SlideShare una empresa de Scribd logo
1 de 32
INTRODUCCION
La tierra en su mayor parte contiene agua, la cual compone el 70 % de ella. Por esa razón,
no resulta raro que sea el agua el fluido más comúnmente encontrado durante la
excavación en la construcción de una obra de ingeniería.
El agua principalmente se encuentra en los ríos, lagos, mares, en el suelo como agua
subterránea y otros lugares. Esta proviene de diversas fuentes, pero principalmente de la
lluvia y de la fusión de la nieve.
1. FLUJO UNIDIMENSIONAL
1.1. Concepto
Se dirá que es un flujo unidimensional, cuando todos los vectores de velocidad son
paralelos y de igual magnitud (Fig.1). En otras palabras toda el agua se mueve
paralelamente en una sección transversal de área.
El análisis de esta condición de flujo, resulta ser la más sencilla y fácil de
comprender.
Generalmente esta tiene su aplicación en permeámetros (aparatos de laboratorio)
y otros sistemas sencillos de flujo de agua a través de suelos confinados en tubos y
otras secciones.
Por lo cual, para emplear este tipo de análisis debe tenerse la certeza que el flujo
se comporta de la misma manera que el de la Figura 1.

Fig.1. Condición de flujo en una sola dirección.
1.2. Presión de Flujo (j)
En el permeámetro de laboratorio que se muestra en la Figura 2, se ha introducido
un suelo entre los niveles C-C y B-B. También se ha ubicado cuidadosamente una
válvula que controla la salida del flujo de agua.
Fig. 2. Permeámetro de la Presión de Flujo.
Por el reservorio superior, se ingresa una cantidad constante de flujo, de tal
manera que ocasiona un flujo ascendente en el suelo hasta alcanzar el nivel A-A y
salir por la válvula. El flujo ascendente de agua, produce una presión que actúa
sobre las partículas del suelo llamada presión del flujoque depende de la altura de
carga ( ), está presión ascendentelevantará a las partículas del suelo haciéndolas
flotar, a este estado que llega el suelo se lo denomina flotación. Si se cerrara la
válvula, el agua ascenderá hasta el nivel O-O, donde el sistema se mantendrá en
equilibrio y no existirá flujo de agua. La cantidad de agua comprendida en los
niveles A-A y O-O, ejerce la presión necesaria que contrarresta está presión
ascendente del flujo. Entonces, la presión que ejerce el agua comprendida en los
niveles A-A y O-O denominada como , será:

Como la velocidad de flujo es constante, la presión de flujo que actúa sobre el
suelo también será constante entre C-C y B-B. Por lo tanto la presión de flujopor
unidad de volumen denominada como , será:

De esta expresión, se reconoce el gradiente hidráulico ( ), que en el sistema
mostrado en la Figura 2, se expresa como:
Si se sustituye esta última expresión en la ecuación [1.1], se tendrá que:

Dónde:
= Presión de flujo.
= Gradiente hidráulico.
= Peso unitario del agua.
Con la ecuación [1.2], se puede calcular la presión que ejerce un flujo de agua en
las partículas del suelo por unidad de volumen.
1.3. Gradiente hidráulico crítico ( )
Se define como gradiente hidráulico crítico, al máximo gradiente hidráulico que el
suelo pueda tolerar antes que se produzca flotación. Considerando nuevamente el
permeámetro de la Figura 2, la condición para tener el máximo gradiente
hidráulico del suelo, será igualando el peso del suelo y agua comprendido en los
niveles C-C y A-A con el peso total del agua en los niveles C-C y O-O. Por lo cual se
tendrá que:

Definimos

,

Gradiente hidráulico crítico ( ), será:

Dónde:
= Gradiente hidráulico crítico.
= Peso unitario sumergido del suelo.
= Peso unitario del agua.
También, el gradiente hidráulico crítico puede expresarse en términos que se
relacionan con características propias del suelo, que pueden conocerse en
laboratorio. Este también se expresa:
Dónde:
= Gradiente hidráulico crítico.
= Gravedad específica de los sólidos.
= Índice de vacíos.

2. LEY DE DARCY
H. Darcy (1850) realizó un experimento utilizando un permeámetro semejante al que
semuestra en la Figura 3, para estudiar las propiedades del flujo de agua vertical a
través deun filtro (suelo compuesto de arena).Darcy, hizo variar la longitud de la
muestra (L) y las alturas piezométricas en la partesuperior ( ) e inferior ( ) de la
muestra. Para todas las variantes, midió el caudal ( )desplazado, que era el que
circulaba a través de la arena. Darcy encontró experimentalmenteque el caudal era
proporcional a la relación:

. Por lo cual propuso que:

Dónde:
= Caudal de descarga.
= Una constante proporcional.
= Altura piezométrica de la parte superior de la muestra.
= Altura piezométrica de la parte inferior de la muestra.
= Longitud de la muestra.
=Área de la sección transversal de la muestra.

Fig. 3. Permeámetro utilizado por Darcy
La relación:
, resulta ser el gradiente hidráulico del sistema. Por lo tanto
laecuación [2.1] puede escribirse como:

La ecuación [2.2], es conocida como la ley de Darcy, la variaciónde la velocidad de
descarga respecto al gradiente hidráulico, describe una trayectoria que seajusta a una
línea recta que parte del origen. La ecuación de esta línea será:

La ecuación [2.3] es otra variación de la ley de Darcy, que relaciona la velocidad
dedescarga con el gradiente hidráulico.
2.1. Validez de la ley deDarcy
La ley de Darcy, es aplicable a un flujo de agua a través de un medio poroso como
ser el suelo, donde se tenga un flujo laminar. En los suelos, generalmente la
velocidad del flujo es lenta, por lo que en la mayoría de los casos se tendrá flujo
laminar. Para una velocidad de flujo muy rápida, la ley de Darcy no es aplicable.
Para evaluar la velocidad del flujo se utiliza el número de Reynolds, que es un
número adimensional que expresa la relación interna entre fuerzas viscosas
durante el flujo.
Generalmente este número es usado en la hidráulica, para clasificar el flujo como
laminar (baja velocidad) o turbulento (alta velocidad). El número de Reynolds será:

Dónde:
= Número de Reynolds.
= Velocidad de descarga.
=Diámetro promedio de las partículas del suelo.
= Densidad del agua.
= Viscosidad del agua.
Harr (1962) determinó empíricamente los valores críticos del número de Reynolds
para el suelo, donde conociendo el tamaño de las partículas y la velocidad de
descarga, se puede determinar el tipo de flujo que circula a través del suelo (flujo
laminar o turbulento). Para valores inferiores a 1, se tendrá un flujo laminar en el
suelo. Si el número de Reynolds está comprendido entre 1 a 12, se tendrá un flujo
en transición. Para valores mayores a 12, el flujo será turbulento donde no es
aplicable la ley de Darcy. La Figura 4, muestra los límites según al número de
Reynolds donde la ley de Darcy es válida.
Fig. 4. Valores límites del número de Reynolds

3. VELOCIDAD DE FLUJO
En el suelo como se ve en la Figura 5, el agua circula a través de los espacios vacíos
siguiendo una trayectoria serpenteante (trazo punteado) del punto A hasta el punto B.
Esta trayectoria serpenteante es microscópica y resulta muy difícil determinar la
velocidad del flujo de agua en estas condiciones, pues debe tomarse en cuenta el
tamaño del poro y la ubicación del mismo en la trayectoria. Sin embargo en flujo de
agua con el propósito de facilitar el análisis se estudia el problema desde un punto de
vista macroscópico, se considera que el flujo recorre una trayectoria recta (trazo lleno)
del punto A al B, con una misma velocidad de flujoen toda su recorrido.
Fig. 5. Trayectoria del flujo de agua en un suelo
La Figura 5, muestra un permeámetro que tiene confinado un suelo donde circula a
través de él un flujo de agua. El agua que circulará por el suelo tendrá una velocidad
de flujo , mientras que el agua que circula fuera del suelo tendrá una velocidad de
descarga .

Fig. 6. Velocidad de descarga y de flujo.
Debido a que no sale, ni ingresa agua adicional en todo el recorrido del flujo, por el
principio de continuidad se puede decir que el caudal que circula en cualquier punto
del sistema es el mismo. Sea el caudal que circula a través del suelo y q el caudal que
circula fuera del suelo, por lo tanto se tendrá que:
La Figura 7(a), muestra la sección transversal del permeámetro libre de suelo,
mientras que la Figura 7(b) muestra la sección transversal del suelo en el
permeámetro ampliada convenientemente, en ambas secciones circula el flujo de
agua a diferentes velocidades.

Fig. 7. Secciones transversales del permeámetro.
(a) Sección transversal donde circula el agua con una velocidad de descarga .
(b) Sección transversal donde circula el agua con una velocidad de flujo .
Si es el área de la sección transversal para la Figura 7(a), el área de los sólidos y
el área de los espacios vacíos entre partículas del suelo en la Figura 7(b), se tendrá
que:

Para una misma longitud unitaria , el área puede transformarse en volumen, por lo
cual se tendrá que:

Dónde:
= Volumen que circula en toda la sección transversal por unidad de longitud.
= Volumen que circula por los espacios vacíos del suelo por unidad de longitud.
De esta última expresión, se reconoce la porosidad que se expresa:
Reemplazando la porosidad, la velocidad de flujo será:

Dónde:
= Velocidad de flujo.
= Velocidad de descarga.
= Porosidad.
Con la ecuación [3.1] se puede determinar la velocidad del flujo en el suelo que será
mayor a la velocidad de descarga.

4. PIEZOMETRO
Conocer la variación del estado de esfuerzos en el interior de una masa de suelo, se
trate de un relleno artificial o natural, resulta imprescindible para el análisis de su
estabilidad estructural.
Particularmente, en obras hidráulicas formadas con rellenos artificiales, es importante
conocer la variación de las presiones de tierra y las presiones de poro en las etapas de
construcción, en el primer llenado del embalse y en la operación.
Durante la construcción de una cortina de tierra y enrocamiento, se desarrollan
presiones de poro en la cimentación, en el corazón impermeable y en las zonas
semipermeables a medida que la altura del terraplén se incrementa. La medición de
las presiones de poro mediante piezómetros permite, por una parte, tomar decisiones
sobre la velocidad de construcción a fin de controlar dichas presiones a valores límites
establecidos, según los criterios de diseño, y por otra, juzgar la efectividad de las obras
de drenaje y de control de flujo de aguas planeadas. Es por estas razones que es muy
importante el uso del piezómetro, y existen diferentes tipos de piezómetro.
4.1. Piezómetro abierto
El piezómetro abierto (standpipepiezometer) consiste en un tubo corto con ranuras
o un cilindro de cerámica porosa, llamado bulbo piezométrico. A uno de sus
extremos se le acoplan tubos rectos de menor diámetro hasta alcanzar la
superficie. La elevación de la superficie libre de la columna de agua que sube por la
tubería recta por efectos de la presión de poro, se mide desde la superficie del
terreno con una sonda eléctrica. Para su instalación se hace descender el bulbo
piezométrico a su posición en el subsuelo, en un empaque de arena, a través de
una perforación o barreno. Al sellar el empaque de arena con bentonita a una
cierta altura del bulbo, se forma una zona piezométrica que garantiza la medición
de la presión de poro a la profundidad de instalación del bulbo. En la superficie se
construye un tapón, generalmente con mortero de cemento para aislar la zona de
estudio. En la Figura 8 se muestra el arreglo de un piezómetro abierto, que
también se conoce como piezómetro Casagrande.
El piezómetro abierto es de respuesta lenta a los cambios de la presión de poro,
debido a que se requieren volúmenes importantes de agua para cambiar el nivel
en el tubo a la atmósfera, sobre todo cuando se coloca en suelos finos como los
limos y las arcillas; por otra parte, no se recomienda para automatización.

Fig. 8. Piezómetro abierto.

Fig. 9. Detalle de la instalación del Piezómetro abierto tipo Casagrande.
4.2. Piezómetro neumático
Los piezómetros neumáticos (pneumaticpiezometers) se usan para medir las
variaciones de la presión de poro que se presentan en una masa de suelo; y
particularmente son muy útiles cuando se instalan en suelos de baja
permeabilidad, ya que tienen la ventaja de responder con pequeños volúmenes de
agua desplazados en el interior de la celda piezométrica; por ello se denominan de
respuesta rápida. Este tipo de piezómetro permite medir la distribución de
presiones de poro a lo largo de una vertical, si se coloca una serie de estos
piezómetros a diferentes elevaciones; de igual manera puede conocerse la
distribución de presiones a lo largo de una horizontal si se coloca una serie de
piezómetros distribuidos a una misma elevación.

Fig. 10. Piezómetro Neumático. (a) Arreglo de los componentes del bulbo piezometrico.
(b) Instalación y sellado de piezómetro neumático en barreno.

4.3. Piezómetro eléctrico
El principio de operación de un piezómetro eléctrico (electricpiezometer) se basa
en un diafragma que se flexiona bajo la acción de la presión de poro que actúa en
uno de sus lados después de pasar por una piedra porosa.
La deflexión es proporcional a la presión aplicada y se mide por medio de diversos
sensores o transductores eléctricos. Los sensores convierten la presión de agua en
una señal eléctrica que se transmite mediante un cable hasta el sitio de medición.
Los piezómetros eléctricos se pueden emplear en los mismos casos en los que se
utilizan piezómetros abiertos tipo Casagrande, así como, en pozos de observación,
e incluso para registrar el nivel de agua en canales vertedores de galerías de
filtración o para conocer el nivel de agua de un río o de un embalse.
Las principales tecnologías empleadas en la fabricación de estos instrumentos
consisten en sensores piezorresistivos (strain gauge piezometer) y de cuerda
vibrante (vibratingwire). Recientemente, se han desarrollado sensores de fibra
óptica (fiberopticporepressure sensor).
4.3.1. Sensor piezorresistivo
Contiene un diafragma delgado de cerámica con resistores (strain gauges). Al
deformarse el diafragma con la presión del agua, se modifica la resistencia de
los sensores en forma directamente proporcional a la presión aplicada. De
manera electrónica, se convierte esta señal de salida en una señal de
corriente eléctrica en un rango de 4 mA a 20 mA (miliamperes).
La respuesta del sensor piezorresistivo a cambios de presión es muy rápida,
ya que no requiere cambios volumétricos importantes, y muestra una gran
precisión, aún para rangos de presión pequeños. Se puede usar para efectuar
mediciones dinámicas y conectarse a un sistema automático de captura de
datos.
Este tipo de sensor tiene menor estabilidad con el paso del tiempo, por lo que
se recomienda su uso cuando el objetivo de la medición es a corto plazo, por
ejemplo, durante la etapa de construcción de una obra. Además, presenta
pérdidas en la señal eléctrica conforme aumenta la longitud del cable, por
tanto, debe calibrarse en fábrica el sistema completo (sensor-cable).
4.3.2. Sensor de cuerda vibrante
En la Figura 11 se muestra esquemáticamente un piezómetro eléctrico de
cuerda vibrante (PCV). Un cambio en la presión de poro induce una deflexión
del diafragma y, en consecuencia, un cambio en la tensión de la cuerda. La
tensión en la cuerda se mide haciéndola vibrar para conocer su frecuencia
natural de vibración.
La vibración se produce mediante un pulso de voltaje a través de la bobina
colocada junto a la cuerda. La frecuencia de vibración de la cuerda es idéntica
a la frecuencia de voltaje de salida, que se trasmite a lo largo del cable
eléctrico hasta el dispositivo que mide dicha frecuencia. La frecuencia de
vibración de la cuerda varía en función de su tensión y ésta varía en función
de la presión de agua.
La señal que se transmite por el cable no se distorsiona con la longitud de
éste, por tanto, se puede modificar la longitud del cable (cortar o añadir,
hasta 1000 m) sin afectar la medición. Sin embargo, la precisión del sensor de
cuerda vibrante disminuye para rangos de medición pequeños, y requiere
corrección por temperatura. El sensor de cuerda vibrante no es apto para
mediciones continuas o dinámicas. La Figura 12 muestra una variedad de
piezómetros de cuerda vibrante (PCV).
En algunos diseños de PCV, se usan dos bobinas colocadas cerca de la cuerda:
una de ellas hace vibrar la cuerda y la otra capta y transforma la frecuencia de
vibración en corriente alterna que se registra en la unidad de lectura; también
incluyen una resistencia sensible a la temperatura como termómetro,
llamada termistor, para compensar los efectos de la temperatura, así como
una protección contra alteraciones súbitas de cargas eléctricas. En la Figura
13 se muestra un corte longitudinal de la cápsula metálica y los componentes
internos de un piezómetro de cuerda vibrante.
Comercialmente se disponen de PCV para medir presiones de poro en el
rango de 0 a 4000 kPa; con diámetros que varían entre 28 mm y 35 mm,
longitudes de 200 mm y 260 mm, y con un peso de 0.5 kg a 1 kg.

Fig. 11 Componente del piezómetro de cuerda vibrante. (a) Esquema del sensor diagramacuerda. (b) Arreglo del transductor con sus accesorios en el interior de una capsula
cilíndrica de acero inoxidable.
Fig. 12. Piezómetros de cuerda vibrante existentes en el mercado

Fig. 13. Transductor de presión de cuerda vibrante y el arreglo interno de sus
componentes.
4.3.3. Sensor de fibra óptica
La Figura 14 muestra un sensor de fibra óptica (fiberopticpiezometer). Esta
clase de sensores se diseñan para medir la presión que ejerce el agua a una
membrana sin contacto directo, y registran las deformaciones de un
elemento mecánico óptico en miniatura (MOMs, por sus siglas en inglés).
Las dimensiones del sensor son muy pequeñas (5 mm), por lo que facilita su
instalación en tuberías delgadas. Es inmune a interferencias magnéticas,
señales de radio y a descargas eléctricas. Tiene una alta resolución y
estabilidad, así como baja influencia de cambios térmicos. Los costos de esta
tecnología son más elevados que los anteriormente descritos,
particularmente el cable y el equipo de medición. Se requiere de personal
calificado para su instalación.

Fig. 14. Sensor de fibra optica.

5. ESFUERZOS EFECTIVOS
5.1. Concepto
Terzaghi en 1943, demostró que para un suelo saturado, el esfuerzo efectivo en
cualquier dirección puede definirse en forma cuantitativa como la diferencia entre
el esfuerzo total y la presión de poros del agua, como se ve en la ecuación [5.1].
Este esfuerzo es transmitido a través de la estructura sólida del suelo por medio de
los contactos intergranulares. Este componente del esfuerzo total es el que
controla tanto la deformación debida a los cambios de volumen como la
resistencia al corte del suelo, por lo tanto el esfuerzo normal y el esfuerzo cortante
se transmiten a través de los contactos entre grano a grano.

Dónde:
= Esfuerzo normal total.
= Esfuerzo normal efectivo.
= Presión de poros del agua o esfuerzo neutral.
El concepto del esfuerzo efectivo puede ilustrarse dibujando una línea ondulada, bb, que pase solo a través de los puntos de contacto entre las partículas sólidas, tal
como se muestra en la Figura 15.
El esfuerzo total es absorbido parcialmente por el agua en los poros o espacios
vacíos y parcialmente por los sólidos del suelo en sus puntos de contacto. Entonces
en un plano cualquiera b-b por donde pasa la línea ondulada mostrada en la Figura
15, se observa que es el área de sección transversal ocupada por los contactos
sólido con sólido, es decir
, entonces el espacio
ocupado por el agua es igual a
, de ahí que la fuerza absorbida por el agua
es:

Dónde:
= Presión de poros del agua.
= Área de la sección transversal de suelo = X·Y.
= Área de sección transversal ocupada por los contactos sólidos con sólidos
Fig. 15. Fuerzas intergranulares actuando en la superficie b-b.
Como la variación entre las áreas de contacto es mínima se puede asumir que son
iguales, por lo que también se puede decir que
, donde es el número
de contactos entre las partículas sólidas existentes en el área unitaria del plano bb. De la misma manera ocurre con las fuerzas entre las partículas sólidas, Entonces
si
son las fuerzas que actúan en los puntos de contacto de las
partículas del suelo (Figura 15) y por lo tanto efectivas. La suma de las
componentes verticales de todas estas fuerzas es:

Dónde:
, son las componentes verticales de:
, respectivamente.
Entonces la fuerza vertical total puede ser considerada como la suma de las
fuerzas de contacto intergranulares con la fuerza hidrostática
del agua en los
poros.
Dividiendo la ecuación [5.2] entre el área de sección transversal
en el plano por donde pasa la línea ondulada, se obtiene el esfuerzo total vertical:

Dónde:
= Presión de poros del agua o presión hidrostática del agua.
= Fracción del área de sección transversal unitaria de la masa de
suelo ocupada por los contactos de sólido - sólido.
= Fuerza media intergranular por área unitaria del plano =
.
Por lo tanto el esfuerzo efectivo (
) no es exactamente igual a la fuerza media
intergranular por área unitaria del plano, , y no depende del área de contacto
entre las partículas. Aunque esta área puede ser pequeña nunca podrá ser cero ya
que esto implicaría esfuerzos de contacto locales infinitos entre las partículas.
Normalmente como el valor de
es extremadamente pequeño puede ser
despreciado para los rangos de presión encontrados generalmente en los
problemas prácticos. Lo que reduce la ecuación [5.3], a la ecuación del esfuerzo
efectivo:

La ecuación [5.1] fue desarrollada primero por Terzaghi en 1925 a 1936, Skempton
en 1960 extendió el trabajo de Terzaghi y propuso la relación entre los esfuerzos
total y efectivo con la ecuación [5.3].
Considerando ahora la deformación en el área de contacto entre dos partículas
influenciadas además por la presión de poros del agua, como se ve en la Figura 16.
El sistema de fuerzas puede considerarse estar hecho de dos componentes. Si es
la fuerza media por contacto y hay contactos en un área unitaria, entonces la
fuerza intergranular por área unitaria en el plano b-b es.

Ahora si una partícula de suelo isotrópico homogéneo es sujeto a un esfuerzo
homogéneo, , sobre toda su superficie, la deformación producida es una pequeña
reducción elástica en el volumen de la partícula sin ningún cambio en la forma de
esta. Por consiguiente, el esqueleto del suelo en conjunto también reduce
ligeramente en su volumen sin cambios en su forma.
La compresibilidad de la estructura del esqueleto del suelo, sin embargo, es mucho
mayor que la compresibilidad de las partículas individuales del suelo de las que se
compone. De ahí que sólo esa parte del esfuerzo local de contacto que es un
exceso de la presión de poros del agua es la que realmente causa una deformación
estructural por resistencia volumétrica o por corte o por ambos.
Este exceso de esfuerzo que controla la deformación estructural es igual a ( ),
dónde es el área del contacto entre partículas. Sumando los componentes
correspondientes del exceso de fuerzas interparticulares se obtiene una expresión
para definido como esa parte del esfuerzo normal el cual controla el cambio de
volumen debido a la deformación de la estructura del suelo, de donde el exceso de
fuerza por unidad del plano b-b es:

Reemplazando

de la ecuación [5.3] se tiene:

Fig. 16. Separación de las componentes de las fuerzas intergranulares.
El esfuerzo efectivo, también puede ser hallado en términos del peso específico del
suelo y del agua y de sus respectivas alturas, esto es explicado en forma detallada
en el punto 5.3.
De la Figura16, se puede ver que la fuerza total que actúa en una partícula de suelo
es la fuerza , que actúa con una fuerza de compresión en el contacto entre
partículas más la presión de poros, , que actúa en forma contraria tratando de
separar a las partículas por una fuerza de tracción que ayuda a soportar y disminuir
el peso soportado por las partículas sólidas.
Entonces haciendo una sumatoria de estas fuerzas verticales, y recordando que el
agua actúa en un área igual a (
), se tiene:

Para

partículas se tiene:

Dónde:

Entonces reemplazando valores en la ecuación inicial, se tiene:

De las ecuaciones [5.3], [5.4] y [5.5], se puede ver la diferencia que existe entre el
esfuerzo efectivo, la fuerza media intergranular por área unitaria del plano y el
esfuerzo intergranular. El esfuerzo efectivo no toma en cuenta el área de contacto
entre partículas, mientras que los otros dos si lo hacen. Pero el analizar los
esfuerzos de los suelos considerando estas áreas sería muy complicado y no valdría
la pena debido a que las variaciones con respecto del esfuerzo efectivo son
mínimas, a no ser en algunos pocos casos especiales en los que estas influyen
considerablemente. Es por esta razón que el esfuerzo efectivo muchas veces es
confundido con la fuerza media intergranular por área unitaria del plano o con el
esfuerzo intergranular, sin embargo si bien son aproximadamente similares no son
completamente iguales, por lo que es importante poder distinguir entre uno y
otro.
5.2. Principio del Esfuerzo Efectivo
El principio del esfuerzo efectivo fue definido por Bishop (1959), utilizando dos
simples hipótesis:
5.2.1. El cambio de volumen y deformación de los suelos depende del esfuerzo
efectivo y no del esfuerzo total. Esto lleva a la ecuación [5.1] ya definida.

5.2.2. La resistencia al corte depende del esfuerzo efectivo y no del esfuerzo total
normal al plano considerado. Esto puede ser expresado por la ecuación:

Dónde:
resistencia al corte, esfuerzo efectivo en el plano considerado,
cohesión, ángulo de resistencia al corte, con respecto al esfuerzo efectivo.
Como el esfuerzo efectivo es esa parte del esfuerzo total que controla la
deformación de la estructura del suelo, independientemente de las áreas de
contacto entre partículas. Esto lleva a la conclusión de que aunque la fuerza media
intergranular por área unitaria depende de la magnitud de , los cambios de
volumen debido a la deformación de la estructura del suelodependen
simplemente de la diferencia de esfuerzos (
) o esfuerzo efectivo, cualquiera
quesea la naturaleza de .
La compresibilidad de la estructura del suelo, es mucho más grande que la
compresibilidad de una partícula de suelo individual. De ahí es que solo esa parte
de contacto del esfuerzo local, produce una deformación en la estructura del suelo
por resistencia volumétrica o por resistencia de corte o por ambas.
Entonces en base a estos dos principios de Bishop, se puede concluir que el
esfuerzo efectivo está más directamente relacionado con el comportamiento del
suelo que el esfuerzo total o la presión de poros. Por ejemplo, un aumento en el
esfuerzo efectivo producirá un reajuste de las partículas del suelo pasando a una
agrupación más compacta, sin embargo el mismo aumento en el esfuerzo total o
presión de poros manteniendo constante el esfuerzo efectivo no producirá ningún
efecto en la compacidad de la estructura del suelo, es decir que no se producirá
ningún cambio de volumen ni deformación.
Fig. 17. Representación esquemática de la transmisión de fuerzas a través de un suelo. (a)
Sección de un recipiente lleno de suelo, (b) Ampliación de una parte de la sección
mostrando las fuerzas transmitidas por dos puntos de contacto.
En la Figura 17 se pueden ver las fuerzas normales y tangenciales a la superficie de
contacto, que producen los esfuerzos normales y de corte respectivamente.
5.3. Cálculo del esfuerzo efectivo.
El cálculo del esfuerzo efectivo requiere la determinación por separado del
esfuerzo total y presión de poros del agua. A continuación se explica el cálculo de
cada uno de estos en forma detallada.
5.3.1. Determinación del esfuerzo total.
Para entender más fácilmente se considera el típico caso de un suelo en
reposo condición mostrada en la Figura 18. Esta es una condición de cargado
global (es decir en ambas direcciones, vertical y horizontal).

Fig. 18. Esfuerzos en campo debidos al peso del suelo mismo en reposo.
Considerando que el elemento de suelo de la Figura 18 tiene una profundidad
D metros, el nivel de agua está en la superficie, el peso específico del
volumen de suelo (sólidos y agua) es [
], se puede hallar el esfuerzo
total. Estos son los únicos datos necesarios para el cálculo del esfuerzo total.
De la definición de esfuerzo se sabe que el esfuerzo es una fuerza sobre el
área en la que actúa esta. En este caso la fuerza es el peso de la columna de
suelo y el área en la que actúa esta fuerza se considera como unitaria (1
),
entonces se tiene:

El peso de la columna de suelo se puede encontrar con ayuda del peso
específico del suelo húmedo, ya que toda la columna de suelo se encuentra
por debajo del nivel freático:

5.3.2. Determinación de la presión de poros del agua
Esta presión es calculada similarmente al esfuerzo total, asumiendo
condiciones de agua estática o condiciones hidrostáticas. Igualmente se
considera una columna vertical unitaria de agua. La presencia de la estructura
del suelo no tiene ningún efecto en el cálculo de la presión de poros del agua.
Entonces se tiene:

El peso de la columna de agua se puede encontrar con ayuda del peso
específico del agua.

Dónde:
= peso específico del agua. Una aproximación útil toma
(más exactamente,
= 9.807 kN/m3).

= 10 [

]
5.4. Cálculo del esfuerzo efectivo en suelos saturados sin flujo de agua o
encondiciones hidrostáticas
Cuando se habla de presión hidrostática, se refiere a que la presión de poros en
cualquier punto dentro de la masa de suelo, es igual al peso específico del agua por
la profundidad del punto considerado, esta presión hidrostática está representada
por el nivel freático o superficie piezometrica. Para realizar el cálculo del esfuerzo
efectivo se determina el esfuerzo total y la presión de poros como se vio en el
punto anterior.

Fig. 19. (a) Estrato de suelo en un tanque donde no hay flujo de agua; variación de (b)
esfuerzos totales; (c) presión de poros del agua; (d) esfuerzo efectivo con la profundidad
paraun estrato de suelo sumergido sin flujo de agua.

La Figura 19 (a)muestra un estrato de suelo sumergido en un tanque donde no hay
flujo de agua. En las Figuras 20 (b) a la 20 (d) se observa el diagrama de las
variaciones del esfuerzo total, presión de poros del agua, y el esfuerzo efectivo,
con la profundidad para un estrato de suelo sumergido en un tanque sin flujo de
agua.
El esfuerzo total, la presión de poros del agua y por consiguiente el esfuerzo
efectivo; en un punto cualquiera a una determinada profundidad, pueden ser
obtenidos del peso específico saturado del suelo y del peso específico del agua
como ya se vio anteriormente, por ejemplo para los puntos A, B, C de la Figura 19
(a)se tiene:
En A
Esfuerzo total:
Presión de poros del agua:
Esfuerzo efectivo:
En B
Esfuerzo total:
Presión de poros del agua:
Esfuerzo efectivo:

Dónde:
es el peso específico sumergido del suelo.
En C
Esfuerzo total:
Presión de poros del agua:
Esfuerzo efectivo:

Como se puede ver el esfuerzo efectivo solo es la altura de columna de suelo por el
peso específico sumergido del mismo, por lo tanto el esfuerzo efectivo en
cualquier punto es independiente de la altura del agua sobre el suelo sumergido.
Dónde:
es el peso específico sumergido del suelo.
Si se tiene flujo de agua en el suelo, el esfuerzo efectivo en cualquier punto en una
masa de suelo será diferente al del caso estático. Aumentará o disminuirá
dependiendo de la dirección del flujo de agua. El sentido del flujo puede ser
ascendente o descendente.
5.5. Calculo del esfuerzo efectivo en suelos con flujo de agua ascendente
Este tipo de flujo se presenta en el lado aguas abajo de las estructuras de retención
de agua, como por ejemplo presas, ataguías, tablestacas, etc. Este flujo crea una
fuerza de levante en esta parte, que pone en riesgo la vida útil de la estructura de
retención de agua, por lo que en este tipo de obras es necesario hacer siempre un
análisis preciso de la influencia que tiene este tipo de flujo. En consecuencia el
análisis de esfuerzos efectivos influye mucho en el diseño y construcción de una
obra hidráulica.
La Figura 20 (a) muestra un estrato de suelo granular en un tanque donde el flujo
de agua es ascendente debido a la adición de agua a través de la válvula en el
fondo del tanque. El caudal de agua suministrado se conserva constante. La
pérdida de carga causada por el flujo de agua ascendente entre los niveles de A y B
es h. El cálculo de todos los esfuerzos para tres puntos cualquiera a profundidades
distintas es similar al caso anterior.

Fig. 20. (a) Estrato de suelo en un tanque con flujo de agua ascendente; variación de (b)
esfuerzos totales; (c) presión de poros del agua; (d) esfuerzo efectivo con la profundidad
paraun estrato de suelo con flujo de agua ascendente.
En A
Esfuerzo total:
Presión de poros del agua:
Esfuerzo efectivo:
En B
Esfuerzo total:
Presión de poros del agua:
Esfuerzo efectivo:

En C
Esfuerzo total:
Presión de poros del agua:
Esfuerzo efectivo:
Es posible demostrar que el término

es el gradiente hidráulico:

Dónde:
= Gradiente Hidráulico
= Perdida de carga entre dos puntos
= Distancia entre dos puntos, que es la longitud de flujo sobre la cual ocurre la
pérdida de carga.
De la Figura 20 (a):

Entonces:

En la Figura 20 (a), el termino

es hallado mediante una interpolación lineal entre

las perdida de carga del punto A localizado a una profundidad
y la perdida de
carga (
) del punto C localizado a una profundidad (
).
Se trazan las variaciones del esfuerzo total, presión de poros del agua, y el esfuerzo
efectivo con la profundidad en las Figuras 21 (b) a la 21 (d), respectivamente.
Si el caudal del flujo de agua aumenta entonces el gradiente hidráulico también
aumentara, en la ecuación [5.8] se ve que si el valor del gradiente hidráulico es
muy alto, tal que el termino (
) se haga cero, entonces el esfuerzo
efectivo será cero, en este punto se alcanzará una condición límite.

Dónde:
= Gradiente hidráulico critico (para un esfuerzo efectivo igual a cero)
Bajo semejante situación, el suelo pierde estabilidad, ya que si el esfuerzo efectivo
es cero no existe esfuerzo de contacto entre las partículas del suelo y la estructura
del suelo se romperá. Esta situación generalmente es llamada condición rápida o
falla por levantamiento.
Entonces como este tipo de flujo puede producir mucho daño a la estructura del
suelo es que se debe tratar de reducir el caudal de flujo de agua, para esto es que
se utilizan los llamados filtros que se verá cómo funcionan y ayudan a disminuir
este efecto de levante en la sección 2.
De la ecuación [5.9] despejando se tiene:

Para la mayor parte de los suelos, el valor de
promedio de 1.

varia de 0.9 a 1.1, con un

5.6. Calculo del esfuerzo efectivo en suelos con flujo de agua descendente
Este tipo de flujo se presenta en el lado aguas arriba de una estructura de retención de
agua. El principal problema que causa este tipo de flujo es que cuando es muy grande
produce arrastre de partículas de un suelo a otro o de un suelo a una estructura de
drenaje, produciendo erosión tanto en la estructura de suelo como también en la
estructura de la obra de retención de agua del lado aguas arriba. Debido a esto es que
se recomienda colocar filtros también en el lado aguas arriba de la estructura de
retención de agua. Este tipo de flujo es menos peligroso para la estabilidad de la
estructura de retención de agua, que el anterior pero no menos importante de tomar
en cuenta, ya que en el diseño de presas permeables como las de tierra siempre es
necesario colocar un filtro en el lado aguas arriba, ya que este flujo produciría
filtraciones considerables en este tipo de estructuras, en el caso de presas
impermeables como las de concreto o ataguías no se producen daños considerables.
Este tipo de flujo de agua descendente se muestra en la Figura 20 (a). El nivel del agua
en el suelo dentro el tanque se mantiene constante ajustando el suministro desde la
parte superior y la salida en el fondo.
El esfuerzo total, presión de poros del agua, y el esfuerzo efectivo; pueden ser
calculados de manera similar al de los anteriores casos.
Fig. 20. (a) Estrato de suelo en un tanque con flujo de agua descendente, variación de (b)
esfuerzos totales, (c) presión de poros del agua, (d) esfuerzo efectivo con la profundidad
paraun estrato de suelo con flujo de agua descendente.
En A
Esfuerzo total:
Presión de poros del agua:
Esfuerzo efectivo:
En B
Esfuerzo total:
Presión de poros del agua:
Esfuerzo efectivo:

En C
Esfuerzo total:
Presión de poros del agua:
Esfuerzo efectivo:
Las variaciones del esfuerzo total, presión de poros del agua, y el esfuerzo efectivo
con la profundidad son mostradas gráficamente en las Figuras 22 (b) a la 22 (c).
En resumen se puede decir que cuando se tiene flujo de agua ascendente el
esfuerzo efectivo disminuye y cuando se tiene flujo de agua descendente el
esfuerzo efectivo aumenta en una cantidad igual
.

Fig. 22. Fuerza producida en un volumen de suelo. (a) Sin flujo de agua. (b) Flujo de
agua ascendente. (c) Flujo de agua descendente.

6. FENOMENO DE SIFONAMIENTO O EBULLICION
Fenómeno de inestabilidad hidráulica que se puede producir en arenas y limos
consistentes en la pérdida de consistencia del suelo por lo que dará la impresión de
entrar en ebullición. Este fenómeno aparece cuando las tensiones efectivas se anulan,
por lo que el gradiente critico es:

Dónde:
= Gradiente hidráulico crítico.
= Peso unitario sumergido del suelo.
= Peso unitario del agua.
Si se considera un suelo sometido a una infiltración de agua que soporta una carga
hidráulica dada, es intuitivo pensar que si este suelo es estable es que las fuerzas
producidas por el movimiento del agua (carga hidráulica) están equilibradas por las
fuerzas de unión internas de los granos del suelo entre sí. La fuerza de arrastre del
agua llega a ser superior a las fuerzas de unión del suelo y éste es arrastrado
violentamente. Se forma un agujero, sifonamiento o ebullición que es un fenómeno
particularmente temible en las obras de diques, canales, ataguías, etc.

Más contenido relacionado

La actualidad más candente

Lab. 5 fuerza de presion en superficies curvas
Lab. 5 fuerza de presion en superficies curvasLab. 5 fuerza de presion en superficies curvas
Lab. 5 fuerza de presion en superficies curvasDamián Solís
 
Teoria y practica_de_resistencia_de_materiales-_vigas
Teoria y practica_de_resistencia_de_materiales-_vigasTeoria y practica_de_resistencia_de_materiales-_vigas
Teoria y practica_de_resistencia_de_materiales-_vigasMely Mely
 
Ensayo triaxial
Ensayo triaxialEnsayo triaxial
Ensayo triaxialToño MF
 
Informe de Mecanica de Fuidos: Centro de Presiones
Informe de Mecanica de Fuidos: Centro de PresionesInforme de Mecanica de Fuidos: Centro de Presiones
Informe de Mecanica de Fuidos: Centro de PresionesFernando Desposorio
 
HIDRAULICA DE CANALES - PEDRO RODRIGUEZ
HIDRAULICA DE CANALES - PEDRO RODRIGUEZHIDRAULICA DE CANALES - PEDRO RODRIGUEZ
HIDRAULICA DE CANALES - PEDRO RODRIGUEZCarlos Pajuelo
 
Flujo unidimensional mecanica de suelos
Flujo unidimensional mecanica de suelosFlujo unidimensional mecanica de suelos
Flujo unidimensional mecanica de sueloskelly loayza
 
Laboratorio 1 pérdidas en tuberías por fricción.
Laboratorio 1 pérdidas en tuberías por fricción.Laboratorio 1 pérdidas en tuberías por fricción.
Laboratorio 1 pérdidas en tuberías por fricción.juanccorreag1
 
234729564 guia-tematica-mecanica-de-suelos-ii
234729564 guia-tematica-mecanica-de-suelos-ii234729564 guia-tematica-mecanica-de-suelos-ii
234729564 guia-tematica-mecanica-de-suelos-iiAlexander Diaz Hurtado
 
264768075 fuerzas-sobre-superficies-planas-sumergidas-final-1-1-ppt
264768075 fuerzas-sobre-superficies-planas-sumergidas-final-1-1-ppt264768075 fuerzas-sobre-superficies-planas-sumergidas-final-1-1-ppt
264768075 fuerzas-sobre-superficies-planas-sumergidas-final-1-1-pptAndrea del Pilar Narvaez Ochoa
 
Consolidación unidimensional de suelos
Consolidación unidimensional de suelosConsolidación unidimensional de suelos
Consolidación unidimensional de suelosLuis Palma
 
Traslación y rotación de masas liquidas
Traslación y rotación de masas liquidasTraslación y rotación de masas liquidas
Traslación y rotación de masas liquidascriherco
 
Energia especifica, cantidad de movimiento
Energia especifica, cantidad de movimientoEnergia especifica, cantidad de movimiento
Energia especifica, cantidad de movimientomaria sequera
 
Mf i-fuerzas de fluidos estáticos-02
Mf i-fuerzas de fluidos estáticos-02Mf i-fuerzas de fluidos estáticos-02
Mf i-fuerzas de fluidos estáticos-02Daniel Shun
 

La actualidad más candente (20)

Lab. 5 fuerza de presion en superficies curvas
Lab. 5 fuerza de presion en superficies curvasLab. 5 fuerza de presion en superficies curvas
Lab. 5 fuerza de presion en superficies curvas
 
Teoria y practica_de_resistencia_de_materiales-_vigas
Teoria y practica_de_resistencia_de_materiales-_vigasTeoria y practica_de_resistencia_de_materiales-_vigas
Teoria y practica_de_resistencia_de_materiales-_vigas
 
Ensayo triaxial
Ensayo triaxialEnsayo triaxial
Ensayo triaxial
 
12. canales 1
12. canales 112. canales 1
12. canales 1
 
Unidad 1 hidraulica
Unidad 1 hidraulicaUnidad 1 hidraulica
Unidad 1 hidraulica
 
Informe de Mecanica de Fuidos: Centro de Presiones
Informe de Mecanica de Fuidos: Centro de PresionesInforme de Mecanica de Fuidos: Centro de Presiones
Informe de Mecanica de Fuidos: Centro de Presiones
 
Hidraulica de-canales flujo uniforme y critico
Hidraulica de-canales flujo uniforme y criticoHidraulica de-canales flujo uniforme y critico
Hidraulica de-canales flujo uniforme y critico
 
HIDRAULICA DE CANALES - PEDRO RODRIGUEZ
HIDRAULICA DE CANALES - PEDRO RODRIGUEZHIDRAULICA DE CANALES - PEDRO RODRIGUEZ
HIDRAULICA DE CANALES - PEDRO RODRIGUEZ
 
Flujo unidimensional mecanica de suelos
Flujo unidimensional mecanica de suelosFlujo unidimensional mecanica de suelos
Flujo unidimensional mecanica de suelos
 
Laboratorio 1 pérdidas en tuberías por fricción.
Laboratorio 1 pérdidas en tuberías por fricción.Laboratorio 1 pérdidas en tuberías por fricción.
Laboratorio 1 pérdidas en tuberías por fricción.
 
234729564 guia-tematica-mecanica-de-suelos-ii
234729564 guia-tematica-mecanica-de-suelos-ii234729564 guia-tematica-mecanica-de-suelos-ii
234729564 guia-tematica-mecanica-de-suelos-ii
 
Fuerzas sobre superficies 4
Fuerzas sobre superficies 4Fuerzas sobre superficies 4
Fuerzas sobre superficies 4
 
264768075 fuerzas-sobre-superficies-planas-sumergidas-final-1-1-ppt
264768075 fuerzas-sobre-superficies-planas-sumergidas-final-1-1-ppt264768075 fuerzas-sobre-superficies-planas-sumergidas-final-1-1-ppt
264768075 fuerzas-sobre-superficies-planas-sumergidas-final-1-1-ppt
 
Capitulos 6 9
Capitulos 6 9Capitulos 6 9
Capitulos 6 9
 
Consolidación unidimensional de suelos
Consolidación unidimensional de suelosConsolidación unidimensional de suelos
Consolidación unidimensional de suelos
 
Ejercicios propuestos-mec-flu
Ejercicios propuestos-mec-fluEjercicios propuestos-mec-flu
Ejercicios propuestos-mec-flu
 
Traslación y rotación de masas liquidas
Traslación y rotación de masas liquidasTraslación y rotación de masas liquidas
Traslación y rotación de masas liquidas
 
Estatica de fluidos opta 2011
Estatica de fluidos opta 2011Estatica de fluidos opta 2011
Estatica de fluidos opta 2011
 
Energia especifica, cantidad de movimiento
Energia especifica, cantidad de movimientoEnergia especifica, cantidad de movimiento
Energia especifica, cantidad de movimiento
 
Mf i-fuerzas de fluidos estáticos-02
Mf i-fuerzas de fluidos estáticos-02Mf i-fuerzas de fluidos estáticos-02
Mf i-fuerzas de fluidos estáticos-02
 

Destacado

Cat re fisquim4eso_004
Cat re fisquim4eso_004Cat re fisquim4eso_004
Cat re fisquim4eso_004mosansar
 
Mecanica de suelos propiedades hidraulicas del suelo
Mecanica de suelos  propiedades hidraulicas del sueloMecanica de suelos  propiedades hidraulicas del suelo
Mecanica de suelos propiedades hidraulicas del suelomeliza yura
 
Paginas de matematicas
Paginas de matematicasPaginas de matematicas
Paginas de matematicasespanol
 

Destacado (6)

Flujo bidimensional
Flujo bidimensionalFlujo bidimensional
Flujo bidimensional
 
Cat re fisquim4eso_004
Cat re fisquim4eso_004Cat re fisquim4eso_004
Cat re fisquim4eso_004
 
Introduccion a la ingenieria de presas mej
Introduccion a la ingenieria de presas mejIntroduccion a la ingenieria de presas mej
Introduccion a la ingenieria de presas mej
 
Mecanica de suelos propiedades hidraulicas del suelo
Mecanica de suelos  propiedades hidraulicas del sueloMecanica de suelos  propiedades hidraulicas del suelo
Mecanica de suelos propiedades hidraulicas del suelo
 
7. permeabilidad en suelossss
7. permeabilidad en suelossss7. permeabilidad en suelossss
7. permeabilidad en suelossss
 
Paginas de matematicas
Paginas de matematicasPaginas de matematicas
Paginas de matematicas
 

Similar a Flujo unidimensional

Similar a Flujo unidimensional (20)

Flujo de aguas_en_suelos
Flujo de aguas_en_suelosFlujo de aguas_en_suelos
Flujo de aguas_en_suelos
 
Ley darcy
Ley darcyLey darcy
Ley darcy
 
Propiedades Hidráulicas-Geotecnia I.pptx
Propiedades Hidráulicas-Geotecnia I.pptxPropiedades Hidráulicas-Geotecnia I.pptx
Propiedades Hidráulicas-Geotecnia I.pptx
 
Ley de darcy
Ley de darcyLey de darcy
Ley de darcy
 
U 4 prop. hidraulicas de los suelos 2015
U 4 prop. hidraulicas de los suelos 2015U 4 prop. hidraulicas de los suelos 2015
U 4 prop. hidraulicas de los suelos 2015
 
SESION_04.pdf
SESION_04.pdfSESION_04.pdf
SESION_04.pdf
 
ECUACIÓN DE BERNOULLI 2021.ppt
ECUACIÓN DE BERNOULLI 2021.pptECUACIÓN DE BERNOULLI 2021.ppt
ECUACIÓN DE BERNOULLI 2021.ppt
 
15 flujo bidimensional
15 flujo bidimensional15 flujo bidimensional
15 flujo bidimensional
 
Agua en los_suelos
Agua en los_suelosAgua en los_suelos
Agua en los_suelos
 
Agua en los_suelos
Agua en los_suelosAgua en los_suelos
Agua en los_suelos
 
flujo-en-medio-poro
flujo-en-medio-poroflujo-en-medio-poro
flujo-en-medio-poro
 
Ley de Darcy.pdf
Ley de Darcy.pdfLey de Darcy.pdf
Ley de Darcy.pdf
 
Ley_Darcy.pdf
Ley_Darcy.pdfLey_Darcy.pdf
Ley_Darcy.pdf
 
Psor
PsorPsor
Psor
 
SEMANA 5_PARTE 2_REDES DE FLUJO.pdf
SEMANA 5_PARTE 2_REDES DE FLUJO.pdfSEMANA 5_PARTE 2_REDES DE FLUJO.pdf
SEMANA 5_PARTE 2_REDES DE FLUJO.pdf
 
PROPIEDADES HIDRAULICAS DE LOS SUELOS
PROPIEDADES HIDRAULICAS DE LOS SUELOSPROPIEDADES HIDRAULICAS DE LOS SUELOS
PROPIEDADES HIDRAULICAS DE LOS SUELOS
 
ECUACIÓN DE BERNOULLI.pdf
ECUACIÓN DE BERNOULLI.pdfECUACIÓN DE BERNOULLI.pdf
ECUACIÓN DE BERNOULLI.pdf
 
Escurrimiento
EscurrimientoEscurrimiento
Escurrimiento
 
INFORME #11 PROCESOS 2.pdf
INFORME #11 PROCESOS 2.pdfINFORME #11 PROCESOS 2.pdf
INFORME #11 PROCESOS 2.pdf
 
conductividad hidraulica
conductividad hidraulicaconductividad hidraulica
conductividad hidraulica
 

Más de Gesell Villanueva (20)

Tarea hidraulica imf vpjg
Tarea hidraulica imf vpjgTarea hidraulica imf vpjg
Tarea hidraulica imf vpjg
 
Sistema de aguas contra incendios
Sistema de aguas contra incendiosSistema de aguas contra incendios
Sistema de aguas contra incendios
 
Cimentaciones superficiales
Cimentaciones superficialesCimentaciones superficiales
Cimentaciones superficiales
 
Alp
AlpAlp
Alp
 
Agrietamiento01
Agrietamiento01Agrietamiento01
Agrietamiento01
 
Material estudiar
Material estudiarMaterial estudiar
Material estudiar
 
Condiciones de servicio
Condiciones de servicioCondiciones de servicio
Condiciones de servicio
 
Problemaflujo1
Problemaflujo1Problemaflujo1
Problemaflujo1
 
Instrucciones para trabajar con sap2000 v15
Instrucciones para trabajar con sap2000 v15Instrucciones para trabajar con sap2000 v15
Instrucciones para trabajar con sap2000 v15
 
Ejercicio 2
Ejercicio 2Ejercicio 2
Ejercicio 2
 
Ejercicio1
Ejercicio1Ejercicio1
Ejercicio1
 
Ejercicio2
Ejercicio2Ejercicio2
Ejercicio2
 
S10
S10S10
S10
 
Exportar base de datos, e importar
Exportar base de datos, e importarExportar base de datos, e importar
Exportar base de datos, e importar
 
Costos y prsupuestos
Costos y prsupuestosCostos y prsupuestos
Costos y prsupuestos
 
Plano del tunel
Plano del tunelPlano del tunel
Plano del tunel
 
Agrietamiento01
Agrietamiento01Agrietamiento01
Agrietamiento01
 
Exposicion agrietamiento
Exposicion agrietamientoExposicion agrietamiento
Exposicion agrietamiento
 
Esfuerzos en suelos 2013
Esfuerzos en suelos   2013Esfuerzos en suelos   2013
Esfuerzos en suelos 2013
 
Adherncia y anclaje
Adherncia y anclajeAdherncia y anclaje
Adherncia y anclaje
 

Flujo unidimensional

  • 1. INTRODUCCION La tierra en su mayor parte contiene agua, la cual compone el 70 % de ella. Por esa razón, no resulta raro que sea el agua el fluido más comúnmente encontrado durante la excavación en la construcción de una obra de ingeniería. El agua principalmente se encuentra en los ríos, lagos, mares, en el suelo como agua subterránea y otros lugares. Esta proviene de diversas fuentes, pero principalmente de la lluvia y de la fusión de la nieve.
  • 2. 1. FLUJO UNIDIMENSIONAL 1.1. Concepto Se dirá que es un flujo unidimensional, cuando todos los vectores de velocidad son paralelos y de igual magnitud (Fig.1). En otras palabras toda el agua se mueve paralelamente en una sección transversal de área. El análisis de esta condición de flujo, resulta ser la más sencilla y fácil de comprender. Generalmente esta tiene su aplicación en permeámetros (aparatos de laboratorio) y otros sistemas sencillos de flujo de agua a través de suelos confinados en tubos y otras secciones. Por lo cual, para emplear este tipo de análisis debe tenerse la certeza que el flujo se comporta de la misma manera que el de la Figura 1. Fig.1. Condición de flujo en una sola dirección. 1.2. Presión de Flujo (j) En el permeámetro de laboratorio que se muestra en la Figura 2, se ha introducido un suelo entre los niveles C-C y B-B. También se ha ubicado cuidadosamente una válvula que controla la salida del flujo de agua.
  • 3. Fig. 2. Permeámetro de la Presión de Flujo. Por el reservorio superior, se ingresa una cantidad constante de flujo, de tal manera que ocasiona un flujo ascendente en el suelo hasta alcanzar el nivel A-A y salir por la válvula. El flujo ascendente de agua, produce una presión que actúa sobre las partículas del suelo llamada presión del flujoque depende de la altura de carga ( ), está presión ascendentelevantará a las partículas del suelo haciéndolas flotar, a este estado que llega el suelo se lo denomina flotación. Si se cerrara la válvula, el agua ascenderá hasta el nivel O-O, donde el sistema se mantendrá en equilibrio y no existirá flujo de agua. La cantidad de agua comprendida en los niveles A-A y O-O, ejerce la presión necesaria que contrarresta está presión ascendente del flujo. Entonces, la presión que ejerce el agua comprendida en los niveles A-A y O-O denominada como , será: Como la velocidad de flujo es constante, la presión de flujo que actúa sobre el suelo también será constante entre C-C y B-B. Por lo tanto la presión de flujopor unidad de volumen denominada como , será: De esta expresión, se reconoce el gradiente hidráulico ( ), que en el sistema mostrado en la Figura 2, se expresa como:
  • 4. Si se sustituye esta última expresión en la ecuación [1.1], se tendrá que: Dónde: = Presión de flujo. = Gradiente hidráulico. = Peso unitario del agua. Con la ecuación [1.2], se puede calcular la presión que ejerce un flujo de agua en las partículas del suelo por unidad de volumen. 1.3. Gradiente hidráulico crítico ( ) Se define como gradiente hidráulico crítico, al máximo gradiente hidráulico que el suelo pueda tolerar antes que se produzca flotación. Considerando nuevamente el permeámetro de la Figura 2, la condición para tener el máximo gradiente hidráulico del suelo, será igualando el peso del suelo y agua comprendido en los niveles C-C y A-A con el peso total del agua en los niveles C-C y O-O. Por lo cual se tendrá que: Definimos , Gradiente hidráulico crítico ( ), será: Dónde: = Gradiente hidráulico crítico. = Peso unitario sumergido del suelo. = Peso unitario del agua. También, el gradiente hidráulico crítico puede expresarse en términos que se relacionan con características propias del suelo, que pueden conocerse en laboratorio. Este también se expresa:
  • 5. Dónde: = Gradiente hidráulico crítico. = Gravedad específica de los sólidos. = Índice de vacíos. 2. LEY DE DARCY H. Darcy (1850) realizó un experimento utilizando un permeámetro semejante al que semuestra en la Figura 3, para estudiar las propiedades del flujo de agua vertical a través deun filtro (suelo compuesto de arena).Darcy, hizo variar la longitud de la muestra (L) y las alturas piezométricas en la partesuperior ( ) e inferior ( ) de la muestra. Para todas las variantes, midió el caudal ( )desplazado, que era el que circulaba a través de la arena. Darcy encontró experimentalmenteque el caudal era proporcional a la relación: . Por lo cual propuso que: Dónde: = Caudal de descarga. = Una constante proporcional. = Altura piezométrica de la parte superior de la muestra. = Altura piezométrica de la parte inferior de la muestra. = Longitud de la muestra. =Área de la sección transversal de la muestra. Fig. 3. Permeámetro utilizado por Darcy
  • 6. La relación: , resulta ser el gradiente hidráulico del sistema. Por lo tanto laecuación [2.1] puede escribirse como: La ecuación [2.2], es conocida como la ley de Darcy, la variaciónde la velocidad de descarga respecto al gradiente hidráulico, describe una trayectoria que seajusta a una línea recta que parte del origen. La ecuación de esta línea será: La ecuación [2.3] es otra variación de la ley de Darcy, que relaciona la velocidad dedescarga con el gradiente hidráulico. 2.1. Validez de la ley deDarcy La ley de Darcy, es aplicable a un flujo de agua a través de un medio poroso como ser el suelo, donde se tenga un flujo laminar. En los suelos, generalmente la velocidad del flujo es lenta, por lo que en la mayoría de los casos se tendrá flujo laminar. Para una velocidad de flujo muy rápida, la ley de Darcy no es aplicable. Para evaluar la velocidad del flujo se utiliza el número de Reynolds, que es un número adimensional que expresa la relación interna entre fuerzas viscosas durante el flujo. Generalmente este número es usado en la hidráulica, para clasificar el flujo como laminar (baja velocidad) o turbulento (alta velocidad). El número de Reynolds será: Dónde: = Número de Reynolds. = Velocidad de descarga. =Diámetro promedio de las partículas del suelo. = Densidad del agua. = Viscosidad del agua. Harr (1962) determinó empíricamente los valores críticos del número de Reynolds para el suelo, donde conociendo el tamaño de las partículas y la velocidad de descarga, se puede determinar el tipo de flujo que circula a través del suelo (flujo laminar o turbulento). Para valores inferiores a 1, se tendrá un flujo laminar en el suelo. Si el número de Reynolds está comprendido entre 1 a 12, se tendrá un flujo en transición. Para valores mayores a 12, el flujo será turbulento donde no es aplicable la ley de Darcy. La Figura 4, muestra los límites según al número de Reynolds donde la ley de Darcy es válida.
  • 7. Fig. 4. Valores límites del número de Reynolds 3. VELOCIDAD DE FLUJO En el suelo como se ve en la Figura 5, el agua circula a través de los espacios vacíos siguiendo una trayectoria serpenteante (trazo punteado) del punto A hasta el punto B. Esta trayectoria serpenteante es microscópica y resulta muy difícil determinar la velocidad del flujo de agua en estas condiciones, pues debe tomarse en cuenta el tamaño del poro y la ubicación del mismo en la trayectoria. Sin embargo en flujo de agua con el propósito de facilitar el análisis se estudia el problema desde un punto de vista macroscópico, se considera que el flujo recorre una trayectoria recta (trazo lleno) del punto A al B, con una misma velocidad de flujoen toda su recorrido.
  • 8. Fig. 5. Trayectoria del flujo de agua en un suelo La Figura 5, muestra un permeámetro que tiene confinado un suelo donde circula a través de él un flujo de agua. El agua que circulará por el suelo tendrá una velocidad de flujo , mientras que el agua que circula fuera del suelo tendrá una velocidad de descarga . Fig. 6. Velocidad de descarga y de flujo. Debido a que no sale, ni ingresa agua adicional en todo el recorrido del flujo, por el principio de continuidad se puede decir que el caudal que circula en cualquier punto del sistema es el mismo. Sea el caudal que circula a través del suelo y q el caudal que circula fuera del suelo, por lo tanto se tendrá que:
  • 9. La Figura 7(a), muestra la sección transversal del permeámetro libre de suelo, mientras que la Figura 7(b) muestra la sección transversal del suelo en el permeámetro ampliada convenientemente, en ambas secciones circula el flujo de agua a diferentes velocidades. Fig. 7. Secciones transversales del permeámetro. (a) Sección transversal donde circula el agua con una velocidad de descarga . (b) Sección transversal donde circula el agua con una velocidad de flujo . Si es el área de la sección transversal para la Figura 7(a), el área de los sólidos y el área de los espacios vacíos entre partículas del suelo en la Figura 7(b), se tendrá que: Para una misma longitud unitaria , el área puede transformarse en volumen, por lo cual se tendrá que: Dónde: = Volumen que circula en toda la sección transversal por unidad de longitud. = Volumen que circula por los espacios vacíos del suelo por unidad de longitud. De esta última expresión, se reconoce la porosidad que se expresa:
  • 10. Reemplazando la porosidad, la velocidad de flujo será: Dónde: = Velocidad de flujo. = Velocidad de descarga. = Porosidad. Con la ecuación [3.1] se puede determinar la velocidad del flujo en el suelo que será mayor a la velocidad de descarga. 4. PIEZOMETRO Conocer la variación del estado de esfuerzos en el interior de una masa de suelo, se trate de un relleno artificial o natural, resulta imprescindible para el análisis de su estabilidad estructural. Particularmente, en obras hidráulicas formadas con rellenos artificiales, es importante conocer la variación de las presiones de tierra y las presiones de poro en las etapas de construcción, en el primer llenado del embalse y en la operación. Durante la construcción de una cortina de tierra y enrocamiento, se desarrollan presiones de poro en la cimentación, en el corazón impermeable y en las zonas semipermeables a medida que la altura del terraplén se incrementa. La medición de las presiones de poro mediante piezómetros permite, por una parte, tomar decisiones sobre la velocidad de construcción a fin de controlar dichas presiones a valores límites establecidos, según los criterios de diseño, y por otra, juzgar la efectividad de las obras de drenaje y de control de flujo de aguas planeadas. Es por estas razones que es muy importante el uso del piezómetro, y existen diferentes tipos de piezómetro. 4.1. Piezómetro abierto El piezómetro abierto (standpipepiezometer) consiste en un tubo corto con ranuras o un cilindro de cerámica porosa, llamado bulbo piezométrico. A uno de sus extremos se le acoplan tubos rectos de menor diámetro hasta alcanzar la superficie. La elevación de la superficie libre de la columna de agua que sube por la tubería recta por efectos de la presión de poro, se mide desde la superficie del terreno con una sonda eléctrica. Para su instalación se hace descender el bulbo piezométrico a su posición en el subsuelo, en un empaque de arena, a través de una perforación o barreno. Al sellar el empaque de arena con bentonita a una cierta altura del bulbo, se forma una zona piezométrica que garantiza la medición de la presión de poro a la profundidad de instalación del bulbo. En la superficie se construye un tapón, generalmente con mortero de cemento para aislar la zona de estudio. En la Figura 8 se muestra el arreglo de un piezómetro abierto, que también se conoce como piezómetro Casagrande.
  • 11. El piezómetro abierto es de respuesta lenta a los cambios de la presión de poro, debido a que se requieren volúmenes importantes de agua para cambiar el nivel en el tubo a la atmósfera, sobre todo cuando se coloca en suelos finos como los limos y las arcillas; por otra parte, no se recomienda para automatización. Fig. 8. Piezómetro abierto. Fig. 9. Detalle de la instalación del Piezómetro abierto tipo Casagrande. 4.2. Piezómetro neumático Los piezómetros neumáticos (pneumaticpiezometers) se usan para medir las variaciones de la presión de poro que se presentan en una masa de suelo; y particularmente son muy útiles cuando se instalan en suelos de baja permeabilidad, ya que tienen la ventaja de responder con pequeños volúmenes de
  • 12. agua desplazados en el interior de la celda piezométrica; por ello se denominan de respuesta rápida. Este tipo de piezómetro permite medir la distribución de presiones de poro a lo largo de una vertical, si se coloca una serie de estos piezómetros a diferentes elevaciones; de igual manera puede conocerse la distribución de presiones a lo largo de una horizontal si se coloca una serie de piezómetros distribuidos a una misma elevación. Fig. 10. Piezómetro Neumático. (a) Arreglo de los componentes del bulbo piezometrico. (b) Instalación y sellado de piezómetro neumático en barreno. 4.3. Piezómetro eléctrico El principio de operación de un piezómetro eléctrico (electricpiezometer) se basa en un diafragma que se flexiona bajo la acción de la presión de poro que actúa en uno de sus lados después de pasar por una piedra porosa. La deflexión es proporcional a la presión aplicada y se mide por medio de diversos sensores o transductores eléctricos. Los sensores convierten la presión de agua en una señal eléctrica que se transmite mediante un cable hasta el sitio de medición. Los piezómetros eléctricos se pueden emplear en los mismos casos en los que se utilizan piezómetros abiertos tipo Casagrande, así como, en pozos de observación, e incluso para registrar el nivel de agua en canales vertedores de galerías de filtración o para conocer el nivel de agua de un río o de un embalse.
  • 13. Las principales tecnologías empleadas en la fabricación de estos instrumentos consisten en sensores piezorresistivos (strain gauge piezometer) y de cuerda vibrante (vibratingwire). Recientemente, se han desarrollado sensores de fibra óptica (fiberopticporepressure sensor). 4.3.1. Sensor piezorresistivo Contiene un diafragma delgado de cerámica con resistores (strain gauges). Al deformarse el diafragma con la presión del agua, se modifica la resistencia de los sensores en forma directamente proporcional a la presión aplicada. De manera electrónica, se convierte esta señal de salida en una señal de corriente eléctrica en un rango de 4 mA a 20 mA (miliamperes). La respuesta del sensor piezorresistivo a cambios de presión es muy rápida, ya que no requiere cambios volumétricos importantes, y muestra una gran precisión, aún para rangos de presión pequeños. Se puede usar para efectuar mediciones dinámicas y conectarse a un sistema automático de captura de datos. Este tipo de sensor tiene menor estabilidad con el paso del tiempo, por lo que se recomienda su uso cuando el objetivo de la medición es a corto plazo, por ejemplo, durante la etapa de construcción de una obra. Además, presenta pérdidas en la señal eléctrica conforme aumenta la longitud del cable, por tanto, debe calibrarse en fábrica el sistema completo (sensor-cable). 4.3.2. Sensor de cuerda vibrante En la Figura 11 se muestra esquemáticamente un piezómetro eléctrico de cuerda vibrante (PCV). Un cambio en la presión de poro induce una deflexión del diafragma y, en consecuencia, un cambio en la tensión de la cuerda. La tensión en la cuerda se mide haciéndola vibrar para conocer su frecuencia natural de vibración. La vibración se produce mediante un pulso de voltaje a través de la bobina colocada junto a la cuerda. La frecuencia de vibración de la cuerda es idéntica a la frecuencia de voltaje de salida, que se trasmite a lo largo del cable eléctrico hasta el dispositivo que mide dicha frecuencia. La frecuencia de vibración de la cuerda varía en función de su tensión y ésta varía en función de la presión de agua. La señal que se transmite por el cable no se distorsiona con la longitud de éste, por tanto, se puede modificar la longitud del cable (cortar o añadir, hasta 1000 m) sin afectar la medición. Sin embargo, la precisión del sensor de cuerda vibrante disminuye para rangos de medición pequeños, y requiere corrección por temperatura. El sensor de cuerda vibrante no es apto para mediciones continuas o dinámicas. La Figura 12 muestra una variedad de piezómetros de cuerda vibrante (PCV).
  • 14. En algunos diseños de PCV, se usan dos bobinas colocadas cerca de la cuerda: una de ellas hace vibrar la cuerda y la otra capta y transforma la frecuencia de vibración en corriente alterna que se registra en la unidad de lectura; también incluyen una resistencia sensible a la temperatura como termómetro, llamada termistor, para compensar los efectos de la temperatura, así como una protección contra alteraciones súbitas de cargas eléctricas. En la Figura 13 se muestra un corte longitudinal de la cápsula metálica y los componentes internos de un piezómetro de cuerda vibrante. Comercialmente se disponen de PCV para medir presiones de poro en el rango de 0 a 4000 kPa; con diámetros que varían entre 28 mm y 35 mm, longitudes de 200 mm y 260 mm, y con un peso de 0.5 kg a 1 kg. Fig. 11 Componente del piezómetro de cuerda vibrante. (a) Esquema del sensor diagramacuerda. (b) Arreglo del transductor con sus accesorios en el interior de una capsula cilíndrica de acero inoxidable.
  • 15. Fig. 12. Piezómetros de cuerda vibrante existentes en el mercado Fig. 13. Transductor de presión de cuerda vibrante y el arreglo interno de sus componentes. 4.3.3. Sensor de fibra óptica La Figura 14 muestra un sensor de fibra óptica (fiberopticpiezometer). Esta clase de sensores se diseñan para medir la presión que ejerce el agua a una membrana sin contacto directo, y registran las deformaciones de un elemento mecánico óptico en miniatura (MOMs, por sus siglas en inglés).
  • 16. Las dimensiones del sensor son muy pequeñas (5 mm), por lo que facilita su instalación en tuberías delgadas. Es inmune a interferencias magnéticas, señales de radio y a descargas eléctricas. Tiene una alta resolución y estabilidad, así como baja influencia de cambios térmicos. Los costos de esta tecnología son más elevados que los anteriormente descritos, particularmente el cable y el equipo de medición. Se requiere de personal calificado para su instalación. Fig. 14. Sensor de fibra optica. 5. ESFUERZOS EFECTIVOS 5.1. Concepto Terzaghi en 1943, demostró que para un suelo saturado, el esfuerzo efectivo en cualquier dirección puede definirse en forma cuantitativa como la diferencia entre el esfuerzo total y la presión de poros del agua, como se ve en la ecuación [5.1]. Este esfuerzo es transmitido a través de la estructura sólida del suelo por medio de los contactos intergranulares. Este componente del esfuerzo total es el que controla tanto la deformación debida a los cambios de volumen como la resistencia al corte del suelo, por lo tanto el esfuerzo normal y el esfuerzo cortante se transmiten a través de los contactos entre grano a grano. Dónde: = Esfuerzo normal total. = Esfuerzo normal efectivo.
  • 17. = Presión de poros del agua o esfuerzo neutral. El concepto del esfuerzo efectivo puede ilustrarse dibujando una línea ondulada, bb, que pase solo a través de los puntos de contacto entre las partículas sólidas, tal como se muestra en la Figura 15. El esfuerzo total es absorbido parcialmente por el agua en los poros o espacios vacíos y parcialmente por los sólidos del suelo en sus puntos de contacto. Entonces en un plano cualquiera b-b por donde pasa la línea ondulada mostrada en la Figura 15, se observa que es el área de sección transversal ocupada por los contactos sólido con sólido, es decir , entonces el espacio ocupado por el agua es igual a , de ahí que la fuerza absorbida por el agua es: Dónde: = Presión de poros del agua. = Área de la sección transversal de suelo = X·Y. = Área de sección transversal ocupada por los contactos sólidos con sólidos
  • 18. Fig. 15. Fuerzas intergranulares actuando en la superficie b-b. Como la variación entre las áreas de contacto es mínima se puede asumir que son iguales, por lo que también se puede decir que , donde es el número de contactos entre las partículas sólidas existentes en el área unitaria del plano bb. De la misma manera ocurre con las fuerzas entre las partículas sólidas, Entonces si son las fuerzas que actúan en los puntos de contacto de las partículas del suelo (Figura 15) y por lo tanto efectivas. La suma de las componentes verticales de todas estas fuerzas es: Dónde: , son las componentes verticales de: , respectivamente. Entonces la fuerza vertical total puede ser considerada como la suma de las fuerzas de contacto intergranulares con la fuerza hidrostática del agua en los poros.
  • 19. Dividiendo la ecuación [5.2] entre el área de sección transversal en el plano por donde pasa la línea ondulada, se obtiene el esfuerzo total vertical: Dónde: = Presión de poros del agua o presión hidrostática del agua. = Fracción del área de sección transversal unitaria de la masa de suelo ocupada por los contactos de sólido - sólido. = Fuerza media intergranular por área unitaria del plano = . Por lo tanto el esfuerzo efectivo ( ) no es exactamente igual a la fuerza media intergranular por área unitaria del plano, , y no depende del área de contacto entre las partículas. Aunque esta área puede ser pequeña nunca podrá ser cero ya que esto implicaría esfuerzos de contacto locales infinitos entre las partículas. Normalmente como el valor de es extremadamente pequeño puede ser despreciado para los rangos de presión encontrados generalmente en los problemas prácticos. Lo que reduce la ecuación [5.3], a la ecuación del esfuerzo efectivo: La ecuación [5.1] fue desarrollada primero por Terzaghi en 1925 a 1936, Skempton en 1960 extendió el trabajo de Terzaghi y propuso la relación entre los esfuerzos total y efectivo con la ecuación [5.3]. Considerando ahora la deformación en el área de contacto entre dos partículas influenciadas además por la presión de poros del agua, como se ve en la Figura 16. El sistema de fuerzas puede considerarse estar hecho de dos componentes. Si es la fuerza media por contacto y hay contactos en un área unitaria, entonces la fuerza intergranular por área unitaria en el plano b-b es. Ahora si una partícula de suelo isotrópico homogéneo es sujeto a un esfuerzo homogéneo, , sobre toda su superficie, la deformación producida es una pequeña reducción elástica en el volumen de la partícula sin ningún cambio en la forma de
  • 20. esta. Por consiguiente, el esqueleto del suelo en conjunto también reduce ligeramente en su volumen sin cambios en su forma. La compresibilidad de la estructura del esqueleto del suelo, sin embargo, es mucho mayor que la compresibilidad de las partículas individuales del suelo de las que se compone. De ahí que sólo esa parte del esfuerzo local de contacto que es un exceso de la presión de poros del agua es la que realmente causa una deformación estructural por resistencia volumétrica o por corte o por ambos. Este exceso de esfuerzo que controla la deformación estructural es igual a ( ), dónde es el área del contacto entre partículas. Sumando los componentes correspondientes del exceso de fuerzas interparticulares se obtiene una expresión para definido como esa parte del esfuerzo normal el cual controla el cambio de volumen debido a la deformación de la estructura del suelo, de donde el exceso de fuerza por unidad del plano b-b es: Reemplazando de la ecuación [5.3] se tiene: Fig. 16. Separación de las componentes de las fuerzas intergranulares. El esfuerzo efectivo, también puede ser hallado en términos del peso específico del suelo y del agua y de sus respectivas alturas, esto es explicado en forma detallada en el punto 5.3. De la Figura16, se puede ver que la fuerza total que actúa en una partícula de suelo es la fuerza , que actúa con una fuerza de compresión en el contacto entre partículas más la presión de poros, , que actúa en forma contraria tratando de
  • 21. separar a las partículas por una fuerza de tracción que ayuda a soportar y disminuir el peso soportado por las partículas sólidas. Entonces haciendo una sumatoria de estas fuerzas verticales, y recordando que el agua actúa en un área igual a ( ), se tiene: Para partículas se tiene: Dónde: Entonces reemplazando valores en la ecuación inicial, se tiene: De las ecuaciones [5.3], [5.4] y [5.5], se puede ver la diferencia que existe entre el esfuerzo efectivo, la fuerza media intergranular por área unitaria del plano y el esfuerzo intergranular. El esfuerzo efectivo no toma en cuenta el área de contacto entre partículas, mientras que los otros dos si lo hacen. Pero el analizar los esfuerzos de los suelos considerando estas áreas sería muy complicado y no valdría la pena debido a que las variaciones con respecto del esfuerzo efectivo son mínimas, a no ser en algunos pocos casos especiales en los que estas influyen considerablemente. Es por esta razón que el esfuerzo efectivo muchas veces es confundido con la fuerza media intergranular por área unitaria del plano o con el esfuerzo intergranular, sin embargo si bien son aproximadamente similares no son completamente iguales, por lo que es importante poder distinguir entre uno y otro. 5.2. Principio del Esfuerzo Efectivo El principio del esfuerzo efectivo fue definido por Bishop (1959), utilizando dos simples hipótesis:
  • 22. 5.2.1. El cambio de volumen y deformación de los suelos depende del esfuerzo efectivo y no del esfuerzo total. Esto lleva a la ecuación [5.1] ya definida. 5.2.2. La resistencia al corte depende del esfuerzo efectivo y no del esfuerzo total normal al plano considerado. Esto puede ser expresado por la ecuación: Dónde: resistencia al corte, esfuerzo efectivo en el plano considerado, cohesión, ángulo de resistencia al corte, con respecto al esfuerzo efectivo. Como el esfuerzo efectivo es esa parte del esfuerzo total que controla la deformación de la estructura del suelo, independientemente de las áreas de contacto entre partículas. Esto lleva a la conclusión de que aunque la fuerza media intergranular por área unitaria depende de la magnitud de , los cambios de volumen debido a la deformación de la estructura del suelodependen simplemente de la diferencia de esfuerzos ( ) o esfuerzo efectivo, cualquiera quesea la naturaleza de . La compresibilidad de la estructura del suelo, es mucho más grande que la compresibilidad de una partícula de suelo individual. De ahí es que solo esa parte de contacto del esfuerzo local, produce una deformación en la estructura del suelo por resistencia volumétrica o por resistencia de corte o por ambas. Entonces en base a estos dos principios de Bishop, se puede concluir que el esfuerzo efectivo está más directamente relacionado con el comportamiento del suelo que el esfuerzo total o la presión de poros. Por ejemplo, un aumento en el esfuerzo efectivo producirá un reajuste de las partículas del suelo pasando a una agrupación más compacta, sin embargo el mismo aumento en el esfuerzo total o presión de poros manteniendo constante el esfuerzo efectivo no producirá ningún efecto en la compacidad de la estructura del suelo, es decir que no se producirá ningún cambio de volumen ni deformación.
  • 23. Fig. 17. Representación esquemática de la transmisión de fuerzas a través de un suelo. (a) Sección de un recipiente lleno de suelo, (b) Ampliación de una parte de la sección mostrando las fuerzas transmitidas por dos puntos de contacto. En la Figura 17 se pueden ver las fuerzas normales y tangenciales a la superficie de contacto, que producen los esfuerzos normales y de corte respectivamente. 5.3. Cálculo del esfuerzo efectivo. El cálculo del esfuerzo efectivo requiere la determinación por separado del esfuerzo total y presión de poros del agua. A continuación se explica el cálculo de cada uno de estos en forma detallada. 5.3.1. Determinación del esfuerzo total. Para entender más fácilmente se considera el típico caso de un suelo en reposo condición mostrada en la Figura 18. Esta es una condición de cargado global (es decir en ambas direcciones, vertical y horizontal). Fig. 18. Esfuerzos en campo debidos al peso del suelo mismo en reposo.
  • 24. Considerando que el elemento de suelo de la Figura 18 tiene una profundidad D metros, el nivel de agua está en la superficie, el peso específico del volumen de suelo (sólidos y agua) es [ ], se puede hallar el esfuerzo total. Estos son los únicos datos necesarios para el cálculo del esfuerzo total. De la definición de esfuerzo se sabe que el esfuerzo es una fuerza sobre el área en la que actúa esta. En este caso la fuerza es el peso de la columna de suelo y el área en la que actúa esta fuerza se considera como unitaria (1 ), entonces se tiene: El peso de la columna de suelo se puede encontrar con ayuda del peso específico del suelo húmedo, ya que toda la columna de suelo se encuentra por debajo del nivel freático: 5.3.2. Determinación de la presión de poros del agua Esta presión es calculada similarmente al esfuerzo total, asumiendo condiciones de agua estática o condiciones hidrostáticas. Igualmente se considera una columna vertical unitaria de agua. La presencia de la estructura del suelo no tiene ningún efecto en el cálculo de la presión de poros del agua. Entonces se tiene: El peso de la columna de agua se puede encontrar con ayuda del peso específico del agua. Dónde: = peso específico del agua. Una aproximación útil toma (más exactamente, = 9.807 kN/m3). = 10 [ ]
  • 25. 5.4. Cálculo del esfuerzo efectivo en suelos saturados sin flujo de agua o encondiciones hidrostáticas Cuando se habla de presión hidrostática, se refiere a que la presión de poros en cualquier punto dentro de la masa de suelo, es igual al peso específico del agua por la profundidad del punto considerado, esta presión hidrostática está representada por el nivel freático o superficie piezometrica. Para realizar el cálculo del esfuerzo efectivo se determina el esfuerzo total y la presión de poros como se vio en el punto anterior. Fig. 19. (a) Estrato de suelo en un tanque donde no hay flujo de agua; variación de (b) esfuerzos totales; (c) presión de poros del agua; (d) esfuerzo efectivo con la profundidad paraun estrato de suelo sumergido sin flujo de agua. La Figura 19 (a)muestra un estrato de suelo sumergido en un tanque donde no hay flujo de agua. En las Figuras 20 (b) a la 20 (d) se observa el diagrama de las variaciones del esfuerzo total, presión de poros del agua, y el esfuerzo efectivo, con la profundidad para un estrato de suelo sumergido en un tanque sin flujo de agua. El esfuerzo total, la presión de poros del agua y por consiguiente el esfuerzo efectivo; en un punto cualquiera a una determinada profundidad, pueden ser obtenidos del peso específico saturado del suelo y del peso específico del agua como ya se vio anteriormente, por ejemplo para los puntos A, B, C de la Figura 19 (a)se tiene: En A Esfuerzo total:
  • 26. Presión de poros del agua: Esfuerzo efectivo: En B Esfuerzo total: Presión de poros del agua: Esfuerzo efectivo: Dónde: es el peso específico sumergido del suelo. En C Esfuerzo total: Presión de poros del agua: Esfuerzo efectivo: Como se puede ver el esfuerzo efectivo solo es la altura de columna de suelo por el peso específico sumergido del mismo, por lo tanto el esfuerzo efectivo en cualquier punto es independiente de la altura del agua sobre el suelo sumergido. Dónde: es el peso específico sumergido del suelo. Si se tiene flujo de agua en el suelo, el esfuerzo efectivo en cualquier punto en una masa de suelo será diferente al del caso estático. Aumentará o disminuirá dependiendo de la dirección del flujo de agua. El sentido del flujo puede ser ascendente o descendente. 5.5. Calculo del esfuerzo efectivo en suelos con flujo de agua ascendente Este tipo de flujo se presenta en el lado aguas abajo de las estructuras de retención de agua, como por ejemplo presas, ataguías, tablestacas, etc. Este flujo crea una fuerza de levante en esta parte, que pone en riesgo la vida útil de la estructura de retención de agua, por lo que en este tipo de obras es necesario hacer siempre un análisis preciso de la influencia que tiene este tipo de flujo. En consecuencia el análisis de esfuerzos efectivos influye mucho en el diseño y construcción de una obra hidráulica. La Figura 20 (a) muestra un estrato de suelo granular en un tanque donde el flujo de agua es ascendente debido a la adición de agua a través de la válvula en el
  • 27. fondo del tanque. El caudal de agua suministrado se conserva constante. La pérdida de carga causada por el flujo de agua ascendente entre los niveles de A y B es h. El cálculo de todos los esfuerzos para tres puntos cualquiera a profundidades distintas es similar al caso anterior. Fig. 20. (a) Estrato de suelo en un tanque con flujo de agua ascendente; variación de (b) esfuerzos totales; (c) presión de poros del agua; (d) esfuerzo efectivo con la profundidad paraun estrato de suelo con flujo de agua ascendente. En A Esfuerzo total: Presión de poros del agua: Esfuerzo efectivo: En B Esfuerzo total: Presión de poros del agua: Esfuerzo efectivo: En C Esfuerzo total: Presión de poros del agua: Esfuerzo efectivo:
  • 28. Es posible demostrar que el término es el gradiente hidráulico: Dónde: = Gradiente Hidráulico = Perdida de carga entre dos puntos = Distancia entre dos puntos, que es la longitud de flujo sobre la cual ocurre la pérdida de carga. De la Figura 20 (a): Entonces: En la Figura 20 (a), el termino es hallado mediante una interpolación lineal entre las perdida de carga del punto A localizado a una profundidad y la perdida de carga ( ) del punto C localizado a una profundidad ( ). Se trazan las variaciones del esfuerzo total, presión de poros del agua, y el esfuerzo efectivo con la profundidad en las Figuras 21 (b) a la 21 (d), respectivamente. Si el caudal del flujo de agua aumenta entonces el gradiente hidráulico también aumentara, en la ecuación [5.8] se ve que si el valor del gradiente hidráulico es muy alto, tal que el termino ( ) se haga cero, entonces el esfuerzo efectivo será cero, en este punto se alcanzará una condición límite. Dónde: = Gradiente hidráulico critico (para un esfuerzo efectivo igual a cero) Bajo semejante situación, el suelo pierde estabilidad, ya que si el esfuerzo efectivo es cero no existe esfuerzo de contacto entre las partículas del suelo y la estructura del suelo se romperá. Esta situación generalmente es llamada condición rápida o falla por levantamiento.
  • 29. Entonces como este tipo de flujo puede producir mucho daño a la estructura del suelo es que se debe tratar de reducir el caudal de flujo de agua, para esto es que se utilizan los llamados filtros que se verá cómo funcionan y ayudan a disminuir este efecto de levante en la sección 2. De la ecuación [5.9] despejando se tiene: Para la mayor parte de los suelos, el valor de promedio de 1. varia de 0.9 a 1.1, con un 5.6. Calculo del esfuerzo efectivo en suelos con flujo de agua descendente Este tipo de flujo se presenta en el lado aguas arriba de una estructura de retención de agua. El principal problema que causa este tipo de flujo es que cuando es muy grande produce arrastre de partículas de un suelo a otro o de un suelo a una estructura de drenaje, produciendo erosión tanto en la estructura de suelo como también en la estructura de la obra de retención de agua del lado aguas arriba. Debido a esto es que se recomienda colocar filtros también en el lado aguas arriba de la estructura de retención de agua. Este tipo de flujo es menos peligroso para la estabilidad de la estructura de retención de agua, que el anterior pero no menos importante de tomar en cuenta, ya que en el diseño de presas permeables como las de tierra siempre es necesario colocar un filtro en el lado aguas arriba, ya que este flujo produciría filtraciones considerables en este tipo de estructuras, en el caso de presas impermeables como las de concreto o ataguías no se producen daños considerables. Este tipo de flujo de agua descendente se muestra en la Figura 20 (a). El nivel del agua en el suelo dentro el tanque se mantiene constante ajustando el suministro desde la parte superior y la salida en el fondo. El esfuerzo total, presión de poros del agua, y el esfuerzo efectivo; pueden ser calculados de manera similar al de los anteriores casos.
  • 30. Fig. 20. (a) Estrato de suelo en un tanque con flujo de agua descendente, variación de (b) esfuerzos totales, (c) presión de poros del agua, (d) esfuerzo efectivo con la profundidad paraun estrato de suelo con flujo de agua descendente. En A Esfuerzo total: Presión de poros del agua: Esfuerzo efectivo: En B Esfuerzo total: Presión de poros del agua: Esfuerzo efectivo: En C Esfuerzo total: Presión de poros del agua: Esfuerzo efectivo:
  • 31. Las variaciones del esfuerzo total, presión de poros del agua, y el esfuerzo efectivo con la profundidad son mostradas gráficamente en las Figuras 22 (b) a la 22 (c). En resumen se puede decir que cuando se tiene flujo de agua ascendente el esfuerzo efectivo disminuye y cuando se tiene flujo de agua descendente el esfuerzo efectivo aumenta en una cantidad igual . Fig. 22. Fuerza producida en un volumen de suelo. (a) Sin flujo de agua. (b) Flujo de agua ascendente. (c) Flujo de agua descendente. 6. FENOMENO DE SIFONAMIENTO O EBULLICION Fenómeno de inestabilidad hidráulica que se puede producir en arenas y limos consistentes en la pérdida de consistencia del suelo por lo que dará la impresión de
  • 32. entrar en ebullición. Este fenómeno aparece cuando las tensiones efectivas se anulan, por lo que el gradiente critico es: Dónde: = Gradiente hidráulico crítico. = Peso unitario sumergido del suelo. = Peso unitario del agua. Si se considera un suelo sometido a una infiltración de agua que soporta una carga hidráulica dada, es intuitivo pensar que si este suelo es estable es que las fuerzas producidas por el movimiento del agua (carga hidráulica) están equilibradas por las fuerzas de unión internas de los granos del suelo entre sí. La fuerza de arrastre del agua llega a ser superior a las fuerzas de unión del suelo y éste es arrastrado violentamente. Se forma un agujero, sifonamiento o ebullición que es un fenómeno particularmente temible en las obras de diques, canales, ataguías, etc.