇒ −a x a Aplicando a nuestro caso: −1 x 1 ] − 1, 1[ Para todos estos valores de x, la funci´on se indetermina, por lo tanto, el dominio ser´a igual a todos los reales que no pertenecen al intervalo ] − 1, 1[, es decir: Dom(f) =] − ∞, −1] ∪ [1, ∞+] 3. Composici´on de funciones Retomando la analog´ıa de las funciones como m´aquinas que tranforman los valores de entrada, la composici´on de funciones consistir´ıa en agregar otra transformaci´on al proceso. Por ejemplo, sea f : A −→ B una funci´on que procesa los elementos de A y los tranforma en elementos de B mediante una regla. Los valores de salida que entrega f podr´ıan ser procesados por otra funci´on g : B −→ C que toma los elementos de salida de f y los lleva a un conjunto C mediante una transformaci´on dada por g. 7
  • 8. open green road Sean A, B y C conjuntos no vac´ıos y consideremos las funciones f : A −→ B y g : B −→ C, denotamos a la funci´on g ◦ f como aquella que toma los valores de f(x) y los transforma por g, de tal manera que la podemos simbolizar de todas estas formas: g ◦ f = (g ◦ f)(x) = g (f(x)) ∀x ∈ A Ejemplo 1. Sean f(x) = 2x + 1 y g(x) = x2 + 3 dos funciones reales. a) Determinar g ◦ f. Soluci´on: Seg´un la definici´on de composici´on g ◦ f = g (f(x)), tenemos: g ◦ f = g (f(x)) = g (2x + 1) = (2x + 1)2 + 3 = (2x)2 + 2(2x) + 12 + 3 = 4x2 + 4x + 4 b) Determinar (f ◦ g)(x). Soluci´on: Seg´un la definici´on: (f ◦ g)(x) = f (g(x)) = f x2 + 3 = 2(x2 + 3) + 1 = 2x2 + 6 + 1 = 2x2 + 7 Con este ejemplo podemos notar que la composici´on de funciones no es conmutativa, es decir: g ◦ f = f ◦ g Pero la composici´on de funciones s´ı es asociativa, esto quiere decir que: f ◦ (g ◦ h) = (f ◦ g) ◦ h A continuaci´on presentamos un ejemplo en donde se puede comprobar el comportamiento asociativo de la composici´on de funciones. 8
  • 9. open green road 2. Dadas las funciones reales f(x) = x2 + 2x + 1, g(x) = 2x − 3 y h(x) = x + 2 a) Determinar f ◦ (g ◦ h). Soluci´on: f ◦ (g ◦ h) = f(g(h(x)) = f (g(x + 2)) = f (2(x + 2) − 3) = f(2x + 4 − 3) = f(2x + 1) = (2x + 1)2 + 2(2x + 1) + 1 = 4x2 + 4x + 1 + 4x + 2 + 1 = 4x2 + 8x + 4 b) Determinar (f ◦ g) ◦ h. Soluci´on: (f ◦ g) ◦ h = f(g(x)) ◦ h(x) = f(2x − 3) ◦ h(x) = [(2x − 3)2 + 2(2x − 3) + 1] ◦ h(x) = [4x2 − 8x + 4] ◦ h(x) = [4x2 − 8x + 4] ◦ [x + 2] = 4(x + 2)2 − 8(x + 2) + 4 = 4x2 + 8x + 4 Con este resultado hemos mostrado que la composici´on de funciones es asociativa. 4. Funci´on inversa Consideremos la funci´on biyectiva f : A −→ B como en el diagrama sagital. 9
  • 10. open green road Fijemos la mirada en alg´un elemento de B como r. Notemos que existe un elemento x en A tal que f(x) = r, de hecho dicho elemento es 2: f(2) = r Para los dem´as elementos tenemos que f(1) = p f(2) = r f(3) = q f(4) = s En base a lo anterior podemos definir una funci´on denominada f−1 que busca las preim´agenes de B seg´un la funci´on f(x), es decir, para cada elemento y en B, esta funci´on obtiene aquel x en A tal que y = f(x). El diagrama sagital que describe tal situaci´on para la funci´on anterior es: Algebraicamente la funci´on inversa de: f : A −→ B x −→ f(x) = y es f−1 : B −→ A y −→ f−1(y) = x En resumen f−1(y) = x s´ı y s´olo si y = f(x) 4.1. ¿C´omo encontrar la funci´on inversa de una funci´on? No toda funci´on tiene una inversa, ya que para que exista tal funci´on es necesario que ´esta sea biyectiva. Veamos el siguiente ejemplo donde mostramos una t´ecnica para hallar la funci´on inversa. Ejemplo Dada la funci´on f(x) = 2x + 3 definida de R en R 1. Encontrar f−1(x). 10
  • 11. open green road Soluci´on: f(x) es biyectiva1. Para encontrar f−1 primero despejamos x en funci´on de y = f(x). f(x) = 2x + 3 y = 2x + 3 y − 3 = 2x y − 3 2 = x x = y − 3 2 Por definici´on de la funci´on inversa x = f−1(y) entonces, x = y − 3 2 f−1 (y) = y − 3 2 Con esto ya hemos encontrado la funci´on inversa de f pero se acostumbra a nombrar por x a la variable de la funci´on, por este motivo el segundo paso es renombrar la variable y por x. f−1 (y) = y − 3 2 f−1 (x) = x − 3 2 2. Hallar f−1 ◦ f. Soluci´on: f−1 ◦ f = f−1 (f(x)) = f−1 (2x + 3) = (2x − 3) + 3 2 = 2x − 3 + 3 2 = 2x 2 = x Entonces f−1(f(x)) = x. Este resultado no es casualidad, de hecho se cumple para cualquier funci´on con su funci´on inversa. Dada una funci´on f(x) biyectiva cualquiera y su fun- ci´on inversa f−1(x), entonces f−1 (f(x)) = x 1 La demostraci´on la dejamos como ejercicio. 11
  • 12. open green road 5. Gr´afica de una funci´on La gr´afica de una funci´on corresponde a la representaci´on mediante una cur- va en el plano cartesiano. Dicha curva se compone de todos los pares ordenados (x, y) tales que y = f(x). En lenguaje algebraico se escribe como: Curva = {(x, y) | y = f(x)} Las gr´aficas son igual de importantes que sus formas algebraicas porque nos permiten apreciar el comportamiento de ´estas, identificar si tienen alguna tendencia, d´onde se intersectan, c´uando son positivas, cu´antas veces cruzan el eje X, el dominio y recorrido entre otras. La gr´afica de cada funci´on la veremos en los cap´ıtulos correspondientes a ellas. Ejercicios 1 1. Sea f(x) = 3x + 1 una funci´on de R en R. a) Determinar Dom(f) b) Determinar Rec(f) c) Mostrar que f(x) es inyectiva d) Mostrar que f(x) es sobreyectiva e) Hallar f−1(x) f ) Verificar que f−1(f(x)) = x 2. Sea f(x) = a 1 − x a) Defina Dom(f) en los reales b) Defina el recorrido de f(x) en los reales c) Calcule f ◦ f ◦ f d) ¿Es inyectiva la funci´on? e) ¿Es epiyectiva la funci´on? f ) ¿Es biyectiva f(x)? y si lo es encuentre f−1(x) Bibliograf´ıa [1 ] Apuntes de ´Algebra I, Tomo I, Segunda edici´on 1993, Facultad de Ciencias, USACH Antonio Orellana Lobos. [2 ] Apuntes ´Algebra, Edici´on 2003, Facultad de Ciencias, USACH Ricardo Santander Baeza. 12