SlideShare una empresa de Scribd logo
1 de 29
Sistemas de control Tecnología industrial II Antonio Vives
Definición de control ,[object Object],[object Object]
Sistema de control ,[object Object],[object Object],[object Object],[object Object],[object Object]
Historia del control automático ,[object Object],El reloj de  Ktesibius  fue construido alrededor de  250 AC . Es considerado el primer sistema de control automático de la historia.   Flotador con válvula Flotador con  apuntador
Historia del control automático Publicó un libro denominado  Pneumatica  en donde se describen varios mecanismos de nivel de agua con reguladores de flotador. La Fuente mágica de  Herón de Alejandría Herón de Alejandría (100 D. C.) Medidor de tiempo
Historia del control automático Sin embargo el primer trabajo significativo en control con realimentación automáticafue el regulador centrífugo de  James Watt , desarrollado en  1769   Esquema de Regulador de velocidad moderno Motor Carga Engranes Combustible Cierra Abre Aceite a presión Válvula de control
Definiciones ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Tipos de sistemas de Control ,[object Object],[object Object],[object Object]
Representación de los sistemas de control ,[object Object],[object Object],[object Object]
La función de transferencia Podemos calcular la función de transferencia en circuitos eléctricos En un circuito eléctrico la función será: FDT = Vout/Vin Teniendo en cuenta la impedancia de algunos componentes como la bobina y el condensador podemos calcular la FDT  : Impedancia de la bobina: Impedancia del condensador: Siendo: Aplicando Transformada de Laplace queda:
La función de transferencia Ejemplos de funciones de transferencia:  Circuito RL Utilizando ley de voltajes de Kirchhoff, se tiene: Aplicando la transformada de Laplace la función de transferencia, queda: L R
Diagramas de bloques La relación causa y efecto de la función de transferencia, permite representar las relaciones de un sistema por medios diagramáticos. Los diagramas de bloques de un sistema son bloques operacionales y unidireccionales que representan la función de transferencia de las variables de interés. Diagrama a bloques ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Consideraciones:
Diagramas de bloques Elementos de un diagrama a bloques Función de transferencia Variable de entrada Variable de salida Flecha: Representa una y solo una variable. La punta de la flecha indica la dirección del flujo de señales. Bloque: Representa la operación matemática que sufre la señal de entrada para producir la señal de salida. Las funciones de transferencia se introducen en los bloques. A los bloques también se les llama ganancia.
Diagramas de bloques Diagrama de bloques de un sistema en lazo cerrado + - punto de suma punto de bifurcación Función de transferencia en lazo abierto Función de transferencia trayectoria directa Función de transferencia lazo cerrado
Reducción de diagrama de bloques Por elementos en paralelo + + Por elementos en serie Diagramas de bloques
Reducción de diagrama de bloques La simplificación de un diagrama de bloques complicado se realiza mediante alguna combinación de las tres formas básicas para reducir bloques y el reordenamiento del diagrama de bloques utilizando reglas del álgebra de los diagramas de bloques. + - Por elementos en lazo cerrado Diagramas de bloques
Diagramas de bloques Reducción de diagrama de bloques Reglas del álgebra de los diagramas de bloques + - + - Diagrama de bloques original Diagrama de bloques equivalente
Diagramas de bloques Reducción de diagrama de bloques Reglas del álgebra de los diagramas de bloques + - + - Diagrama de bloques original Diagrama de bloques equivalente
Estabilidad de sistemas de control 1111111111111111111111111111111111111111111111111111111 Nos quedarán dos ecuaciones, una en el numerador y otra en el denominador. La ecuación de denominador se llamará ecuación característica y para estudiar la estabilidad del sistema tendremos que averiguar las raíces de la ecuación caracterítica.  Es la característica más importante de los sistemas de control, se refiere a que si el sistema es estable o inestable. Definicion .Un  sistema  de control  es estable  si ante cualquier  entrada acotada , el sistema posee una  salida acotada . Para comprobar la estabilidad de un sistema se tiene analiza la función de transferencia.
Estabilidad de sistemas de control 1111111111111111111111111111111111111111111111111111111 Análisis de Estabilidad. La estabilidad de un sistema se puede determinar por la ubicación de los  polos (raíces de la ecuación Característica)  en el plano s. Si alguno de los polos de la ecuación característica se encuentra en el semiplano derecho el sistema es inestable.   Plano s Región estable Región inestable Región estable Región inestable
Estabilidad de sistemas dinámicos 1111111111111111111111111111111111111111111111111111111 Plano s
Estabilidad de sistemas. 1111111111111111111111111111111111111111111111111111111 Criterio de Estabilidad de Routh Un sistema realimentado es estable si todos los polos de lazo cerrado se ubican en el semiplano izquierdo del plano s. Esto es lo mismo a decir que todas   las raíces   de la ecuación característica tienen parte real negativa. cuando no se tiene forma a encontrar las raíces de la ecuación característica… El  criterio de estabilidad de Routh  permite determinar si hay raíces con parte real positiva (inestable) sin necesidad de resolver el polinomio.
Estabilidad de sistemas 1111111111111111111111111111111111111111111111111111111 1º Ecuación característica … 2º Están todos los términos y son todos positivos. 3º Se plantea la siguiente tabla con la ecuación característica y se resuelve.
Estabilidad de sistemas 1111111111111111111111111111111111111111111111111111111 Donde: El criterio de Routh establece que el número de raíces con partes reales positivas es igual al número de cambios de signo de la primera columna.
Estabilidad de sistemas. 1111111111111111111111111111111111111111111111111111111 Ejemplo Sea el siguiente polinomio La condiciones para que todas las raíces tengan parte reales negativas son:
Estabilidad de sistemas dinámicos 1111111111111111111111111111111111111111111111111111111 Ejemplo Sea el siguiente polinomio Hay dos cambios de signo en la primera columna por lo tanto existen dos raíces con partes reales positivas.
Estabilidad de sistemas dinámicos 1111111111111111111111111111111111111111111111111111111 Casos especiales Si un término es cualquier columna es cero y los demás términos no son cero. El elemento cero puede reemplazarse por un número positivo  y continuar. Ejemplo Sea el siguiente polinomio Si el término de arriba y el de debajo del 0 es del mismo signo no existirá cambio de signo, por tanto inestable.
Estabilidad de sistemas dinámicos 1111111111111111111111111111111111111111111111111111111 Casos especiales Si toda un fila es cero hacemos la derivada del de arriba, la colocamos debajo y podemos continuar. Ejemplo Sea el siguiente polinomio Si sale todo positivo estable.
La ecuación característica es Las raíces de la ecuación característica son los polos de lazo cerrado. y dependen del valor de  K Sea el sistema de lazo cerrado + - En lazo cerrado También puede hacerse por Routh Determinar la estabilidad en función de K

Más contenido relacionado

La actualidad más candente

Automatizacion funcion de transferencia
Automatizacion funcion de transferenciaAutomatizacion funcion de transferencia
Automatizacion funcion de transferenciaMiguelFigueroa35
 
124723528 analisis-de-los-sistemas-dinamicos-roncancio
124723528 analisis-de-los-sistemas-dinamicos-roncancio124723528 analisis-de-los-sistemas-dinamicos-roncancio
124723528 analisis-de-los-sistemas-dinamicos-roncancioEdison Gonzalez
 
Criterios de estabilidad Controles Automáticos
Criterios de estabilidad  Controles Automáticos Criterios de estabilidad  Controles Automáticos
Criterios de estabilidad Controles Automáticos Deivis Montilla
 
Diagramas de Flujo de Señales
Diagramas de Flujo de SeñalesDiagramas de Flujo de Señales
Diagramas de Flujo de SeñalesJesus Jimenez
 
Sistemas
SistemasSistemas
Sistemaslichic
 
Controladores no lineales ON-OFF - Controladores lineales P, PI, PD, PID - Pr...
Controladores no lineales ON-OFF - Controladores lineales P, PI, PD, PID - Pr...Controladores no lineales ON-OFF - Controladores lineales P, PI, PD, PID - Pr...
Controladores no lineales ON-OFF - Controladores lineales P, PI, PD, PID - Pr...Matías Gabriel Krujoski
 
Diagramas de bloque y funciones de transferencia Utpl Eet 2010 V1 0
Diagramas de bloque y funciones de transferencia Utpl Eet 2010 V1 0Diagramas de bloque y funciones de transferencia Utpl Eet 2010 V1 0
Diagramas de bloque y funciones de transferencia Utpl Eet 2010 V1 0Jorge Luis Jaramillo
 
Sistemas de primer orden
Sistemas de primer ordenSistemas de primer orden
Sistemas de primer ordenHenry Alvarado
 
Tc4 diagramas bloque
Tc4 diagramas bloqueTc4 diagramas bloque
Tc4 diagramas bloqueMario Blass
 
SISTEMAS DE PRIMER ORDEN SEGUNDO ORDEN Y ORDEN SUPERIOR
SISTEMAS DE PRIMER ORDEN SEGUNDO ORDEN Y ORDEN SUPERIORSISTEMAS DE PRIMER ORDEN SEGUNDO ORDEN Y ORDEN SUPERIOR
SISTEMAS DE PRIMER ORDEN SEGUNDO ORDEN Y ORDEN SUPERIORrainvicc
 
Estudio paramétrico de un sistema dinámico de primer orden
Estudio paramétrico de un sistema dinámico de primer ordenEstudio paramétrico de un sistema dinámico de primer orden
Estudio paramétrico de un sistema dinámico de primer ordenAngel Contreas
 
Control por Retroalimentación de Estado y Diseño de Observadores
Control por Retroalimentación de Estado y Diseño de ObservadoresControl por Retroalimentación de Estado y Diseño de Observadores
Control por Retroalimentación de Estado y Diseño de ObservadoresKarla Carballo Valderrábano
 
diapositivas 270115-1
diapositivas 270115-1diapositivas 270115-1
diapositivas 270115-1Misael Flores
 
Sistemas dinamicos con_simulink
Sistemas dinamicos con_simulinkSistemas dinamicos con_simulink
Sistemas dinamicos con_simulinkMarc Llanos
 

La actualidad más candente (20)

Automatizacion funcion de transferencia
Automatizacion funcion de transferenciaAutomatizacion funcion de transferencia
Automatizacion funcion de transferencia
 
124723528 analisis-de-los-sistemas-dinamicos-roncancio
124723528 analisis-de-los-sistemas-dinamicos-roncancio124723528 analisis-de-los-sistemas-dinamicos-roncancio
124723528 analisis-de-los-sistemas-dinamicos-roncancio
 
Estabilidad
EstabilidadEstabilidad
Estabilidad
 
Criterios de estabilidad Controles Automáticos
Criterios de estabilidad  Controles Automáticos Criterios de estabilidad  Controles Automáticos
Criterios de estabilidad Controles Automáticos
 
Diagramas de Flujo de Señales
Diagramas de Flujo de SeñalesDiagramas de Flujo de Señales
Diagramas de Flujo de Señales
 
Sistemas
SistemasSistemas
Sistemas
 
Controladores no lineales ON-OFF - Controladores lineales P, PI, PD, PID - Pr...
Controladores no lineales ON-OFF - Controladores lineales P, PI, PD, PID - Pr...Controladores no lineales ON-OFF - Controladores lineales P, PI, PD, PID - Pr...
Controladores no lineales ON-OFF - Controladores lineales P, PI, PD, PID - Pr...
 
Clase9mod
Clase9modClase9mod
Clase9mod
 
Diagramas de bloque y funciones de transferencia Utpl Eet 2010 V1 0
Diagramas de bloque y funciones de transferencia Utpl Eet 2010 V1 0Diagramas de bloque y funciones de transferencia Utpl Eet 2010 V1 0
Diagramas de bloque y funciones de transferencia Utpl Eet 2010 V1 0
 
Sistemas de primer orden
Sistemas de primer ordenSistemas de primer orden
Sistemas de primer orden
 
Tc4 diagramas bloque
Tc4 diagramas bloqueTc4 diagramas bloque
Tc4 diagramas bloque
 
Dig2 i
Dig2 iDig2 i
Dig2 i
 
SISTEMAS DE PRIMER ORDEN SEGUNDO ORDEN Y ORDEN SUPERIOR
SISTEMAS DE PRIMER ORDEN SEGUNDO ORDEN Y ORDEN SUPERIORSISTEMAS DE PRIMER ORDEN SEGUNDO ORDEN Y ORDEN SUPERIOR
SISTEMAS DE PRIMER ORDEN SEGUNDO ORDEN Y ORDEN SUPERIOR
 
Estudio paramétrico de un sistema dinámico de primer orden
Estudio paramétrico de un sistema dinámico de primer ordenEstudio paramétrico de un sistema dinámico de primer orden
Estudio paramétrico de un sistema dinámico de primer orden
 
Control no lineal
Control no linealControl no lineal
Control no lineal
 
Sistemas dinamicos de orden superior
Sistemas dinamicos de orden superiorSistemas dinamicos de orden superior
Sistemas dinamicos de orden superior
 
Control por Retroalimentación de Estado y Diseño de Observadores
Control por Retroalimentación de Estado y Diseño de ObservadoresControl por Retroalimentación de Estado y Diseño de Observadores
Control por Retroalimentación de Estado y Diseño de Observadores
 
Control de sistemas no lineales
Control de sistemas no linealesControl de sistemas no lineales
Control de sistemas no lineales
 
diapositivas 270115-1
diapositivas 270115-1diapositivas 270115-1
diapositivas 270115-1
 
Sistemas dinamicos con_simulink
Sistemas dinamicos con_simulinkSistemas dinamicos con_simulink
Sistemas dinamicos con_simulink
 

Similar a Sistemasdecontrol 100430022054-phpapp02

Sistemas%20de%20control.ppt 0
Sistemas%20de%20control.ppt 0Sistemas%20de%20control.ppt 0
Sistemas%20de%20control.ppt 0AlmuPe
 
Unidad II: funcion de transferencia
Unidad II: funcion de transferenciaUnidad II: funcion de transferencia
Unidad II: funcion de transferenciaMayra Peña
 
Servosistemas 2º Bto
Servosistemas 2º BtoServosistemas 2º Bto
Servosistemas 2º Btorlopez33
 
(152106522) 2634854 modelos-matematicos-de-sistemas-fisicos
(152106522) 2634854 modelos-matematicos-de-sistemas-fisicos(152106522) 2634854 modelos-matematicos-de-sistemas-fisicos
(152106522) 2634854 modelos-matematicos-de-sistemas-fisicosAlejandro S
 
Capitulo1 banda muerta
Capitulo1 banda muertaCapitulo1 banda muerta
Capitulo1 banda muertaLuchito Go
 
UDII-SICO-IVT.pdf
UDII-SICO-IVT.pdfUDII-SICO-IVT.pdf
UDII-SICO-IVT.pdfJMOS2
 
Algebra de bloques0
Algebra de bloques0Algebra de bloques0
Algebra de bloques0Mario Audelo
 
TEORIA DE CONTROL - INTRODUCCIÓN A LA TEORIA DE CONTROL
TEORIA DE CONTROL - INTRODUCCIÓN A LA TEORIA DE CONTROLTEORIA DE CONTROL - INTRODUCCIÓN A LA TEORIA DE CONTROL
TEORIA DE CONTROL - INTRODUCCIÓN A LA TEORIA DE CONTROLRodrigoCuellar23
 
Introduccion sistemas de control
Introduccion sistemas de controlIntroduccion sistemas de control
Introduccion sistemas de controlAnaLeon960959
 
Fundamentos de control automatico por carlos gomez
Fundamentos de control automatico por carlos gomezFundamentos de control automatico por carlos gomez
Fundamentos de control automatico por carlos gomezCarlos A. Gomez M.
 
control1_compress.pdf
control1_compress.pdfcontrol1_compress.pdf
control1_compress.pdfeloy villca
 

Similar a Sistemasdecontrol 100430022054-phpapp02 (20)

Sistemas%20de%20control.ppt 0
Sistemas%20de%20control.ppt 0Sistemas%20de%20control.ppt 0
Sistemas%20de%20control.ppt 0
 
Unidad II: funcion de transferencia
Unidad II: funcion de transferenciaUnidad II: funcion de transferencia
Unidad II: funcion de transferencia
 
1.1 Error en estado estable.pptx
1.1 Error en estado estable.pptx1.1 Error en estado estable.pptx
1.1 Error en estado estable.pptx
 
Servosistemas 2º Bto
Servosistemas 2º BtoServosistemas 2º Bto
Servosistemas 2º Bto
 
(152106522) 2634854 modelos-matematicos-de-sistemas-fisicos
(152106522) 2634854 modelos-matematicos-de-sistemas-fisicos(152106522) 2634854 modelos-matematicos-de-sistemas-fisicos
(152106522) 2634854 modelos-matematicos-de-sistemas-fisicos
 
Diagramas bloque
Diagramas bloqueDiagramas bloque
Diagramas bloque
 
Diapositiva estefania
Diapositiva estefaniaDiapositiva estefania
Diapositiva estefania
 
control automatico
control automaticocontrol automatico
control automatico
 
Capitulo1 banda muerta
Capitulo1 banda muertaCapitulo1 banda muerta
Capitulo1 banda muerta
 
Lg transferencia
Lg transferenciaLg transferencia
Lg transferencia
 
UDII-SICO-IVT.pdf
UDII-SICO-IVT.pdfUDII-SICO-IVT.pdf
UDII-SICO-IVT.pdf
 
Algebra de bloques0
Algebra de bloques0Algebra de bloques0
Algebra de bloques0
 
TEORIA DE CONTROL - INTRODUCCIÓN A LA TEORIA DE CONTROL
TEORIA DE CONTROL - INTRODUCCIÓN A LA TEORIA DE CONTROLTEORIA DE CONTROL - INTRODUCCIÓN A LA TEORIA DE CONTROL
TEORIA DE CONTROL - INTRODUCCIÓN A LA TEORIA DE CONTROL
 
Contol
ContolContol
Contol
 
Tipos de control
Tipos de controlTipos de control
Tipos de control
 
Introduccion sistemas de control
Introduccion sistemas de controlIntroduccion sistemas de control
Introduccion sistemas de control
 
Diagramas de bloques
Diagramas de bloquesDiagramas de bloques
Diagramas de bloques
 
Fundamentos de control automatico por carlos gomez
Fundamentos de control automatico por carlos gomezFundamentos de control automatico por carlos gomez
Fundamentos de control automatico por carlos gomez
 
control1_compress.pdf
control1_compress.pdfcontrol1_compress.pdf
control1_compress.pdf
 
Modelado y Simulación de Sistemas Dinámicos
Modelado y Simulación de Sistemas DinámicosModelado y Simulación de Sistemas Dinámicos
Modelado y Simulación de Sistemas Dinámicos
 

Sistemasdecontrol 100430022054-phpapp02

  • 1. Sistemas de control Tecnología industrial II Antonio Vives
  • 2.
  • 3.
  • 4.
  • 5. Historia del control automático Publicó un libro denominado Pneumatica en donde se describen varios mecanismos de nivel de agua con reguladores de flotador. La Fuente mágica de Herón de Alejandría Herón de Alejandría (100 D. C.) Medidor de tiempo
  • 6. Historia del control automático Sin embargo el primer trabajo significativo en control con realimentación automáticafue el regulador centrífugo de James Watt , desarrollado en 1769 Esquema de Regulador de velocidad moderno Motor Carga Engranes Combustible Cierra Abre Aceite a presión Válvula de control
  • 7.
  • 8.
  • 9.
  • 10. La función de transferencia Podemos calcular la función de transferencia en circuitos eléctricos En un circuito eléctrico la función será: FDT = Vout/Vin Teniendo en cuenta la impedancia de algunos componentes como la bobina y el condensador podemos calcular la FDT : Impedancia de la bobina: Impedancia del condensador: Siendo: Aplicando Transformada de Laplace queda:
  • 11. La función de transferencia Ejemplos de funciones de transferencia: Circuito RL Utilizando ley de voltajes de Kirchhoff, se tiene: Aplicando la transformada de Laplace la función de transferencia, queda: L R
  • 12.
  • 13. Diagramas de bloques Elementos de un diagrama a bloques Función de transferencia Variable de entrada Variable de salida Flecha: Representa una y solo una variable. La punta de la flecha indica la dirección del flujo de señales. Bloque: Representa la operación matemática que sufre la señal de entrada para producir la señal de salida. Las funciones de transferencia se introducen en los bloques. A los bloques también se les llama ganancia.
  • 14. Diagramas de bloques Diagrama de bloques de un sistema en lazo cerrado + - punto de suma punto de bifurcación Función de transferencia en lazo abierto Función de transferencia trayectoria directa Función de transferencia lazo cerrado
  • 15. Reducción de diagrama de bloques Por elementos en paralelo + + Por elementos en serie Diagramas de bloques
  • 16. Reducción de diagrama de bloques La simplificación de un diagrama de bloques complicado se realiza mediante alguna combinación de las tres formas básicas para reducir bloques y el reordenamiento del diagrama de bloques utilizando reglas del álgebra de los diagramas de bloques. + - Por elementos en lazo cerrado Diagramas de bloques
  • 17. Diagramas de bloques Reducción de diagrama de bloques Reglas del álgebra de los diagramas de bloques + - + - Diagrama de bloques original Diagrama de bloques equivalente
  • 18. Diagramas de bloques Reducción de diagrama de bloques Reglas del álgebra de los diagramas de bloques + - + - Diagrama de bloques original Diagrama de bloques equivalente
  • 19. Estabilidad de sistemas de control 1111111111111111111111111111111111111111111111111111111 Nos quedarán dos ecuaciones, una en el numerador y otra en el denominador. La ecuación de denominador se llamará ecuación característica y para estudiar la estabilidad del sistema tendremos que averiguar las raíces de la ecuación caracterítica. Es la característica más importante de los sistemas de control, se refiere a que si el sistema es estable o inestable. Definicion .Un sistema de control es estable si ante cualquier entrada acotada , el sistema posee una salida acotada . Para comprobar la estabilidad de un sistema se tiene analiza la función de transferencia.
  • 20. Estabilidad de sistemas de control 1111111111111111111111111111111111111111111111111111111 Análisis de Estabilidad. La estabilidad de un sistema se puede determinar por la ubicación de los polos (raíces de la ecuación Característica) en el plano s. Si alguno de los polos de la ecuación característica se encuentra en el semiplano derecho el sistema es inestable. Plano s Región estable Región inestable Región estable Región inestable
  • 21. Estabilidad de sistemas dinámicos 1111111111111111111111111111111111111111111111111111111 Plano s
  • 22. Estabilidad de sistemas. 1111111111111111111111111111111111111111111111111111111 Criterio de Estabilidad de Routh Un sistema realimentado es estable si todos los polos de lazo cerrado se ubican en el semiplano izquierdo del plano s. Esto es lo mismo a decir que todas las raíces de la ecuación característica tienen parte real negativa. cuando no se tiene forma a encontrar las raíces de la ecuación característica… El criterio de estabilidad de Routh permite determinar si hay raíces con parte real positiva (inestable) sin necesidad de resolver el polinomio.
  • 23. Estabilidad de sistemas 1111111111111111111111111111111111111111111111111111111 1º Ecuación característica … 2º Están todos los términos y son todos positivos. 3º Se plantea la siguiente tabla con la ecuación característica y se resuelve.
  • 24. Estabilidad de sistemas 1111111111111111111111111111111111111111111111111111111 Donde: El criterio de Routh establece que el número de raíces con partes reales positivas es igual al número de cambios de signo de la primera columna.
  • 25. Estabilidad de sistemas. 1111111111111111111111111111111111111111111111111111111 Ejemplo Sea el siguiente polinomio La condiciones para que todas las raíces tengan parte reales negativas son:
  • 26. Estabilidad de sistemas dinámicos 1111111111111111111111111111111111111111111111111111111 Ejemplo Sea el siguiente polinomio Hay dos cambios de signo en la primera columna por lo tanto existen dos raíces con partes reales positivas.
  • 27. Estabilidad de sistemas dinámicos 1111111111111111111111111111111111111111111111111111111 Casos especiales Si un término es cualquier columna es cero y los demás términos no son cero. El elemento cero puede reemplazarse por un número positivo y continuar. Ejemplo Sea el siguiente polinomio Si el término de arriba y el de debajo del 0 es del mismo signo no existirá cambio de signo, por tanto inestable.
  • 28. Estabilidad de sistemas dinámicos 1111111111111111111111111111111111111111111111111111111 Casos especiales Si toda un fila es cero hacemos la derivada del de arriba, la colocamos debajo y podemos continuar. Ejemplo Sea el siguiente polinomio Si sale todo positivo estable.
  • 29. La ecuación característica es Las raíces de la ecuación característica son los polos de lazo cerrado. y dependen del valor de K Sea el sistema de lazo cerrado + - En lazo cerrado También puede hacerse por Routh Determinar la estabilidad en función de K