SlideShare una empresa de Scribd logo
1 de 124
Descargar para leer sin conexión
Universidad José Carlos Mariátegui”
ui”
pat_pv_pca_11@hotmail.com
!!
!!
!!
!!"
"
"
"
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PRBLEMA Nª 1.
Dado el contenido de agua de u
el peso específico de la masa y el
figuren sólo las cantidades conoc
SOLUCIÓN
Por definición:
Si:
Además:
El peso específico de la masa por
En el esquema:
PROBLEMA Nª 2
Dados n y Vm = 1, encontrar SS
cantidades conocidas.
SOLUCIÓN:
Por definición:
Por lo tanto:
El peso del agua será:
ui”
pat_pv_pca_11@hotmail.com
#
#
#
#
e un suelo saturado y su peso específico relati
y el peso específico sumergido de ese suelo. Uti
nocidas.
por definición es:
para un suelo saturado. Utilice un esquema
W
S W
w
W =
∴
=1
0
0
1
γ
γ S
S
S
S
S
S
V
V
W
S =
∴
=
0
0 γ
γ
w
V
W
V W
W
W =
∴
=
m
m
m
v
W
=
γ
0
0
1
1
γ
γ
γ
S
m
S
w
w
+
+
= S
m
wS
w
S
+
+
=
∴
1
1
0
γ
γ
(
S
S
m
m
S
WS
W
S =
−
+
+
=
−
=
1
1
0
0
0 γ
γ
γ
γ
γ
V
m
m
V
V
n
V
si
V
V
n =
∴
=
= 1
:
;
n
VS −
=1
0
0 γ
γ n
V
W W
W =
=
1
( ) 100
% ×
= s
W
Wω
ω
Ing. Civil - UJCM
lativo de sólidos, encuentre
Utilice un esquema en que
ma en que figuren sólo las
S
wS
w
)
S
S
S
S
+
−
1
1 0
γ
0
1
γ
S
S
0
γ
ω
1
ω
n
n
−
1
1
0
γ
n
0
γ
w
n
www.elsolucionario.net
Universidad José Carlos Mariátegui”
Aplicando la definición para SS
PROBLEMA Nª 3
En un suelo saturado se conoce
agua, w =23%. Encontrar el Ss d
0.23 TN. y Ws = 1.0 TN.
SOLUCIÓN:
Por lo tanto: 0
V =
ω
También:
De donde:
Por lo que:
ui”
pat_pv_pca_11@hotmail.com
se tendrá:
ocen el peso especifico húmedo, γ
γ
γ
γm = 2050 k
de dicho suelo. Aplicando la definición de S
3
23
.
0 m
0
γ
w
n
w
W
W W
S =
=
( ) ( )
n
w
n
n
w
n
V
W
S
S
S
S
−
=
−
=
=
1
1 0
0
γ
γ
ω
ω
ω γ
γ
V
W
o =
=
o
W
V
γ
ω ω
=
m
m
m
V
W
=
γ
3
6
.
0
05
.
2
23
.
1
23
.
0
1
m
V
m
m =
=
+
=
γ
3
0
37
.
0
23
.
0
6
.
0
1
m
S
V
S
S =
−
=
=
γ
7
.
2
37
.
0
1
=
=
S
S
Ing. Civil - UJCM
0 kg/m3
y su contenido de
Ss. Si sabemos que WW =
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA Nº 4
En un suelo saturado:
SS = 2
Sm = 1.
Calcule la rela
SOLUCIÓN:
Por definición
También:
Aplicando la definición de S
ui”
pat_pv_pca_11@hotmail.com
= 2.65
1.80
relación de vacíos y el contenido de humedad d
e Sm, se tiene:
;
S
V
V
V
e =
3
1m
VS =
.
3
Tn
e
W
m
e
V
V W
W
V =
∴
=
=
65
.
2
0
0
S
V
W
V
W
S S
S
S
S
S
S =
=
∴
= γ
γ
.
1
80
.
1
1
65
.
2
0
=
∴
=
+
+
=
= e
e
e
V
W
S
m
m
m
γ
;
40
.
0
65
.
2
06
.
1
65
.
2
=
=
=
=
e
W
W
w
S
W
Ing. Civil - UJCM
d del suelo:
.
65 Tn
06
.
%
40
=
w
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA Nª 5.
Una muestra de arcilla saturada
g. Si el Ss vale 2.70, calcule e, n,
SOLUCIÓN:
Puede hacerse el esquema de la f
ui”
pat_pv_pca_11@hotmail.com
ada pesa 1526 g. Después de secada al horno
n, w, γ
γ
γ
γm y γ
γ
γ
γd.
la fig. a partir de él, usando las definiciones, se
21
.
1
390
473
=
=
=
S
V
V
V
e
55
.
0
390
473
473
=
+
=
=
m
V
V
V
n
3
390
; cm
V
V
W
S s
o
s
s
s =
=
γ
%
45
100
1053
473
=
×
=
w
78
.
1
863
1526
g
V
W
m
m
m =
=
=
γ
3
22
.
1
863
1053
cm
g
d =
=
γ
Ing. Civil - UJCM
no su peso pasa a ser 1053
s, se tiene:
3
cm
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA Nª 6.
En un suelo parcialmente satu
unifórmenle distribuido en la m
función de las cantidades conoci
SOLUCIÓN:
Por definición:
Si se hace Vs = 1; resulta: Po
Vv =
También por definición:
Y corresponde:
Luego las incógnitas valdrán:
ui”
pat_pv_pca_11@hotmail.com
aturado se conoce e, SS, GW. Suponiendo q
a masa del suelo, abajo del nivel freático, e
ocidas y haciendo uso de un esquema apropiad
Por lo tanto:
= e
S
V
V
V
e =
0
γ
S
S S
W =
W
W
V
W
W eG
V
V
V
G =
∴
=
0
γ
W
W eG
W =
0
1
γ
γ ω
e
S
e
G
V
W S
m
m
m
+
+
=
=
( ) ( )
0
0
1
1
1
γ
γ
γ
γ
e
G
e
S W
S
m
m
+
−
−
−
=
−
=
′
Ing. Civil - UJCM
o que el gas disuelto está
, encuentre γ
γ
γ
γm y γ
γ
γ
γ ´m, en
iado.
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA Nª 7.
En una muestra de suelo parcia
w, y el valor de SS. Encuentre el
en función de las cantidades con
SOLUCIÓN:
Por definición:
Si hacemos:
Tendremos:
Una vez construido el esquema,
definiciones:
e
ui”
pat_pv_pca_11@hotmail.com
cialmente saturado se conoce el peso especific
el peso específico seco, la relación de vacíos y
onocidas, utilizando un esquema adecuado.
ma, las incógnitas pueden calcularse aplican
S
W
W
W
w =
1
=
S
W
w
WW =
0
0
1
γ
γ S
S
S
S
S
S
V
S
V
W
=
∴
=
m
m
m
m
m
m V
V
w
V
W
γ
ω
γ
+
=
∴
+
=
=
1
1
0
0 γ
γ
w
V
W
V W
W
W =
∴
=
1
1
1 0 −
+
=
−
=
−
=
= γ
γ S
m
S
m
S
S
m
S
V
S
w
V
V
V
V
V
V
V
e
Ing. Civil - UJCM
ifico, el contenido de agua
os y el grado de saturación
ando las correspondientes
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA Nª 8
En un suelo parcialmente satura
Encuentre:
SOLUCIÓN
Por definición:
S
e
V
W
s
m
S
d
+
=
=
1
1
0
γ
γ
GW =
GW =
s
V
Haciendo
ui”
pat_pv_pca_11@hotmail.com
urado se conocen:
y
e
Ss
+
=
1
0
0
γ
e
S
S
e
w
V
V
V
V
V s
S
S
m
W
V
W ω
γ
γ
=
=
−
=
=
0
0
( )
3
m
kg
m
γ ,
w
,
75
.
2
,
60
.
0 =
= W
S G
S
e
,
60
.
0 3
m
e
VV =
=
3
18
.
0
42
.
0
60
.
0 m
V
V
V W
V
a =
−
=
−
=
%
3
.
15
153
.
0
75
.
2
42
.
0
=
∴
−
=
= w
W
W
w
S
W
3
3
1720
72
.
1
60
.
1
75
.
2
m
kg
m
Tn
V
W
m
S
d =
=
=
=
γ
70
.
0
60
.
0
G
V
V
V
V
W
V
W
V
W
=
×
=
=
∴
=
;
S
V
V
V
e =
⇒
= 1
Ing. Civil - UJCM
( )
3
, m
kg
d
γ
%
70
=
W
3
42
.
0 m
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA Nª 9
En una muestra de suelo parcial
Encuentre:
SOLUCIÓN:
Entonces:
ui”
pat_pv_pca_11@hotmail.com
ialmente saturado se conocen:
3
198
98
.
1
60
.
1
17
.
3
60
.
1
42
.
0
75
.
2
m
Tn
m =
=
=
+
=
γ
,
75
,
95
,
50 3
=
=
= S
S
m
m S
g
W
g
W
cm
V
d
m
W
G
n
e
w γ
γ ,
,
,
,
, ( )
3
m
kg
.
20
75
95 g
W
W
W S
m
W =
−
=
−
= VS
.
20 3
0
cm
W
V W
W =
=
γ
V
V
V
V W
S
m
a −
−
=
%
7
.
26
267
.
0
75
20
=
∴
=
=
= w
W
W
w
S
W
.
79
.
0
28
22
=
=
=
S
V
V
V
e
50
22
=
=
=
V
V
n
m
V
%
91
91
.
0
22
20
=
∴
=
=
= W
V
W
W G
V
V
G
.
1900
9
.
1
50
95 3
3
m
kg
cm
g
m =
=
=
γ
3
3
1500
5
.
1
50
75
m
kg
cm
g
d =
=
=
γ
Ing. Civil - UJCM
3
980 m
kg
68
.
2
=
3
0
28
68
.
2
75
cm
S
W
S
S
=
=
=
γ
3
2
48
50 cm
W =
−
=
%
44
44
.
0 =
∴
= n
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA Nª 10
El volumen de una muestra irreg
la muestra con cera y pesándola
Peso total de la muestra al aire
Contenido de agua de la muestra
Peso de la muestra envuelta en c
Peso de la muestra envuelta en c
Peso especifico relativo de los sól
Peso especifico relativo de la cera
Determinar la densidad seca de l
SOLUCIÓN:
En este caso convendrá hacer
intervenir a la cera.
El volumen total del suelo y cera
El volumen de la
especifico, que es un dato del pro
El volumen de la masa de suelo s
Por lo que:
Dato que puede ponerse en el esq
V
V
V t
m −
=
W
W m
W =
;
136
.
0
=
=
S
W
W
W
w
g
WS 159
=
+
S W
W
W
V
cera
cera
cera =
γ
.
199
Vm =
ui”
pat_pv_pca_11@hotmail.com
rregular de suelo parcialmente saturado se ha
la al aire y bajo agua. Se conocen:
180.6g
stra 13.6g
n cera, en el aire 199.3g
n cera, sumergida 78.3g
sólidos del suelo 2.71g
cera 0.92g
de la muestra y el Grado de Saturación.
er un esquema en que, además de las tres
era será:
cera es el cociente de
problema.
lo será:
esquema
g
Wm 6
.
180
= Wcer
W
W m
t +
=
Wcera 6
.
180
3
.
199 −
=
∴
100
3
.
20
121
92
.
0
7
.
18
121
Vcera =
−
=
−
=
g
WS 6
.
21
159
6
.
180 =
−
=
−
g
136
.
0
6
.
180
6
.
180 =
−
=
∴
=
S
S
W
W
W
w
g
W
3
3
.
20
92
.
0
7
.
18
cm
era
era
=
=
3
0
.
121
3
.
78
3
.
cm
o
=
−
γ
Ing. Civil - UJCM
ha determinado cubriendo
res fases usuales, se haga
de su peso entre su peso
g
cera 3
.
199
=
g
7
.
18
6 =
3
7
.
00 cm
www.elsolucionario.net
Universidad José Carlos Mariátegui”
Pasa al esquema:
Con lo anterior queda completo e
Ahora:
PROBLEMA Nª 11
Una muestra de arena totalmen
teniendo SS = 2.6. Calcule la rela
SOLUCIÓN:
Datos:
Incógnita:
PROBLEMA Nª 12
El contenido de agua de un suel
suelo e y γ
γ
γ
γm
SOLUCIÓN:
Datos:
W
V W
W
0
=
=
γ
Va =
V
W
d =
γ
=
V
W
W
V
V
G
Vm
SS =
VV
=
∴e
%
w
S
S
ui”
pat_pv_pca_11@hotmail.com
to el esquema operativo de la fig.
ente seca llena un cilindro metálico de 200
relación de vacíos (e).
uelo saturado es 40%. El SS de sus partículas e
g
6
.
21
3
0
8
.
58
71
.
2
159
cm
S
W
V
S
S
S =
=
=
γ
100
121
)]
6
.
21
8
.
58
3
.
20
(
121 −
=
+
+
−
3
3
580
.
1
58
.
1
7
.
100
159
m
kg
cm
g
V
W
m
S
=
=
=
%
52
52
.
0
9
.
41
6
.
21
6
.
21
3
.
20
6
.
21
=
∴
=
=
+
W
V
W
G
V
V
3
200cm
= .
260gr
Wm = 6
.
2
=
S
S
?
=
e
3
0
100
6
.
2
260
cm
V
V
W
S
S
S
=
=
⇒
=
γ
3
100cm
V
V
V V
S
m =
⇒
−
=
1
100
100
=
=
⇒
= e
V
V
S
V
%
40
% = Si VS = 1
65
.
2
=
S
Ing. Civil - UJCM
00 cm3
y pesa 260g (WS),
as es 2.65. Calcule para tal
3
3
.
20
7
.
100 cm
=
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA Nª 13
En un suelo parcialmente satura
Datos:
SOLUCIÓN:
Ss = γ
γ
γ
γs/γ
γ
γ
γo Luego γ
γ
γ
γs= Ss
?
?, =
= m
e γ
⇒
V
V
0
γ
e
e
w
1 w
m
d
+
=
γ
γ
ui”
pat_pv_pca_11@hotmail.com
urado e = 1.2; w = 30%; SS = 2.66; calcule el γ
γ
γ
γ
sγ
γ
γ
γo=2.66gr/cm3
g
W
V
W
S S
S
S
S 65
.
2
0
=
⇒
=
⇒
γ
3
3
06
.
2
,
1 cm
V
cm
V m
S =
=
3
06
.
1 cm
V
V
V S
m
V =
−
=
100
% ×
=
S
W
W
W
w
( ) W
W
=
65
.
2
40
.
0
g
WW 06
.
1
=
3
06
.
1 cm
VW =
∴
80095
.
1
06
.
2
06
.
1
65
.
2
cm
g
V
W
W
m
W
S
m =
+
=
+
=
γ
06
.
1
1
06
.
1
=
=
=
S
V
V
V
e
2
.
1
=
e
%
30
=
w
66
.
2
=
S
S
?
, =
d
m γ
γ
( )
e
w
SS
m
+
+
=
1
1 0
γ
γ
( )( )( )
2
.
1
1
1
66
.
2
3
.
0
1 3
+
+
=
cm
g
m
γ
3
3 8
.
1571
5718
.
1 m
kg
cm
g
m =
=
γ
3
3
1
.
1209
2091
.
1
3
.
1
5718
.
1
kg
cm
g
cm
g =
=
=
Ing. Civil - UJCM
γ
γ
γ
γm y el γ
γ
γ
γd de dicho suelo.
e=n/(1-n) y n=e/1+e
3
3
1800 m
kg
cm =
3
m
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA Nª14.
Una muestra de suelo pesa 122
relativo de los sólidos es SS = 2.5
su volumen de sólidos y de aire r
Datos:
SOLUCIÓN:
PROBLEMA Nº15.
Una muestra de arcilla saturada
Considerando γ
γ
γ
γs = 2.70 g/cm3, ca
Datos:
SOLUCIÓN
Wm 1
=
1
=
m
S
W S 10
=
,
S V
V
V
W
Sm =
V
W
S
S
S =
V
VV =
V
VV =
,
, n
e
w
2
S =
γ
V
W
S =
γ
=
V V
V
=
S
V
V
V
e
W
m =
γ
% =
W
W
w
ui”
pat_pv_pca_11@hotmail.com
22 gr y tiene un peso especifico relativo Sm =
2.53. Si después de secada al horno la muestr
e respectivamente?
rada pesa 1526g y 1053g después de secada a
, calcule también e, n y γ
γ
γ
γm
g
122
82
.
1
g
104
?
=
a
V
3
0
03
.
67
82
.
1
122
cm
V
V
V
W
m
m
m
m
=
⇒
=
⇒
γ
3
0
10
.
41
53
.
2
104
cm
V
VS
V
W
S
S
S
=
⇒
=
⇒
γ
3
93
.
25 cm
V
V S
m =
−
3
03
.
67 cm
V
V
V a
a
W =
⇒
+
?
, =
m
γ
3
70
.
2 cm
g
3
390
70
.
2
1053
cm
V
V
V
W
S
S
S
S
=
⇒
=
⇒
473
=
⇒
− V
S
m V
V
V
21
.
1
390
473
=
=
S
V
V
%
55
55
.
0
100 =
=
×
=
m
V
V
V
n
3
77
.
1 cm
g
V
W
W
m
W
S
=
+
%
45
100 =
×
S
W
W
W
Ing. Civil - UJCM
= 1.82. El peso especifico
estra pesa 104g ¿Cuál será
al horno. Calcule su w%
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA 1
El proyecto de una edificación c
m x 2,0 m (Figura 10.1). El niv
freático estático se encuentra a 1
El perfil del terreno muestra q
unitario de este suelo es de 16
efectuados con muestras inalte
resistencia al corte son c′ = 4 kPa
Se requiere calcular la carga úl
factor de seguridad de 3 sobre la
a) Ecuaciones de capacidad porta
b) Ecuaciones de capacidad porta
c) Ecuaciones de capacidad porta
d) Ecuaciones de capacidad porta
SOLUCIÓN
Se tiene el siguiente esquema:
0,5m
1m
Fundación en un perfil de suelo.
a) Terzaghi
ui”
pat_pv_pca_11@hotmail.com
n contempla el diseño de zapatas aisladas de h
nivel de fundación ha sido fijado en 0,5 m d
a 1,5 m de la superficie del terreno.
a que existe un suelo homogéneo hasta gran
16,4 kN/m3
. Ensayos triaxiales CU (Conso
alteradas de este material indican que los p
kPa y φ
φ
φ
φ′
′
′
′ = 36º.
última de apoyo, y la carga máxima segura
la carga neta aplicada, utilizando:
ortante de Terzaghi.
ortante de Meyerhof.
ortante de Hansen.
ortante de Vesic.
0,5 m x 2 m
elo.
c′ = 4 kPa
φ′ = 36º
γ = 16,4 kN/m3
Ing. Civil - UJCM
e hormigón armado de 0,5
de profundidad. El nivel
ran profundidad. El peso
nsolidado - No Drenado)
s parámetros efectivos de
ra de apoyo empleando un
Figura 10.1.
www.elsolucionario.net
Universidad José Carlos Mariátegui”
La ecuación de capacidad portan
+
+
= N
q
s
N
c
q q
c
c
u 0
De la Tabla J.2 , para φ
φ
φ
φ′ = 36° se
Nc = 63,53
De la Tabla J.1 , se asume zapata
Porque:
contin
zapata
B
L
≅
> 4
Como puede verse, el nivel freáti
B = 0,5 m, siendo B el ancho de
al valor de γ
γ
γ
γ en la ecuación de ca
Caso III d ≥ B (No hay Corr
Luego, reemplazando en la ecuac
γ
+
= N
D
s
N
c
q q
f
c
c
u
( )( )( ) (16
1
53
63
4 ,
qu +
=
qu = 863,71 kPa
La carga máxima segura de apoy
f
f
u
s D
FS
D
q
q γ
+
γ
−
=
Entonces
( )(
3
5
0
4
16
71
863 ,
,
,
qs
−
=
qs = 293,4 kPa
ui”
pat_pv_pca_11@hotmail.com
tante es:
γ
γ
γ s
N
B
,5
0
° se tiene que:
Nq = 47,16 Nγ
γ
γ
γ = 54,36
pata es continua, por lo tanto:
ntinua
, entonces: sc = 1,0
eático se encuentra a 1 m de la base de la fund
de la fundación, entonces no se requiere reali
e capacidad portante.
orrección)
uación se tiene que:
γ
γ
γ
+ s
N
B
,
q 5
0
)( )( ) ( )( )( )( )( )
1
36
54
5
0
4
16
5
0
16
47
5
0
4
16 ,
,
,
,
,
,
, +
poyo será:
f
) ( )( )
5
0
4
16
5
,
,
+
Ing. Civil - UJCM
sγ
γ
γ
γ = 1,0
undación. Como d = 1 m >
ealizar ninguna corrección
www.elsolucionario.net
Universidad José Carlos Mariátegui”
b) Meyerhof
Según la Tabla J.1 , la ecuación
+
= s
N
q
d
s
N
c
q q
q
c
c
c
u
De la Tabla J.4 , para φ
φ
φ
φ′
′
′
′ = 36° se
Nc = 50,55
De la Tabla J.3 , se tiene:
Factores de forma





 φ
+
=
2
45
2
tan
K p
2
36
45
2
tan
K p =






+
=
L
B
K
,
s p
c 2
0
1+
=
( )( )
2
5
0
852
3
2
0
1
,
,
,
sc 


+
=
L
B
K
,
s
s p
q 1
0
1+
=
= γ
( )( 852
3
1
0
1 ,
,
s
sq +
=
= γ
Factores de profundidad
B
D
K
,
d p
c 2
0
1+
=
( )
5
0
5
0
852
3
2
0
1
,
,
,
,
dc +
=
ui”
pat_pv_pca_11@hotmail.com
ón general de capacidad portante para cargas v
γ
γ
γ
γ
+ d
s
N
'
B
,
d q 5
0
° se tiene que:
Nq = 37,70 Nγ
γ
γ
γ = 44,40
852
3,
=
193
1
2
5
,
=



) 096
1
2
5
0
52 ,
,
=






393
1
5
5
,
=
Ing. Civil - UJCM
as verticales:
www.elsolucionario.net
Universidad José Carlos Mariátegui”
K
,
d
d p
q 1
0
1+
=
= γ
( ) 85
3
1
0
1 ,
,
d
dq +
=
= γ
Luego, reemplazando en la ecuac
γ
+
= N
D
d
s
N
c
q f
c
c
c
u
( )( )( )(
( )( )( )(4
5
0
4
16
5
0
1
193
1
55
50
4
,
,
,
+
,
,
,
qu =
qu = 979,87 kPa
La carga máxima segura de apoy
f
f
u
s D
FS
D
q
q γ
+
γ
−
=
Entonces
( )(
3
5
0
4
16
87
979 ,
,
,
qs
−
=
qs = 332,1 kPa
c) Hansen
Según la Tabla J.1 , la ecuación
= g
i
d
s
N
c
q c
c
c
c
u
En este caso, los factores de incli
ic = iq = iγ
γ
γ
γ = 1
gc = gq = gγ
γ
γ
γ = 1
bc = bq = bγ
γ
γ
γ = 1
De ahí que la ecuación de capaci
+
= d
s
N
q
d
s
N
c
q q
q
q
c
c
c
u
ui”
pat_pv_pca_11@hotmail.com
B
D
196
1
5
0
5
0
852 ,
,
,
=
uación de capacidad portante se tiene que:
γ
γ
γ
′
γ
+ d
s
N
B
,
d
s
N q
q
q 5
0
) ( )( )( )( )( )
)( )( )
196
1
096
1
40
44
196
1
096
1
70
37
5
0
4
16
393
,
,
,
,
,
,
,
,
, +
+
poyo será:
) ( )( )
5
0
4
16
5
,
,
+
ón general de capacidad portante es:
γ
γ
γ
+
+ s
N
'
B
,
b
g
i
d
s
N
q
b
g q
q
q
q
q
q
c
c 5
0
nclinación (i), pendiente (b) y de terreno (g) son
acidad portante queda como sigue:
γ
γ
γ
γ
+ d
s
N
'
B
,5
0
Ing. Civil - UJCM
γ
γ
γ
γ b
g
i
d
son:
www.elsolucionario.net
Universidad José Carlos Mariátegui”
De la Tabla J.4 , para φ
φ
φ
φ′
′
′
′ = 36°, lo
Nc = 50,55
Nq/Nc = 0,746 2 tan
De la Tabla J.5 , se tiene:
Factores de forma
'
L
'
B
N
N
,
s
c
q
c +
= 0
1
( )
2
5
0
746
0
0
1
,
,
,
sc 





+
=
φ
+
= sen
'
L
'
B
,
sq 0
1
36
2
5
0
0
1 sen
,
,
sq 





+
=
≥
−
=
γ
'
L
'
B
,
,
s 4
0
0
1
0,6
( ) 0
2
5
0
4
0
0
1
,
,
,
s =






−
=
γ
Factores de profundidad
k
,
dc 4
0
1+
=
1
1
5
0
5
0
≤
=
=
,
,
B
D
( )( ) 40
1
1
4
0
1 ,
,
dc =
+
=
( sen
'
tan
dq 1
2
1 −
φ
+
=
( )( ) 24
1
1
247
0
1 ,
,
dq =
+
=
0
1,
d =
γ
ui”
pat_pv_pca_11@hotmail.com
°, los factores de capacidad portante son:
Nq = 37,70 Nγ
γ
γ
γ = 40,00
tan φ
φ
φ
φ′
′
′
′ (1-sen φ
φ
φ
φ′
′
′
′)2
= 0,247
187
1,
=



147
1
36 ,
=
0,6
9
0,
⇒
⇒
⇒
⇒
1
=
=
B
D
k
) k
'
en
2
φ
247
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
Luego, reemplazando en la ecuac
γ
+
= N
D
d
s
N
c
q f
c
c
c
u
( )( )( )(
( )( )( )(
5
0
4
16
5
0
1
187
1
55
50
4
,
,
,
+
,
,
qu =
qu = 925,78 kPa
La carga máxima segura de apoy
f
f
u
s D
FS
D
q
q γ
+
γ
−
=
Entonces
( )(
3
5
0
4
16
78
925 ,
,
,
qs
−
=
qs = 314,1 kPa
d) Vesic
Según la Tabla J.1 , la ecuación
+
= d
s
N
q
d
s
N
c
q q
q
q
c
c
c
u
De la Tabla J.4, para φ
φ
φ
φ′
′
′
′ = 36°, lo
Nc = 50,55
Nq/Nc = 0,746 2 tan φ
φ
φ
φ
De la Tabla J.5 , se tiene:
Factores de forma
( )
2
5
0
746
0
0
1
,
,
,
sc 





+
=
'
tan
0
,
1 φ
⋅
+
=
L
B
sq
ui”
pat_pv_pca_11@hotmail.com
uación de capacidad portante se tiene que:
γ
γ
γ
′
γ
+ d
s
N
B
,
d
s
N q
q
q 5
0
) ( )( )( )( )( )
( )( )( )
0
1
9
0
0
40
247
1
147
1
70
37
5
0
4
16
40
1
,
,
,
,
,
,
,
,
, +
+
poyo será:
) ( )( )
5
0
4
16
5
,
,
+
ón general de capacidad portante es la siguient
γ
γ
γ
′
γ
+ d
s
N
B
,5
0
, los factores de capacidad portante son:
Nq = 37,70 Nγ
γ
γ
γ = 56,20
φ
φ
φ
φ′
′
′
′ (1–sen φ
φ
φ
φ′
′
′
′)2
= 0,247
187
1,
=



Ing. Civil - UJCM
iente:
www.elsolucionario.net
Universidad José Carlos Mariátegui”
36
tan
2
5
,
0
0
,
1 ⋅






+
=
q
s
L
B
,
,
s 4
0
0
1 −
=
γ
≥ 0,6
( )
2
5
0
4
0
0
1
,
,
,
s =






−
=
γ
Factores de profundidad
k
,
dc 4
0
1+
=
1
1
5
0
5
0
≤
=
=
,
,
B
D
( )( ) 40
1
1
4
0
1 ,
,
dc =
+
=
( sen
tan
dq 1
2
1 φ
−
φ
+
=
( )( ) 2
1
1
247
0
1 ,
,
dq =
+
=
0
1,
d =
γ
Luego, reemplazando en la ecuac
γ
+
= D
d
s
N
c
q f
c
c
c
u
( )( )( )(
( )( )( )(
5
0
4
16
5
0
1
187
1
55
50
4
,
,
,
+
,
,
qu =
qu = 999,05 kPa
La carga máxima segura de apoy
f
f
u
s D
FS
D
q
q γ
+
γ
−
=
Entonces
( )(
3
5
0
4
16
05
999 ,
,
,
qs
−
=
qs = 338,5 kPa
ui”
pat_pv_pca_11@hotmail.com
182
,
1
36 =
9
0,
⇒
⇒
⇒
⇒
1
=
=
B
D
k
) k
2
φ
247
uación de capacidad portante se tendrá que:
γ
γ
γ
γ
+ d
s
N
'
B
,
d
s
N q
q
q 5
0
) ( )( )( )( )( )
( )( )( )
0
1
9
0
2
56
247
1
182
1
70
37
5
0
4
16
40
1
,
,
,
,
,
,
,
,
, +
+
poyo es:
f
) ( )( )
5
0
4
16
5
,
,
,
+
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA 2
Un proyecto industrial contemp
aplicará una presión segura al s
terreno (Figura 10.2).
El terreno está compuesto de are
que los pesos unitarios de la are
freático, respectivamente. Ademá
c' = 0 y φ
φ
φ
φ′
′
′
′ = 30°. El nivel freático
9,8 kN/m3
.
El diseño del silo debe minimiz
factor de seguridad de 3 aplicado
Determinar el mínimo diámetro d
a) Método de Hansen.
b) Método de Vesic.
2,5m
10.2. Silo sobre superficie del ter
SOLUCIÓN
a) Hansen
Según la Tabla J.1 , la ecuación
ui”
pat_pv_pca_11@hotmail.com
empla la construcción de un silo para alm
al suelo de 300 kPa. El silo estará apoyado al n
arena hasta gran profundidad. Los resultado
arena son 18 kN/m3
y 19,2 kN/m3
por encim
emás se ha determinado que los parámetros de
tico se encuentra a 2,5 m de profundidad y el p
mizar los riesgos de falla por capacidad porta
ado sobre la carga neta última.
ro del silo que cumpla estos requerimientos uti
qs = 300 kPa
B
SILO
terreno.
ón general de capacidad portante es:
γ = 18 kN/m
c′ = 0 kPa
φ′ = 30º
γsat = 18 kN/
γw = 9,8 kN/
Ing. Civil - UJCM
lmacenar granos, el cual
al nivel de la superficie del
dos de laboratorio indican
ima y por debajo del nivel
de resistencia al corte son
el peso unitario del agua es
ortante, expresados por un
utilizando:
Figura
18 kN/m3
= 0 kPa
= 18 kN/m3
= 9,8 kN/m3
www.elsolucionario.net
Universidad José Carlos Mariátegui”
+
= b
g
i
d
s
N
c
q c
c
c
c
c
c
u
En este caso, los factores de incli
ic = iq = iγ
γ
γ
γ = 1
gc = gq = gγ
γ
γ
γ = 1
bc = bq = bγ
γ
γ
γ = 1
De ahí que la ecuación de capaci
+
+
= d
s
N
q
d
s
N
c
q q
q
q
c
c
c
u
f
D
q γ
=
Como c = 0 y Df = 0, entonces:
γ
γ
γ
= s
N
'
B
,
qu 5
0
De la Tabla J.4 , para φ
φ
φ
φ′
′
′
′ = 30°, lo
Nγ
γ
γ
γ = 15,1
De la Tabla J.5 , se tiene:
Factores de forma
≥
−
=
γ
'
L
'
B
,
,
s 4
0
0
1
0,6
( )( ) 6
0
1
4
0
0
1 ,
,
,
s =
−
=
γ
Factores de profundidad
0
1,
d =
γ
Luego, reemplazando en la ecuac
γ
γ
γ
= s
N
'
B
,
qu 5
0
( )( )( )( )(0
1
15
18
5
0 ,
B
,
qu =
ui”
pat_pv_pca_11@hotmail.com
γ
γ
γ
γ
γ
+ i
d
s
N
'
B
,
b
g
i
d
s
N
q q
q
q
q
q
q 5
0
nclinación (i), pendiente (b) y terreno (g) son:
acidad portante queda como sigue:
γ
γ
γ
γ
+ d
s
N
'
B
,5
0
γ
d
°, los factores de capacidad portante son:
0,6
uación de capacidad portante, se tiene que:
γ
γ d
( )( )
0
1
6
0 ,
,
Ing. Civil - UJCM
γ
γ b
g
www.elsolucionario.net
Universidad José Carlos Mariátegui”
B
,
qu 54
81
=
Por otro lado, la carga máxima s
f
f
u
s D
FS
D
q
q γ
+
γ
−
=
Como Df = 0
FS
q
q u
s =
( )( )
qu 900
3
300 =
= kP
Reemplazando [2] en [1] se tendr
900 = 81,54 B ⇒
⇒
⇒
⇒
Para este valor del diámetro, ma
unitario de la arena.
CASO II B
d ≤
≤
0
)
'
(
B
d
'
c γ
−
γ
+
γ
=
γ
donde γ
γ
γ
γc = peso unitario corregid
Luego, el peso unitario corregido
( )
w
sat
c
B
d
+
γ
−
γ
=
γ
( ) 5
2
8
9
2
19
B
,
,
,
c +
−
=
γ
( )
B
,
,
c
5
21
4
9 +
=
γ
Recalculando B con este valor co
γ
= B
,
q c
u 5
0
ui”
pat_pv_pca_11@hotmail.com
[1]
a segura de apoyo es:
kPa [2]
ndrá que:
B = 11,04 m
mayor a la profundidad del nivel freático, se
gido
ido es:
( )
[ ]
w
sat γ
−
γ
−
γ
( )
[ ]
8
9
2
19
18
5
,
, −
−
r corregido se tiene que:
γ
γ
γ d
s
N
'
B
Ing. Civil - UJCM
, se deberá corregir el peso
www.elsolucionario.net
Universidad José Carlos Mariátegui”
( ) 5
21
4
9
5
0
900
B
,
,
, 





+
=



+
=
B
,
B
,
21
4
9
53
4
900
40
97
58
42
900 ,
B
, +
=
De aquí B = 18,85 m
B ≥
≥
≥
≥ 18,85 m
b) Vesic
De la Tabla J.4 , para φ
φ
φ
φ′
′
′
′ = 30°, el
Nγ
γ
γ
γ = 22,40
De la Tabla J.5 , se tiene:
Factores de forma
≥
−
=
γ
L
B
,
,
s 4
0
0
1
0,6
( )( ) 6
0
1
4
0
0
1 ,
,
,
s =
−
=
γ
Factores de profundidad
0
1,
d =
γ
La ecuación de capacidad portan
γ
γ
γ
γ
= d
s
N
'
B
,
qu 5
0
( )( )( )( )( )B
,
,
,
,
qu 0
1
6
0
4
22
18
5
0
=
B
,
qu 96
120
=
La carga máxima segura de apoy
f
f
u
s D
FS
D
q
q γ
+
γ
−
=
ui”
pat_pv_pca_11@hotmail.com
( )( )( )
1
6
0
1
15 ,
,
B






B
,5
21
°, el factor de capacidad portante es el siguient
0,6
tante es
[3]
poyo será:
Ing. Civil - UJCM
ente:
www.elsolucionario.net
Universidad José Carlos Mariátegui”
Como Df = 0, entonces:
FS
q
q u
s =
( )( )
qu 3
300
=
qu = 900 kPa
Reemplazando (4) en (3) se tiene
900 = 120,96 B⇒ B=7,44 m
Para este valor del diámetro, ma
unitario de la arena.
El peso unitario corregido es:
( )
B
,
,
c
5
21
4
9 +
=
γ
Recalculando B con este valor co
′
γ
= N
B
,
q c
u 5
0
( ) ( )(
4
22
5
21
4
9
5
0
900 ,
B
B
,
,
, 





+
=



+
=
B
,
,
B
,
5
21
4
9
72
6
900
48
144
17
63
900 ,
B
, +
=
Luego B = 11,96 m
Por lo tanto:
ui”
pat_pv_pca_11@hotmail.com
[4]
ene que:
mayor a la profundidad del nivel freático, se
r corregido, se tiene que:
γ
γ
γ d
s
( )( )
1
6
0,



5
48
B ≥
≥
≥
≥ 11,96 m
Ing. Civil - UJCM
, se deberá corregir el peso
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA 3
En un terreno compuesto por are
de zapatas continuas (o corridas
9.5).
Los ensayos del laboratorio indic
El nivel freático se encuentra a
los pesos unitarios de la arena so
respectivamente, y el peso unitar
Se pide:
a) Determinar la máxima presión
sobre la carga neta aplicada. Em
b) Si al final del proyecto, se de
275 kPa, determinar el factor de
SOLUCIÓN
Se tiene el siguiente esquema:
2m
10.3. Fundación a dos metros de
a) Vesic
Según la Tabla J.1 , la ecuación
+
+
= d
s
N
q
d
s
N
c
q q
q
q
c
c
c
u
ui”
pat_pv_pca_11@hotmail.com
arena se proyecta construir una edificación cu
das) de 2,20 m de ancho y apoyadas a 2,00 m
ndican que los parámetros de resistencia al co
a 2,00 m de profundidad. Los resultados de
a son 19 kN/m3
y 20 kN/m3
por encima y por d
tario del agua es 9,8 kN/m3
.
sión segura de apoyo del suelo, aplicando un f
Emplear el método de Vesic.
determina que los cimientos ejercen sobre el
de seguridad existente bajo esta condición.
2,2m
de profundidad.
ón general de capacidad portante es:
γ
γ
γ
γ
+ d
s
N
'
B
,5
0
γ = 19
c′ = 0
φ′ = 3
γsat
γw = 9
Ing. Civil - UJCM
cuyos cimientos consisten
m de profundidad (Figura
corte son c' = 0 y φ
φ
φ
φ′
′
′
′= 30°.
de laboratorio indican que
or debajo del nivel freático,
n factor de seguridad de 3
el terreno una presión de
Figura
γ = 19 kN/m3
′ = 0 kPa
′ = 30º
sat = 20 kN/m3
= 9,8 kN/m3
www.elsolucionario.net
Universidad José Carlos Mariátegui”
Como c' = 0, entonces:
+
= d
s
N
q
q q
q
q
u 0
De la Tabla J.4 para φ
φ
φ
φ′
′
′
′ = 30°, lo
Nq = 18,4
2 tan φ
φ
φ
φ′
′
′
′ (1-sen φ
φ
φ
φ′
′
′
′)2
= 0,289
De la Tabla J.5 , se tiene:
Factores de forma
'
tan
L
B
,
sq φ
+
= 0
1
≥
−
=
γ
L
B
,
,
s 4
0
0
1
0,6
Para una fundación continua, B
sq = sγ
γ
γ
γ = 1
Factores de profundidad
1
91
0
20
2
2
≤
=
= ,
,
B
D
(
dq −
⋅
+
= sin
1
'
tan
2
1 φ
( )( )
91
0
289
0
1 ,
,
dq =
+
=
0
1,
d =
γ
Dado que el nivel freático se en
unitario de la arena.
Caso I
d ≤
≤ 1
0
ui”
pat_pv_pca_11@hotmail.com
γ
γ
γ
γ d
s
N
'
B
,5
0
, los factores de capacidad portante son:
Nγ
γ
γ
γ = 22,4
0,6
B/L ≈
≈
≈
≈ 0, entonces:
⇒
⇒
⇒
⇒
91
0,
B
D
k =
=
) k
⋅
2
'
φ
263
1,
=
encuentra al nivel de la fundación, será ne
f
D
Ing. Civil - UJCM
necesario corregir el peso
www.elsolucionario.net
Universidad José Carlos Mariátegui”
( )
w
sat
c ' γ
−
γ
=
γ
=
γ
Donde: γ
γ
γ
γc = peso unitario correg
Luego
( ) 2
10
8
9
20 ,
,
'
c =
−
=
γ
=
γ
Reemplazando en la ecuación de
+
γ
= d
s
N
D
q q
q
q
f
u
( )( )( )( )(1
1
4
18
2
19 ,
qu =
qu = 1134,42 kPa
La carga máxima segura de apoy
f
f
u
s D
FS
D
q
q γ
+
γ
−
=
Entonces,
( )( )
3
2
19
42
1134 −
=
,
qs
qs = 403,47 kPa
b) El factor de seguridad
La carga máxima segura de apoy
f
u
s
FS
D
q
q +
γ
−
=
Despejando el FS se tiene que:
ac
segura
Carga
re
segura
Carga
FS =
ui”
pat_pv_pca_11@hotmail.com
)
regido
de capacidad portante, se tendrá que:
γ
γ
γ
γ d
s
N
'
B
, c
5
0
) ( )( )( )( )( )( )
0
1
0
1
4
22
20
2
2
10
5
0
263 ,
,
,
,
,
,
, +
poyo, será:
( )( )
2
19
+
poyo, será:
f
D
γ
+
actuante
resistente
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
actuante
seguro
q
D
q
FS
γ
−
γ
−
=
Al final del proyecto se determi
kPa. Entonces:
(1
275
47
403
−
−
=
,
FS
⇒
⇒
⇒
⇒ FS = 1,55
ui”
pat_pv_pca_11@hotmail.com
f
f
D
D
rmina que los cimientos ejercen sobre el terre
( )( )
( )( )
2
19
2
19
−
(con respecto a la carga máxima segur
Ing. Civil - UJCM
erreno una presión de 275
gura de apoyo)
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA 4
El proyecto de un edificio de cu
Debido a la presencia de instalac
m x 2 m, y ejercerán una carga s
El estudio geotécnico indica qu
kN/m3
y una resistencia no-dren
kN/m3
. El factor de seguridad e
capacidad portante. El nivel freá
Con esta información, se requier
Solución
Se tiene el siguiente esquema:
Df
Empleando el método de Vesic:
La ecuación general de capacida
+
+
= d
s
N
q
d
s
N
c
q q
q
q
c
c
c
u
De la Tabla J.4 , para φ
φ
φ
φ′
′
′
′ = 0°, los
Nc = 5,14
Nq/Nc = 0,195 2 tan
ui”
pat_pv_pca_11@hotmail.com
e cuatro plantas contempla el diseño de zapa
laciones sanitarias y otros cimientos, las zapat
a segura de 500 kN (Figura 9.6).
que el suelo está compuesto de arcilla, con
renada al corte de 114 kPa. El peso unitario
d empleado en el análisis es 3 de la carga
reático se encuentra al nivel del terreno.
iere definir la profundidad a la cual deberán a
2m
Zapata del edificio.
idad portante es (Tabla J.1):
γ
γ
γ
γ
+ d
s
N
'
B
,5
0
los factores de capacidad portante son los sigu
Nq = 1,00 Nγ
γ
γ
γ = 0
tan φ
φ
φ
φ′
′
′
′ (1-sin φ
φ
φ
φ′
′
′
′)2
= 0,0
500 kN
Ing. Civil - UJCM
apatas aisladas cuadradas.
patas exteriores serán de 2
on un peso unitario de 20
rio del agua es igual a 9,8
ga bruta contra fallas por
n apoyarse las zapatas.
iguientes:
γsat = 20 kN/m3
cu = 114 kPa
γw = 9,8 kN/m3
www.elsolucionario.net
Universidad José Carlos Mariátegui”
De la Tabla J.5 , se tiene:
Factores de forma
L
B
,
sc 2
0
=
′
( ) 2
0
2
2
2
0 ,
,
'
sc =






=
'
tan
0
,
1 φ
⋅
+
=
L
B
sq
( )
0
tan
2
2
0
,
1 ⋅






+
=
q
s
Factores de profundidad
k
,
'
dc 4
0
=
=
B
D
para
,
B
D
k
f
f
[ ]
rad
B
D
tan
k
f








= −1
k
)
sen
(
tan
dq
2
1
2
1 φ
−
φ
+
=
00
1,
dq =
Dado que el nivel freático se en
unitario de la arcilla, por lo tanto
( )
w
sat
c ' γ
−
γ
=
γ
=
γ
Donde: γ
γ
γ
γc = peso unitario correg
Luego:
( ) 2
10
8
9
20 ,
,
'
c =
−
=
γ
=
γ
ui”
pat_pv_pca_11@hotmail.com
00
,
1
=
1
≤
f
] 1
B
D
para
,
f
>
encuentra al nivel de la fundación, será ne
nto:
regido
2
Ing. Civil - UJCM
necesario corregir el peso
www.elsolucionario.net
Universidad José Carlos Mariátegui”
La ecuación de capacidad portan
q
d
s
N
c
q c
c
c
u +
=
Asumiendo:
1
≤
B
Df
Reemplazando en la ecuación de
( )( )(
u ,
,
q 2
0
14
5
114
=
( )( )
f
u D
,
,
q 2
0
19
117 +
=
f
u D
,
q 44
43
=
Por otro lado la carga segura act
( )( )
2
2
500
=
s
q
qs = 125 kPa
f
u
s
FS
D
q
q γ
+
γ
−
=
Entonces se tendrá que:
( )
(
f
u D
q
3
20
125 +
−
=
Reemplazando [1] en [2] se tiene
( ) ( )
f
D
,
3
20
44
43
125
−
=
ui”
pat_pv_pca_11@hotmail.com
tante queda:
B
D
k
f
= 







=
′
B
D
,
d
f
c 4
0
de capacidad portante, se tiene que:
) ( )( )
f
f
D
D
, 20
2
4
0
2 +








f
D
20
[1]
actuante, será:
f
D
γ
( ) f
D
20
[2]
ene que:
)
( ) f
f
D
D
20
+
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
f
D
,44
83
375 =
Df = 4,49 m
Como Df > B, entonces lo asumid
[ ]
B
D
para
,
rad
tan 1








= −
B
D
k
f
k
,
'
dc 4
0
=








= −
2
4
0 1 f
c
D
tan
,
'
d
k
d q
2
)
sin
1
(
tan
2
1 φ
φ −
+
=
00
1,
d q =
Reemplazando en la ecuación de
( )( )( )
u ,
,
q 2
0
14
5
114 



=
u
D
tan
,
q
2
88
46 1








= −
Carga segura actuante, será:
( )( )
2
2
500
=
s
q
qs = 125 kPa
f
f
u
s D
FS
D
q
q γ
+
γ
−
=
ui”
pat_pv_pca_11@hotmail.com
mido no es correcto, entonces:
1
B
Df
>
de capacidad portante, se tendrá que:
( )( )
f
f
D
D
tan
, 20
2
4
0 1
+
















−
( )( )
f
f
D
D
20
2
+








[1]
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
⇒
⇒
⇒
⇒
( ) f
u D
q
3
20
125 +
−
=
Reemplazando [1] en [2] se tendr
D
tan
,88
46
125
1








=
−
(
u
q
3
20
125
−
=
tan
,88
46
375 =
La profundidad será:
Df = 5,30 m
Como Df > B, entonces lo asum
ui”
pat_pv_pca_11@hotmail.com
( ) f
D
20
+
[2]
ndrá que:
( )( ) ( )( )
( )( )
f
f
f
f
D
D
D
D
20
3
20
20
2
+
−
+








)
( ) f
f
D
D
20
20
+
( ) f
f
D
D
60
2
1
+








−
umido es correcto.
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA 5
La columna de una estructura m
9.7). El nivel de fundación se enc
fundación una carga segura de 6
Se ha determinado que el suelo s
y un peso unitario saturado de 1
freático se encuentra a 0,61 m d
disturbadas del suelo indican que
Se requiere encontrar la dimensi
Solución
Se tiene el siguiente esquema:
Df = 1,22 m
Figura 10.5. Zapata donde se apo
Empleando el método de Vesic.
La ecuación general de capacida
+
+
= d
s
N
q
d
s
N
c
q q
q
q
c
c
c
u
Dado que c′ = 0, se tiene que:
+
= ,
d
s
N
q
q q
q
q
u 0
De la Tabla J.4, para φ
φ
φ
φ′ = 34°, lo
ui”
pat_pv_pca_11@hotmail.com
ra metálica será apoyada sobre una zapata ai
encuentra a 1,22 m de profundidad y la supere
e 667,4 kN, con un factor de seguridad de 3.
lo se compone de una arena con peso unitario
e 18,55 kN/m3
. El agua tiene un peso unitario
m de la superficie del terreno. Ensayos efectu
que c' = 0 y φ
φ
φ
φ′ = 34º.
nsión mínima de la zapata.
D1 = 0,61 m
D2 = 0,61 m
B
apoya la estructura metálica.
idad portante es (Tabla J.1):
γ
γ
γ
γ d
s
N
'
B
,5
0
γ
γ
γ
′
γ d
s
N
B
,5
, los factores de capacidad portante son:
667,4 kN
Ing. Civil - UJCM
aislada cuadrada (Figura
erestructura transmite a la
rio húmedo de 16,51 kN/m3
ario de 9,8 kN/m3
y el nivel
ctuados sobre muestras no
γ = 16,51 kN/m3
γsat = 18,55 kN/m3
c′ = 0 kPa
φ′ = 34°
γ 9,8 kN/m3
www.elsolucionario.net
Universidad José Carlos Mariátegui”
Nq = 29,4
2 tan φ
φ
φ
φ′ (1–sin φ
φ
φ
φ′)2
=
De la Tabla F.5 , se tiene
Factores de forma
φ′
+
= tan
L
B
,
sq 0
1
(34
0
1 tan
B
B
,
sq 





+
=
≥
−
=
γ
L
B
,
,
s 4
0
0
1
( ) =






−
=
γ
B
B
,
,
s 4
0
0
1
Factores de profundidad
=
B
D
para
,
B
D
k
f
f
[rad
B
D
tan
k
f








= −1
Asumiendo que:
1
≤
B
Df
⇒
⇒
⇒
⇒
Se tiene que:
(
d q sin
1
tan
2
1 φ
φ −
′
⋅
+
=
( )
B
,
,
d q
22
1
262
0
1 =






+
=
00
1 ,
d =
γ
ui”
pat_pv_pca_11@hotmail.com
Nγ
γ
γ
γ = 41,0
= 0,262
) 675
1
34 ,
=
≥
0,6
=
0,6
1
≤
] 1
B
D
para
,
ad
f
>
B
,
B
D
k
f 22
1
=
=
) k
2
φ ′
B
,320
0
1 +
=
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
La corrección de la sobrecarga d
CASO I f
D
d ≤
≤ 1
0
( w
sat
D
D
q γ
−
γ
+
γ
= 2
1
( )( ) (0
51
16
61
0 ,
,
q +
=
q = 15,41 kPa
Además el término γ
γ
γ
γ de la ecuaci
sumergido ( w
sat
' γ
−
γ
=
γ )
55
18,
' w
sat −
=
γ
−
γ
=
γ
γ′ = 8,75 kN/m3
Reemplazando en la ecuación de
+
= d
s
N
q
q q
q
q
t
( )( )( 67
,
1
4
,
29
41
,
15
qu =
,
qu 87
758 +
=
Por otro lado la carga segura act
2
4
667
B
,
Area
Q
q s
s =
=
Aclaración necesaria:
o
u
s
FS
q
q
q +
−
=
Debe notarse también:
ui”
pat_pv_pca_11@hotmail.com
a debido a la presencia del nivel freático:
)
)( )
8
9
55
18
61 ,
,
, −
ación de capacidad portante debe ser reemplaz
8
9,
−
de capacidad portante, se tendrá que:
γ
γ
γ
′
γ d
s
N
B
,5
0
) ( )( )( )( )( )( )
0
,
1
6
,
0
41
75
,
8
5
,
0
320
.
0
1
675 B
B
+






+
( )B
,
B
,
63
107
84
242
+
+
[1]
actuante será:
o
q
+
Donde: o
u
n q
q
q −
=
Ing. Civil - UJCM
lazado por el peso unitario
www.elsolucionario.net
Universidad José Carlos Mariátegui”
u
n q
q
q −
′
=
u
q
q u
n −
=
Como el Nivel Freático permane
o
u
n
n q
q
q
q −
=
=
′
f
f
u
s D
FS
D
q
q γ
+
γ
−
=
41
21
3
41
21
4
667
2
,
,
q
B
, u
+
−
=
41
21
23
64
2
2002
2
,
q
,
B
,
u −
=
−
82
42
2
2002
2
,
B
,
qu −
=
Combinando [1] y [2] se tiene qu
(10
84
242
87
758
B
,
, +
+
2
75
82
42
2
2002 B
,
, =
−
69
801
63
107 3
+ ,
B
,
Resolviendo se tiene que:
B = 1,33 m
(Como Df < B, entonces la ecuac
ui”
pat_pv_pca_11@hotmail.com
o
q ′
( )
2
0
1 u
q −
−
anece en la misma posición ⇒ 2
1 u
u =
o
[2]
que:
) 82
42
2
2002
63
107 2
,
B
,
B
, −
=
3
2
63
107
84
242
87
758 B
,
B
,
B
, +
+
0
2
2002
84
242
2
=
−
+ ,
B
,
B
uación supuesta para el factor k es la correcta.)
Ing. Civil - UJCM
ta.)
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA 6
En un terreno compuesto por ar
proyecta construir una edificació
de 3,0 m, el nivel de fundación s
Los ensayos en campo de CPTu
del primer estrato son c′
= 0 kPa
no se ha detectado en campo, ni
que los pesos unitarios de la
respectivamente.
Se pide determinar la carga últim
suelo débil).
Solución
Se tiene el siguiente esquema:
1,5m
0,5m
10.6. Fundación y parámetros de
Usamos el método de Meyerhof .
Caso II. Arena fuerte sobre aren
( ) ( ) ( )
qs
f
u B
F
N
H
D
q 


+
+
= 2
2
2
1
2
1
γ
γ
Donde:
ui”
pat_pv_pca_11@hotmail.com
arena fuerte por encima y por un estrato de a
ación cuyos cimientos consisten de zapatas de b
n se encuentra a 1,50 m de profundidad (Figu
Tu y de laboratorio indican que los parámetro
kPa y φ
φ
φ
φ′ = 40º ; del segundo son c′ = 0 kPa y φ
φ
φ
φ
, ni en gabinete del laboratorio. Los resultado
la arena son 18 kN/m3
y 19 kN/m3
del pri
ltima de apoyo por el método de suelos estratifi
2m
s del suelo.
of . La ecuación de capacidad portante para est
rena débil:
( ) ( )
s
f
s
B
K
H
D
L
B
H
F
N −








+






+
+


 1
2
1
2
2
tan
2
1
1
φ
γ
γ
γ
Ing. Civil - UJCM
arena de arena débil se
de base de 2,0 m y de largo
igura 10.6).
etros de resistencia al corte
φ
φ
φ
φ′ = 34º. El nivel freático
dos de laboratorio indican
primer y segundo estrato
tificados,(suelo fuerte bajo
Figura
este método es :
t
q
H ≤
1
γ
H = 2,00 m
c′ = 0 kPa
φ′ = 40º
c′ = 0 kPa
φ′ = 34º
www.elsolucionario.net
Universidad José Carlos Mariátegui”
( ) ( ) 1
1
1
1
2
1
qs
q
f
t F
N
D
q γ
+
γ
=
y además:
( )
( )
1
1
2
2
1
2
γ
γ
γ
γ
=
N
N
q
q
Para los estratos según el Anexo
Para el estrato superior ; para φ
φ
φ
φ1
Nq1 = 64,1
Para el estrato inferior ; para φ
φ
φ
φ1
Nq2 = 29,4
Para el estrato superior:
( ) ( )
L
B
K
,
F
F p
s
qs 1
0
1
1
1 +
=
= γ
Donde:





 φ
+
=
2
45
2
tan
K p
599
4
2
40
45
2
,
tan
Kp =






+
=
Reemplazando [2] en [1] se tiene
( ) ( ) ( ) 3
1
3
2
599
4
1
0
1
1
1 ,
,
,
F
F s
qs =






+
=
= γ
Para el estrato inferior:
( ) ( )
L
B
K
,
F
F p
s
qs 1
0
1
2
2 +
=
= γ
Donde:





 φ
+
=
2
45
2
tan
Kp
ui”
pat_pv_pca_11@hotmail.com
( ) ( )
1
1
1 s
F
N
B γ
γ
xo F.4 ; los factores de capacidad portante son
φ
φ
φ
φ1 = 40º se tiene que:
Nγ
γ
γ
γ1 = 93,6
1 = 40º se tiene que:
Nγ
γ
γ
γ2 = 31,1
[1]
[2]
ene que:
31
[3]
Ing. Civil - UJCM
son:
www.elsolucionario.net
Universidad José Carlos Mariátegui”
54
3
2
34
45
2
,
tan
Kp =






+
=
Reemplazando [4] en [3] se tiene
( ) ( ) ( )( ) 1
3
2
54
3
1
0
1
2
2 ,
,
,
F
F s
qs =






+
=
= γ
( )( )
( )( )
3507
0
6
93
18
1
31
19
1
2
,
,
,
q
q
=
=
Ingresando en la siguiente figura
8
6,
ks ≅
Reemplazando en la ecuación de
( ) ( ) ( ) B
F
N
H
D
q qs
f
u 2
2
2
1
2
1
γ
γ



+
+
=
( )( )( ) ( )
19
2
1
236
,
1
4
,
29
5
,
0
5
,
1
18









+
+
=
u
q
qu = 2115,12 kPa
Reemplazando en la ecuación de
( ) ( ) ( ) ( )
1
1
1
1
1
1
2
1
s
qs
q
f
t F
BN
F
N
D
q γ
γ
γ
+
γ
=
( )( )( )( ) ( )(2
18
2
1
31
1
1
64
5
1
18 ,
,
,
qt 





+
=
,
qt 305
4474
= kPa
Como: t
u q
q ≤
Entonces:
qu = 2115.12 kPa
ui”
pat_pv_pca_11@hotmail.com
[4]
ene que:
236
,
ura 9.1 (de la introducción) tenemos :
de capacidad portante de Meyerhof :
( ) ( )
B
K
H
D
L
B
H
F
N
B s
f
s
2
1
2
2
tan
2
1
1
φ
γ
γ
γ 







+






+
+



)( )( )( ) ( )( ) ( )
2
40
tan
8
,
6
5
,
0
5
,
1
1
3
2
1
5
,
0
18
236
,
1
1
,
31
2
2






+






+
+



de capacidad portante del estrato superior se
)
)( )( )
31
1
6
93 ,
,
Ing. Civil - UJCM
H
1
1
γ
φ
−
( )( )
5
,
0
18
−
tiene que:
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA 7
Se desea construir un edificio p
resultados γ=17 kN/m3
, c′ = 6 kP
las zapatas se ha detectado que l
se desea determinar la carga seg
eL = 1,0 m. En las zapatas de B
carga neta aplicada.
Usar el método de fundaciones co
Solución
Se tiene el siguiente esquema:
D f = 2,0 m
10.7. Cargas sobre la fundación
Dado que: m
0
,
1
=
L
e , entonces se
6
1
≥
L
eL
6
1
≥
B
eB
Se tiene el Caso I de fundaciones
ui”
pat_pv_pca_11@hotmail.com
o para lo que se realiza un estudio de suelos
kPa, φ
φ
φ
φ′ = 33º ; como se muestra en la Figura 1
e la carga no está aplicada sobre el centro de
segura de apoyo si se ha encontrado una excen
e B = 2,0 m y de L = 4,0 m con un factor de
s con excentricidad en dos direcciones propue
m
2m
M x
Qs
M y
s se tendrá que:
nes con excentricidad, por lo tanto:
Ing. Civil - UJCM
los que dan los siguientes
ra 10.7. Una vez construido
de la zapata de fundación,
centricidad de eB = 0,35 m,
de seguridad de 3 sobre la
puesto por Das.
Figura
c′ = 0 kPa
φ′ = 33º
γ = 17 kN/m3
www.elsolucionario.net
Universidad José Carlos Mariátegui”
m.
35
,
0
=
B
e
Se tiene el siguiente esquema:
Figura 10.8. Área efectiva de apo
En donde:
1
1
2
1
L
B
'
A =
Y además:






−
=
B
e
,
B
B B
3
5
1
1






−
=
L
e
,
L
L L
3
5
1
1
La longitud efectiva ( L′) es la m
1
L
A
B
′
=
′






−
=
B
e
,
B
B B
3
5
1
1
( )






−
=
2
35
0
3
5
1
2
1
,
,
B
ui”
pat_pv_pca_11@hotmail.com
L
B
B1
L1
eB
eL
Área efectiva
Qu
apoyo en la fundación.
más larga de las dos dimensiones L1 o de B1 y
Ing. Civil - UJCM
1 y además B′ es :
www.elsolucionario.net
Universidad José Carlos Mariátegui”
B1 = 1,95 m






−
=
L
e
,
L
L L
3
5
1
1
( )






−
=
4
1
3
5
1
4
1 ,
L
L1 = 3 m
Entonces la longitud más larga e
( ) ( )( )
3
95
1
5
0
2
1
1
1 ,
,
L
B
A =
=
′
A′ = 2,925 m
3
925
2,
L
A
B =
′
′
=
′
B′ = 0,975 m
Entonces en la ecuación de capa
′
γ
+
+
= B
,
d
s
N
q
d
s
N
c
q q
q
q
c
c
c
u 5
0
De la Tabla J.4 para φ
φ
φ
φ′ = 33°, los
Nc = 38,64 Nq = 26,09
Para evaluar los factores de form
Nq/Nc = 0,675
De la Tabla J.5, se tiene para B
Factores de forma
'
L
'
B
N
N
,
s
c
q
c +
= 0
1
ui”
pat_pv_pca_11@hotmail.com
ga es L1 = 3 m, y el área efectiva es:
pacidad portante se tiene que:
γ
γ
γ d
s
N
, los factores de capacidad portante son:
Nγ
γ
γ
γ = 35,19
orma se debe usar la longitud efectiva, y el anc
2 tan φ
φ
φ
φ′ (1-sin φ
φ
φ
φ′)2
= 0,2693
= 2 m
Ing. Civil - UJCM
ncho efectivo:
www.elsolucionario.net
Universidad José Carlos Mariátegui”
( )
3
975
0
675
0
0
1
,
,
,
sc 


+
=
φ′
+
= tan
'
L
'
B
,
sq 0
1
(
3
975
0
0
1 tan
,
,
sq 





+
=
'
L
'
B
,
,
s ≥
−
=
γ 4
0
0
1
0,6
( )
3
975
0
4
0
0
1
,
,
,
s 





−
=
γ
Para determinar los factores de p
considerar la respectiva excentric
Factores de profundidad
B
D
,
d
f
c 4
0
1+
=
4
1
2
2
4
0
1 ,
,
dc =






+
=
( )
B
D
d
f
q
2
sin
1
tan
2
1 φ
φ ′
−
′
+
=
( ) ( )
( )
2
2
33
sin
1
33
tan
2
1
2



−
+
=
q
d
dγ = 1
Factores de inclinación
ic = iq =
1
90
0
1
90
1 =






−
=





 β
−
º
º
º
º
iγ
γ
γ
γ =
1
33
0
1
1 =








−
=








ϕ
β
− o
o
o
o
Además:
( ) 34
2
17 =
=
γ
= f
D
q
kPa.
Luego, reemplazando en la ecuac
ui”
pat_pv_pca_11@hotmail.com
22
1
75
,
=



( ) 21
1
33 ,
=
0,6
87
0,
=
de profundidad se debe utilizar los valores de L
tricidad.
269
,
1
=



uación de capacidad portante, se tiene que:
Ing. Civil - UJCM
e L y de B de la zapata sin
www.elsolucionario.net
Universidad José Carlos Mariátegui”
(γ
+
=
′ D
d
s
N
c
q f
c
c
c
u
( )( )( ) ( )(
09
26
34
4
1
22
1
64
38
6 ,
,
,
,
qu +
=
′
Entonces:
q′u = 2012,85 kPa
Luego la carga segura será:
f
u
s
FS
D
q
q +
γ
−
′
=
′
(
3
1
2
85
2012 −
=
′
,
qs
q′s = 693,62 kPa
ui”
pat_pv_pca_11@hotmail.com
) γ
γ
γ
′
γ
+ d
s
N
B
,
d
s
N q
q
q
f 5
0
( )( ) ( )( )( )( )( )
1
87
0
19
35
975
0
17
2
1
2693
1
21
1 ,
,
,
,
, +
f
D
γ
+
) ( )
17
2
17
+
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA 8
Se ha planificado la construcció
un ancho de 2 m, un largo de 3 m
armado con un peso unitario de
ancho de 0,3 m x 0,3 m y recibir
la dirección del ancho, al nivel n
Se ha realizado un estudio geot
constituido por una arcilla homo
4 m de profundidad. los paráme
freático a 0,5 m por debajo la su
al 18 kN/m3
y 20 kN/m3
para el s
Determine el factor de seguridad
γc = 25 kN/m³
0,30 m x 0,30 m
B = 2 m ; L = 3 m
0
1
2
3
4
Figura 10.9. Carga inclinada act
Solución
El factor de seguridad para e
Meyerhof, por lo que se tendrá q
v
s
z P
P
P
F +
+
=
∑
( )( )( )( ) ( )( )( )
[ ] (18
2
1
3
0
3
0
3
0
3
2
25 +
+
=
∑ ,
,
,
,
F
∑ = 63
833,
F kPa
ui”
pat_pv_pca_11@hotmail.com
ción de una zapata flexible a 1,5 m de profun
3 m y un espesor de 0,3 m en la base, estará co
de 25 kN/m3
. La columna que llegue a la base
ibirá una carga vertical de 650 kN y una carga
l natural del terreno.
eotécnico en el sitio y se ha determinado que
mogénea que yace sobre una roca muy dura y
metros de resistencia son cu = 45 kPa, φ
φ
φ
φ′ = 0
superficie. El peso unitario del suelo por enc
el suelo saturado.
dad en la capacidad de apoyo.
Pv = 650 kN
Ph = 50 kN
R
γ = 18 kN/m³
Arcilla
γsat = 20 kN/m³
cu = 45 kPa
actuante en la fundación.
este tipo de cargas puede ser evaluado u
á que:
)( )( )( ) ( )( )( )
[ ] ( )( )( )( ) ( )( )(
[ 0
3
0
3
0
7
0
3
2
20
5
0
3
0
3
0
5
0
3
2
18 −
+
− ,
,
,
,
,
,
,
Ing. Civil - UJCM
fundidad. La zapata tendrá
á constituida por hormigón
ase de la zapata tendrá un
rga horizontal de 50 kN en
que el perfil del suelo está
ra y muy poco permeable a
0º. Se ha ubicado el nivel
encima de este corresponde
utilizando el método de
)] 650
7
0 +
,
www.elsolucionario.net
Universidad José Carlos Mariátegui”
50
1,
e
tan =
β
63
833
50
,
tan =
β
Entonces:
º
,432
3
=
β
( )( )
432
3
5
1 ,
tan
,
e = e = 0,09 m
( )( )
09
0
2
2
2 ,
e
B
B −
=
−
=
′
; B′ = 1
L′ = 3 m
Entonces:
qd
qs
q
ci
cd
cs
c
u F
F
F
N
q
F
F
F
N
c
q +
=
′
Para los valores de:
c = 45 kPa
φ
φ
φ
φ′ = 0 º
Se tiene que:
q = (0,5)(18)+(1)(20) = 29 kPa
Para este caso:
Nc = 5,14
Nq = 1,00
Nγ = 0,00
Factores de forma
1
1
14
5
00
1
3
82
1
1
1 ,
,
,
,
N
N
L
B
F
c
q
cs =
+
=
′
′
+
=
ui”
pat_pv_pca_11@hotmail.com
= 1,82 m
i
d
s
qi F
F
F
N
B
,
F γ
γ
γ
γ
′
γ
+ 5
0
118
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
000
1
1 ,
tan
L
B
Fqs =
φ′
′
′
+
=
Factores de profundidad
1
=
B
Df
300
1
2
5
1
4
0
1
4
0
1 ,
,
,
B
D
,
F
f
cd =
+
=
+
=
000
1,
Fqd =
Factores de inclinación
90
432
,
3
1
90
1
2






−
=





 β
−
=
= qi
ci F
F
La capacidad última de apoyo se
( )( )( )( )( ) (
925
,
0
3
,
1
118
,
1
14
,
5
45 +
=
′
u
q
q′u = 337,78 kPa
Entonces:
( )( )( )
3
77
1
78
337 ,
,
L
B
q
Q u
u =
′
′
′
=
Qu = 1793,61 kN
La capacidad máxima de apoyo e
(
=






+
=
83
6
1
B
e
BL
Q
qmax
qmax = 176,45 kPa
La capacidad mínima de apoyo e
(
=






−
=
83
6
1
B
e
BL
Q
qmin
ui”
pat_pv_pca_11@hotmail.com
1
2
5
1
≤
,
300
925
,
0
2
=



será:
( )( )( )( )( )
925
,
0
1
1
1
29
yo es:
( )( )
( )( )






+
2
09
0
6
1
3
2
63
833 ,
,
o es:
( )( )
( )( )






−
2
09
0
6
1
3
2
63
833 ,
,
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
qmin = 101,42 kPa
El facto de seguridad será:
45
176
78
337
,
,
q
q
FS
max
u
=
′
=
FS = 1,91
ui”
pat_pv_pca_11@hotmail.com
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA 9
Para la Figura 9.10, se pide dete
de Hansen, con un factor de segu
Figura 10.10. Características de
Solución
La capacidad última de apoyo se
g
i
d
s
qN
b
g
i
d
s
cN
q q
q
q
q
c
c
c
c
c
c
u +
=
Los parámetros de resistencia son
KPa
c 25
'=
º
25
'=
ϕ
Pesos y sobre cargas
[ ]
KPa
x
D
q 25
.
5
3
.
0
5
.
17 =
=
= γ
ui”
pat_pv_pca_11@hotmail.com
eterminar la máxima capacidad segura de apo
eguridad de 4 sobre la carga bruta.
de la fundación.
será:
γ
γ
γ
γ
γ
γ
γ b
g
i
d
s
BN
b
g q
q 5
.
0
+
son:
]
P = 600 KN
H = 200 KN
B = L = 2 m
η = 10º
D = 0.3 m
γ= 17.5 kN/ 3
m
c' = 25 MPa
ϕ' = 25º
(ca = c;δ = ϕ)
P = 600 KN
H = 200 KN
B = L = 2 m
η = 10º
D = 0.3 m
γ= 17.5 kN/ 3
m
c' = 25 MPa
ϕ' = 25º
(ca = c;δ = ϕ)
Ing. Civil - UJCM
apoyo utilizando el método
www.elsolucionario.net
Universidad José Carlos Mariátegui”






= 3
5
.
17
m
KN
γ
Factores de capacidad de apoyo
;
7
.
10
;
71
.
20 =
= N
N
N q
c
Factores de profundidad
15
.
0
2
3
.
0
'
'
⇒
=
=
=
= κ
L
D
B
D
B
D
06
.
1
15
.
0
4
.
0
1
4
.
0
1 =
+
=
+
= x
dc κ
( ) 1
1
tan
2
1
2
+
=
−
+
= κ
ϕ
ϕ sen
dq
1
=
γ
d
Factores de inclinación
( )/
25
2
2
600
cot ⋅
⋅
+
=
+ ϕ
a
f c
A
V
'
c
ca =
4
3
2
1
=
⇒
=
α
α
reales
Máximos
Por lo tanto:
1
cot
5
.
0
1
1



−
=








+
−
=
c
A
V
H
i
a
f
q
α
ϕ
1
cot
450
º
7
.
0
1
2






−
=












+






−
−
=
α
γ
ϕ
η
a
f c
A
V
H
i
ui”
pat_pv_pca_11@hotmail.com
8
.
6
=
γ
N
15
.
0
=
κ
060
( ) 047
.
1
15
.
0
25
sin
1
25
tan
2
2
=
⋅
−
⋅
+
45
.
814
25
tan =
675
.
0
45
.
814
200
5
.
0
3
=



−
x
483
.
0
45
.
814
200
450
10
7
.
0
4
=












−
−
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
7
.
10
67
.
0
1
675
.
0
1
1
−
−
−
=
−
−
−
=
q
q
q
c
N
i
i
i
Factores de forma
1
2
2
71
.
20
7
.
10
1
1 =
+
=
+
= x
L
B
N
N
s
c
q
c
.
1
º
25
sin
1
1
1
sin
1 =
+
=
+
= ϕ
L
B
sq
0
1
;
6
.
0
4
.
0
1 −
=
≥
−
= γ
γ s
L
B
s
Para carga inclinada, se tiene qu
'
'
1
L
i
B
N
N
s c
c
q
c +
=
Factores de base:
932
.
0
147
10
1
147
1 =
−
=
−
=
η
c
b
850
.
0
25
tan
180
10
2
=
=






− x
x
x
q e
b
π
803
.
0
25
tan
180
10
7
.
2
=
=






− x
x
x
e
b
π
γ
Factores d terreno:
1
º
0 =
⇒
= g
β
Por lo tanto reemplazando todos
.
5
932
.
0
1
641
.
0
060
.
1
517
.
1
71
.
20
25 +
⋅
⋅
⋅
⋅
⋅
⋅
=
u
q
69
.
27
15
.
48
38
.
497 +
+
=
u
q
ui”
pat_pv_pca_11@hotmail.com
641
.
0
1
675
=
−
517
.
1
427
.
6
.
0
1
1
4
.
0 =
que:
os los valores en la ecuación de capacidad por
4
.
0
1
6
.
0
8
.
6
2
5
.
17
5
.
850
.
0
1
675
.
0
047
.
1
427
.
1
7
.
10
25
. ⋅
⋅
⋅
⋅
⋅
⋅
+
⋅
⋅
⋅
⋅
⋅
⋅
Ing. Civil - UJCM
portante tenemos.
803
.
0
1
483 ⋅
⋅
www.elsolucionario.net
Universidad José Carlos Mariátegui”
La capacidad última de apoyo se
KPa
2
.
573
=
u
q
La carga segura de apoyo será:
KPa
3
.
143
4
2
.
3
5
=
+
=
s
q
KPa
143.3
qs =
ui”
pat_pv_pca_11@hotmail.com
será:
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA 10
Calcule la carga máxima admisib
Figura 10.12. Perfil de suelo.
Solución.
Capacidad máxima segura de ap
La capacidad máxima segura de
γ N
B
,
d
S
qN
d
S
cN
q q
q
q
c
c
c
u 5
0
+
+
=
En una construcción común e
condiciones no drenadas. Por lo
0
y
50 2
=
= ϕ
m
kN
Cu
10
8
6
4
2
0
1
3
5
7
9
11
12
ui”
pat_pv_pca_11@hotmail.com
isible para la zapata que se muestra en la Figu
apoyo
de apoyo se expresa mediante la ecuación prop
γ
γ
γ d
S
N
n en arcilla, la condición más desfavorabl
lo tanto:
B =2 ; L = 3 m
c' = 5 kPa ; φ' = 2
Cu = 50 kN/m
Cc = 0,22 ;Cs = 0
Cv = 0,21 m /me
2
2
P = 500 kN
e = 0,75
γ = 20 kN/m
0,3 m
3
0,3 m x 0,4 m
o
arena
arcilla N. C.
Po = 20·7-9,8·7
= 71,4 kN/m2
Ing. Civil - UJCM
igura 10.12.
ropuesta por Vesic es:
able es a corto plazo en
= 28°
= 0,03
mes
www.elsolucionario.net
Universidad José Carlos Mariátegui”
Factores de capacidad de apoyo.
0
00
1
14
5 =
=
= N
;
N
;
,
N
;
,
N q
q
c γ
Factores de forma:
1
1
3
2
195
0
1
1 ,
,
L
B
N
N
S
c
q
)
v
(
c =
⋅
+
=
⋅
+
=
1
1 =
+
= ϕ
tan
L
B
S )
v
(
q
Factores de profundidad
1
314
,
1
tan
1
2
2
·
4
,
0
1
=
=
=
⇒
=
=
+
=
q
c
c
d
d
B
D
ar
K
B
D
K
d
Reemplazando los factores calc
propuesta por Vesic, se tiene:
1
2
20
314
,
1
13
,
1
14
,
5
50 ⋅
⋅
+
⋅
⋅
⋅
=
u
q
La capacidad última de apoyo se
2
7
,
421 m
kN
qu =
La carga máxima segura de apoy
D
FS
D
q
q u
s ·
·
γ
γ
+
−
=
Entonces:
2
·
20
3
2
·
20
7
,
421
+
−
=
s
q
La capacidad segura de apoyo se
ui”
pat_pv_pca_11@hotmail.com
yo.
0
1
2
195
0 =
−
= )
sin
(
tan
;
,
Nc ϕ
ϕ
13
,
785
,
0
=
B
calculados en la ecuación de capacidad má
1
1
1 ⋅
⋅
será:
poyo se define como:
será:
Ing. Civil - UJCM
máxima segura de apoyo
www.elsolucionario.net
Universidad José Carlos Mariátegui”
2
2
,
167 m
kN
qs =
La carga neta segura es entonces
2
20
127
20
2
20
167 m
kN
,
·
,
qn =
−
=
Si el incremento de esfuerzo es
Entonces:
2
2
2
55
3
10
16
13
5
20
127
0
m
kN
,
P
m
z
m
kN
,
P
m
z
m
kN
,
P
z
m
m
t









=
∆
⇒
=
=
∆
⇒
=
=
∆
⇒
=
o
o
o
c
oed
P
P
P
e
H
C
S
∆
+
+
= log
1
4
.
71
30
4
.
71
log
75
.
0
1
10
10
22
.
0 3
+
+
×
⋅
=
oed
S
.
195 mm
Soed =
El asentamiento tolerable será:
mm
ST 75
=
El asentamiento correspondiente
intenta con una nueva carga.
2
50 m
kN
qn =
ui”
pat_pv_pca_11@hotmail.com
ces:
2
20
127 m
kN
,
2
68
30
6
55
3
16
13
4
20
127
m
kN
,
,
,
,
Pav =
+
⋅
+
=
∆









68
.
30
ente al incremento de carga es superior al ad
Ing. Civil - UJCM
l admisible, por lo tanto se
www.elsolucionario.net
Universidad José Carlos Mariátegui”
05
,
12
68
,
30
3
,
127
50
m
kN
Pav =
⋅
=
∆
4
.
71
12
4
.
71
log
75
.
0
1
10
10
22
.
0 3
+
+
×
⋅
=
oed
S
mm
1
.
85
=
oed
S
Nuevamente el valor encontrad
intenta una vez más.
2
40 m
kN
qn =
64
.
9
68
.
30
3
,
127
40
m
kN
Pav =
⋅
=
∆
64
.
9
6
.
9
4
.
71
log
75
.
0
1
10
10
22
.
0 3
+
+
×
⋅
=
oed
S
mm
Soed 1
.
69
=
Se calcula el asentamiento tot
asentamiento del edómetro.
oed
S
S ⋅
= 1
,
1
mm
S 76
1
,
69
1
,
1 =
⋅
=
El asentamiento tolerable es:
mm
ST 76
=
La carga admisible a
q es entonce
q
qa =
40
=
80
qa =
ui”
pat_pv_pca_11@hotmail.com
2
m
05
.
12
rado de asentamiento es mayor al valor adm
2
m
64
total mediante la corrección propuesta por
nces:
D
qn ⋅
+γ
2
20
40 ⋅
+
2
80 m
kN
Ing. Civil - UJCM
admisible, por lo tanto se
por Burland, aplicada al
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA 11
Se ha realizado la exploración
encontrado y sus propiedades.
profundidad, con las dimension
construye en un instante de tiem
fundación y permanece en esa p
parte no saturada es el 90% de
asentamiento secundario en la ar
Se pide:
a) Calcular la presión máxima
apoyo es 175 kN/m2 y el asentam
b) Calcular la capacidad máxim
está constituido por arcilla (estr
carga la zapata en incremento
seguridad de 3 sobre la carga net
0
1
2
3
4
5
6
7
8
9
10
ui”
pat_pv_pca_11@hotmail.com
ón geotécnica de un sitio, la Figura 10.13 mu
es. Se va a construir una zapata flexible y
iones que se presentan en el esquema. Cons
iempo, en el que adicionalmente el nivel freát
sa posición por tiempo indefinido. El peso un
del valor en el sector saturado. Asimismo, c
a arcilla y que el asentamiento inmediato es el
a admisible del suelo suponiendo que la pre
tamiento tolerable de 25 mm.
ima segura de apoyo del suelo, suponiendo qu
estrato de 5 a 8 m), el nivel freático permane
ntos muy pequeños. Utilizar el método de V
neta aplicada.
0,3
m
B =2 m ; L= 6 m
γ = 24 kN/m
c
3
γ = 20 kN/m3
0,3 m x 0,3 m
P = 1500 kN
γ = 19 kN/m
3
arena
Dr=60 %
arcilla
arena
γ = 20 kN/m
3
muestra 1
muestra 2
muestra 3
Ing. Civil - UJCM
muestra el perfil de suelo
y rectangular a 2 m de
onsidere que la zapata se
eático desciende al nivel de
unitario de la arena en la
o, considere que no existe
el 50% del total.
presión máxima segura de
que todo el perfil de suelo
anece en la superficie y se
e Vesic, con un factor de
45
35
E (MN/m )
2
E=40 (MN/m )
2
www.elsolucionario.net
Universidad José Carlos Mariátegui”
Resultados de ensayos para los p
De muestra 1:
Ensayo triaxial CD:
De muestra 2:
Triaxial UU : Cu
Veleta : Cu
Corte directo : c
Compresión inc: Cu
Triaxial CU : c =
c’= 0 ; ϕ
ϕ
ϕ
ϕ’ = 34º
De muestra 3:
Ensayo triaxial CU
c’=0 ; ϕ
ϕ
ϕ
ϕ’ = 36º
SOLUCIÓN.
a) Capacidad máxima admisible
mm
S
m
kN
q T
s 25
;
175 2
=
=
6
.
154
4
.
20
175
neta
Carga k
=
−
=
El asentamiento en la arena esta
∑ ∆
⋅
⋅
⋅
⋅
= z
E
I
q
C z
n
2
1
C
S
a)
( ,
,
,
S
m
kN
,
q
,
,
,
C
n
03226
0
6
154
1
871
0
6
154
871
0
6
154
40
5
0
1
2
1
⋅
⋅
⋅
=
∴
=
=
⋅
−
=
ui”
pat_pv_pca_11@hotmail.com
s parámetros de resistencia al corte:
D: C=0 ; ϕ
ϕ
ϕ
ϕ = 32 º
Cu = 50 kPa
Cu = 45 kPa
c = 0; ϕ
ϕ
ϕ
ϕ = 34º
Cu = 55 kPa
c = 0 ; ϕ
ϕ
ϕ
ϕ = 32º
U : c = 0 ; ϕ
ϕ
ϕ
ϕ = 33º
ble de apoyo.
2
m
kN
sta dado por:
) mm
,4
4
26 =
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
b)
( )
,
,
,
S 0507
0
6
154
1
871
0 =
⋅
⋅
⋅
=
∴
c)
mm
S 5
=
∴
El asentamiento en la arcilla es:
13
2
,
8
13
,
2
06
,
6
8
,
64
85
log
75
,
0
1
10
3
03
,
0
1
,
98
3
,
33
8
,
64
3
,
33
71
,
30
5
,
142
6
,
154
3
mm
S
mm
S
P
P
kN
P
oed
o
av
<
=
≈
=
+
=






+
×
⋅
=
=
+
=
∆
+
=
⋅
=
∆
La capacidad admisible de apoyo
2
a 175
q m
kN
=
b) La capacidad máxima segura
La ecuación general para la capa
0
g
i
d
S
qN
b
g
i
d
S
cN
q q
q
q
q
c
c
c
c
c
c
u +
=
Los parámetros de resistencia son
º
34
'
y
0
' =
= ϕ
c
Los factores de capacidad de apo
ui”
pat_pv_pca_11@hotmail.com
mm
,8
6
=
es:
)
25
(
8
85
3
,
33
8
,
64
log
75
,
0
1
10
3
02
,
0 3
2
mm
S
mm
m
kN
TOL
<
≈





 +
+
×
⋅
+



oyo es:
ra de apoyo del suelo
apacidad de apoyo es:
γ
γ
γ
γ
γ
γ
γ b
g
i
d
S
N
B
,
bq
q 5
0
+
son:
apoyo son:
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
29
2
34
45
tan
2
45
tan
2
34
tan
14
,
3
2
tan
=






+
=






+
=
⋅
e
e
Nq
ϕ
ϕ
π
( ) ( 440
.
29
34
tan
1
1 −
=
⋅
−
= q
c N
N
( ) 064
,
41
tan
1
2 =
+
= ϕ
γ q
N
N
Los factores de forma son:
1
34
tan
6
2
1
tan
1 =
+
=
+
= ϕ
L
B
Sq
867
,
0
6
2
4
,
0
1
4
,
0
1 =
−
=
−
=
L
B
Sγ
Los factores de profundidad son:
( )
1
2
2
sin
1
tan
2
1
2
=
=
⇒
=
=
−
+
=
B
D
B
D
dq
κ
κ
ϕ
ϕ
( ) 1
34
sin
1
34
tan
2
1
2
=
⋅
+
⋅
+
=
q
d
1
=
γ
d
Los otros factores son iguales a 1
Sobrecarga (q’)
2
4
,
18
2
8
,
9
19
2
' m
kN
q =
⋅
−
⋅
=
El peso de suelo por debajo el niv
3
2
9
8
9
19 m
kN
,
, =
−
=
γ
0
262
,
1
225
,
1
440
,
29
4
,
18 +
⋅
⋅
⋅
=
u
q
ui”
pat_pv_pca_11@hotmail.com
440
,
29
) 164
.
42
34
tan
1
1 =
⋅
225
.
1
on:
1
=
262
.
1
a 1
nivel de fundación será:
1
867
,
0
064
,
41
2
2
,
9
5
,
0 ⋅
⋅
⋅
⋅
⋅
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
2
u 1165
q m
kN
=
3
19
1165−
=
⋅
+
⋅
−
= D
FS
D
q
q u
S γ
γ
La capacidad segura de apoyo es
2
S m
kN
414
q =
ui”
pat_pv_pca_11@hotmail.com
2
19
2
19
⋅
+
⋅
es:
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA 12
Para el perfil de suelo que se mu
de apoyo utilizando el método p
carga neta aplicada.
Si:
a) Si se construye la estructura m
b) Si se construye la estructura rá
Solución.
El tiempo de construcción de l
condiciones drenadas. Se utilizan
Se aplicarán además correccione
qs
q
cd
cs
c
u F
F
N
q
F
F
N
c
q ⋅
⋅
⋅
+
⋅
⋅
⋅
= '
1
)
8
,
9
18
(
1
17
'
;
5 q
kPa
c =
⋅
−
+
⋅
=
=
0
1
2
3
4
5
c = 0; φ = 28°
c = 0; φ = 30°
Cu=45 kN/m
2
c = 5; φ = 32°
Cu=65 kN/m
2
ui”
pat_pv_pca_11@hotmail.com
muestra en la Figura 10.13, se desea calcular l
o propuesto por Braja M. Das y un factor de
a muy lentamente, en un tiempo mayor a 10 añ
a rápidamente, en un tiempo menor a 2 meses
e la estructura es considerablemente largo,
izan los parámetros °
=
= 32
;
5 φ
kPa
c .
ones en el cálculo de la capacidad de apoyo por
id
is
i
qd F
F
N
B
F γ
γ
γ
γ ⋅
⋅
⋅
⋅
⋅
+ '
2
1
2
/
2
,
25 m
kN
0,5
m
B= 2 m ; L= 3 m
γ = 17 kN/m3
γ = 18 kN/m3
0,5 m x 0,5 m
P = 500 kN
γ = 20 kN/m3
Ing. Civil - UJCM
ar la carga máxima segura
de seguridad de 3 sobre la
años
ses
go, por lo tanto se darán
por nivel freático.
www.elsolucionario.net
Universidad José Carlos Mariátegui”
2
/
2
,
10
8
,
9
20
' m
kN
=
−
=
γ
Los factores de capacidad de apo
62
,
0
tan
;
18
,
23
;
49
,
35
32
=
=
=
⇒
°
=
φ
φ q
c N
N
Los factores de forma son:
73
,
0
3
2
4
,
0
1
4
,
0
1
4
,
1
62
,
0
3
2
1
tan
1
43
,
1
65
,
0
3
2
1
1
=
⋅
−
=
⋅
−
=
=
⋅
+
=
⋅
+
=
=
⋅
+
=
⋅
+
=
L
B
F
L
B
F
N
N
L
B
F
s
qs
c
q
cs
γ
φ
Factores de profundidad son:
1
27
,
1
)
sin
1
(
tan
2
1
4
,
1
2
2
4
,
0
1
4
,
0
1
)
1
2
/
2
2
=
=
=
⋅
−
⋅
⋅
+
=
=
⋅
+
=
⋅
+
=
⇒
=
=
d
f
qd
f
cd
f
F
B
D
F
B
D
F
a
condición
B
D
γ
φ
φ
La capacidad última de apoyo se
2
/
3
,
1626
1
,
23
2
,
25
4
,
1
43
,
1
49
,
35
5
m
kN
qu
=
⋅
+
⋅
⋅
⋅
=
La capacidad segura de apoyo se
3
3
,
1626
3
D
D
q
q u
s
−
=
⋅
+
⋅
−
= γ
γ
2
/
565 m
kN
qs =
ui”
pat_pv_pca_11@hotmail.com
apoyo son:
;
65
,
0
;
22
,
30 =
=
γ c
q N
N
N
41
43
2
2
)
53
,
0
1
(
62
,
0
2
1 2
⋅
−
⋅
⋅
+
=
será:
1
73
,
0
22
,
30
2
2
,
10
5
,
0
27
,
1
41
,
1
18 ⋅
⋅
⋅
⋅
⋅
+
⋅
⋅
será:
2
/
565
)
18
17
(
3
)
18
17
(
m
kN
=
+
+
+
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
Debido a que el tiempo de constr
0
;
/
65 2
=
= φ
m
kN
Cu ; no aplicar
2
2
/
20
/
35
18
17
m
kN
m
kN
q
=
=
+
=
γ
La carga última de apoyo será:
qs
q
cd
cs
c
u F
F
N
q
F
F
N
c
q ⋅
⋅
⋅
+
⋅
⋅
⋅
=
Los factores de capacidad de apo
0
tan
00
,
1
14
,
5
0
=
=
=
⇒
=
φ
φ
N
N
N
N
q
q
c
Factores de forma son:
1
tan
1
13
,
1
20
,
0
3
2
1
1
=
⋅
+
=
=
⋅
+
=
⋅
+
=
φ
L
B
F
N
N
L
B
F
qs
c
q
cs
Los factores de profundidad son:
)
sin
1
(
tan
2
1
4
,
1
2
2
4
,
0
1
4
,
0
1
)
1
2
/
2
2
=
⋅
−
⋅
⋅
+
=
=
⋅
+
=
⋅
+
=
⇒
=
=
B
D
F
B
D
F
a
condición
B
D
f
qd
f
cd
f
φ
φ
La capacidad última de apoyo es
2
/
5
,
563
1
1
1
35
4
,
1
13
,
1
14
,
5
65
m
kN
qu
=
⋅
⋅
⋅
+
⋅
⋅
⋅
=
La capacidad segura de apoyo se
ui”
pat_pv_pca_11@hotmail.com
strucción es corto, se consideran condiciones n
ar correcciones.
qd
F
apoyo son:
0
20
,
0
=
Nc
13
on:
1
=
es:
será:
Ing. Civil - UJCM
es no drenadas, entonces:
www.elsolucionario.net
Universidad José Carlos Mariátegui”
3
1
(
5
,
563
3
−
=
⋅
+
⋅
−
= D
D
q
q u
s γ
γ
2
/
211 m
kN
qs =
ui”
pat_pv_pca_11@hotmail.com
)
18
17
(
3
)
18
17
+
+
+
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA 13
Se ha planificado la construcci
saturado (ascenso capilar de 2 m
de 20 kN/m3
y descansa sobre un
superficie natural del terreno.
Se ha obtenido los siguientes p
referida a nivel natural del terren
Profundidad m eo
1,0 0,6
3,5 0,7
6,5 0,8
Se ha calculado que la carga pun
y que la columna de hormigón
sobre la base de la zapata de 0.4 m
Se pide:
a) Calcular la capacidad de ap
considerando un factor de segu
Skempton.
b) Calcular la capacidad de apo
considerando un factor de segu
Vesic.
c) Calcular la capacidad máxim
geometría del inciso b.
d) ¿Cuál es el factor de seguridad
SOLUCIÓN.
a) Calcular la capacidad de apoy
Para la fundación se sabe que:
B = L = 1,5 m
ui”
pat_pv_pca_11@hotmail.com
cción rápida de una zapata rígida en un su
2 m de altura), a 2 m de profundidad. La arcill
una arenisca permeable e incompresible ubic
s parámetros a partir de los ensayos de cam
rreno).
cc cs pc kPa cu kPa c'
0,6 0,33 0,10 250 100 0
0,7 0,33 0,05 140, 50 0
0,8 0,33 0,05 86 50 0
puntual a ser aplicada en la columna a nivel de
ón armado tendrá una sección de 0.25 m por
.4 m de espesor. Considerar que γc = 24 kN/m3
apoyo del suelo si la base de la zapata cu
eguridad de 3 sobre la carga neta aplicada, u
apoyo del suelo si la base de la zapata rectang
eguridad de 3 sobre la carga neta aplicada, u
áxima admisible si el asentamiento tolerable
idad sobre la carga neta en la capacidad de apo
poyo del suelo si la base de la zapata es cuadrad
Ing. Civil - UJCM
suelo arcilloso totalmente
cilla tiene un peso unitario
bicada a 8 m por debajo la
campo y laboratorio (cota
φ
φ
φ
φ’ K
32 0,6
30 0,55
30 0,95
l de terreno será de 600 kN
por 0.25 m que descansará
3
.
cuadrada es de 1.50 m,
a, utilizando el método de
angular es de 1.5 por 3 m,
a, utilizando el método de
ble es de 25 mm, para la
apoyo del inciso b?
drada.
www.elsolucionario.net
Universidad José Carlos Mariátegui”
Entonces la carga neta última se






+






+
=
L
B
2
,
0
1
B
D
2
,
0
1
c
5
q f
)
u
(
net






+






+
⋅
=
5
,
1
5
,
1
2
,
0
1
5
,
1
2
2
,
0
1
50
5
q )
u
(
net
kPa
380
q )
u
(
net =
Para la carga neta se sabe que:
0
1
2
3
4
5
γ = 24 k
c
10
9
8
7
6
Arcilla 1
γ = 20 kN/m3
Arcilla 2
γ = 20 kN/m3
ui”
pat_pv_pca_11@hotmail.com
será:



0,4
m
B = L =1,50 m
4 kN/m3
eo = 0,7; cc = 0,33; cs = 0,05; Pc = 140 kPa
cu = 50 kPa; c´ = 0; φ´= 30 º; K = 0,55
γ = 16 kN/m3
γ = 20 kN/m3
0,25 m x 0,25 m
P = 600 kN
Arcilla
eo = 0,8; cc = 0,33; cs = 0,05; Pc = 86 kPa
cu = 50 kPa; c´ = 0; φ´= 30 º; K = 0,95
Roca incompresible
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
qn = q - qo
La carga última será:
qu = qnet(u) + qo
Por lo tanto, la carga neta es:
qn = 380 + 2(20) = 420 kPa
La carga segura de apoyo para u
o
o
u
s q
FS
q
q
q +
−
=
40
3
40
420
qs +
−
=
kPa
167
qs =
b) Calcular la capacidad de apoy
Para esta zapata se tiene que:
B = 1.5 m; L = 3 m
La capacidad última de apoyo se
( ) q
´
d
´
s
1
c
14
,
5
q c
c
u
u +
+
+
=
Con los valores de:
1
,
0
3
5
,
1
2
,
0
L
B
2
,
0
´
s c =
=
=
K
4
,
0
´
d c =
Entonces:
,
1
2
arctan
B
D
arctan
K
1
5
,
1
2
B
D
=
=
⇒
>
=
ui”
pat_pv_pca_11@hotmail.com
a un FS = 3 será:
poyo del suelo si la base de la zapata rectangula
será:
9273
,
0
5
,
2
=
Ing. Civil - UJCM
gular.
www.elsolucionario.net
Universidad José Carlos Mariátegui”
37
,
0
9273
,
0
4
,
0
´
d c =
⋅
=
La capacidad última de apoyo se
( ) 418
40
37
,
0
1
,
0
1
50
14
,
5
qu =
+
+
+
⋅
=
La capacidad segura de apoyo se
o
o
u
s q
FS
q
q
q +
−
=
40
3
40
8
,
418
qs +
−
=
kpa
166
qs =
c) Calcular la capacidad máxima
Por tanteo, se tiene que:
qn = 100,8 kPa
El factor se seguridad es:
8
,
0
126
8
,
100
Factor =
=
Estrato 1.
Para este estrato se tiene que:
Pav = 65,36 (0,8) = 52,2 kPa
c
o P
5
,
107
2
,
52
3
,
55
P
P <
=
+
=
∆
+
El asentamiento será:
ui”
pat_pv_pca_11@hotmail.com
será:
kPa
8
,
18
será:
ima admisible si el asentamiento tolerable es de
Ing. Civil - UJCM
s de 25 mm.
www.elsolucionario.net
Universidad José Carlos Mariátegui”







 ∆
+
+
=
c
o
o
c
oed
P
P
P
log
e
1
H
c
S








+
⋅
⋅
=
3
,
55
5
,
107
log
7
,
0
1
10
3
05
,
0
S
3
oed
mm
5
,
25
Soed =
mm
4
,
20
8
,
0
S
0
,
1
S oed
1
t =
⋅
⋅
=
Estrato 2.
Para este estrato se tiene que:
Pav = 13,15 (0,8) = 10,5 kPa
c
o P
4
,
96
5
,
10
9
,
85
P
P <
=
+
=
∆
+
El asentamiento será:







 ∆
+
+
=
c
o
o
c
oed
P
P
P
log
e
1
H
c
S








+
⋅
⋅
=
9
,
85
4
,
96
log
8
,
0
1
10
3
33
,
0
S
3
oed
mm
5
,
27
Soed =
mm
2
,
24
8
,
0
S
1
,
1
S oed
2
t =
⋅
⋅
=
El asentamiento total es:
St = 44,6 mm
La carga neta es:
qn = 50,4 kPa
ESTE ASENTAMIENTO NO CU
ui”
pat_pv_pca_11@hotmail.com
CUMPLE. Se tantea nuevamente.
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
El factor de seguridad será:
4
,
0
126
4
,
50
Factor =
=
Estrato 1.
Pav = 65,36 (0,4) = 26,1 kPa
c
o P
4
,
81
1
,
26
3
,
55
P
P <
=
+
=
∆
+







 ∆
+
+
=
c
o
o
c
oed
P
P
P
log
e
1
H
c
S








+
⋅
⋅
=
3
,
55
4
,
81
log
7
,
0
1
10
3
05
,
0
S
3
oed
mm
8
,
14
Soed =
mm
8
,
11
8
,
0
S
0
,
1
S oed
1
t =
⋅
⋅
=
Estrato 2.
∆Pav = 13,15 (0,4) = 5,2 kPa
c
o P
1
,
91
2
,
5
9
,
85
P
P <
=
+
=
∆
+







 ∆
+
+
=
c
o
o
c
oed
P
P
P
log
e
1
H
c
S








+
⋅
⋅
=
9
,
85
1
,
91
log
8
,
0
1
10
3
33
,
0
S
3
oed
mm
14
Soed =
mm
3
,
12
8
,
0
S
1
,
1
S oed
2
t =
⋅
⋅
=
St = 11.8 + 12.3 mm
ui”
pat_pv_pca_11@hotmail.com
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
St = 24.1 mm
ESTE ASENTAMIENTO ES BA
La capacidad admisible de apoyo
qa = 50.4 + 40
qa = 91 kPa
d) El factor de seguridad sobre la
La carga bruta actuante es:
A
F
q
∑
=
Con los valores de:
kN
F 600
1 =
F
kN
F
kN
F
14
20
6
,
1
)
25
,
0
25
,
0
5
,
1
3
(
4
,
2
24
)
6
,
1
25
,
0
25
,
0
(
2
,
43
24
)
4
,
0
3
5
,
1
(
4
3
2
=
⋅
⋅
−
⋅
=
=
⋅
⋅
⋅
=
=
⋅
⋅
⋅
=
Se tiene que:
kN
F 6
,
787
=
∑
2
5
,
4
5
,
1
3 m
A =
⋅
=
La carga bruta será:
q = 175 kN/m2
que es qs aplicado
La carga segura de apoyo será:
o
o
u
s q
FS
q
q
q +
−
=
ui”
pat_pv_pca_11@hotmail.com
BASTANTE APROXIMADO.
oyo será:
e la carga neta en la capacidad de apoyo del in
kN
142
ado
Ing. Civil - UJCM
l inciso b.
www.elsolucionario.net
Universidad José Carlos Mariátegui”
o
s
o
u
q
q
q
q
FS
−
−
=
40
175
40
8
,
418
−
−
=
FS
135
8
,
378
=
FS
El factor de seguridad será:
FS = 2.81
ui”
pat_pv_pca_11@hotmail.com
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA 14
Se pide determinar la máxima c
para una zapata rectangular de
(Figura 10.15), utilizando el mé
fundación. El peso unitario del
corresponde a 20 kN/m3
. Los par
que la resultante de la carga actú
la vertical, asimismo suponer qu
deformación es uniforme e igual
Figura 10.15. Características del
7
10
9
8
6
5
4
3
0
2
1
ui”
pat_pv_pca_11@hotmail.com
a capacidad admisible de apoyo (FS = 3) de
de 2.5 m de ancho y 4 m de largo emplazada
método propuesto por Das. El nivel freático c
del suelo por encima del nivel de agua es de
parámetros de resistencia de la arena son c =
actúa a 0.10 m del centro y posee una inclinaci
r que el asentamiento máximo tolerable es de
ual a 15 MN/m2
.
del perfil de suelo y de la fuerza actuante en la
B=2,5 m; L=4,0 m
γ = 20 kN/m
c = 0 kPa
φ = 30 º
E = 15 MN/m
γ = 18 kN/m
0,4
m
γ = 24 kN/m
c
3
10°
Ing. Civil - UJCM
de una arena homogénea
da a 2.0 m de profundidad
co coincide con el nivel de
de 18 kN/m3
y el saturado
c = 0, = 30º. Considerar
ación de 10º con respecto a
de 10 mm y el módulo de
la zapata.
/m
/m
/m3
3
2
www.elsolucionario.net
Universidad José Carlos Mariátegui”
SOLUCIÓN.
Las dimensiones efectivas son:
m
3
,
2
1
,
0
5
,
2
5
,
2
´
B
e
2
B
´
B
=
⋅
−
=
⋅
−
=
L´ = L = 4 m
La capacidad última de apoyo se
qi
qd
qs
q
ci
cd
cs
c
u 0
F
F
F
qN
F
F
F
cN
´
q +
+
=
Para este caso se tiene que:
d
s
qi
qd
qs
q
u F
F
N
´
B
5
,
0
F
F
F
qN
´
q γ
γ
γ
γ
+
=
Con los valores de:
q = 18 2 = 36 kN/m2
γ = 20 – 9.8 = 10,2 kN/m2
para γ = 30º se obtiene: Nq = 18.4
Los factores de forma son:
77
,
0
4
3
,
2
4
,
0
1
´
L
´
B
4
,
0
1
F
33
,
1
58
,
0
4
3
,
2
1
tan
´
L
´
B
1
F
s
qs
=
−
=
−
=
=
+
=
+
=
γ
φ
Los factores de profundidad son:
1
F
,
1
5
,
2
2
)
30
sen
1
(
30
tan
2
1
F
B
D
)
sen
1
(
tan
2
1
F
1
5
,
2
2
B
D
d
2
qd
f
2
qd
f
=
=
−
+
=
−
+
=
<
=
γ
φ
φ
ui”
pat_pv_pca_11@hotmail.com
será:
i
d
s F
F
F
N
´
B
5
,
0 γ
γ
γ
γ
γ
i
Fγ
8.40; Nγ= 2.40; tan φ = 0.58
on:
23
,
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
Los factores de inclinación son:
44
,
0
30
10
1
1
F
,
0
90
10
1
º
90
º
1
F
F
2
2
i
2
2
qi
ci
=






−
=








−
=
=






−
=








−
=
=
φ
β
β
γ
La capacidad última de apoyo se
,
0
79
,
0
23
,
1
33
,
1
40
,
18
36
´ +
⋅
⋅
⋅
⋅
=
u
q
di
carga
una
es
que
,
kPa
945
´ =
u
q
La capacidad segura de apoyo se
o
o
u
s q
FS
q
q
q +
−
=
36
3
36
945
+
−
=
s
q
kPa
qs 339
=
La carga neta será:
36
339−
=
n
q
qn = 303 kPa
ui”
pat_pv_pca_11@hotmail.com
79
,
0
será:
44
,
0
1
77
,
0
4
,
22
3
,
2
2
,
10
5
, ⋅
⋅
⋅
⋅
⋅
⋅
efectiva.
área
el
en
uniforme
manera
de
a
distribuid
será:
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA 15
Para la Figura 10.16 (zapata flex
a) Máxima presión segura de ap
homogéneo en cuanto a resiste
compresión inconfinada arrojan
realizado ensayos de corte direct
una cohesión nula y que en la m
resultado es un ángulo de fricció
b) Máxima presión admisible de
centro de la fundación es de 30 m
Figura 10.16. Características del
SOLUCIÓN.
a) Máxima presión segura de apo
La carga vertical total es igual a
del suelo sobre ella. Entonces, la
Estr
2.00 m
4.00 m
Concreto
24 kN/m3
γ =
c
0.2 m x 0.3 m
ui”
pat_pv_pca_11@hotmail.com
flexible), se pide determinar:
e apoyo con un factor de seguridad de 3. Con
sistencia al corte se refiere y que los result
jan una resistencia en el suelo de 70 kPa.
recto y que el ángulo de fricción interna del s
a misma muestra de suelo se ha ejecutado un e
ción interna en estado crítico de 32°.
de apoyo considerando que el asentamiento
0 mm.
del perfil de suelo y la fundación.
apoyo con un factor de seguridad de 3.
l a la fuerza vertical aplicada más la debida a
, la fuerza vertical F, es:
strato incompresible
y permeable
3
Arcilla
20 kN/m3
γ =
w
γ =
Agua
9.8 kN/m3
750 kN
50 kN
0.25 m
2 m x 3 m
c
σ '
61.2 kN/m
E = 15 MN/m
2
s
e = 0.70
o
C = 0.21
c
C = 0.07
s
Ing. Civil - UJCM
Considerar que el suelo es
sultados de un ensayo de
a. Considerar que se han
el suelo equivale a 30° con
un ensayo triaxial CU cuyo
to máximo tolerable en el
a al peso de la fundación y
100 kN/m
2
N/m
2
www.elsolucionario.net
Universidad José Carlos Mariátegui”
W
P
F +
=
Donde:
c
s W
W
W +
=
c
W
es peso de la fundación y es i
c
c
c V
W γ
=
( 1
3
.
0
2
.
0
25
.
0
3
2
24 ×
×
+
×
×
=
c
W
kN
Wc 52
.
38
=
El peso del suelo sobre la fundac
s
s
s V
W γ
=
( 1
3
.
0
2
.
0
75
.
1
3
2
20 ×
×
−
×
×
=
s
W
kN
Ws 9
.
207
=
Luego W es:
42
.
246
52
.
38 +
=
W
kN
W 42
.
246
=
La carga vertical total F es:
750
42
.
246 +
=
+
= W
P
F
kN
F 42
.
996
=
ui”
pat_pv_pca_11@hotmail.com
es igual a:
)
75
.
1
dación s
W
es:
)
75
.
1
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
Figura 10.17. Característica de la
El ángulo de inclinación de la fu
42
.
996
50
tan =
β
°
= 873
.
2
β
La excentricidad del punto (Figu
2
tan
e
=
β
m
e 10
.
0
=
Para aplicar el método de Meye
Entonces:
m
L
m
B
00
.
3
0
3
'
80
.
1
10
.
0
2
2
'
=
−
=
=
×
−
=
La carga última a partir de la ecu
qd
qs
q
ci
cd
cs
c
u F
F
F
qN
F
F
F
cN
q +
=
Los parámetros de resistencia
drenadas, es decir, parámetros de
2.00 m
ui”
pat_pv_pca_11@hotmail.com
e la fuerza que actúa en la fundación.
fuerza resultante β es:
igura 10.17) de aplicación de la fuerza resultan
eyerhof es necesario determinar las longitude
ecuación de Meyerhof es:
i
d
s
qi F
F
F
N
B
F γ
γ
γ
γ
γ '
2
1
+
ia a utilizarse son los parámetros que cons
s de esfuerzos totales. Luego:
750 kN
50 kN
e
β
Ing. Civil - UJCM
ltante es:
des efectivas de la zapata.
onsideran condiciones no
www.elsolucionario.net
Universidad José Carlos Mariátegui”
°
=
= 0
,
70 φ
kPa
cu
Los factores de capacidad de apo
0
;
1
;
14
.
5 =
=
= γ
N
N
N q
c
Los factores de forma, son afecta
c
q
cs
N
N
L
B
F
'
'
1+
=
117
.
1
14
.
5
1
'
0
.
3
8
.
1
1 =
×
+
=
cs
F
φ
tan
'
'
1
L
B
Fqs +
=
1
=
qs
F
Los factores de profundidad son:
B
D
F
f
cd 4
.
0
1+
=
40
.
1
2
2
4
.
0
1 =
×
+
=
cd
F
0
.
1
=
qd
F
Los factores de inclinación, son:
2
90
1 





°
−
=
=
β
qi
ci F
F
937
.
0
90
873
.
2
1
2
=






°
°
−
=
= qi
ci F
F
La capacidad última de apoyo se
93
.
0
40
.
1
117
.
1
14
.
5
70 ×
×
×
×
=
u
q
kPa
qu 7
.
564
=
ui”
pat_pv_pca_11@hotmail.com
apoyo son:
ectados por las dimensiones efectivas son:
on:
on:
37
será:
937
.
0
1
1
1
40
937 ×
×
×
×
+
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
Luego, la presión segura de apoy
3
7
.
564
=
=
FS
q
q u
s
qs = 188.2 kPa
Además, se puede calcular la má






+
=
B
e
BL
F
q
6
1
max
q
6
1
3
2
42
.
996
max 


+
×
=
Luego, el factor de seguridad rea
max
q
q
FS u
real =
6
.
2
89
.
215
7
.
564
=
=
real
FS
b) Máxima presión admisible de
Para la carga neta,
k
qn 07
.
126
=
La carga segura bruta es de qs =
Entonces, como no existe cambio
( ) 40
190−
=
n
s
q
( ) ( ) n
n
s q
q
n
s S
S
kPa
q >
⇒
= 150
La carga admisible viene dada en
ui”
pat_pv_pca_11@hotmail.com
poyo para un factor de seguridad igual a 3, es:
máxima presión en la base:
kPa
89
.
215
2
1
.
0
=



×
real es:
6
de apoyo considerando el asentamiento máxim
kPa
el asentamiento total es mm
ST 109
= .
kPa
190
= ⇒ la carga segura neta es ( )
n
s
q =
bio en la posición del nivel freático:
a en función a los asentamientos, entonces:
Ing. Civil - UJCM
es:
ximo tolerable.
'
'
o
s q
q −
=
.
www.elsolucionario.net
Universidad José Carlos Mariátegui”
Iteración N° 1
kPa
qn 50
=
El incremento de esfuerzos prom
tres:
)
50
(
50
23
.
60
07
.
126
av
p
∆
→
→
07
.
126
23
.
60
50
)
50
(
×
=
∆ av
p
kPa
pav 89
.
23
)
50
( =
∆
Entonces +
=
∆
+
'
.
23
8
.
40
av
o p
σ
'
log
1
o
o
s
T
oed
e
H
C
S
S
σ
σ +
+
=
=
40
.
64
log
707
.
1
10
4
07
.
0 3
−
×
×
=
T
S
t
T S
mm
mm
S =
>
= 30
8
.
32
Iteración N° 2
kPa
qn 48
=
El incremento de esfuerzos prom
tres:
)
50
(
48
23
.
60
07
.
126
av
p
∆
→
→
ui”
pat_pv_pca_11@hotmail.com
omedio, av
p
∆
, para esa carga neta es determin
23
⇒
=
<
= '
13
.
74
69
.
64
89
. c
kPa
kPa σ Arcilla S
'
o
av
p
σ
∆
+
8
.
40
69
.
tol NO CUMPLE
omedio, av
p
∆
, para esa carga neta es determin
Ing. Civil - UJCM
minado a partir de regla de
a SC
minado a partir de regla de
www.elsolucionario.net
Universidad José Carlos Mariátegui”
07
.
126
23
.
60
48
)
50
(
×
=
∆ av
p
kPa
pav 93
.
22
)
50
( =
∆
Entonces +
=
∆
+
'
.
22
8
.
40
av
o p
σ
'
log
1
o
o
s
T
oed
e
H
C
S
S
σ
σ +
+
=
=
40
.
63
log
707
.
1
10
4
07
.
0 3
−
×
×
=
T
S
t
T S
mm
mm
S =
>
= 30
8
.
31
Iteración N° 3
kPa
qn 44
=
El incremento de esfuerzos prom
tres:
)
50
(
44
23
.
60
07
.
126
av
p
∆
→
→
07
.
126
23
.
60
44
)
50
(
×
=
∆ av
p
kPa
pav 02
.
21
)
50
( =
∆
Entonces
+
=
∆
+
'
.
21
8
.
40
av
o p
σ
'
log
1
o
o
s
T
oed
e
H
C
S
S
σ
σ +
+
=
=
ui”
pat_pv_pca_11@hotmail.com
23
⇒
=
<
= '
13
.
74
73
.
63
93
. c
kPa
kPa σ Arcilla S
'
o
av
p
σ
∆
+
8
.
40
73
.
tol NO CUMPLE
omedio, av
p
∆
, para esa carga neta es determin
23
⇒
=
<
= '
13
.
74
30
.
62
02
. c
kPa
kPa σ Arcilla S
'
o
av
p
σ
∆
+
Ing. Civil - UJCM
a SC
minado a partir de regla de
a SC
www.elsolucionario.net
Universidad José Carlos Mariátegui”
8
.
40
30
.
62
log
707
.
1
10
4
07
.
0 3
−
×
×
=
T
S
tol
T S
mm
mm
S =
>
= 30
2
.
30
kPa
qn 45
=
⇒
'
'
o
a
n q
q
q −
= (No existe cambio e
o
a
n q
q
q −
=
40
45 +
=
+
= o
n
a q
q
q
qa = 85 kPa
ui”
pat_pv_pca_11@hotmail.com
CUMPLE
io en la posición del nivel freático)
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA 16
Para la Figura 10.18, determin
Hansen para un factor de seguri
construye muy lentamente.
Figura 10.18. Perfil del suelo y z
SOLUCIÓN
La carga es:
5
.
0
20
1
17 ×
+
×
=
q
kPa
q 27
=
La capacidad última de apoyo se
Con los valores de:
12
.
0
5
.
2
5
.
1
2
.
0
2
.
0
'
=
×
=
=
L
B
sc
3
.
0
0
.
1
4
.
0
4
.
0
'
=
×
=
= k
dc
c = 45 kPa
0.5 m
c' = 0
' = 35°
φ
u
1.5 m x 2.5 m
Concreto
24 kN/m
0.3 m x 0.3 m
1.0 m
γ =
c
550 kN
3
( ) q
d
s
c
q c
c
u
u +
+
+
= '
'
1
14
.
5
ui”
pat_pv_pca_11@hotmail.com
minar la máxima presión segura de apoyo u
uridad de 3 sobre la carga neta aplicada, supo
y zapata.
será:
m
Arcilla
γ =
sat
0.25 m
20 kN/m 3
3
17 kN/m
Arcilla
γ =
Ing. Civil - UJCM
o utilizando el método de
uponiendo que la zapata se
www.elsolucionario.net
Universidad José Carlos Mariátegui”
0
.
1
1
5
.
1
5
.
1
=
=
⇒
≤
=
B
D
k
B
D
La capacidad última de apoyo se
( ) 27
4
.
0
12
.
0
1
45
14
.
5 +
+
+
×
=
u
q
kPa
qu 58
.
378
=
La carga segura neta será:
( )
( )
FS
q
q
net
u
net
s =
La carga última neta es:
.
378
'
'
)
( =
−
=
−
= o
u
o
u
net
u q
q
q
q
q
kPa
q net
u 58
.
351
)
( =
Entonces, la carga segura neta se
kPa
q net
s 19
.
117
3
58
.
351
)
( =
=
o
s
o
s
net
s q
q
q
q
q −
=
−
= '
'
)
(
La carga segura neta es:
27
19
.
117
)
( +
=
+
= o
net
s
s q
q
q
qs = 144.19 kPa
ui”
pat_pv_pca_11@hotmail.com
será:
27
27
58
.
78 −
a será:
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA 17
Para la Figura 10.19 determinar
ecuación de Hansen.
Figura 10.19. Características del
SOLUCIÓN
FS
q
q net
net
u
s =
net
u
q
q
FS net
=
La carga neta será:
'
' o
n q
q
q −
=
Se determinan los valores de:
o
o
o u
q
q −
=
'
kPa
qo 55
2
19
1
17 =
×
+
×
=
1 in
7
6
5
4
3
2
0
fi
ui”
pat_pv_pca_11@hotmail.com
nar el factor de seguridad aplicado a la carga ú
del perfil del suelo.
u
c = 57 kPa
' = 32°
c' = 5 kPa
φ
500 kN
B= 2.5 m x L= 2.5 m
0.3 m
20 kN/m
γ =
3
Concreto
24 kN/m3
c
γ =
inicial
γ = 17 kN/m
Arcilla
3
3
final
19 kN/m
γ =
Ing. Civil - UJCM
a última neta, utilizando la
www.elsolucionario.net
Universidad José Carlos Mariátegui”
kPa
uo 6
.
19
2
8
.
9 =
×
=
kPa
qo 4
.
35
6
.
19
55
'
=
−
=
f
u
q
q −
=
'
25
.
6
5
.
2
5
.
2
; A
A
F
q =
×
=
Σ
=
s
c W
W
P
F +
+
=
Σ
kN
P 500
=
(
Wc 2
.
0
2
.
0
3
.
0
5
.
2
5
.
2
24 ×
+
×
×
=
(
Ws 2
.
0
2
.
0
7
.
2
5
.
2
5
.
2
17 ×
+
×
×
=
q 2
.
133
25
.
6
04
.
285
59
.
47
500
=
+
+
=
0
=
f
u
kPa
q 22
.
133
'=
Entonces la carga neta será:
4
.
35
22
.
133 −
=
n
q
kPa
qn 82
.
97
=
La zapata está apoyada sobre a
arcilla.
La condición más desfavorable e
°
=
= 0
,
57 φ
kPa
cu
Aplicando la ecuación de Hansen
ui”
pat_pv_pca_11@hotmail.com
2
m
) kN
59
.
47
7
.
2
2 =
×
) kN
04
.
285
7
.
2
2 =
×
kPa
22
re arcilla, por tanto, los parámetros de resist
le en arcilla se da a corto plazo.
sen, la capacidad última de apoyo será:
Ing. Civil - UJCM
sistencia deben ser los de
www.elsolucionario.net
Universidad José Carlos Mariátegui”
( b
i
d
s
c
q c
c
c
c
u
u −
−
−
+
+
= '
'
'
'
1
14
.
5
Debido a que no existe inclinació
0
'
'
'
=
=
= c
c
c g
b
i
Los factores de forma y profundi
2
.
0
5
.
2
5
.
2
2
.
0
2
.
0
'
=
×
=
×
=
L
B
sc
350
.
0
876
.
0
4
.
0
4
.
0
'
=
×
=
= k
dc
k
B
Df 1
2
.
1
5
.
2
/
3
/ ⇒
>
=
=
876
.
0
=
k
La carga es:
kPa
q 51
3
17 =
×
=
La capacidad última de apoyo se
( )
35
.
0
2
.
0
1
57
14
.
5 +
+
+
×
×
=
u
q
kPa
qu 12
.
505
=
La efectiva será:
kPa
u
q
q f
u
u 12
.
505
'
=
−
=
La carga última de apoyo neta se
q
q
q o
u
unet
4
.
35
12
.
505
'
'
=
−
=
−
=
El factor de seguridad será:
80
.
4
82
.
97
72
.
469
=
=
=
n
u
q
q
FS net
ui”
pat_pv_pca_11@hotmail.com
) q
gc +
− '
ción de ningún tipo, entonces:
ndidad son:
B
Df
arctan
=
será:
51
a será:
kPa
72
.
469
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA 18
Para la Figura 10.20 determin
Hansen para un factor de seguri
construye en un instante de tiemp
Figura 10.20. Características del
La carga será:
5
.
0
20
1
17 ×
+
×
=
q
kPa
q 27
=
La capacidad última de apoyo se
( ) q
d
s
c
q c
c
u
u +
+
+
= '
'
1
14
.
5
Con los valores de:
133
.
0
3
2
2
.
0
2
.
0
'
=
×
=
=
L
B
sc
3
.
0
75
.
0
4
.
0
4
.
0
'
=
×
=
= k
dc
7
.
0
2
5
.
1
1
2
5
.
1
=
=
=
⇒
<
=
B
D
k
B
D
0.3 m
0.5 m
1.0 m
u
c = 4
φ' = 3
c' = 0
ui”
pat_pv_pca_11@hotmail.com
inar la máxima presión segura de apoyo u
uridad de 3 sobre la carga neta aplicada, supo
empo (20 puntos).
del perfil del suelo y de la fuerza que actúa en
será:
75
2 m x 3 m
m x 0.3 m
24 kN/m
Concreto
c
γ = 3
sat
0.25 m
Arcilla
γ =
Arcilla
3
17 kN/m
γ =
20 kN/m
550 kN
= 45 kPa
= 35°
= 0
Ing. Civil - UJCM
o utilizando el método de
uponiendo que la zapata se
en la zapata.
/m 3
www.elsolucionario.net
Universidad José Carlos Mariátegui”
La capacidad última de apoyo se
( )
3
.
0
133
.
0
1
45
14
.
5 +
+
+
×
=
u
q
kPa
qu 45
.
358
=
La carga segura neta es:
( )
( )
FS
q
q
net
u
net
s =
La carga última neta es:
.
385
'
'
)
( =
−
=
−
= o
u
o
u
net
u q
q
q
q
q
kPa
q net
u 45
.
331
)
( =
Con este valor se determina la ca
q net
s 110
3
45
.
331
)
( =
=
s
o
s
net
s q
q
q
q =
−
= '
'
)
(
110
)
( =
+
= o
net
s
s q
q
q
qs = 137.48 kPa
ui”
pat_pv_pca_11@hotmail.com
será:
27
27
45
.
85 −
carga segura neta que será:
kPa
48
.
10
o
q
−
27
48
.
110 +
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
$%&
$%&
$%&
$%&
PROBLEMA 1
Se pide:
a) Determinar la razón de áreas
respectivamente 86 mm y 90 mm
b) Determinar la razón de áreas d
35 mm y 51 mm respectivament
SOLUCIÓN
a) razón de áreas de muestreo Shelby
)
100
(
86
86
90
(%)
)
100
(
(%)
2
2
2
2
2
2
−
=
−
=
r
I
I
O
r
A
D
D
D
A
Ar (%) = 9,51 %
Para que una muestra de suelo sea c
igual o menor que 10%, por tanto el
b) Razón de áreas de una cuchara de m
)
100
(
35
35
51
(%)
)
100
(
(%)
2
2
2
2
2
2
−
=
−
=
r
I
I
O
r
A
D
D
D
A
Ar (%) = 112 %
Este porcentaje indica que la muestra
ui”
pat_pv_pca_11@hotmail.com
$%&' () *+& ,-.,-+&'
$%&' () *+& ,-.,-+&'
$%&' () *+& ,-.,-+&'
$%&' () *+& ,-.,-+&'
eas de un tubo de muestreo Shelby cuyos diámet
mm.
s de una cuchara de muestreo SPT cuyos diámetro
ente.
o Shelby.
a considerada no disturbada, generalmente su rela
el tubo Shelby está dentro de los parámetros acepta
hara de muestreo SPT.
uestra obtenida con la cuchara es altamente disturbada
Ing. Civil - UJCM
etros interno y externo son
etros interno y externo son de
elación de áreas tiene que ser
eptables.
sturbada.
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA 2
Los siguientes datos corresponden a
Numero de golpes: N = 20
Profundidad de sondeo: L = 12m
Diámetro de la perforación: 150 m
Peso unitario promedio del suelo:
Energía del martillo Er = 45
Muestreo sin liner.
Realizar las correcciones necesarias
SOLUCIÓN
En el anexo I se presentan las formu
0
)
12
)(
18
(
76
,
95
1
2
=
=
′
′
=
p
p
CN
p′1 : Esfuerzo vertical efectivo e
64
,
0
70
45
1 =
=
η
η2 =1,00 L>10m
η3 =1,00 Práctica usual sin line
η4 =1,05 Diámetro de 150mm
)(
1
)(
1
)(
64
,
0
)(
20
)(
67
,
0
(
70
4
3
2
1
70
=
′
η
η
η
η
=
′
N
N
C
N N
70
N′ = 9
Transformamos a una energía
)
9
(
60
70
60 





=
′
N
60
N′ = 10
ui”
pat_pv_pca_11@hotmail.com
n a un ensayo de SPT, cuyo nivel freático no fue obs
= 12m
n: 150 mm
el suelo: γ = 18 kN/m3
sarias para una energía Er = 70 y Er = 60
mulas de corrección para el ensayo de penetración
67
,
0
efectivo estándar = 95,6 kPa
al sin linear
150mm
)
05
,
1
)(
energía de Er = 60
Ing. Civil - UJCM
observado.
ón estándar.
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA 3
De los siguientes resultados de un en
corregidos N′60 a varias profundidade
unitario promedio de la arena como
Diámetro de perforación: 150 m
Energía de martillo Er = 50
Tipo de muestreo: sin liner
Profundidad
2
4
6
8
10
SOLUCIÓN
Empleamos la ecuación para la correcc
4
3
2
1
70 η
η
η
η
=
′ N
C
N N
N′70 : Valor de SPT corregido
CN : Ajuste por presión de sobr
1
2
p
p
CN
′
′
=
p′1 : Esfuerzo vertical efectivo e
p′2 : Esfuerzo vertical efectivo e
η1 : Eficiencia del martillo
70
1
r
E
=
η
Er : Energía del martillo (depen
ui”
pat_pv_pca_11@hotmail.com
un ensayo de penetración estándar en arena: determ
ndidades. El nivel freático no fue observado en todo el
como γ=20 kN/m3
50 mm
N
8
7
12
14
13
a corrección de N
regido
de sobrecarga
efectivo estándar = 95,76 kPa
efectivo en el lugar de ensayo
o (depende del tipo de martillo y su sistema de golpe)
Ing. Civil - UJCM
: determine los números de SPT
todo el proceso. Asumir el peso
www.elsolucionario.net
Universidad José Carlos Mariátegui”
71
,
0
70
50
1 =
=
η
η2 : Corrección por profundida
η3 : Corrección por muestreo (
η4: Corrección por diámetro de
N : Valor de SPT obtenido en c
Para convertir a N′60 se realiza el siguie
70
60
60
70
N
N ′
=
′
En la siguiente tabla se resumen las
Prof.H N P'1=γ
γ
γ
γ h
2 8 40
4 7 80
6 12 120
8 14 160
10 13 200
ui”
pat_pv_pca_11@hotmail.com
fundidad (tabla I-1, anexo I)
estreo (tabla I-2, anexo I)
metro de perforación (tabla I-3, anexo I)
nido en campo
el siguiente factor de conversión:
las operaciones efectuadas.
CN η
η
η
η1 η
η
η
η2 η
η
η
η3 η
η
η
η4
1,55 0,71 0,75 1,00 1,05
1,09 0,71 0,75 1,00 1,05
0,89 0,71 0,85 1,00 1,05
0,77 0,71 0,95 1,00 1,05
0,69 0,71 1,00 1,00 1,05
Ing. Civil - UJCM
N'70 N'60
7 8
4 5
7 8
8 9
7 8
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA 4
El número N′70 de un ensayo de SPT
correlaciones: la densidad relativa, el á
SOLUCIÓN
Mediante los valores de la tabla I-
especificado y la consistencia del sue
Interpolando tenemos:
( )+
−








−
−
= 35
,
0
65
,
0
8
20
8
15
r
D
Angulo de fricción interna:
( ) ⇒
+
−








−
−
=
φ 32
32
36
8
20
8
15
Peso unitario
1
130
(
8
20
8
15
−








−
−
=
γ
Entonces:
γ=122 kN/m3
ui”
pat_pv_pca_11@hotmail.com
de SPT fue de 15, siendo el suelo de consistencia medi
tiva, el ángulo de fricción interna y el peso unitario del su
-4 (anexo I ), encontramos el rango de valores
suelo.
⇒
+ 35
,
0 Dr = 0,52
⇒ φ = 34º
110
)
110 +
Ing. Civil - UJCM
cia media, estimar por medio de
rio del suelo.
es para el número de golpes
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA 5
Se realizó un ensayo con la veleta d
torque hasta la falla de 70 Nxm. De
considerar que su índice de plasticid
SOLUCIÓN
Para encontrar la solución se utilizara
Asumimos el tipo de movilización del s
u
c
d
h
d
T
u
c
5
,
0
2
)
152
,
0
(
2
)
076
,
0
(
70
4
3
2
2
+
π
=
β
+
π
=












Corrección por plasticidad:
,
1
))
18
)(log(
54
,
0
(
7
,
1 =
−
=
λ
Resistencia al corte no drenado:
diseño
u
veleta
u
diseño
u
c
c
c
)
45118
)(
022
,
1
(
)
(
)
(
)
(
=
=
λ
=
2
kN/m
46,1
=
u(diseño)
c
ui”
pat_pv_pca_11@hotmail.com
a de corte, cuyas dimensiones son: d = 76 mm y h
Determinar la resistencia al corte no drenado para
ticidad es de PI = 18.
utilizara la ecuación de Calding que se encuentre en la
ión del suelo en los extremos como triangular, por tanto
2
N/m
45118
4
3
076
,
0
5
=




022
,
2
N/m
46117
Ing. Civil - UJCM
= 152 mm, aplicándose un
ara propósitos de diseño,
tre en la sección I.3 del anexo I .
or tanto β=1/2
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA 6
Se realizó un ensayo de CPT cuyos
metros en una arena con γ
γ
γ
γ’=11,15 k
mecánico.
SOLUCIÓN
Angulo de fricción interna para arenas
I.







+
=
φ








σ
+
=
φ
−
−
1
(
log
)
38
,
0
(
1
,
0
tan
log
)
38
,
0
(
1
,
0
tan
1
1 q
φ
φ
φ
φ = 42,3º
ui”
pat_pv_pca_11@hotmail.com
os resultados fueron los siguientes: qc=12 Mpa a u
5 kN/m3. Estimar el ángulo de fricción interna φ
φ
φ
φ.
a arenas normalmente consolidadas que se encuentra e
°
=















σ
3
,
42
)
8
)(
15
,
11
12000
'v
c
q
Ing. Civil - UJCM
a una profundidad de 8
. Se utilizó un cono
uentra en la sección I.6 del anexo
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA 7
Se desea construir una fundación cua
terreno en una arena medianamente
por debajo de la superficie. Los valores
Profundidad, m
N (campo)
Calcular la capacidad admisible del
SOLUCIÓN
Analizamos hasta una profundidad
por debajo del nivel de fundación.
El número de golpes debe ser corregid
Profundidad
(m)
2,0
2,8
3,6
4,4
5,2
6,0
Calculamos el número corregido de
,
0
)(
45
,
17
(
)
4
,
0
)(
04
,
19
(
1
+
=
promedio
N
N1promedio = 18,13 ; ent
ui”
pat_pv_pca_11@hotmail.com
ción cuadrada de 4,0 m. a una profundidad de 2,0 m
amente densa de peso unitario 19,0 kN/m3
. El nivel de
s valores obtenidos en un ensayo de penetración estánda
2,0 2,8 3,6 4,4 5,2 6,0
12 13 15 15 18 21
del suelo si el asentamiento está restringido a 25m
dad igual al ancho de la fundación, es decir hasta u
corregido, para tal efecto se presenta la siguiente tabla:
)
/
( 2
m
kN
v
σ µ (kN/m2
) σ´v
v
N
C
σ
=
76
,
95
38 0,0 38 1,587
53,2 0,0 53,2 1,342
68,4 0,0 68,4 1,183
83,6 3,92 79,68 1,096
98,8 11,76 87,04 1,049
114 19,6 94,4 1,007
de golpes promedio:
4
2
(
)
8
,
0
)(
88
,
18
(
)
8
,
0
)(
44
,
16
(
)
9
,
0
)(
75
,
17
(
)
7
, +
+
+
+
13 ; entonces la capacidad admisible neta es
Ing. Civil - UJCM
e 2,0 m por debajo del nivel del
nivel de agua se localiza a 4,0 m
estándar son:
6,0 6,8
21 25
5mm.
ta una profundidad 4.0 m
e tabla:
76
N N1
12 19,04
13 17,45
15 17,75
15 16,44
18 18,88
21 21,15
)
4
,
0
)(
15
,
21
www.elsolucionario.net
Universidad José Carlos Mariátegui”



= 2
)
( 95
,
1
pie
ton
q neta
a






= 2
)
( 7
,
186
m
kN
q neta
a
0
)
( q
q
q
q neta
a ⇒
−
=
)
19
)(
2
(
7
,
186 +
=
a
q
qa = 225 kN/m2
ui”
pat_pv_pca_11@hotmail.com





















2
2
1
76
,
95
pie
ton
m
kN



0
)
( q
q neta
a +
=
)
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
PROBLEMA 8
Para los datos de la Figura 13.3, se pid
siguientes datos:
Equipo utilizado: Industria japo
Diámetro del sondeo = 150 mm
Cuchara sin recubrimiento.
Nivel freático a 2 m de la supe
El nivel de agua se mantuvo
Figura 13.3. Características del perfil d
SOLUCIÓN
Ensayo SPT.
De acuerdo a la tabla de factores de co
• Martillo de rosquilla de industria j
Er=67
70 ⇒
=
rb
E
F
0
2
4
6
8
10
h[m]
ui”
pat_pv_pca_11@hotmail.com
.3, se pide determinar la máxima capacidad admisible de
stria japonesa. Martillo de rosquilla estirado por cable.
150 mm.
la superficie.
ntuvo al nivel del terreno durante la ejecución del sondeo
l perfil de suelo y la fundación.
res de corrección para el SPT, tenemos que:
tria japonesa:
957
.
0
70
67
1 =
=
=
rb
r
E
E
η
FIGURA 3
N
h
15
1
15
2
15
3
16
4
16
5
17 17
7
18
8
1
9 1
B=L=3m
Arena
=20 kN/m3
γ
=19 kN/m3
γ
Por debajo del N.F.
Por encima del N.F
stolerable=25 mm
Ing. Civil - UJCM
ble de apoyo considerando los
cable.
l sondeo SPT.
18
10
.F.
.F.
www.elsolucionario.net
Universidad José Carlos Mariátegui”
• Sin recubrimiento de lodo bentoní
⇒
• Diámetro de sondeo 150 mm.
⇒
Figura 13.4. Variación de esfuerzos en
Determinación del número de golpes c
'
76
.
95
σ
=
N
C ; ajuste por presión de
4
3
2
1
70 η
η
η
η
=
′ N
C
N N
h CN η1
2 2.167 0.957
3 1.769 0.957
4 1.532 0.957
5 1.370 0.957
7 1.158 0.957
8 1.083 0.957
Determinación de la media ponderada
0
1
2
3
4
5
6
7
8
[m] 2B
=19
γ
=20
γ
ui”
pat_pv_pca_11@hotmail.com
bentonítico durante la perforación.
00
.
1
3 =
η
05
.
1
4 =
η
erzos en el perfil de suelo.
golpes corregido por presión efectiva (N’70=Nc) para cada
resión de sobrecarga.
η2 η3 η4 N70 Nc
0.75 1.00 1.05 15 24.5
0.75 1.00 1.05 15 20.0
0.85 1.00 1.05 16 20.94
0.85 1.00 1.05 16 18.72
0.95 1.00 1.05 17 18.79
0.95 1.00 1.05 17 17.58
nderada del número de golpes corregido.
2B
N=15
N=15
N=16
N=16
N=17
N=17
19 kN/m3 B=3 m
σ'=10.2*2=20.4 kN
σ'=30.6 kN/m3
σ'=40.8 kN/m3
σ'=51.0 kN/m3
σ'=71.4 kN/m3
σ'=81.6 kN/m3
20
Ing. Civil - UJCM
ara cada subdivisión.
N/m3
www.elsolucionario.net
Universidad José Carlos Mariátegui”
71
.
19
94
.
20
1
*
20
5
.
0
*
5
.
24
=
+
+
=
Ncpr
Ncpr
El factor de profundidad es:
B
D
F f
d .
1
3
2
33
.
0
1
33
.
0
1 =
+
=
+
=
La capacidad portante admisible neta
Nc
qan 98
.
11 


⋅
⋅
=
2
09
.
344
3
*
28
.
3
1
3
*
28
.
3
*
71
.
19
*
98
.
11
m
kN
q
q
an
an
=





 +
=
La capacidad portante admisible es:
34
=
+
= o
an
a q
q
q
kPa
qa 382
=
ui”
pat_pv_pca_11@hotmail.com
6
5
.
0
*
58
.
17
5
.
1
*
79
.
18
5
.
1
*
72
.
18
1
*
94 +
+
+
Cumple
33
.
1
22
. ≤
ble neta es:
m
B
para
S
F
B
B e
d 22
.
1
4
.
25
*
28
.
3
1
*
28
.
3
2
≥






⋅



+
2
4
.
25
25
22
.
1
* 








ble es:
2
*
19
09
.
344 +
Ing. Civil - UJCM
www.elsolucionario.net
Universidad José Carlos Mariátegui”
Tabla J.1 Ecuaciones d
Terzaghi
qu = c Nc sc + q Nq + 0,5
Para: continua circ
sc = 1,0 1,
sγ = 1,0 0,
(Ver Tabla J.2 para val
Meyerhof
Carga vertical: qu =
Carga inclinada: qu =
(Ver Tabla J.3 para fac
Hansen
qu = cNcscdcicgcbc + qN
Cuando φ
φ
φ
φ =
=
=
= 0º, Usar
qu = 5,14 cu(1+ s′c+ d′c
(Ver Tabla J.5 para fac
Vesic
Utilizar las ecuaciones
(Ver Tabla J.5 para fac
ui”
pat_pv_pca_11@hotmail.com
ANEXO
CAPACIDAD PORTANTE
s de capacidad portante (Bowles, 1995)
0,5 γ B Nγ sγ
ircular cuadrada
1,3 1,3
0,6 0,8
valores de factores)
Nq
a =
Nc
Nγ
= cNcscdc + qNqsqdq + 0,5γBNγsγdγ
= cNcdcic + qNqdqiq + 0,5γBNγdγiγ
factores de forma, profundidad, e inclinación)
Nq
Nc
Nγ
qNqsqdqiqgqbq + 0,5γBNγsγdγiγgγbγ
c – i′c – b′c – g′c)+q
factores de forma, profundidad, y otros)
Nq
Nc
Nγ
es de Hansen
factores de forma, profundidad, y otros)
Nq
Nc
Nγ
Ing. Civil - UJCM
=
( )
/2
cos
a2
φ
+
45
2 2
= e(0,75π-φ/2)tan φ
= (Nq – 1) cot φ
= 







−
φ
φ γ
1
2 2
cos
K
tan p
= eπtanφ
tan2
(45+
2
φ
)
= (Nq – 1) cot φ
= (Nq – 1) tan(1,4φ)
= igual a Meyerhof
= igual a Meyerhof
= 1,5(Nq – 1) tan φ
= igual a Meyerhof
= igual a Meyerhof
= 2 (Nq + 1) tan φ
www.elsolucionario.net
Problemas_Resueltos_de_Mecanica_de_Suelo.pdf
Problemas_Resueltos_de_Mecanica_de_Suelo.pdf
Problemas_Resueltos_de_Mecanica_de_Suelo.pdf
Problemas_Resueltos_de_Mecanica_de_Suelo.pdf
Problemas_Resueltos_de_Mecanica_de_Suelo.pdf
Problemas_Resueltos_de_Mecanica_de_Suelo.pdf
Problemas_Resueltos_de_Mecanica_de_Suelo.pdf
Problemas_Resueltos_de_Mecanica_de_Suelo.pdf
Problemas_Resueltos_de_Mecanica_de_Suelo.pdf
Problemas_Resueltos_de_Mecanica_de_Suelo.pdf
Problemas_Resueltos_de_Mecanica_de_Suelo.pdf
Problemas_Resueltos_de_Mecanica_de_Suelo.pdf
Problemas_Resueltos_de_Mecanica_de_Suelo.pdf
Problemas_Resueltos_de_Mecanica_de_Suelo.pdf
Problemas_Resueltos_de_Mecanica_de_Suelo.pdf
Problemas_Resueltos_de_Mecanica_de_Suelo.pdf
Problemas_Resueltos_de_Mecanica_de_Suelo.pdf

Más contenido relacionado

La actualidad más candente

Manual de laboratorio de suelos en ingenieria civil joseph e. bowles
Manual de laboratorio de suelos en ingenieria civil   joseph e. bowlesManual de laboratorio de suelos en ingenieria civil   joseph e. bowles
Manual de laboratorio de suelos en ingenieria civil joseph e. bowles
Diego Huerfano
 

La actualidad más candente (20)

Informe laboratorio suelos 1
Informe  laboratorio suelos 1Informe  laboratorio suelos 1
Informe laboratorio suelos 1
 
Mecanica de fluido..
Mecanica de fluido..Mecanica de fluido..
Mecanica de fluido..
 
Compresion no confinada
Compresion no confinada Compresion no confinada
Compresion no confinada
 
Criterios de Falla
Criterios de FallaCriterios de Falla
Criterios de Falla
 
Ensayo triaxial
Ensayo triaxialEnsayo triaxial
Ensayo triaxial
 
Ensayo cbr california bearing
Ensayo cbr california bearingEnsayo cbr california bearing
Ensayo cbr california bearing
 
Capitulo 1 2013-2
Capitulo 1   2013-2Capitulo 1   2013-2
Capitulo 1 2013-2
 
Manual de laboratorio de suelos en ingenieria civil joseph e. bowles
Manual de laboratorio de suelos en ingenieria civil   joseph e. bowlesManual de laboratorio de suelos en ingenieria civil   joseph e. bowles
Manual de laboratorio de suelos en ingenieria civil joseph e. bowles
 
Presiones laterales de suelos
Presiones laterales de suelosPresiones laterales de suelos
Presiones laterales de suelos
 
Presas de Enrocado
Presas de EnrocadoPresas de Enrocado
Presas de Enrocado
 
Resistencia de suelos
Resistencia de suelosResistencia de suelos
Resistencia de suelos
 
Ensayo triaxial
Ensayo triaxialEnsayo triaxial
Ensayo triaxial
 
ensayo de compactacion - Proctor estandar
ensayo de compactacion - Proctor estandarensayo de compactacion - Proctor estandar
ensayo de compactacion - Proctor estandar
 
Informe diseño de bocatoma
Informe  diseño de  bocatoma Informe  diseño de  bocatoma
Informe diseño de bocatoma
 
ensayos de proctor estándar y modificado-ensayo de cbr
ensayos de proctor estándar y modificado-ensayo de cbr ensayos de proctor estándar y modificado-ensayo de cbr
ensayos de proctor estándar y modificado-ensayo de cbr
 
1. ley de coulomb
1. ley de coulomb1. ley de coulomb
1. ley de coulomb
 
texto-ejercicios-resueltos-de-hidrologia-nelame
texto-ejercicios-resueltos-de-hidrologia-nelametexto-ejercicios-resueltos-de-hidrologia-nelame
texto-ejercicios-resueltos-de-hidrologia-nelame
 
Informe geotecnico final
Informe geotecnico finalInforme geotecnico final
Informe geotecnico final
 
Permeabilidad en suelos
Permeabilidad en suelosPermeabilidad en suelos
Permeabilidad en suelos
 
Metodos de socavacion en puentes
Metodos de socavacion en puentesMetodos de socavacion en puentes
Metodos de socavacion en puentes
 

Similar a Problemas_Resueltos_de_Mecanica_de_Suelo.pdf

Sept2013 soluc
Sept2013 solucSept2013 soluc
Sept2013 soluc
mariavarey
 
Mecnica de suelos_y_cimentaciones-_ing._ngel_huanaca_borda
Mecnica de suelos_y_cimentaciones-_ing._ngel_huanaca_bordaMecnica de suelos_y_cimentaciones-_ing._ngel_huanaca_borda
Mecnica de suelos_y_cimentaciones-_ing._ngel_huanaca_borda
MIKYRoll
 
F4.1 pau-campo eléctrico-soluc
F4.1 pau-campo eléctrico-solucF4.1 pau-campo eléctrico-soluc
F4.1 pau-campo eléctrico-soluc
mariavarey
 

Similar a Problemas_Resueltos_de_Mecanica_de_Suelo.pdf (20)

FORMULARIO - MECANICA DE SUELOS
FORMULARIO - MECANICA DE SUELOSFORMULARIO - MECANICA DE SUELOS
FORMULARIO - MECANICA DE SUELOS
 
5 hidrostatica
5 hidrostatica5 hidrostatica
5 hidrostatica
 
Solucionario Segunda Práctica Calificada de Circuitos Eléctricos I - FIEE UNI...
Solucionario Segunda Práctica Calificada de Circuitos Eléctricos I - FIEE UNI...Solucionario Segunda Práctica Calificada de Circuitos Eléctricos I - FIEE UNI...
Solucionario Segunda Práctica Calificada de Circuitos Eléctricos I - FIEE UNI...
 
Examen global uam ESTATICA
Examen global uam ESTATICAExamen global uam ESTATICA
Examen global uam ESTATICA
 
Ejercicios 1 stevenson
Ejercicios 1 stevensonEjercicios 1 stevenson
Ejercicios 1 stevenson
 
Ejemplo matricial
Ejemplo matricialEjemplo matricial
Ejemplo matricial
 
Sept2013 soluc
Sept2013 solucSept2013 soluc
Sept2013 soluc
 
Mecnica de suelos
Mecnica de suelosMecnica de suelos
Mecnica de suelos
 
Mecanica de suelos_y_cimentaciones_ing_a
Mecanica de suelos_y_cimentaciones_ing_aMecanica de suelos_y_cimentaciones_ing_a
Mecanica de suelos_y_cimentaciones_ing_a
 
Mecnica de suelos_y_cimentaciones-_ing._ngel_huanaca_borda
Mecnica de suelos_y_cimentaciones-_ing._ngel_huanaca_bordaMecnica de suelos_y_cimentaciones-_ing._ngel_huanaca_borda
Mecnica de suelos_y_cimentaciones-_ing._ngel_huanaca_borda
 
Douglas
DouglasDouglas
Douglas
 
Producto vectorial
Producto vectorialProducto vectorial
Producto vectorial
 
Teoría de Rankine (2).pdf
Teoría de Rankine (2).pdfTeoría de Rankine (2).pdf
Teoría de Rankine (2).pdf
 
F4.1 pau-campo eléctrico-soluc
F4.1 pau-campo eléctrico-solucF4.1 pau-campo eléctrico-soluc
F4.1 pau-campo eléctrico-soluc
 
Programación geométrica
Programación geométricaProgramación geométrica
Programación geométrica
 
SOLUCIÓN TE2-PE-2014-2S
SOLUCIÓN TE2-PE-2014-2SSOLUCIÓN TE2-PE-2014-2S
SOLUCIÓN TE2-PE-2014-2S
 
1 exposicionpal examen poisson
1 exposicionpal examen poisson1 exposicionpal examen poisson
1 exposicionpal examen poisson
 
Problema resueltos de_electricidad_y_magnetismo
Problema resueltos de_electricidad_y_magnetismoProblema resueltos de_electricidad_y_magnetismo
Problema resueltos de_electricidad_y_magnetismo
 
Electricidad y Magnetismo
Electricidad y MagnetismoElectricidad y Magnetismo
Electricidad y Magnetismo
 
Problema resueltos de electricidad y magnetismo
Problema resueltos de electricidad y magnetismoProblema resueltos de electricidad y magnetismo
Problema resueltos de electricidad y magnetismo
 

Más de ricardo patiño rendon

385536492-Cuaderno-de-Trabajo-de-Geotecnia-II.pdf
385536492-Cuaderno-de-Trabajo-de-Geotecnia-II.pdf385536492-Cuaderno-de-Trabajo-de-Geotecnia-II.pdf
385536492-Cuaderno-de-Trabajo-de-Geotecnia-II.pdf
ricardo patiño rendon
 
Sem 2-4. UCONTI. EXPLORACIÓN DEL SUBSUELO. SPT-EJERCICIOS..pptx
Sem 2-4. UCONTI. EXPLORACIÓN DEL SUBSUELO. SPT-EJERCICIOS..pptxSem 2-4. UCONTI. EXPLORACIÓN DEL SUBSUELO. SPT-EJERCICIOS..pptx
Sem 2-4. UCONTI. EXPLORACIÓN DEL SUBSUELO. SPT-EJERCICIOS..pptx
ricardo patiño rendon
 
388-Texto del artículo-1594-2-10-20161110.pdf
388-Texto del artículo-1594-2-10-20161110.pdf388-Texto del artículo-1594-2-10-20161110.pdf
388-Texto del artículo-1594-2-10-20161110.pdf
ricardo patiño rendon
 
TALLER DE INVESTIGACION _ PATIÑO _ OXA _ TRABAJO FINAL.pdf
TALLER DE INVESTIGACION _ PATIÑO _ OXA _ TRABAJO FINAL.pdfTALLER DE INVESTIGACION _ PATIÑO _ OXA _ TRABAJO FINAL.pdf
TALLER DE INVESTIGACION _ PATIÑO _ OXA _ TRABAJO FINAL.pdf
ricardo patiño rendon
 
Sharon_Joddai_Tesis_bachiller_2021-convertido.docx
Sharon_Joddai_Tesis_bachiller_2021-convertido.docxSharon_Joddai_Tesis_bachiller_2021-convertido.docx
Sharon_Joddai_Tesis_bachiller_2021-convertido.docx
ricardo patiño rendon
 
Evaluación Final_2022-00 Sixto Quispe Fernandez (1).pdf
Evaluación Final_2022-00 Sixto Quispe Fernandez (1).pdfEvaluación Final_2022-00 Sixto Quispe Fernandez (1).pdf
Evaluación Final_2022-00 Sixto Quispe Fernandez (1).pdf
ricardo patiño rendon
 

Más de ricardo patiño rendon (16)

385536492-Cuaderno-de-Trabajo-de-Geotecnia-II.pdf
385536492-Cuaderno-de-Trabajo-de-Geotecnia-II.pdf385536492-Cuaderno-de-Trabajo-de-Geotecnia-II.pdf
385536492-Cuaderno-de-Trabajo-de-Geotecnia-II.pdf
 
Sem 2-4. UCONTI. EXPLORACIÓN DEL SUBSUELO. SPT-EJERCICIOS..pptx
Sem 2-4. UCONTI. EXPLORACIÓN DEL SUBSUELO. SPT-EJERCICIOS..pptxSem 2-4. UCONTI. EXPLORACIÓN DEL SUBSUELO. SPT-EJERCICIOS..pptx
Sem 2-4. UCONTI. EXPLORACIÓN DEL SUBSUELO. SPT-EJERCICIOS..pptx
 
TEORIA WIL.docx
TEORIA WIL.docxTEORIA WIL.docx
TEORIA WIL.docx
 
examendegeo-220422203431.pdf
examendegeo-220422203431.pdfexamendegeo-220422203431.pdf
examendegeo-220422203431.pdf
 
MECANICA_DE_SUELOS_II.pdf
MECANICA_DE_SUELOS_II.pdfMECANICA_DE_SUELOS_II.pdf
MECANICA_DE_SUELOS_II.pdf
 
MECANICA_DE_SUELOS_II (1).pdf
MECANICA_DE_SUELOS_II (1).pdfMECANICA_DE_SUELOS_II (1).pdf
MECANICA_DE_SUELOS_II (1).pdf
 
388-Texto del artículo-1594-2-10-20161110.pdf
388-Texto del artículo-1594-2-10-20161110.pdf388-Texto del artículo-1594-2-10-20161110.pdf
388-Texto del artículo-1594-2-10-20161110.pdf
 
Evaluación Final_2022-00 Sixto Quispe Fernandez.pdf
Evaluación Final_2022-00 Sixto Quispe Fernandez.pdfEvaluación Final_2022-00 Sixto Quispe Fernandez.pdf
Evaluación Final_2022-00 Sixto Quispe Fernandez.pdf
 
Capitulo19.pdf
Capitulo19.pdfCapitulo19.pdf
Capitulo19.pdf
 
TALLER DE INVESTIGACION _ PATIÑO _ OXA _ TRABAJO FINAL.pdf
TALLER DE INVESTIGACION _ PATIÑO _ OXA _ TRABAJO FINAL.pdfTALLER DE INVESTIGACION _ PATIÑO _ OXA _ TRABAJO FINAL.pdf
TALLER DE INVESTIGACION _ PATIÑO _ OXA _ TRABAJO FINAL.pdf
 
Sharon_Joddai_Tesis_bachiller_2021-convertido.docx
Sharon_Joddai_Tesis_bachiller_2021-convertido.docxSharon_Joddai_Tesis_bachiller_2021-convertido.docx
Sharon_Joddai_Tesis_bachiller_2021-convertido.docx
 
Evaluación Final_2022-00 Sixto Quispe Fernandez (1).pdf
Evaluación Final_2022-00 Sixto Quispe Fernandez (1).pdfEvaluación Final_2022-00 Sixto Quispe Fernandez (1).pdf
Evaluación Final_2022-00 Sixto Quispe Fernandez (1).pdf
 
Vigas_hiperestaticas.pdf
Vigas_hiperestaticas.pdfVigas_hiperestaticas.pdf
Vigas_hiperestaticas.pdf
 
PA1_PATIÑO RENDON_RICARDO (1).docx
PA1_PATIÑO RENDON_RICARDO (1).docxPA1_PATIÑO RENDON_RICARDO (1).docx
PA1_PATIÑO RENDON_RICARDO (1).docx
 
PA1_PATIÑO RENDON_RICARDO.pdf
PA1_PATIÑO RENDON_RICARDO.pdfPA1_PATIÑO RENDON_RICARDO.pdf
PA1_PATIÑO RENDON_RICARDO.pdf
 
PA1_PATIÑO RENDON_RICARDO.docx
PA1_PATIÑO RENDON_RICARDO.docxPA1_PATIÑO RENDON_RICARDO.docx
PA1_PATIÑO RENDON_RICARDO.docx
 

Último

TR-514 (3) - BIS copia seguridad DOS COLUMNAS 2024 20.5 PREFERIDO.wbk.wbk SEG...
TR-514 (3) - BIS copia seguridad DOS COLUMNAS 2024 20.5 PREFERIDO.wbk.wbk SEG...TR-514 (3) - BIS copia seguridad DOS COLUMNAS 2024 20.5 PREFERIDO.wbk.wbk SEG...
TR-514 (3) - BIS copia seguridad DOS COLUMNAS 2024 20.5 PREFERIDO.wbk.wbk SEG...
FRANCISCOJUSTOSIERRA
 
Morfología interna de insectos, respiración, circulación, nutrición, reproduc...
Morfología interna de insectos, respiración, circulación, nutrición, reproduc...Morfología interna de insectos, respiración, circulación, nutrición, reproduc...
Morfología interna de insectos, respiración, circulación, nutrición, reproduc...
jacksyordoez
 

Último (20)

TEST ESPACIAL CONTEO DE CUBOS y TEST DE MOSAICOS
TEST ESPACIAL CONTEO DE CUBOS y TEST DE MOSAICOSTEST ESPACIAL CONTEO DE CUBOS y TEST DE MOSAICOS
TEST ESPACIAL CONTEO DE CUBOS y TEST DE MOSAICOS
 
TR-514 (3) - BIS copia seguridad DOS COLUMNAS 2024 20.5 PREFERIDO.wbk.wbk SEG...
TR-514 (3) - BIS copia seguridad DOS COLUMNAS 2024 20.5 PREFERIDO.wbk.wbk SEG...TR-514 (3) - BIS copia seguridad DOS COLUMNAS 2024 20.5 PREFERIDO.wbk.wbk SEG...
TR-514 (3) - BIS copia seguridad DOS COLUMNAS 2024 20.5 PREFERIDO.wbk.wbk SEG...
 
Deusto Ingeniería 24 (Año 2023) - Universidad de Deusto
Deusto Ingeniería 24 (Año 2023) - Universidad de DeustoDeusto Ingeniería 24 (Año 2023) - Universidad de Deusto
Deusto Ingeniería 24 (Año 2023) - Universidad de Deusto
 
ESPECIFICACIONES TECNICAS MURO DE CONTENCION.docx
ESPECIFICACIONES TECNICAS MURO DE CONTENCION.docxESPECIFICACIONES TECNICAS MURO DE CONTENCION.docx
ESPECIFICACIONES TECNICAS MURO DE CONTENCION.docx
 
Morfología interna de insectos, respiración, circulación, nutrición, reproduc...
Morfología interna de insectos, respiración, circulación, nutrición, reproduc...Morfología interna de insectos, respiración, circulación, nutrición, reproduc...
Morfología interna de insectos, respiración, circulación, nutrición, reproduc...
 
Procedimeiento y secuencias para el diseño mecánico de ejes
Procedimeiento y secuencias para el diseño mecánico de ejesProcedimeiento y secuencias para el diseño mecánico de ejes
Procedimeiento y secuencias para el diseño mecánico de ejes
 
UNIDAD III Esquemas de comunicacion pptx
UNIDAD III Esquemas de comunicacion pptxUNIDAD III Esquemas de comunicacion pptx
UNIDAD III Esquemas de comunicacion pptx
 
PROCESO CONSTRUCTIVO DE UNA CALZADURA EN OBRA
PROCESO CONSTRUCTIVO DE UNA CALZADURA EN OBRAPROCESO CONSTRUCTIVO DE UNA CALZADURA EN OBRA
PROCESO CONSTRUCTIVO DE UNA CALZADURA EN OBRA
 
REGLA DE PROBABILIDADES Y REGLA DE BAYES.pptx
REGLA DE PROBABILIDADES  Y REGLA DE BAYES.pptxREGLA DE PROBABILIDADES  Y REGLA DE BAYES.pptx
REGLA DE PROBABILIDADES Y REGLA DE BAYES.pptx
 
TERRENO DE FUNDACION - CURSO DE PAVIMENTOS
TERRENO DE FUNDACION - CURSO DE PAVIMENTOSTERRENO DE FUNDACION - CURSO DE PAVIMENTOS
TERRENO DE FUNDACION - CURSO DE PAVIMENTOS
 
EXPOSICION TERCERA LEY DE LA TERMODINAMICA.pptx
EXPOSICION TERCERA LEY DE LA TERMODINAMICA.pptxEXPOSICION TERCERA LEY DE LA TERMODINAMICA.pptx
EXPOSICION TERCERA LEY DE LA TERMODINAMICA.pptx
 
MANUAL QUImica CIENCIAS AGRARIAS de la universidad
MANUAL QUImica CIENCIAS AGRARIAS de la universidadMANUAL QUImica CIENCIAS AGRARIAS de la universidad
MANUAL QUImica CIENCIAS AGRARIAS de la universidad
 
Carbohidratos utilizados en la industria alimentaria.pdf
Carbohidratos utilizados en la industria alimentaria.pdfCarbohidratos utilizados en la industria alimentaria.pdf
Carbohidratos utilizados en la industria alimentaria.pdf
 
TABLA DE ROSCAS invetiga las rescas . milimetricas , en pulgada
TABLA DE ROSCAS invetiga las rescas . milimetricas , en pulgadaTABLA DE ROSCAS invetiga las rescas . milimetricas , en pulgada
TABLA DE ROSCAS invetiga las rescas . milimetricas , en pulgada
 
ESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdf
ESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdfESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdf
ESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdf
 
FORMATO PARA CONTROL DE CALIDAD DE PRODUCTOS VARIOS EN INGENIERIA ALIMENTARIA
FORMATO PARA CONTROL DE CALIDAD DE PRODUCTOS VARIOS EN INGENIERIA ALIMENTARIAFORMATO PARA CONTROL DE CALIDAD DE PRODUCTOS VARIOS EN INGENIERIA ALIMENTARIA
FORMATO PARA CONTROL DE CALIDAD DE PRODUCTOS VARIOS EN INGENIERIA ALIMENTARIA
 
50870516-hidroponia. descargado en novppt
50870516-hidroponia. descargado en novppt50870516-hidroponia. descargado en novppt
50870516-hidroponia. descargado en novppt
 
368165951-Procedimiento-de-Gruas-e-Izaje.doc
368165951-Procedimiento-de-Gruas-e-Izaje.doc368165951-Procedimiento-de-Gruas-e-Izaje.doc
368165951-Procedimiento-de-Gruas-e-Izaje.doc
 
Ciclo de Refrigeracion aplicado a ToniCorp.pptx
Ciclo de Refrigeracion aplicado a ToniCorp.pptxCiclo de Refrigeracion aplicado a ToniCorp.pptx
Ciclo de Refrigeracion aplicado a ToniCorp.pptx
 
Diseno de Estructuras de Acero - 5ta Ed - McCormac.pdf
Diseno de Estructuras de Acero - 5ta Ed - McCormac.pdfDiseno de Estructuras de Acero - 5ta Ed - McCormac.pdf
Diseno de Estructuras de Acero - 5ta Ed - McCormac.pdf
 

Problemas_Resueltos_de_Mecanica_de_Suelo.pdf

  • 1. Universidad José Carlos Mariátegui” ui” pat_pv_pca_11@hotmail.com !! !! !! !!" " " " Ing. Civil - UJCM www.elsolucionario.net
  • 2.
  • 3. Universidad José Carlos Mariátegui” PRBLEMA Nª 1. Dado el contenido de agua de u el peso específico de la masa y el figuren sólo las cantidades conoc SOLUCIÓN Por definición: Si: Además: El peso específico de la masa por En el esquema: PROBLEMA Nª 2 Dados n y Vm = 1, encontrar SS cantidades conocidas. SOLUCIÓN: Por definición: Por lo tanto: El peso del agua será: ui” pat_pv_pca_11@hotmail.com # # # # e un suelo saturado y su peso específico relati y el peso específico sumergido de ese suelo. Uti nocidas. por definición es: para un suelo saturado. Utilice un esquema W S W w W = ∴ =1 0 0 1 γ γ S S S S S S V V W S = ∴ = 0 0 γ γ w V W V W W W = ∴ = m m m v W = γ 0 0 1 1 γ γ γ S m S w w + + = S m wS w S + + = ∴ 1 1 0 γ γ ( S S m m S WS W S = − + + = − = 1 1 0 0 0 γ γ γ γ γ V m m V V n V si V V n = ∴ = = 1 : ; n VS − =1 0 0 γ γ n V W W W = = 1 ( ) 100 % × = s W Wω ω Ing. Civil - UJCM lativo de sólidos, encuentre Utilice un esquema en que ma en que figuren sólo las S wS w ) S S S S + − 1 1 0 γ 0 1 γ S S 0 γ ω 1 ω n n − 1 1 0 γ n 0 γ w n www.elsolucionario.net
  • 4. Universidad José Carlos Mariátegui” Aplicando la definición para SS PROBLEMA Nª 3 En un suelo saturado se conoce agua, w =23%. Encontrar el Ss d 0.23 TN. y Ws = 1.0 TN. SOLUCIÓN: Por lo tanto: 0 V = ω También: De donde: Por lo que: ui” pat_pv_pca_11@hotmail.com se tendrá: ocen el peso especifico húmedo, γ γ γ γm = 2050 k de dicho suelo. Aplicando la definición de S 3 23 . 0 m 0 γ w n w W W W S = = ( ) ( ) n w n n w n V W S S S S − = − = = 1 1 0 0 γ γ ω ω ω γ γ V W o = = o W V γ ω ω = m m m V W = γ 3 6 . 0 05 . 2 23 . 1 23 . 0 1 m V m m = = + = γ 3 0 37 . 0 23 . 0 6 . 0 1 m S V S S = − = = γ 7 . 2 37 . 0 1 = = S S Ing. Civil - UJCM 0 kg/m3 y su contenido de Ss. Si sabemos que WW = www.elsolucionario.net
  • 5. Universidad José Carlos Mariátegui” PROBLEMA Nº 4 En un suelo saturado: SS = 2 Sm = 1. Calcule la rela SOLUCIÓN: Por definición También: Aplicando la definición de S ui” pat_pv_pca_11@hotmail.com = 2.65 1.80 relación de vacíos y el contenido de humedad d e Sm, se tiene: ; S V V V e = 3 1m VS = . 3 Tn e W m e V V W W V = ∴ = = 65 . 2 0 0 S V W V W S S S S S S S = = ∴ = γ γ . 1 80 . 1 1 65 . 2 0 = ∴ = + + = = e e e V W S m m m γ ; 40 . 0 65 . 2 06 . 1 65 . 2 = = = = e W W w S W Ing. Civil - UJCM d del suelo: . 65 Tn 06 . % 40 = w www.elsolucionario.net
  • 6. Universidad José Carlos Mariátegui” PROBLEMA Nª 5. Una muestra de arcilla saturada g. Si el Ss vale 2.70, calcule e, n, SOLUCIÓN: Puede hacerse el esquema de la f ui” pat_pv_pca_11@hotmail.com ada pesa 1526 g. Después de secada al horno n, w, γ γ γ γm y γ γ γ γd. la fig. a partir de él, usando las definiciones, se 21 . 1 390 473 = = = S V V V e 55 . 0 390 473 473 = + = = m V V V n 3 390 ; cm V V W S s o s s s = = γ % 45 100 1053 473 = × = w 78 . 1 863 1526 g V W m m m = = = γ 3 22 . 1 863 1053 cm g d = = γ Ing. Civil - UJCM no su peso pasa a ser 1053 s, se tiene: 3 cm www.elsolucionario.net
  • 7. Universidad José Carlos Mariátegui” PROBLEMA Nª 6. En un suelo parcialmente satu unifórmenle distribuido en la m función de las cantidades conoci SOLUCIÓN: Por definición: Si se hace Vs = 1; resulta: Po Vv = También por definición: Y corresponde: Luego las incógnitas valdrán: ui” pat_pv_pca_11@hotmail.com aturado se conoce e, SS, GW. Suponiendo q a masa del suelo, abajo del nivel freático, e ocidas y haciendo uso de un esquema apropiad Por lo tanto: = e S V V V e = 0 γ S S S W = W W V W W eG V V V G = ∴ = 0 γ W W eG W = 0 1 γ γ ω e S e G V W S m m m + + = = ( ) ( ) 0 0 1 1 1 γ γ γ γ e G e S W S m m + − − − = − = ′ Ing. Civil - UJCM o que el gas disuelto está , encuentre γ γ γ γm y γ γ γ γ ´m, en iado. www.elsolucionario.net
  • 8. Universidad José Carlos Mariátegui” PROBLEMA Nª 7. En una muestra de suelo parcia w, y el valor de SS. Encuentre el en función de las cantidades con SOLUCIÓN: Por definición: Si hacemos: Tendremos: Una vez construido el esquema, definiciones: e ui” pat_pv_pca_11@hotmail.com cialmente saturado se conoce el peso especific el peso específico seco, la relación de vacíos y onocidas, utilizando un esquema adecuado. ma, las incógnitas pueden calcularse aplican S W W W w = 1 = S W w WW = 0 0 1 γ γ S S S S S S V S V W = ∴ = m m m m m m V V w V W γ ω γ + = ∴ + = = 1 1 0 0 γ γ w V W V W W W = ∴ = 1 1 1 0 − + = − = − = = γ γ S m S m S S m S V S w V V V V V V V e Ing. Civil - UJCM ifico, el contenido de agua os y el grado de saturación ando las correspondientes www.elsolucionario.net
  • 9. Universidad José Carlos Mariátegui” PROBLEMA Nª 8 En un suelo parcialmente satura Encuentre: SOLUCIÓN Por definición: S e V W s m S d + = = 1 1 0 γ γ GW = GW = s V Haciendo ui” pat_pv_pca_11@hotmail.com urado se conocen: y e Ss + = 1 0 0 γ e S S e w V V V V V s S S m W V W ω γ γ = = − = = 0 0 ( ) 3 m kg m γ , w , 75 . 2 , 60 . 0 = = W S G S e , 60 . 0 3 m e VV = = 3 18 . 0 42 . 0 60 . 0 m V V V W V a = − = − = % 3 . 15 153 . 0 75 . 2 42 . 0 = ∴ − = = w W W w S W 3 3 1720 72 . 1 60 . 1 75 . 2 m kg m Tn V W m S d = = = = γ 70 . 0 60 . 0 G V V V V W V W V W = × = = ∴ = ; S V V V e = ⇒ = 1 Ing. Civil - UJCM ( ) 3 , m kg d γ % 70 = W 3 42 . 0 m www.elsolucionario.net
  • 10. Universidad José Carlos Mariátegui” PROBLEMA Nª 9 En una muestra de suelo parcial Encuentre: SOLUCIÓN: Entonces: ui” pat_pv_pca_11@hotmail.com ialmente saturado se conocen: 3 198 98 . 1 60 . 1 17 . 3 60 . 1 42 . 0 75 . 2 m Tn m = = = + = γ , 75 , 95 , 50 3 = = = S S m m S g W g W cm V d m W G n e w γ γ , , , , , ( ) 3 m kg . 20 75 95 g W W W S m W = − = − = VS . 20 3 0 cm W V W W = = γ V V V V W S m a − − = % 7 . 26 267 . 0 75 20 = ∴ = = = w W W w S W . 79 . 0 28 22 = = = S V V V e 50 22 = = = V V n m V % 91 91 . 0 22 20 = ∴ = = = W V W W G V V G . 1900 9 . 1 50 95 3 3 m kg cm g m = = = γ 3 3 1500 5 . 1 50 75 m kg cm g d = = = γ Ing. Civil - UJCM 3 980 m kg 68 . 2 = 3 0 28 68 . 2 75 cm S W S S = = = γ 3 2 48 50 cm W = − = % 44 44 . 0 = ∴ = n www.elsolucionario.net
  • 11. Universidad José Carlos Mariátegui” PROBLEMA Nª 10 El volumen de una muestra irreg la muestra con cera y pesándola Peso total de la muestra al aire Contenido de agua de la muestra Peso de la muestra envuelta en c Peso de la muestra envuelta en c Peso especifico relativo de los sól Peso especifico relativo de la cera Determinar la densidad seca de l SOLUCIÓN: En este caso convendrá hacer intervenir a la cera. El volumen total del suelo y cera El volumen de la especifico, que es un dato del pro El volumen de la masa de suelo s Por lo que: Dato que puede ponerse en el esq V V V t m − = W W m W = ; 136 . 0 = = S W W W w g WS 159 = + S W W W V cera cera cera = γ . 199 Vm = ui” pat_pv_pca_11@hotmail.com rregular de suelo parcialmente saturado se ha la al aire y bajo agua. Se conocen: 180.6g stra 13.6g n cera, en el aire 199.3g n cera, sumergida 78.3g sólidos del suelo 2.71g cera 0.92g de la muestra y el Grado de Saturación. er un esquema en que, además de las tres era será: cera es el cociente de problema. lo será: esquema g Wm 6 . 180 = Wcer W W m t + = Wcera 6 . 180 3 . 199 − = ∴ 100 3 . 20 121 92 . 0 7 . 18 121 Vcera = − = − = g WS 6 . 21 159 6 . 180 = − = − g 136 . 0 6 . 180 6 . 180 = − = ∴ = S S W W W w g W 3 3 . 20 92 . 0 7 . 18 cm era era = = 3 0 . 121 3 . 78 3 . cm o = − γ Ing. Civil - UJCM ha determinado cubriendo res fases usuales, se haga de su peso entre su peso g cera 3 . 199 = g 7 . 18 6 = 3 7 . 00 cm www.elsolucionario.net
  • 12. Universidad José Carlos Mariátegui” Pasa al esquema: Con lo anterior queda completo e Ahora: PROBLEMA Nª 11 Una muestra de arena totalmen teniendo SS = 2.6. Calcule la rela SOLUCIÓN: Datos: Incógnita: PROBLEMA Nª 12 El contenido de agua de un suel suelo e y γ γ γ γm SOLUCIÓN: Datos: W V W W 0 = = γ Va = V W d = γ = V W W V V G Vm SS = VV = ∴e % w S S ui” pat_pv_pca_11@hotmail.com to el esquema operativo de la fig. ente seca llena un cilindro metálico de 200 relación de vacíos (e). uelo saturado es 40%. El SS de sus partículas e g 6 . 21 3 0 8 . 58 71 . 2 159 cm S W V S S S = = = γ 100 121 )] 6 . 21 8 . 58 3 . 20 ( 121 − = + + − 3 3 580 . 1 58 . 1 7 . 100 159 m kg cm g V W m S = = = % 52 52 . 0 9 . 41 6 . 21 6 . 21 3 . 20 6 . 21 = ∴ = = + W V W G V V 3 200cm = . 260gr Wm = 6 . 2 = S S ? = e 3 0 100 6 . 2 260 cm V V W S S S = = ⇒ = γ 3 100cm V V V V S m = ⇒ − = 1 100 100 = = ⇒ = e V V S V % 40 % = Si VS = 1 65 . 2 = S Ing. Civil - UJCM 00 cm3 y pesa 260g (WS), as es 2.65. Calcule para tal 3 3 . 20 7 . 100 cm = www.elsolucionario.net
  • 13. Universidad José Carlos Mariátegui” PROBLEMA Nª 13 En un suelo parcialmente satura Datos: SOLUCIÓN: Ss = γ γ γ γs/γ γ γ γo Luego γ γ γ γs= Ss ? ?, = = m e γ ⇒ V V 0 γ e e w 1 w m d + = γ γ ui” pat_pv_pca_11@hotmail.com urado e = 1.2; w = 30%; SS = 2.66; calcule el γ γ γ γ sγ γ γ γo=2.66gr/cm3 g W V W S S S S S 65 . 2 0 = ⇒ = ⇒ γ 3 3 06 . 2 , 1 cm V cm V m S = = 3 06 . 1 cm V V V S m V = − = 100 % × = S W W W w ( ) W W = 65 . 2 40 . 0 g WW 06 . 1 = 3 06 . 1 cm VW = ∴ 80095 . 1 06 . 2 06 . 1 65 . 2 cm g V W W m W S m = + = + = γ 06 . 1 1 06 . 1 = = = S V V V e 2 . 1 = e % 30 = w 66 . 2 = S S ? , = d m γ γ ( ) e w SS m + + = 1 1 0 γ γ ( )( )( ) 2 . 1 1 1 66 . 2 3 . 0 1 3 + + = cm g m γ 3 3 8 . 1571 5718 . 1 m kg cm g m = = γ 3 3 1 . 1209 2091 . 1 3 . 1 5718 . 1 kg cm g cm g = = = Ing. Civil - UJCM γ γ γ γm y el γ γ γ γd de dicho suelo. e=n/(1-n) y n=e/1+e 3 3 1800 m kg cm = 3 m www.elsolucionario.net
  • 14. Universidad José Carlos Mariátegui” PROBLEMA Nª14. Una muestra de suelo pesa 122 relativo de los sólidos es SS = 2.5 su volumen de sólidos y de aire r Datos: SOLUCIÓN: PROBLEMA Nº15. Una muestra de arcilla saturada Considerando γ γ γ γs = 2.70 g/cm3, ca Datos: SOLUCIÓN Wm 1 = 1 = m S W S 10 = , S V V V W Sm = V W S S S = V VV = V VV = , , n e w 2 S = γ V W S = γ = V V V = S V V V e W m = γ % = W W w ui” pat_pv_pca_11@hotmail.com 22 gr y tiene un peso especifico relativo Sm = 2.53. Si después de secada al horno la muestr e respectivamente? rada pesa 1526g y 1053g después de secada a , calcule también e, n y γ γ γ γm g 122 82 . 1 g 104 ? = a V 3 0 03 . 67 82 . 1 122 cm V V V W m m m m = ⇒ = ⇒ γ 3 0 10 . 41 53 . 2 104 cm V VS V W S S S = ⇒ = ⇒ γ 3 93 . 25 cm V V S m = − 3 03 . 67 cm V V V a a W = ⇒ + ? , = m γ 3 70 . 2 cm g 3 390 70 . 2 1053 cm V V V W S S S S = ⇒ = ⇒ 473 = ⇒ − V S m V V V 21 . 1 390 473 = = S V V % 55 55 . 0 100 = = × = m V V V n 3 77 . 1 cm g V W W m W S = + % 45 100 = × S W W W Ing. Civil - UJCM = 1.82. El peso especifico estra pesa 104g ¿Cuál será al horno. Calcule su w% www.elsolucionario.net
  • 15. Universidad José Carlos Mariátegui” PROBLEMA 1 El proyecto de una edificación c m x 2,0 m (Figura 10.1). El niv freático estático se encuentra a 1 El perfil del terreno muestra q unitario de este suelo es de 16 efectuados con muestras inalte resistencia al corte son c′ = 4 kPa Se requiere calcular la carga úl factor de seguridad de 3 sobre la a) Ecuaciones de capacidad porta b) Ecuaciones de capacidad porta c) Ecuaciones de capacidad porta d) Ecuaciones de capacidad porta SOLUCIÓN Se tiene el siguiente esquema: 0,5m 1m Fundación en un perfil de suelo. a) Terzaghi ui” pat_pv_pca_11@hotmail.com n contempla el diseño de zapatas aisladas de h nivel de fundación ha sido fijado en 0,5 m d a 1,5 m de la superficie del terreno. a que existe un suelo homogéneo hasta gran 16,4 kN/m3 . Ensayos triaxiales CU (Conso alteradas de este material indican que los p kPa y φ φ φ φ′ ′ ′ ′ = 36º. última de apoyo, y la carga máxima segura la carga neta aplicada, utilizando: ortante de Terzaghi. ortante de Meyerhof. ortante de Hansen. ortante de Vesic. 0,5 m x 2 m elo. c′ = 4 kPa φ′ = 36º γ = 16,4 kN/m3 Ing. Civil - UJCM e hormigón armado de 0,5 de profundidad. El nivel ran profundidad. El peso nsolidado - No Drenado) s parámetros efectivos de ra de apoyo empleando un Figura 10.1. www.elsolucionario.net
  • 16. Universidad José Carlos Mariátegui” La ecuación de capacidad portan + + = N q s N c q q c c u 0 De la Tabla J.2 , para φ φ φ φ′ = 36° se Nc = 63,53 De la Tabla J.1 , se asume zapata Porque: contin zapata B L ≅ > 4 Como puede verse, el nivel freáti B = 0,5 m, siendo B el ancho de al valor de γ γ γ γ en la ecuación de ca Caso III d ≥ B (No hay Corr Luego, reemplazando en la ecuac γ + = N D s N c q q f c c u ( )( )( ) (16 1 53 63 4 , qu + = qu = 863,71 kPa La carga máxima segura de apoy f f u s D FS D q q γ + γ − = Entonces ( )( 3 5 0 4 16 71 863 , , , qs − = qs = 293,4 kPa ui” pat_pv_pca_11@hotmail.com tante es: γ γ γ s N B ,5 0 ° se tiene que: Nq = 47,16 Nγ γ γ γ = 54,36 pata es continua, por lo tanto: ntinua , entonces: sc = 1,0 eático se encuentra a 1 m de la base de la fund de la fundación, entonces no se requiere reali e capacidad portante. orrección) uación se tiene que: γ γ γ + s N B , q 5 0 )( )( ) ( )( )( )( )( ) 1 36 54 5 0 4 16 5 0 16 47 5 0 4 16 , , , , , , , + poyo será: f ) ( )( ) 5 0 4 16 5 , , + Ing. Civil - UJCM sγ γ γ γ = 1,0 undación. Como d = 1 m > ealizar ninguna corrección www.elsolucionario.net
  • 17. Universidad José Carlos Mariátegui” b) Meyerhof Según la Tabla J.1 , la ecuación + = s N q d s N c q q q c c c u De la Tabla J.4 , para φ φ φ φ′ ′ ′ ′ = 36° se Nc = 50,55 De la Tabla J.3 , se tiene: Factores de forma       φ + = 2 45 2 tan K p 2 36 45 2 tan K p =       + = L B K , s p c 2 0 1+ = ( )( ) 2 5 0 852 3 2 0 1 , , , sc    + = L B K , s s p q 1 0 1+ = = γ ( )( 852 3 1 0 1 , , s sq + = = γ Factores de profundidad B D K , d p c 2 0 1+ = ( ) 5 0 5 0 852 3 2 0 1 , , , , dc + = ui” pat_pv_pca_11@hotmail.com ón general de capacidad portante para cargas v γ γ γ γ + d s N ' B , d q 5 0 ° se tiene que: Nq = 37,70 Nγ γ γ γ = 44,40 852 3, = 193 1 2 5 , =    ) 096 1 2 5 0 52 , , =       393 1 5 5 , = Ing. Civil - UJCM as verticales: www.elsolucionario.net
  • 18. Universidad José Carlos Mariátegui” K , d d p q 1 0 1+ = = γ ( ) 85 3 1 0 1 , , d dq + = = γ Luego, reemplazando en la ecuac γ + = N D d s N c q f c c c u ( )( )( )( ( )( )( )(4 5 0 4 16 5 0 1 193 1 55 50 4 , , , + , , , qu = qu = 979,87 kPa La carga máxima segura de apoy f f u s D FS D q q γ + γ − = Entonces ( )( 3 5 0 4 16 87 979 , , , qs − = qs = 332,1 kPa c) Hansen Según la Tabla J.1 , la ecuación = g i d s N c q c c c c u En este caso, los factores de incli ic = iq = iγ γ γ γ = 1 gc = gq = gγ γ γ γ = 1 bc = bq = bγ γ γ γ = 1 De ahí que la ecuación de capaci + = d s N q d s N c q q q q c c c u ui” pat_pv_pca_11@hotmail.com B D 196 1 5 0 5 0 852 , , , = uación de capacidad portante se tiene que: γ γ γ ′ γ + d s N B , d s N q q q 5 0 ) ( )( )( )( )( ) )( )( ) 196 1 096 1 40 44 196 1 096 1 70 37 5 0 4 16 393 , , , , , , , , , + + poyo será: ) ( )( ) 5 0 4 16 5 , , + ón general de capacidad portante es: γ γ γ + + s N ' B , b g i d s N q b g q q q q q q c c 5 0 nclinación (i), pendiente (b) y de terreno (g) son acidad portante queda como sigue: γ γ γ γ + d s N ' B ,5 0 Ing. Civil - UJCM γ γ γ γ b g i d son: www.elsolucionario.net
  • 19. Universidad José Carlos Mariátegui” De la Tabla J.4 , para φ φ φ φ′ ′ ′ ′ = 36°, lo Nc = 50,55 Nq/Nc = 0,746 2 tan De la Tabla J.5 , se tiene: Factores de forma ' L ' B N N , s c q c + = 0 1 ( ) 2 5 0 746 0 0 1 , , , sc       + = φ + = sen ' L ' B , sq 0 1 36 2 5 0 0 1 sen , , sq       + = ≥ − = γ ' L ' B , , s 4 0 0 1 0,6 ( ) 0 2 5 0 4 0 0 1 , , , s =       − = γ Factores de profundidad k , dc 4 0 1+ = 1 1 5 0 5 0 ≤ = = , , B D ( )( ) 40 1 1 4 0 1 , , dc = + = ( sen ' tan dq 1 2 1 − φ + = ( )( ) 24 1 1 247 0 1 , , dq = + = 0 1, d = γ ui” pat_pv_pca_11@hotmail.com °, los factores de capacidad portante son: Nq = 37,70 Nγ γ γ γ = 40,00 tan φ φ φ φ′ ′ ′ ′ (1-sen φ φ φ φ′ ′ ′ ′)2 = 0,247 187 1, =    147 1 36 , = 0,6 9 0, ⇒ ⇒ ⇒ ⇒ 1 = = B D k ) k ' en 2 φ 247 Ing. Civil - UJCM www.elsolucionario.net
  • 20. Universidad José Carlos Mariátegui” Luego, reemplazando en la ecuac γ + = N D d s N c q f c c c u ( )( )( )( ( )( )( )( 5 0 4 16 5 0 1 187 1 55 50 4 , , , + , , qu = qu = 925,78 kPa La carga máxima segura de apoy f f u s D FS D q q γ + γ − = Entonces ( )( 3 5 0 4 16 78 925 , , , qs − = qs = 314,1 kPa d) Vesic Según la Tabla J.1 , la ecuación + = d s N q d s N c q q q q c c c u De la Tabla J.4, para φ φ φ φ′ ′ ′ ′ = 36°, lo Nc = 50,55 Nq/Nc = 0,746 2 tan φ φ φ φ De la Tabla J.5 , se tiene: Factores de forma ( ) 2 5 0 746 0 0 1 , , , sc       + = ' tan 0 , 1 φ ⋅ + = L B sq ui” pat_pv_pca_11@hotmail.com uación de capacidad portante se tiene que: γ γ γ ′ γ + d s N B , d s N q q q 5 0 ) ( )( )( )( )( ) ( )( )( ) 0 1 9 0 0 40 247 1 147 1 70 37 5 0 4 16 40 1 , , , , , , , , , + + poyo será: ) ( )( ) 5 0 4 16 5 , , + ón general de capacidad portante es la siguient γ γ γ ′ γ + d s N B ,5 0 , los factores de capacidad portante son: Nq = 37,70 Nγ γ γ γ = 56,20 φ φ φ φ′ ′ ′ ′ (1–sen φ φ φ φ′ ′ ′ ′)2 = 0,247 187 1, =    Ing. Civil - UJCM iente: www.elsolucionario.net
  • 21. Universidad José Carlos Mariátegui” 36 tan 2 5 , 0 0 , 1 ⋅       + = q s L B , , s 4 0 0 1 − = γ ≥ 0,6 ( ) 2 5 0 4 0 0 1 , , , s =       − = γ Factores de profundidad k , dc 4 0 1+ = 1 1 5 0 5 0 ≤ = = , , B D ( )( ) 40 1 1 4 0 1 , , dc = + = ( sen tan dq 1 2 1 φ − φ + = ( )( ) 2 1 1 247 0 1 , , dq = + = 0 1, d = γ Luego, reemplazando en la ecuac γ + = D d s N c q f c c c u ( )( )( )( ( )( )( )( 5 0 4 16 5 0 1 187 1 55 50 4 , , , + , , qu = qu = 999,05 kPa La carga máxima segura de apoy f f u s D FS D q q γ + γ − = Entonces ( )( 3 5 0 4 16 05 999 , , , qs − = qs = 338,5 kPa ui” pat_pv_pca_11@hotmail.com 182 , 1 36 = 9 0, ⇒ ⇒ ⇒ ⇒ 1 = = B D k ) k 2 φ 247 uación de capacidad portante se tendrá que: γ γ γ γ + d s N ' B , d s N q q q 5 0 ) ( )( )( )( )( ) ( )( )( ) 0 1 9 0 2 56 247 1 182 1 70 37 5 0 4 16 40 1 , , , , , , , , , + + poyo es: f ) ( )( ) 5 0 4 16 5 , , , + Ing. Civil - UJCM www.elsolucionario.net
  • 22. Universidad José Carlos Mariátegui” PROBLEMA 2 Un proyecto industrial contemp aplicará una presión segura al s terreno (Figura 10.2). El terreno está compuesto de are que los pesos unitarios de la are freático, respectivamente. Ademá c' = 0 y φ φ φ φ′ ′ ′ ′ = 30°. El nivel freático 9,8 kN/m3 . El diseño del silo debe minimiz factor de seguridad de 3 aplicado Determinar el mínimo diámetro d a) Método de Hansen. b) Método de Vesic. 2,5m 10.2. Silo sobre superficie del ter SOLUCIÓN a) Hansen Según la Tabla J.1 , la ecuación ui” pat_pv_pca_11@hotmail.com empla la construcción de un silo para alm al suelo de 300 kPa. El silo estará apoyado al n arena hasta gran profundidad. Los resultado arena son 18 kN/m3 y 19,2 kN/m3 por encim emás se ha determinado que los parámetros de tico se encuentra a 2,5 m de profundidad y el p mizar los riesgos de falla por capacidad porta ado sobre la carga neta última. ro del silo que cumpla estos requerimientos uti qs = 300 kPa B SILO terreno. ón general de capacidad portante es: γ = 18 kN/m c′ = 0 kPa φ′ = 30º γsat = 18 kN/ γw = 9,8 kN/ Ing. Civil - UJCM lmacenar granos, el cual al nivel de la superficie del dos de laboratorio indican ima y por debajo del nivel de resistencia al corte son el peso unitario del agua es ortante, expresados por un utilizando: Figura 18 kN/m3 = 0 kPa = 18 kN/m3 = 9,8 kN/m3 www.elsolucionario.net
  • 23. Universidad José Carlos Mariátegui” + = b g i d s N c q c c c c c c u En este caso, los factores de incli ic = iq = iγ γ γ γ = 1 gc = gq = gγ γ γ γ = 1 bc = bq = bγ γ γ γ = 1 De ahí que la ecuación de capaci + + = d s N q d s N c q q q q c c c u f D q γ = Como c = 0 y Df = 0, entonces: γ γ γ = s N ' B , qu 5 0 De la Tabla J.4 , para φ φ φ φ′ ′ ′ ′ = 30°, lo Nγ γ γ γ = 15,1 De la Tabla J.5 , se tiene: Factores de forma ≥ − = γ ' L ' B , , s 4 0 0 1 0,6 ( )( ) 6 0 1 4 0 0 1 , , , s = − = γ Factores de profundidad 0 1, d = γ Luego, reemplazando en la ecuac γ γ γ = s N ' B , qu 5 0 ( )( )( )( )(0 1 15 18 5 0 , B , qu = ui” pat_pv_pca_11@hotmail.com γ γ γ γ γ + i d s N ' B , b g i d s N q q q q q q q 5 0 nclinación (i), pendiente (b) y terreno (g) son: acidad portante queda como sigue: γ γ γ γ + d s N ' B ,5 0 γ d °, los factores de capacidad portante son: 0,6 uación de capacidad portante, se tiene que: γ γ d ( )( ) 0 1 6 0 , , Ing. Civil - UJCM γ γ b g www.elsolucionario.net
  • 24. Universidad José Carlos Mariátegui” B , qu 54 81 = Por otro lado, la carga máxima s f f u s D FS D q q γ + γ − = Como Df = 0 FS q q u s = ( )( ) qu 900 3 300 = = kP Reemplazando [2] en [1] se tendr 900 = 81,54 B ⇒ ⇒ ⇒ ⇒ Para este valor del diámetro, ma unitario de la arena. CASO II B d ≤ ≤ 0 ) ' ( B d ' c γ − γ + γ = γ donde γ γ γ γc = peso unitario corregid Luego, el peso unitario corregido ( ) w sat c B d + γ − γ = γ ( ) 5 2 8 9 2 19 B , , , c + − = γ ( ) B , , c 5 21 4 9 + = γ Recalculando B con este valor co γ = B , q c u 5 0 ui” pat_pv_pca_11@hotmail.com [1] a segura de apoyo es: kPa [2] ndrá que: B = 11,04 m mayor a la profundidad del nivel freático, se gido ido es: ( ) [ ] w sat γ − γ − γ ( ) [ ] 8 9 2 19 18 5 , , − − r corregido se tiene que: γ γ γ d s N ' B Ing. Civil - UJCM , se deberá corregir el peso www.elsolucionario.net
  • 25. Universidad José Carlos Mariátegui” ( ) 5 21 4 9 5 0 900 B , , ,       + =    + = B , B , 21 4 9 53 4 900 40 97 58 42 900 , B , + = De aquí B = 18,85 m B ≥ ≥ ≥ ≥ 18,85 m b) Vesic De la Tabla J.4 , para φ φ φ φ′ ′ ′ ′ = 30°, el Nγ γ γ γ = 22,40 De la Tabla J.5 , se tiene: Factores de forma ≥ − = γ L B , , s 4 0 0 1 0,6 ( )( ) 6 0 1 4 0 0 1 , , , s = − = γ Factores de profundidad 0 1, d = γ La ecuación de capacidad portan γ γ γ γ = d s N ' B , qu 5 0 ( )( )( )( )( )B , , , , qu 0 1 6 0 4 22 18 5 0 = B , qu 96 120 = La carga máxima segura de apoy f f u s D FS D q q γ + γ − = ui” pat_pv_pca_11@hotmail.com ( )( )( ) 1 6 0 1 15 , , B       B ,5 21 °, el factor de capacidad portante es el siguient 0,6 tante es [3] poyo será: Ing. Civil - UJCM ente: www.elsolucionario.net
  • 26. Universidad José Carlos Mariátegui” Como Df = 0, entonces: FS q q u s = ( )( ) qu 3 300 = qu = 900 kPa Reemplazando (4) en (3) se tiene 900 = 120,96 B⇒ B=7,44 m Para este valor del diámetro, ma unitario de la arena. El peso unitario corregido es: ( ) B , , c 5 21 4 9 + = γ Recalculando B con este valor co ′ γ = N B , q c u 5 0 ( ) ( )( 4 22 5 21 4 9 5 0 900 , B B , , ,       + =    + = B , , B , 5 21 4 9 72 6 900 48 144 17 63 900 , B , + = Luego B = 11,96 m Por lo tanto: ui” pat_pv_pca_11@hotmail.com [4] ene que: mayor a la profundidad del nivel freático, se r corregido, se tiene que: γ γ γ d s ( )( ) 1 6 0,    5 48 B ≥ ≥ ≥ ≥ 11,96 m Ing. Civil - UJCM , se deberá corregir el peso www.elsolucionario.net
  • 27. Universidad José Carlos Mariátegui” PROBLEMA 3 En un terreno compuesto por are de zapatas continuas (o corridas 9.5). Los ensayos del laboratorio indic El nivel freático se encuentra a los pesos unitarios de la arena so respectivamente, y el peso unitar Se pide: a) Determinar la máxima presión sobre la carga neta aplicada. Em b) Si al final del proyecto, se de 275 kPa, determinar el factor de SOLUCIÓN Se tiene el siguiente esquema: 2m 10.3. Fundación a dos metros de a) Vesic Según la Tabla J.1 , la ecuación + + = d s N q d s N c q q q q c c c u ui” pat_pv_pca_11@hotmail.com arena se proyecta construir una edificación cu das) de 2,20 m de ancho y apoyadas a 2,00 m ndican que los parámetros de resistencia al co a 2,00 m de profundidad. Los resultados de a son 19 kN/m3 y 20 kN/m3 por encima y por d tario del agua es 9,8 kN/m3 . sión segura de apoyo del suelo, aplicando un f Emplear el método de Vesic. determina que los cimientos ejercen sobre el de seguridad existente bajo esta condición. 2,2m de profundidad. ón general de capacidad portante es: γ γ γ γ + d s N ' B ,5 0 γ = 19 c′ = 0 φ′ = 3 γsat γw = 9 Ing. Civil - UJCM cuyos cimientos consisten m de profundidad (Figura corte son c' = 0 y φ φ φ φ′ ′ ′ ′= 30°. de laboratorio indican que or debajo del nivel freático, n factor de seguridad de 3 el terreno una presión de Figura γ = 19 kN/m3 ′ = 0 kPa ′ = 30º sat = 20 kN/m3 = 9,8 kN/m3 www.elsolucionario.net
  • 28. Universidad José Carlos Mariátegui” Como c' = 0, entonces: + = d s N q q q q q u 0 De la Tabla J.4 para φ φ φ φ′ ′ ′ ′ = 30°, lo Nq = 18,4 2 tan φ φ φ φ′ ′ ′ ′ (1-sen φ φ φ φ′ ′ ′ ′)2 = 0,289 De la Tabla J.5 , se tiene: Factores de forma ' tan L B , sq φ + = 0 1 ≥ − = γ L B , , s 4 0 0 1 0,6 Para una fundación continua, B sq = sγ γ γ γ = 1 Factores de profundidad 1 91 0 20 2 2 ≤ = = , , B D ( dq − ⋅ + = sin 1 ' tan 2 1 φ ( )( ) 91 0 289 0 1 , , dq = + = 0 1, d = γ Dado que el nivel freático se en unitario de la arena. Caso I d ≤ ≤ 1 0 ui” pat_pv_pca_11@hotmail.com γ γ γ γ d s N ' B ,5 0 , los factores de capacidad portante son: Nγ γ γ γ = 22,4 0,6 B/L ≈ ≈ ≈ ≈ 0, entonces: ⇒ ⇒ ⇒ ⇒ 91 0, B D k = = ) k ⋅ 2 ' φ 263 1, = encuentra al nivel de la fundación, será ne f D Ing. Civil - UJCM necesario corregir el peso www.elsolucionario.net
  • 29. Universidad José Carlos Mariátegui” ( ) w sat c ' γ − γ = γ = γ Donde: γ γ γ γc = peso unitario correg Luego ( ) 2 10 8 9 20 , , ' c = − = γ = γ Reemplazando en la ecuación de + γ = d s N D q q q q f u ( )( )( )( )(1 1 4 18 2 19 , qu = qu = 1134,42 kPa La carga máxima segura de apoy f f u s D FS D q q γ + γ − = Entonces, ( )( ) 3 2 19 42 1134 − = , qs qs = 403,47 kPa b) El factor de seguridad La carga máxima segura de apoy f u s FS D q q + γ − = Despejando el FS se tiene que: ac segura Carga re segura Carga FS = ui” pat_pv_pca_11@hotmail.com ) regido de capacidad portante, se tendrá que: γ γ γ γ d s N ' B , c 5 0 ) ( )( )( )( )( )( ) 0 1 0 1 4 22 20 2 2 10 5 0 263 , , , , , , , + poyo, será: ( )( ) 2 19 + poyo, será: f D γ + actuante resistente Ing. Civil - UJCM www.elsolucionario.net
  • 30. Universidad José Carlos Mariátegui” actuante seguro q D q FS γ − γ − = Al final del proyecto se determi kPa. Entonces: (1 275 47 403 − − = , FS ⇒ ⇒ ⇒ ⇒ FS = 1,55 ui” pat_pv_pca_11@hotmail.com f f D D rmina que los cimientos ejercen sobre el terre ( )( ) ( )( ) 2 19 2 19 − (con respecto a la carga máxima segur Ing. Civil - UJCM erreno una presión de 275 gura de apoyo) www.elsolucionario.net
  • 31. Universidad José Carlos Mariátegui” PROBLEMA 4 El proyecto de un edificio de cu Debido a la presencia de instalac m x 2 m, y ejercerán una carga s El estudio geotécnico indica qu kN/m3 y una resistencia no-dren kN/m3 . El factor de seguridad e capacidad portante. El nivel freá Con esta información, se requier Solución Se tiene el siguiente esquema: Df Empleando el método de Vesic: La ecuación general de capacida + + = d s N q d s N c q q q q c c c u De la Tabla J.4 , para φ φ φ φ′ ′ ′ ′ = 0°, los Nc = 5,14 Nq/Nc = 0,195 2 tan ui” pat_pv_pca_11@hotmail.com e cuatro plantas contempla el diseño de zapa laciones sanitarias y otros cimientos, las zapat a segura de 500 kN (Figura 9.6). que el suelo está compuesto de arcilla, con renada al corte de 114 kPa. El peso unitario d empleado en el análisis es 3 de la carga reático se encuentra al nivel del terreno. iere definir la profundidad a la cual deberán a 2m Zapata del edificio. idad portante es (Tabla J.1): γ γ γ γ + d s N ' B ,5 0 los factores de capacidad portante son los sigu Nq = 1,00 Nγ γ γ γ = 0 tan φ φ φ φ′ ′ ′ ′ (1-sin φ φ φ φ′ ′ ′ ′)2 = 0,0 500 kN Ing. Civil - UJCM apatas aisladas cuadradas. patas exteriores serán de 2 on un peso unitario de 20 rio del agua es igual a 9,8 ga bruta contra fallas por n apoyarse las zapatas. iguientes: γsat = 20 kN/m3 cu = 114 kPa γw = 9,8 kN/m3 www.elsolucionario.net
  • 32. Universidad José Carlos Mariátegui” De la Tabla J.5 , se tiene: Factores de forma L B , sc 2 0 = ′ ( ) 2 0 2 2 2 0 , , ' sc =       = ' tan 0 , 1 φ ⋅ + = L B sq ( ) 0 tan 2 2 0 , 1 ⋅       + = q s Factores de profundidad k , ' dc 4 0 = = B D para , B D k f f [ ] rad B D tan k f         = −1 k ) sen ( tan dq 2 1 2 1 φ − φ + = 00 1, dq = Dado que el nivel freático se en unitario de la arcilla, por lo tanto ( ) w sat c ' γ − γ = γ = γ Donde: γ γ γ γc = peso unitario correg Luego: ( ) 2 10 8 9 20 , , ' c = − = γ = γ ui” pat_pv_pca_11@hotmail.com 00 , 1 = 1 ≤ f ] 1 B D para , f > encuentra al nivel de la fundación, será ne nto: regido 2 Ing. Civil - UJCM necesario corregir el peso www.elsolucionario.net
  • 33. Universidad José Carlos Mariátegui” La ecuación de capacidad portan q d s N c q c c c u + = Asumiendo: 1 ≤ B Df Reemplazando en la ecuación de ( )( )( u , , q 2 0 14 5 114 = ( )( ) f u D , , q 2 0 19 117 + = f u D , q 44 43 = Por otro lado la carga segura act ( )( ) 2 2 500 = s q qs = 125 kPa f u s FS D q q γ + γ − = Entonces se tendrá que: ( ) ( f u D q 3 20 125 + − = Reemplazando [1] en [2] se tiene ( ) ( ) f D , 3 20 44 43 125 − = ui” pat_pv_pca_11@hotmail.com tante queda: B D k f =         = ′ B D , d f c 4 0 de capacidad portante, se tiene que: ) ( )( ) f f D D , 20 2 4 0 2 +         f D 20 [1] actuante, será: f D γ ( ) f D 20 [2] ene que: ) ( ) f f D D 20 + Ing. Civil - UJCM www.elsolucionario.net
  • 34. Universidad José Carlos Mariátegui” f D ,44 83 375 = Df = 4,49 m Como Df > B, entonces lo asumid [ ] B D para , rad tan 1         = − B D k f k , ' dc 4 0 =         = − 2 4 0 1 f c D tan , ' d k d q 2 ) sin 1 ( tan 2 1 φ φ − + = 00 1, d q = Reemplazando en la ecuación de ( )( )( ) u , , q 2 0 14 5 114     = u D tan , q 2 88 46 1         = − Carga segura actuante, será: ( )( ) 2 2 500 = s q qs = 125 kPa f f u s D FS D q q γ + γ − = ui” pat_pv_pca_11@hotmail.com mido no es correcto, entonces: 1 B Df > de capacidad portante, se tendrá que: ( )( ) f f D D tan , 20 2 4 0 1 +                 − ( )( ) f f D D 20 2 +         [1] Ing. Civil - UJCM www.elsolucionario.net
  • 35. Universidad José Carlos Mariátegui” ⇒ ⇒ ⇒ ⇒ ( ) f u D q 3 20 125 + − = Reemplazando [1] en [2] se tendr D tan ,88 46 125 1         = − ( u q 3 20 125 − = tan ,88 46 375 = La profundidad será: Df = 5,30 m Como Df > B, entonces lo asum ui” pat_pv_pca_11@hotmail.com ( ) f D 20 + [2] ndrá que: ( )( ) ( )( ) ( )( ) f f f f D D D D 20 3 20 20 2 + − +         ) ( ) f f D D 20 20 + ( ) f f D D 60 2 1 +         − umido es correcto. Ing. Civil - UJCM www.elsolucionario.net
  • 36. Universidad José Carlos Mariátegui” PROBLEMA 5 La columna de una estructura m 9.7). El nivel de fundación se enc fundación una carga segura de 6 Se ha determinado que el suelo s y un peso unitario saturado de 1 freático se encuentra a 0,61 m d disturbadas del suelo indican que Se requiere encontrar la dimensi Solución Se tiene el siguiente esquema: Df = 1,22 m Figura 10.5. Zapata donde se apo Empleando el método de Vesic. La ecuación general de capacida + + = d s N q d s N c q q q q c c c u Dado que c′ = 0, se tiene que: + = , d s N q q q q q u 0 De la Tabla J.4, para φ φ φ φ′ = 34°, lo ui” pat_pv_pca_11@hotmail.com ra metálica será apoyada sobre una zapata ai encuentra a 1,22 m de profundidad y la supere e 667,4 kN, con un factor de seguridad de 3. lo se compone de una arena con peso unitario e 18,55 kN/m3 . El agua tiene un peso unitario m de la superficie del terreno. Ensayos efectu que c' = 0 y φ φ φ φ′ = 34º. nsión mínima de la zapata. D1 = 0,61 m D2 = 0,61 m B apoya la estructura metálica. idad portante es (Tabla J.1): γ γ γ γ d s N ' B ,5 0 γ γ γ ′ γ d s N B ,5 , los factores de capacidad portante son: 667,4 kN Ing. Civil - UJCM aislada cuadrada (Figura erestructura transmite a la rio húmedo de 16,51 kN/m3 ario de 9,8 kN/m3 y el nivel ctuados sobre muestras no γ = 16,51 kN/m3 γsat = 18,55 kN/m3 c′ = 0 kPa φ′ = 34° γ 9,8 kN/m3 www.elsolucionario.net
  • 37. Universidad José Carlos Mariátegui” Nq = 29,4 2 tan φ φ φ φ′ (1–sin φ φ φ φ′)2 = De la Tabla F.5 , se tiene Factores de forma φ′ + = tan L B , sq 0 1 (34 0 1 tan B B , sq       + = ≥ − = γ L B , , s 4 0 0 1 ( ) =       − = γ B B , , s 4 0 0 1 Factores de profundidad = B D para , B D k f f [rad B D tan k f         = −1 Asumiendo que: 1 ≤ B Df ⇒ ⇒ ⇒ ⇒ Se tiene que: ( d q sin 1 tan 2 1 φ φ − ′ ⋅ + = ( ) B , , d q 22 1 262 0 1 =       + = 00 1 , d = γ ui” pat_pv_pca_11@hotmail.com Nγ γ γ γ = 41,0 = 0,262 ) 675 1 34 , = ≥ 0,6 = 0,6 1 ≤ ] 1 B D para , ad f > B , B D k f 22 1 = = ) k 2 φ ′ B ,320 0 1 + = Ing. Civil - UJCM www.elsolucionario.net
  • 38. Universidad José Carlos Mariátegui” La corrección de la sobrecarga d CASO I f D d ≤ ≤ 1 0 ( w sat D D q γ − γ + γ = 2 1 ( )( ) (0 51 16 61 0 , , q + = q = 15,41 kPa Además el término γ γ γ γ de la ecuaci sumergido ( w sat ' γ − γ = γ ) 55 18, ' w sat − = γ − γ = γ γ′ = 8,75 kN/m3 Reemplazando en la ecuación de + = d s N q q q q q t ( )( )( 67 , 1 4 , 29 41 , 15 qu = , qu 87 758 + = Por otro lado la carga segura act 2 4 667 B , Area Q q s s = = Aclaración necesaria: o u s FS q q q + − = Debe notarse también: ui” pat_pv_pca_11@hotmail.com a debido a la presencia del nivel freático: ) )( ) 8 9 55 18 61 , , , − ación de capacidad portante debe ser reemplaz 8 9, − de capacidad portante, se tendrá que: γ γ γ ′ γ d s N B ,5 0 ) ( )( )( )( )( )( ) 0 , 1 6 , 0 41 75 , 8 5 , 0 320 . 0 1 675 B B +       + ( )B , B , 63 107 84 242 + + [1] actuante será: o q + Donde: o u n q q q − = Ing. Civil - UJCM lazado por el peso unitario www.elsolucionario.net
  • 39. Universidad José Carlos Mariátegui” u n q q q − ′ = u q q u n − = Como el Nivel Freático permane o u n n q q q q − = = ′ f f u s D FS D q q γ + γ − = 41 21 3 41 21 4 667 2 , , q B , u + − = 41 21 23 64 2 2002 2 , q , B , u − = − 82 42 2 2002 2 , B , qu − = Combinando [1] y [2] se tiene qu (10 84 242 87 758 B , , + + 2 75 82 42 2 2002 B , , = − 69 801 63 107 3 + , B , Resolviendo se tiene que: B = 1,33 m (Como Df < B, entonces la ecuac ui” pat_pv_pca_11@hotmail.com o q ′ ( ) 2 0 1 u q − − anece en la misma posición ⇒ 2 1 u u = o [2] que: ) 82 42 2 2002 63 107 2 , B , B , − = 3 2 63 107 84 242 87 758 B , B , B , + + 0 2 2002 84 242 2 = − + , B , B uación supuesta para el factor k es la correcta.) Ing. Civil - UJCM ta.) www.elsolucionario.net
  • 40. Universidad José Carlos Mariátegui” PROBLEMA 6 En un terreno compuesto por ar proyecta construir una edificació de 3,0 m, el nivel de fundación s Los ensayos en campo de CPTu del primer estrato son c′ = 0 kPa no se ha detectado en campo, ni que los pesos unitarios de la respectivamente. Se pide determinar la carga últim suelo débil). Solución Se tiene el siguiente esquema: 1,5m 0,5m 10.6. Fundación y parámetros de Usamos el método de Meyerhof . Caso II. Arena fuerte sobre aren ( ) ( ) ( ) qs f u B F N H D q    + + = 2 2 2 1 2 1 γ γ Donde: ui” pat_pv_pca_11@hotmail.com arena fuerte por encima y por un estrato de a ación cuyos cimientos consisten de zapatas de b n se encuentra a 1,50 m de profundidad (Figu Tu y de laboratorio indican que los parámetro kPa y φ φ φ φ′ = 40º ; del segundo son c′ = 0 kPa y φ φ φ φ , ni en gabinete del laboratorio. Los resultado la arena son 18 kN/m3 y 19 kN/m3 del pri ltima de apoyo por el método de suelos estratifi 2m s del suelo. of . La ecuación de capacidad portante para est rena débil: ( ) ( ) s f s B K H D L B H F N −         +       + +    1 2 1 2 2 tan 2 1 1 φ γ γ γ Ing. Civil - UJCM arena de arena débil se de base de 2,0 m y de largo igura 10.6). etros de resistencia al corte φ φ φ φ′ = 34º. El nivel freático dos de laboratorio indican primer y segundo estrato tificados,(suelo fuerte bajo Figura este método es : t q H ≤ 1 γ H = 2,00 m c′ = 0 kPa φ′ = 40º c′ = 0 kPa φ′ = 34º www.elsolucionario.net
  • 41. Universidad José Carlos Mariátegui” ( ) ( ) 1 1 1 1 2 1 qs q f t F N D q γ + γ = y además: ( ) ( ) 1 1 2 2 1 2 γ γ γ γ = N N q q Para los estratos según el Anexo Para el estrato superior ; para φ φ φ φ1 Nq1 = 64,1 Para el estrato inferior ; para φ φ φ φ1 Nq2 = 29,4 Para el estrato superior: ( ) ( ) L B K , F F p s qs 1 0 1 1 1 + = = γ Donde:       φ + = 2 45 2 tan K p 599 4 2 40 45 2 , tan Kp =       + = Reemplazando [2] en [1] se tiene ( ) ( ) ( ) 3 1 3 2 599 4 1 0 1 1 1 , , , F F s qs =       + = = γ Para el estrato inferior: ( ) ( ) L B K , F F p s qs 1 0 1 2 2 + = = γ Donde:       φ + = 2 45 2 tan Kp ui” pat_pv_pca_11@hotmail.com ( ) ( ) 1 1 1 s F N B γ γ xo F.4 ; los factores de capacidad portante son φ φ φ φ1 = 40º se tiene que: Nγ γ γ γ1 = 93,6 1 = 40º se tiene que: Nγ γ γ γ2 = 31,1 [1] [2] ene que: 31 [3] Ing. Civil - UJCM son: www.elsolucionario.net
  • 42. Universidad José Carlos Mariátegui” 54 3 2 34 45 2 , tan Kp =       + = Reemplazando [4] en [3] se tiene ( ) ( ) ( )( ) 1 3 2 54 3 1 0 1 2 2 , , , F F s qs =       + = = γ ( )( ) ( )( ) 3507 0 6 93 18 1 31 19 1 2 , , , q q = = Ingresando en la siguiente figura 8 6, ks ≅ Reemplazando en la ecuación de ( ) ( ) ( ) B F N H D q qs f u 2 2 2 1 2 1 γ γ    + + = ( )( )( ) ( ) 19 2 1 236 , 1 4 , 29 5 , 0 5 , 1 18          + + = u q qu = 2115,12 kPa Reemplazando en la ecuación de ( ) ( ) ( ) ( ) 1 1 1 1 1 1 2 1 s qs q f t F BN F N D q γ γ γ + γ = ( )( )( )( ) ( )(2 18 2 1 31 1 1 64 5 1 18 , , , qt       + = , qt 305 4474 = kPa Como: t u q q ≤ Entonces: qu = 2115.12 kPa ui” pat_pv_pca_11@hotmail.com [4] ene que: 236 , ura 9.1 (de la introducción) tenemos : de capacidad portante de Meyerhof : ( ) ( ) B K H D L B H F N B s f s 2 1 2 2 tan 2 1 1 φ γ γ γ         +       + +    )( )( )( ) ( )( ) ( ) 2 40 tan 8 , 6 5 , 0 5 , 1 1 3 2 1 5 , 0 18 236 , 1 1 , 31 2 2       +       + +    de capacidad portante del estrato superior se ) )( )( ) 31 1 6 93 , , Ing. Civil - UJCM H 1 1 γ φ − ( )( ) 5 , 0 18 − tiene que: www.elsolucionario.net
  • 43. Universidad José Carlos Mariátegui” PROBLEMA 7 Se desea construir un edificio p resultados γ=17 kN/m3 , c′ = 6 kP las zapatas se ha detectado que l se desea determinar la carga seg eL = 1,0 m. En las zapatas de B carga neta aplicada. Usar el método de fundaciones co Solución Se tiene el siguiente esquema: D f = 2,0 m 10.7. Cargas sobre la fundación Dado que: m 0 , 1 = L e , entonces se 6 1 ≥ L eL 6 1 ≥ B eB Se tiene el Caso I de fundaciones ui” pat_pv_pca_11@hotmail.com o para lo que se realiza un estudio de suelos kPa, φ φ φ φ′ = 33º ; como se muestra en la Figura 1 e la carga no está aplicada sobre el centro de segura de apoyo si se ha encontrado una excen e B = 2,0 m y de L = 4,0 m con un factor de s con excentricidad en dos direcciones propue m 2m M x Qs M y s se tendrá que: nes con excentricidad, por lo tanto: Ing. Civil - UJCM los que dan los siguientes ra 10.7. Una vez construido de la zapata de fundación, centricidad de eB = 0,35 m, de seguridad de 3 sobre la puesto por Das. Figura c′ = 0 kPa φ′ = 33º γ = 17 kN/m3 www.elsolucionario.net
  • 44. Universidad José Carlos Mariátegui” m. 35 , 0 = B e Se tiene el siguiente esquema: Figura 10.8. Área efectiva de apo En donde: 1 1 2 1 L B ' A = Y además:       − = B e , B B B 3 5 1 1       − = L e , L L L 3 5 1 1 La longitud efectiva ( L′) es la m 1 L A B ′ = ′       − = B e , B B B 3 5 1 1 ( )       − = 2 35 0 3 5 1 2 1 , , B ui” pat_pv_pca_11@hotmail.com L B B1 L1 eB eL Área efectiva Qu apoyo en la fundación. más larga de las dos dimensiones L1 o de B1 y Ing. Civil - UJCM 1 y además B′ es : www.elsolucionario.net
  • 45. Universidad José Carlos Mariátegui” B1 = 1,95 m       − = L e , L L L 3 5 1 1 ( )       − = 4 1 3 5 1 4 1 , L L1 = 3 m Entonces la longitud más larga e ( ) ( )( ) 3 95 1 5 0 2 1 1 1 , , L B A = = ′ A′ = 2,925 m 3 925 2, L A B = ′ ′ = ′ B′ = 0,975 m Entonces en la ecuación de capa ′ γ + + = B , d s N q d s N c q q q q c c c u 5 0 De la Tabla J.4 para φ φ φ φ′ = 33°, los Nc = 38,64 Nq = 26,09 Para evaluar los factores de form Nq/Nc = 0,675 De la Tabla J.5, se tiene para B Factores de forma ' L ' B N N , s c q c + = 0 1 ui” pat_pv_pca_11@hotmail.com ga es L1 = 3 m, y el área efectiva es: pacidad portante se tiene que: γ γ γ d s N , los factores de capacidad portante son: Nγ γ γ γ = 35,19 orma se debe usar la longitud efectiva, y el anc 2 tan φ φ φ φ′ (1-sin φ φ φ φ′)2 = 0,2693 = 2 m Ing. Civil - UJCM ncho efectivo: www.elsolucionario.net
  • 46. Universidad José Carlos Mariátegui” ( ) 3 975 0 675 0 0 1 , , , sc    + = φ′ + = tan ' L ' B , sq 0 1 ( 3 975 0 0 1 tan , , sq       + = ' L ' B , , s ≥ − = γ 4 0 0 1 0,6 ( ) 3 975 0 4 0 0 1 , , , s       − = γ Para determinar los factores de p considerar la respectiva excentric Factores de profundidad B D , d f c 4 0 1+ = 4 1 2 2 4 0 1 , , dc =       + = ( ) B D d f q 2 sin 1 tan 2 1 φ φ ′ − ′ + = ( ) ( ) ( ) 2 2 33 sin 1 33 tan 2 1 2    − + = q d dγ = 1 Factores de inclinación ic = iq = 1 90 0 1 90 1 =       − =       β − º º º º iγ γ γ γ = 1 33 0 1 1 =         − =         ϕ β − o o o o Además: ( ) 34 2 17 = = γ = f D q kPa. Luego, reemplazando en la ecuac ui” pat_pv_pca_11@hotmail.com 22 1 75 , =    ( ) 21 1 33 , = 0,6 87 0, = de profundidad se debe utilizar los valores de L tricidad. 269 , 1 =    uación de capacidad portante, se tiene que: Ing. Civil - UJCM e L y de B de la zapata sin www.elsolucionario.net
  • 47. Universidad José Carlos Mariátegui” (γ + = ′ D d s N c q f c c c u ( )( )( ) ( )( 09 26 34 4 1 22 1 64 38 6 , , , , qu + = ′ Entonces: q′u = 2012,85 kPa Luego la carga segura será: f u s FS D q q + γ − ′ = ′ ( 3 1 2 85 2012 − = ′ , qs q′s = 693,62 kPa ui” pat_pv_pca_11@hotmail.com ) γ γ γ ′ γ + d s N B , d s N q q q f 5 0 ( )( ) ( )( )( )( )( ) 1 87 0 19 35 975 0 17 2 1 2693 1 21 1 , , , , , + f D γ + ) ( ) 17 2 17 + Ing. Civil - UJCM www.elsolucionario.net
  • 48. Universidad José Carlos Mariátegui” PROBLEMA 8 Se ha planificado la construcció un ancho de 2 m, un largo de 3 m armado con un peso unitario de ancho de 0,3 m x 0,3 m y recibir la dirección del ancho, al nivel n Se ha realizado un estudio geot constituido por una arcilla homo 4 m de profundidad. los paráme freático a 0,5 m por debajo la su al 18 kN/m3 y 20 kN/m3 para el s Determine el factor de seguridad γc = 25 kN/m³ 0,30 m x 0,30 m B = 2 m ; L = 3 m 0 1 2 3 4 Figura 10.9. Carga inclinada act Solución El factor de seguridad para e Meyerhof, por lo que se tendrá q v s z P P P F + + = ∑ ( )( )( )( ) ( )( )( ) [ ] (18 2 1 3 0 3 0 3 0 3 2 25 + + = ∑ , , , , F ∑ = 63 833, F kPa ui” pat_pv_pca_11@hotmail.com ción de una zapata flexible a 1,5 m de profun 3 m y un espesor de 0,3 m en la base, estará co de 25 kN/m3 . La columna que llegue a la base ibirá una carga vertical de 650 kN y una carga l natural del terreno. eotécnico en el sitio y se ha determinado que mogénea que yace sobre una roca muy dura y metros de resistencia son cu = 45 kPa, φ φ φ φ′ = 0 superficie. El peso unitario del suelo por enc el suelo saturado. dad en la capacidad de apoyo. Pv = 650 kN Ph = 50 kN R γ = 18 kN/m³ Arcilla γsat = 20 kN/m³ cu = 45 kPa actuante en la fundación. este tipo de cargas puede ser evaluado u á que: )( )( )( ) ( )( )( ) [ ] ( )( )( )( ) ( )( )( [ 0 3 0 3 0 7 0 3 2 20 5 0 3 0 3 0 5 0 3 2 18 − + − , , , , , , , Ing. Civil - UJCM fundidad. La zapata tendrá á constituida por hormigón ase de la zapata tendrá un rga horizontal de 50 kN en que el perfil del suelo está ra y muy poco permeable a 0º. Se ha ubicado el nivel encima de este corresponde utilizando el método de )] 650 7 0 + , www.elsolucionario.net
  • 49. Universidad José Carlos Mariátegui” 50 1, e tan = β 63 833 50 , tan = β Entonces: º ,432 3 = β ( )( ) 432 3 5 1 , tan , e = e = 0,09 m ( )( ) 09 0 2 2 2 , e B B − = − = ′ ; B′ = 1 L′ = 3 m Entonces: qd qs q ci cd cs c u F F F N q F F F N c q + = ′ Para los valores de: c = 45 kPa φ φ φ φ′ = 0 º Se tiene que: q = (0,5)(18)+(1)(20) = 29 kPa Para este caso: Nc = 5,14 Nq = 1,00 Nγ = 0,00 Factores de forma 1 1 14 5 00 1 3 82 1 1 1 , , , , N N L B F c q cs = + = ′ ′ + = ui” pat_pv_pca_11@hotmail.com = 1,82 m i d s qi F F F N B , F γ γ γ γ ′ γ + 5 0 118 Ing. Civil - UJCM www.elsolucionario.net
  • 50. Universidad José Carlos Mariátegui” 000 1 1 , tan L B Fqs = φ′ ′ ′ + = Factores de profundidad 1 = B Df 300 1 2 5 1 4 0 1 4 0 1 , , , B D , F f cd = + = + = 000 1, Fqd = Factores de inclinación 90 432 , 3 1 90 1 2       − =       β − = = qi ci F F La capacidad última de apoyo se ( )( )( )( )( ) ( 925 , 0 3 , 1 118 , 1 14 , 5 45 + = ′ u q q′u = 337,78 kPa Entonces: ( )( )( ) 3 77 1 78 337 , , L B q Q u u = ′ ′ ′ = Qu = 1793,61 kN La capacidad máxima de apoyo e ( =       + = 83 6 1 B e BL Q qmax qmax = 176,45 kPa La capacidad mínima de apoyo e ( =       − = 83 6 1 B e BL Q qmin ui” pat_pv_pca_11@hotmail.com 1 2 5 1 ≤ , 300 925 , 0 2 =    será: ( )( )( )( )( ) 925 , 0 1 1 1 29 yo es: ( )( ) ( )( )       + 2 09 0 6 1 3 2 63 833 , , o es: ( )( ) ( )( )       − 2 09 0 6 1 3 2 63 833 , , Ing. Civil - UJCM www.elsolucionario.net
  • 51. Universidad José Carlos Mariátegui” qmin = 101,42 kPa El facto de seguridad será: 45 176 78 337 , , q q FS max u = ′ = FS = 1,91 ui” pat_pv_pca_11@hotmail.com Ing. Civil - UJCM www.elsolucionario.net
  • 52. Universidad José Carlos Mariátegui” PROBLEMA 9 Para la Figura 9.10, se pide dete de Hansen, con un factor de segu Figura 10.10. Características de Solución La capacidad última de apoyo se g i d s qN b g i d s cN q q q q q c c c c c c u + = Los parámetros de resistencia son KPa c 25 '= º 25 '= ϕ Pesos y sobre cargas [ ] KPa x D q 25 . 5 3 . 0 5 . 17 = = = γ ui” pat_pv_pca_11@hotmail.com eterminar la máxima capacidad segura de apo eguridad de 4 sobre la carga bruta. de la fundación. será: γ γ γ γ γ γ γ b g i d s BN b g q q 5 . 0 + son: ] P = 600 KN H = 200 KN B = L = 2 m η = 10º D = 0.3 m γ= 17.5 kN/ 3 m c' = 25 MPa ϕ' = 25º (ca = c;δ = ϕ) P = 600 KN H = 200 KN B = L = 2 m η = 10º D = 0.3 m γ= 17.5 kN/ 3 m c' = 25 MPa ϕ' = 25º (ca = c;δ = ϕ) Ing. Civil - UJCM apoyo utilizando el método www.elsolucionario.net
  • 53. Universidad José Carlos Mariátegui”       = 3 5 . 17 m KN γ Factores de capacidad de apoyo ; 7 . 10 ; 71 . 20 = = N N N q c Factores de profundidad 15 . 0 2 3 . 0 ' ' ⇒ = = = = κ L D B D B D 06 . 1 15 . 0 4 . 0 1 4 . 0 1 = + = + = x dc κ ( ) 1 1 tan 2 1 2 + = − + = κ ϕ ϕ sen dq 1 = γ d Factores de inclinación ( )/ 25 2 2 600 cot ⋅ ⋅ + = + ϕ a f c A V ' c ca = 4 3 2 1 = ⇒ = α α reales Máximos Por lo tanto: 1 cot 5 . 0 1 1    − =         + − = c A V H i a f q α ϕ 1 cot 450 º 7 . 0 1 2       − =             +       − − = α γ ϕ η a f c A V H i ui” pat_pv_pca_11@hotmail.com 8 . 6 = γ N 15 . 0 = κ 060 ( ) 047 . 1 15 . 0 25 sin 1 25 tan 2 2 = ⋅ − ⋅ + 45 . 814 25 tan = 675 . 0 45 . 814 200 5 . 0 3 =    − x 483 . 0 45 . 814 200 450 10 7 . 0 4 =             − − Ing. Civil - UJCM www.elsolucionario.net
  • 54. Universidad José Carlos Mariátegui” 7 . 10 67 . 0 1 675 . 0 1 1 − − − = − − − = q q q c N i i i Factores de forma 1 2 2 71 . 20 7 . 10 1 1 = + = + = x L B N N s c q c . 1 º 25 sin 1 1 1 sin 1 = + = + = ϕ L B sq 0 1 ; 6 . 0 4 . 0 1 − = ≥ − = γ γ s L B s Para carga inclinada, se tiene qu ' ' 1 L i B N N s c c q c + = Factores de base: 932 . 0 147 10 1 147 1 = − = − = η c b 850 . 0 25 tan 180 10 2 = =       − x x x q e b π 803 . 0 25 tan 180 10 7 . 2 = =       − x x x e b π γ Factores d terreno: 1 º 0 = ⇒ = g β Por lo tanto reemplazando todos . 5 932 . 0 1 641 . 0 060 . 1 517 . 1 71 . 20 25 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = u q 69 . 27 15 . 48 38 . 497 + + = u q ui” pat_pv_pca_11@hotmail.com 641 . 0 1 675 = − 517 . 1 427 . 6 . 0 1 1 4 . 0 = que: os los valores en la ecuación de capacidad por 4 . 0 1 6 . 0 8 . 6 2 5 . 17 5 . 850 . 0 1 675 . 0 047 . 1 427 . 1 7 . 10 25 . ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Ing. Civil - UJCM portante tenemos. 803 . 0 1 483 ⋅ ⋅ www.elsolucionario.net
  • 55. Universidad José Carlos Mariátegui” La capacidad última de apoyo se KPa 2 . 573 = u q La carga segura de apoyo será: KPa 3 . 143 4 2 . 3 5 = + = s q KPa 143.3 qs = ui” pat_pv_pca_11@hotmail.com será: Ing. Civil - UJCM www.elsolucionario.net
  • 56. Universidad José Carlos Mariátegui” PROBLEMA 10 Calcule la carga máxima admisib Figura 10.12. Perfil de suelo. Solución. Capacidad máxima segura de ap La capacidad máxima segura de γ N B , d S qN d S cN q q q q c c c u 5 0 + + = En una construcción común e condiciones no drenadas. Por lo 0 y 50 2 = = ϕ m kN Cu 10 8 6 4 2 0 1 3 5 7 9 11 12 ui” pat_pv_pca_11@hotmail.com isible para la zapata que se muestra en la Figu apoyo de apoyo se expresa mediante la ecuación prop γ γ γ d S N n en arcilla, la condición más desfavorabl lo tanto: B =2 ; L = 3 m c' = 5 kPa ; φ' = 2 Cu = 50 kN/m Cc = 0,22 ;Cs = 0 Cv = 0,21 m /me 2 2 P = 500 kN e = 0,75 γ = 20 kN/m 0,3 m 3 0,3 m x 0,4 m o arena arcilla N. C. Po = 20·7-9,8·7 = 71,4 kN/m2 Ing. Civil - UJCM igura 10.12. ropuesta por Vesic es: able es a corto plazo en = 28° = 0,03 mes www.elsolucionario.net
  • 57. Universidad José Carlos Mariátegui” Factores de capacidad de apoyo. 0 00 1 14 5 = = = N ; N ; , N ; , N q q c γ Factores de forma: 1 1 3 2 195 0 1 1 , , L B N N S c q ) v ( c = ⋅ + = ⋅ + = 1 1 = + = ϕ tan L B S ) v ( q Factores de profundidad 1 314 , 1 tan 1 2 2 · 4 , 0 1 = = = ⇒ = = + = q c c d d B D ar K B D K d Reemplazando los factores calc propuesta por Vesic, se tiene: 1 2 20 314 , 1 13 , 1 14 , 5 50 ⋅ ⋅ + ⋅ ⋅ ⋅ = u q La capacidad última de apoyo se 2 7 , 421 m kN qu = La carga máxima segura de apoy D FS D q q u s · · γ γ + − = Entonces: 2 · 20 3 2 · 20 7 , 421 + − = s q La capacidad segura de apoyo se ui” pat_pv_pca_11@hotmail.com yo. 0 1 2 195 0 = − = ) sin ( tan ; , Nc ϕ ϕ 13 , 785 , 0 = B calculados en la ecuación de capacidad má 1 1 1 ⋅ ⋅ será: poyo se define como: será: Ing. Civil - UJCM máxima segura de apoyo www.elsolucionario.net
  • 58. Universidad José Carlos Mariátegui” 2 2 , 167 m kN qs = La carga neta segura es entonces 2 20 127 20 2 20 167 m kN , · , qn = − = Si el incremento de esfuerzo es Entonces: 2 2 2 55 3 10 16 13 5 20 127 0 m kN , P m z m kN , P m z m kN , P z m m t          = ∆ ⇒ = = ∆ ⇒ = = ∆ ⇒ = o o o c oed P P P e H C S ∆ + + = log 1 4 . 71 30 4 . 71 log 75 . 0 1 10 10 22 . 0 3 + + × ⋅ = oed S . 195 mm Soed = El asentamiento tolerable será: mm ST 75 = El asentamiento correspondiente intenta con una nueva carga. 2 50 m kN qn = ui” pat_pv_pca_11@hotmail.com ces: 2 20 127 m kN , 2 68 30 6 55 3 16 13 4 20 127 m kN , , , , Pav = + ⋅ + = ∆          68 . 30 ente al incremento de carga es superior al ad Ing. Civil - UJCM l admisible, por lo tanto se www.elsolucionario.net
  • 59. Universidad José Carlos Mariátegui” 05 , 12 68 , 30 3 , 127 50 m kN Pav = ⋅ = ∆ 4 . 71 12 4 . 71 log 75 . 0 1 10 10 22 . 0 3 + + × ⋅ = oed S mm 1 . 85 = oed S Nuevamente el valor encontrad intenta una vez más. 2 40 m kN qn = 64 . 9 68 . 30 3 , 127 40 m kN Pav = ⋅ = ∆ 64 . 9 6 . 9 4 . 71 log 75 . 0 1 10 10 22 . 0 3 + + × ⋅ = oed S mm Soed 1 . 69 = Se calcula el asentamiento tot asentamiento del edómetro. oed S S ⋅ = 1 , 1 mm S 76 1 , 69 1 , 1 = ⋅ = El asentamiento tolerable es: mm ST 76 = La carga admisible a q es entonce q qa = 40 = 80 qa = ui” pat_pv_pca_11@hotmail.com 2 m 05 . 12 rado de asentamiento es mayor al valor adm 2 m 64 total mediante la corrección propuesta por nces: D qn ⋅ +γ 2 20 40 ⋅ + 2 80 m kN Ing. Civil - UJCM admisible, por lo tanto se por Burland, aplicada al www.elsolucionario.net
  • 60. Universidad José Carlos Mariátegui” PROBLEMA 11 Se ha realizado la exploración encontrado y sus propiedades. profundidad, con las dimension construye en un instante de tiem fundación y permanece en esa p parte no saturada es el 90% de asentamiento secundario en la ar Se pide: a) Calcular la presión máxima apoyo es 175 kN/m2 y el asentam b) Calcular la capacidad máxim está constituido por arcilla (estr carga la zapata en incremento seguridad de 3 sobre la carga net 0 1 2 3 4 5 6 7 8 9 10 ui” pat_pv_pca_11@hotmail.com ón geotécnica de un sitio, la Figura 10.13 mu es. Se va a construir una zapata flexible y iones que se presentan en el esquema. Cons iempo, en el que adicionalmente el nivel freát sa posición por tiempo indefinido. El peso un del valor en el sector saturado. Asimismo, c a arcilla y que el asentamiento inmediato es el a admisible del suelo suponiendo que la pre tamiento tolerable de 25 mm. ima segura de apoyo del suelo, suponiendo qu estrato de 5 a 8 m), el nivel freático permane ntos muy pequeños. Utilizar el método de V neta aplicada. 0,3 m B =2 m ; L= 6 m γ = 24 kN/m c 3 γ = 20 kN/m3 0,3 m x 0,3 m P = 1500 kN γ = 19 kN/m 3 arena Dr=60 % arcilla arena γ = 20 kN/m 3 muestra 1 muestra 2 muestra 3 Ing. Civil - UJCM muestra el perfil de suelo y rectangular a 2 m de onsidere que la zapata se eático desciende al nivel de unitario de la arena en la o, considere que no existe el 50% del total. presión máxima segura de que todo el perfil de suelo anece en la superficie y se e Vesic, con un factor de 45 35 E (MN/m ) 2 E=40 (MN/m ) 2 www.elsolucionario.net
  • 61. Universidad José Carlos Mariátegui” Resultados de ensayos para los p De muestra 1: Ensayo triaxial CD: De muestra 2: Triaxial UU : Cu Veleta : Cu Corte directo : c Compresión inc: Cu Triaxial CU : c = c’= 0 ; ϕ ϕ ϕ ϕ’ = 34º De muestra 3: Ensayo triaxial CU c’=0 ; ϕ ϕ ϕ ϕ’ = 36º SOLUCIÓN. a) Capacidad máxima admisible mm S m kN q T s 25 ; 175 2 = = 6 . 154 4 . 20 175 neta Carga k = − = El asentamiento en la arena esta ∑ ∆ ⋅ ⋅ ⋅ ⋅ = z E I q C z n 2 1 C S a) ( , , , S m kN , q , , , C n 03226 0 6 154 1 871 0 6 154 871 0 6 154 40 5 0 1 2 1 ⋅ ⋅ ⋅ = ∴ = = ⋅ − = ui” pat_pv_pca_11@hotmail.com s parámetros de resistencia al corte: D: C=0 ; ϕ ϕ ϕ ϕ = 32 º Cu = 50 kPa Cu = 45 kPa c = 0; ϕ ϕ ϕ ϕ = 34º Cu = 55 kPa c = 0 ; ϕ ϕ ϕ ϕ = 32º U : c = 0 ; ϕ ϕ ϕ ϕ = 33º ble de apoyo. 2 m kN sta dado por: ) mm ,4 4 26 = Ing. Civil - UJCM www.elsolucionario.net
  • 62. Universidad José Carlos Mariátegui” b) ( ) , , , S 0507 0 6 154 1 871 0 = ⋅ ⋅ ⋅ = ∴ c) mm S 5 = ∴ El asentamiento en la arcilla es: 13 2 , 8 13 , 2 06 , 6 8 , 64 85 log 75 , 0 1 10 3 03 , 0 1 , 98 3 , 33 8 , 64 3 , 33 71 , 30 5 , 142 6 , 154 3 mm S mm S P P kN P oed o av < = ≈ = + =       + × ⋅ = = + = ∆ + = ⋅ = ∆ La capacidad admisible de apoyo 2 a 175 q m kN = b) La capacidad máxima segura La ecuación general para la capa 0 g i d S qN b g i d S cN q q q q q c c c c c c u + = Los parámetros de resistencia son º 34 ' y 0 ' = = ϕ c Los factores de capacidad de apo ui” pat_pv_pca_11@hotmail.com mm ,8 6 = es: ) 25 ( 8 85 3 , 33 8 , 64 log 75 , 0 1 10 3 02 , 0 3 2 mm S mm m kN TOL < ≈       + + × ⋅ +    oyo es: ra de apoyo del suelo apacidad de apoyo es: γ γ γ γ γ γ γ b g i d S N B , bq q 5 0 + son: apoyo son: Ing. Civil - UJCM www.elsolucionario.net
  • 63. Universidad José Carlos Mariátegui” 29 2 34 45 tan 2 45 tan 2 34 tan 14 , 3 2 tan =       + =       + = ⋅ e e Nq ϕ ϕ π ( ) ( 440 . 29 34 tan 1 1 − = ⋅ − = q c N N ( ) 064 , 41 tan 1 2 = + = ϕ γ q N N Los factores de forma son: 1 34 tan 6 2 1 tan 1 = + = + = ϕ L B Sq 867 , 0 6 2 4 , 0 1 4 , 0 1 = − = − = L B Sγ Los factores de profundidad son: ( ) 1 2 2 sin 1 tan 2 1 2 = = ⇒ = = − + = B D B D dq κ κ ϕ ϕ ( ) 1 34 sin 1 34 tan 2 1 2 = ⋅ + ⋅ + = q d 1 = γ d Los otros factores son iguales a 1 Sobrecarga (q’) 2 4 , 18 2 8 , 9 19 2 ' m kN q = ⋅ − ⋅ = El peso de suelo por debajo el niv 3 2 9 8 9 19 m kN , , = − = γ 0 262 , 1 225 , 1 440 , 29 4 , 18 + ⋅ ⋅ ⋅ = u q ui” pat_pv_pca_11@hotmail.com 440 , 29 ) 164 . 42 34 tan 1 1 = ⋅ 225 . 1 on: 1 = 262 . 1 a 1 nivel de fundación será: 1 867 , 0 064 , 41 2 2 , 9 5 , 0 ⋅ ⋅ ⋅ ⋅ ⋅ Ing. Civil - UJCM www.elsolucionario.net
  • 64. Universidad José Carlos Mariátegui” 2 u 1165 q m kN = 3 19 1165− = ⋅ + ⋅ − = D FS D q q u S γ γ La capacidad segura de apoyo es 2 S m kN 414 q = ui” pat_pv_pca_11@hotmail.com 2 19 2 19 ⋅ + ⋅ es: Ing. Civil - UJCM www.elsolucionario.net
  • 65. Universidad José Carlos Mariátegui” PROBLEMA 12 Para el perfil de suelo que se mu de apoyo utilizando el método p carga neta aplicada. Si: a) Si se construye la estructura m b) Si se construye la estructura rá Solución. El tiempo de construcción de l condiciones drenadas. Se utilizan Se aplicarán además correccione qs q cd cs c u F F N q F F N c q ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ = ' 1 ) 8 , 9 18 ( 1 17 ' ; 5 q kPa c = ⋅ − + ⋅ = = 0 1 2 3 4 5 c = 0; φ = 28° c = 0; φ = 30° Cu=45 kN/m 2 c = 5; φ = 32° Cu=65 kN/m 2 ui” pat_pv_pca_11@hotmail.com muestra en la Figura 10.13, se desea calcular l o propuesto por Braja M. Das y un factor de a muy lentamente, en un tiempo mayor a 10 añ a rápidamente, en un tiempo menor a 2 meses e la estructura es considerablemente largo, izan los parámetros ° = = 32 ; 5 φ kPa c . ones en el cálculo de la capacidad de apoyo por id is i qd F F N B F γ γ γ γ ⋅ ⋅ ⋅ ⋅ ⋅ + ' 2 1 2 / 2 , 25 m kN 0,5 m B= 2 m ; L= 3 m γ = 17 kN/m3 γ = 18 kN/m3 0,5 m x 0,5 m P = 500 kN γ = 20 kN/m3 Ing. Civil - UJCM ar la carga máxima segura de seguridad de 3 sobre la años ses go, por lo tanto se darán por nivel freático. www.elsolucionario.net
  • 66. Universidad José Carlos Mariátegui” 2 / 2 , 10 8 , 9 20 ' m kN = − = γ Los factores de capacidad de apo 62 , 0 tan ; 18 , 23 ; 49 , 35 32 = = = ⇒ ° = φ φ q c N N Los factores de forma son: 73 , 0 3 2 4 , 0 1 4 , 0 1 4 , 1 62 , 0 3 2 1 tan 1 43 , 1 65 , 0 3 2 1 1 = ⋅ − = ⋅ − = = ⋅ + = ⋅ + = = ⋅ + = ⋅ + = L B F L B F N N L B F s qs c q cs γ φ Factores de profundidad son: 1 27 , 1 ) sin 1 ( tan 2 1 4 , 1 2 2 4 , 0 1 4 , 0 1 ) 1 2 / 2 2 = = = ⋅ − ⋅ ⋅ + = = ⋅ + = ⋅ + = ⇒ = = d f qd f cd f F B D F B D F a condición B D γ φ φ La capacidad última de apoyo se 2 / 3 , 1626 1 , 23 2 , 25 4 , 1 43 , 1 49 , 35 5 m kN qu = ⋅ + ⋅ ⋅ ⋅ = La capacidad segura de apoyo se 3 3 , 1626 3 D D q q u s − = ⋅ + ⋅ − = γ γ 2 / 565 m kN qs = ui” pat_pv_pca_11@hotmail.com apoyo son: ; 65 , 0 ; 22 , 30 = = γ c q N N N 41 43 2 2 ) 53 , 0 1 ( 62 , 0 2 1 2 ⋅ − ⋅ ⋅ + = será: 1 73 , 0 22 , 30 2 2 , 10 5 , 0 27 , 1 41 , 1 18 ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ será: 2 / 565 ) 18 17 ( 3 ) 18 17 ( m kN = + + + Ing. Civil - UJCM www.elsolucionario.net
  • 67. Universidad José Carlos Mariátegui” Debido a que el tiempo de constr 0 ; / 65 2 = = φ m kN Cu ; no aplicar 2 2 / 20 / 35 18 17 m kN m kN q = = + = γ La carga última de apoyo será: qs q cd cs c u F F N q F F N c q ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ = Los factores de capacidad de apo 0 tan 00 , 1 14 , 5 0 = = = ⇒ = φ φ N N N N q q c Factores de forma son: 1 tan 1 13 , 1 20 , 0 3 2 1 1 = ⋅ + = = ⋅ + = ⋅ + = φ L B F N N L B F qs c q cs Los factores de profundidad son: ) sin 1 ( tan 2 1 4 , 1 2 2 4 , 0 1 4 , 0 1 ) 1 2 / 2 2 = ⋅ − ⋅ ⋅ + = = ⋅ + = ⋅ + = ⇒ = = B D F B D F a condición B D f qd f cd f φ φ La capacidad última de apoyo es 2 / 5 , 563 1 1 1 35 4 , 1 13 , 1 14 , 5 65 m kN qu = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ = La capacidad segura de apoyo se ui” pat_pv_pca_11@hotmail.com strucción es corto, se consideran condiciones n ar correcciones. qd F apoyo son: 0 20 , 0 = Nc 13 on: 1 = es: será: Ing. Civil - UJCM es no drenadas, entonces: www.elsolucionario.net
  • 68. Universidad José Carlos Mariátegui” 3 1 ( 5 , 563 3 − = ⋅ + ⋅ − = D D q q u s γ γ 2 / 211 m kN qs = ui” pat_pv_pca_11@hotmail.com ) 18 17 ( 3 ) 18 17 + + + Ing. Civil - UJCM www.elsolucionario.net
  • 69. Universidad José Carlos Mariátegui” PROBLEMA 13 Se ha planificado la construcci saturado (ascenso capilar de 2 m de 20 kN/m3 y descansa sobre un superficie natural del terreno. Se ha obtenido los siguientes p referida a nivel natural del terren Profundidad m eo 1,0 0,6 3,5 0,7 6,5 0,8 Se ha calculado que la carga pun y que la columna de hormigón sobre la base de la zapata de 0.4 m Se pide: a) Calcular la capacidad de ap considerando un factor de segu Skempton. b) Calcular la capacidad de apo considerando un factor de segu Vesic. c) Calcular la capacidad máxim geometría del inciso b. d) ¿Cuál es el factor de seguridad SOLUCIÓN. a) Calcular la capacidad de apoy Para la fundación se sabe que: B = L = 1,5 m ui” pat_pv_pca_11@hotmail.com cción rápida de una zapata rígida en un su 2 m de altura), a 2 m de profundidad. La arcill una arenisca permeable e incompresible ubic s parámetros a partir de los ensayos de cam rreno). cc cs pc kPa cu kPa c' 0,6 0,33 0,10 250 100 0 0,7 0,33 0,05 140, 50 0 0,8 0,33 0,05 86 50 0 puntual a ser aplicada en la columna a nivel de ón armado tendrá una sección de 0.25 m por .4 m de espesor. Considerar que γc = 24 kN/m3 apoyo del suelo si la base de la zapata cu eguridad de 3 sobre la carga neta aplicada, u apoyo del suelo si la base de la zapata rectang eguridad de 3 sobre la carga neta aplicada, u áxima admisible si el asentamiento tolerable idad sobre la carga neta en la capacidad de apo poyo del suelo si la base de la zapata es cuadrad Ing. Civil - UJCM suelo arcilloso totalmente cilla tiene un peso unitario bicada a 8 m por debajo la campo y laboratorio (cota φ φ φ φ’ K 32 0,6 30 0,55 30 0,95 l de terreno será de 600 kN por 0.25 m que descansará 3 . cuadrada es de 1.50 m, a, utilizando el método de angular es de 1.5 por 3 m, a, utilizando el método de ble es de 25 mm, para la apoyo del inciso b? drada. www.elsolucionario.net
  • 70. Universidad José Carlos Mariátegui” Entonces la carga neta última se       +       + = L B 2 , 0 1 B D 2 , 0 1 c 5 q f ) u ( net       +       + ⋅ = 5 , 1 5 , 1 2 , 0 1 5 , 1 2 2 , 0 1 50 5 q ) u ( net kPa 380 q ) u ( net = Para la carga neta se sabe que: 0 1 2 3 4 5 γ = 24 k c 10 9 8 7 6 Arcilla 1 γ = 20 kN/m3 Arcilla 2 γ = 20 kN/m3 ui” pat_pv_pca_11@hotmail.com será:    0,4 m B = L =1,50 m 4 kN/m3 eo = 0,7; cc = 0,33; cs = 0,05; Pc = 140 kPa cu = 50 kPa; c´ = 0; φ´= 30 º; K = 0,55 γ = 16 kN/m3 γ = 20 kN/m3 0,25 m x 0,25 m P = 600 kN Arcilla eo = 0,8; cc = 0,33; cs = 0,05; Pc = 86 kPa cu = 50 kPa; c´ = 0; φ´= 30 º; K = 0,95 Roca incompresible Ing. Civil - UJCM www.elsolucionario.net
  • 71. Universidad José Carlos Mariátegui” qn = q - qo La carga última será: qu = qnet(u) + qo Por lo tanto, la carga neta es: qn = 380 + 2(20) = 420 kPa La carga segura de apoyo para u o o u s q FS q q q + − = 40 3 40 420 qs + − = kPa 167 qs = b) Calcular la capacidad de apoy Para esta zapata se tiene que: B = 1.5 m; L = 3 m La capacidad última de apoyo se ( ) q ´ d ´ s 1 c 14 , 5 q c c u u + + + = Con los valores de: 1 , 0 3 5 , 1 2 , 0 L B 2 , 0 ´ s c = = = K 4 , 0 ´ d c = Entonces: , 1 2 arctan B D arctan K 1 5 , 1 2 B D = = ⇒ > = ui” pat_pv_pca_11@hotmail.com a un FS = 3 será: poyo del suelo si la base de la zapata rectangula será: 9273 , 0 5 , 2 = Ing. Civil - UJCM gular. www.elsolucionario.net
  • 72. Universidad José Carlos Mariátegui” 37 , 0 9273 , 0 4 , 0 ´ d c = ⋅ = La capacidad última de apoyo se ( ) 418 40 37 , 0 1 , 0 1 50 14 , 5 qu = + + + ⋅ = La capacidad segura de apoyo se o o u s q FS q q q + − = 40 3 40 8 , 418 qs + − = kpa 166 qs = c) Calcular la capacidad máxima Por tanteo, se tiene que: qn = 100,8 kPa El factor se seguridad es: 8 , 0 126 8 , 100 Factor = = Estrato 1. Para este estrato se tiene que: Pav = 65,36 (0,8) = 52,2 kPa c o P 5 , 107 2 , 52 3 , 55 P P < = + = ∆ + El asentamiento será: ui” pat_pv_pca_11@hotmail.com será: kPa 8 , 18 será: ima admisible si el asentamiento tolerable es de Ing. Civil - UJCM s de 25 mm. www.elsolucionario.net
  • 73. Universidad José Carlos Mariátegui”         ∆ + + = c o o c oed P P P log e 1 H c S         + ⋅ ⋅ = 3 , 55 5 , 107 log 7 , 0 1 10 3 05 , 0 S 3 oed mm 5 , 25 Soed = mm 4 , 20 8 , 0 S 0 , 1 S oed 1 t = ⋅ ⋅ = Estrato 2. Para este estrato se tiene que: Pav = 13,15 (0,8) = 10,5 kPa c o P 4 , 96 5 , 10 9 , 85 P P < = + = ∆ + El asentamiento será:         ∆ + + = c o o c oed P P P log e 1 H c S         + ⋅ ⋅ = 9 , 85 4 , 96 log 8 , 0 1 10 3 33 , 0 S 3 oed mm 5 , 27 Soed = mm 2 , 24 8 , 0 S 1 , 1 S oed 2 t = ⋅ ⋅ = El asentamiento total es: St = 44,6 mm La carga neta es: qn = 50,4 kPa ESTE ASENTAMIENTO NO CU ui” pat_pv_pca_11@hotmail.com CUMPLE. Se tantea nuevamente. Ing. Civil - UJCM www.elsolucionario.net
  • 74. Universidad José Carlos Mariátegui” El factor de seguridad será: 4 , 0 126 4 , 50 Factor = = Estrato 1. Pav = 65,36 (0,4) = 26,1 kPa c o P 4 , 81 1 , 26 3 , 55 P P < = + = ∆ +         ∆ + + = c o o c oed P P P log e 1 H c S         + ⋅ ⋅ = 3 , 55 4 , 81 log 7 , 0 1 10 3 05 , 0 S 3 oed mm 8 , 14 Soed = mm 8 , 11 8 , 0 S 0 , 1 S oed 1 t = ⋅ ⋅ = Estrato 2. ∆Pav = 13,15 (0,4) = 5,2 kPa c o P 1 , 91 2 , 5 9 , 85 P P < = + = ∆ +         ∆ + + = c o o c oed P P P log e 1 H c S         + ⋅ ⋅ = 9 , 85 1 , 91 log 8 , 0 1 10 3 33 , 0 S 3 oed mm 14 Soed = mm 3 , 12 8 , 0 S 1 , 1 S oed 2 t = ⋅ ⋅ = St = 11.8 + 12.3 mm ui” pat_pv_pca_11@hotmail.com Ing. Civil - UJCM www.elsolucionario.net
  • 75. Universidad José Carlos Mariátegui” St = 24.1 mm ESTE ASENTAMIENTO ES BA La capacidad admisible de apoyo qa = 50.4 + 40 qa = 91 kPa d) El factor de seguridad sobre la La carga bruta actuante es: A F q ∑ = Con los valores de: kN F 600 1 = F kN F kN F 14 20 6 , 1 ) 25 , 0 25 , 0 5 , 1 3 ( 4 , 2 24 ) 6 , 1 25 , 0 25 , 0 ( 2 , 43 24 ) 4 , 0 3 5 , 1 ( 4 3 2 = ⋅ ⋅ − ⋅ = = ⋅ ⋅ ⋅ = = ⋅ ⋅ ⋅ = Se tiene que: kN F 6 , 787 = ∑ 2 5 , 4 5 , 1 3 m A = ⋅ = La carga bruta será: q = 175 kN/m2 que es qs aplicado La carga segura de apoyo será: o o u s q FS q q q + − = ui” pat_pv_pca_11@hotmail.com BASTANTE APROXIMADO. oyo será: e la carga neta en la capacidad de apoyo del in kN 142 ado Ing. Civil - UJCM l inciso b. www.elsolucionario.net
  • 76. Universidad José Carlos Mariátegui” o s o u q q q q FS − − = 40 175 40 8 , 418 − − = FS 135 8 , 378 = FS El factor de seguridad será: FS = 2.81 ui” pat_pv_pca_11@hotmail.com Ing. Civil - UJCM www.elsolucionario.net
  • 77. Universidad José Carlos Mariátegui” PROBLEMA 14 Se pide determinar la máxima c para una zapata rectangular de (Figura 10.15), utilizando el mé fundación. El peso unitario del corresponde a 20 kN/m3 . Los par que la resultante de la carga actú la vertical, asimismo suponer qu deformación es uniforme e igual Figura 10.15. Características del 7 10 9 8 6 5 4 3 0 2 1 ui” pat_pv_pca_11@hotmail.com a capacidad admisible de apoyo (FS = 3) de de 2.5 m de ancho y 4 m de largo emplazada método propuesto por Das. El nivel freático c del suelo por encima del nivel de agua es de parámetros de resistencia de la arena son c = actúa a 0.10 m del centro y posee una inclinaci r que el asentamiento máximo tolerable es de ual a 15 MN/m2 . del perfil de suelo y de la fuerza actuante en la B=2,5 m; L=4,0 m γ = 20 kN/m c = 0 kPa φ = 30 º E = 15 MN/m γ = 18 kN/m 0,4 m γ = 24 kN/m c 3 10° Ing. Civil - UJCM de una arena homogénea da a 2.0 m de profundidad co coincide con el nivel de de 18 kN/m3 y el saturado c = 0, = 30º. Considerar ación de 10º con respecto a de 10 mm y el módulo de la zapata. /m /m /m3 3 2 www.elsolucionario.net
  • 78. Universidad José Carlos Mariátegui” SOLUCIÓN. Las dimensiones efectivas son: m 3 , 2 1 , 0 5 , 2 5 , 2 ´ B e 2 B ´ B = ⋅ − = ⋅ − = L´ = L = 4 m La capacidad última de apoyo se qi qd qs q ci cd cs c u 0 F F F qN F F F cN ´ q + + = Para este caso se tiene que: d s qi qd qs q u F F N ´ B 5 , 0 F F F qN ´ q γ γ γ γ + = Con los valores de: q = 18 2 = 36 kN/m2 γ = 20 – 9.8 = 10,2 kN/m2 para γ = 30º se obtiene: Nq = 18.4 Los factores de forma son: 77 , 0 4 3 , 2 4 , 0 1 ´ L ´ B 4 , 0 1 F 33 , 1 58 , 0 4 3 , 2 1 tan ´ L ´ B 1 F s qs = − = − = = + = + = γ φ Los factores de profundidad son: 1 F , 1 5 , 2 2 ) 30 sen 1 ( 30 tan 2 1 F B D ) sen 1 ( tan 2 1 F 1 5 , 2 2 B D d 2 qd f 2 qd f = = − + = − + = < = γ φ φ ui” pat_pv_pca_11@hotmail.com será: i d s F F F N ´ B 5 , 0 γ γ γ γ γ i Fγ 8.40; Nγ= 2.40; tan φ = 0.58 on: 23 , Ing. Civil - UJCM www.elsolucionario.net
  • 79. Universidad José Carlos Mariátegui” Los factores de inclinación son: 44 , 0 30 10 1 1 F , 0 90 10 1 º 90 º 1 F F 2 2 i 2 2 qi ci =       − =         − = =       − =         − = = φ β β γ La capacidad última de apoyo se , 0 79 , 0 23 , 1 33 , 1 40 , 18 36 ´ + ⋅ ⋅ ⋅ ⋅ = u q di carga una es que , kPa 945 ´ = u q La capacidad segura de apoyo se o o u s q FS q q q + − = 36 3 36 945 + − = s q kPa qs 339 = La carga neta será: 36 339− = n q qn = 303 kPa ui” pat_pv_pca_11@hotmail.com 79 , 0 será: 44 , 0 1 77 , 0 4 , 22 3 , 2 2 , 10 5 , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ efectiva. área el en uniforme manera de a distribuid será: Ing. Civil - UJCM www.elsolucionario.net
  • 80. Universidad José Carlos Mariátegui” PROBLEMA 15 Para la Figura 10.16 (zapata flex a) Máxima presión segura de ap homogéneo en cuanto a resiste compresión inconfinada arrojan realizado ensayos de corte direct una cohesión nula y que en la m resultado es un ángulo de fricció b) Máxima presión admisible de centro de la fundación es de 30 m Figura 10.16. Características del SOLUCIÓN. a) Máxima presión segura de apo La carga vertical total es igual a del suelo sobre ella. Entonces, la Estr 2.00 m 4.00 m Concreto 24 kN/m3 γ = c 0.2 m x 0.3 m ui” pat_pv_pca_11@hotmail.com flexible), se pide determinar: e apoyo con un factor de seguridad de 3. Con sistencia al corte se refiere y que los result jan una resistencia en el suelo de 70 kPa. recto y que el ángulo de fricción interna del s a misma muestra de suelo se ha ejecutado un e ción interna en estado crítico de 32°. de apoyo considerando que el asentamiento 0 mm. del perfil de suelo y la fundación. apoyo con un factor de seguridad de 3. l a la fuerza vertical aplicada más la debida a , la fuerza vertical F, es: strato incompresible y permeable 3 Arcilla 20 kN/m3 γ = w γ = Agua 9.8 kN/m3 750 kN 50 kN 0.25 m 2 m x 3 m c σ ' 61.2 kN/m E = 15 MN/m 2 s e = 0.70 o C = 0.21 c C = 0.07 s Ing. Civil - UJCM Considerar que el suelo es sultados de un ensayo de a. Considerar que se han el suelo equivale a 30° con un ensayo triaxial CU cuyo to máximo tolerable en el a al peso de la fundación y 100 kN/m 2 N/m 2 www.elsolucionario.net
  • 81. Universidad José Carlos Mariátegui” W P F + = Donde: c s W W W + = c W es peso de la fundación y es i c c c V W γ = ( 1 3 . 0 2 . 0 25 . 0 3 2 24 × × + × × = c W kN Wc 52 . 38 = El peso del suelo sobre la fundac s s s V W γ = ( 1 3 . 0 2 . 0 75 . 1 3 2 20 × × − × × = s W kN Ws 9 . 207 = Luego W es: 42 . 246 52 . 38 + = W kN W 42 . 246 = La carga vertical total F es: 750 42 . 246 + = + = W P F kN F 42 . 996 = ui” pat_pv_pca_11@hotmail.com es igual a: ) 75 . 1 dación s W es: ) 75 . 1 Ing. Civil - UJCM www.elsolucionario.net
  • 82. Universidad José Carlos Mariátegui” Figura 10.17. Característica de la El ángulo de inclinación de la fu 42 . 996 50 tan = β ° = 873 . 2 β La excentricidad del punto (Figu 2 tan e = β m e 10 . 0 = Para aplicar el método de Meye Entonces: m L m B 00 . 3 0 3 ' 80 . 1 10 . 0 2 2 ' = − = = × − = La carga última a partir de la ecu qd qs q ci cd cs c u F F F qN F F F cN q + = Los parámetros de resistencia drenadas, es decir, parámetros de 2.00 m ui” pat_pv_pca_11@hotmail.com e la fuerza que actúa en la fundación. fuerza resultante β es: igura 10.17) de aplicación de la fuerza resultan eyerhof es necesario determinar las longitude ecuación de Meyerhof es: i d s qi F F F N B F γ γ γ γ γ ' 2 1 + ia a utilizarse son los parámetros que cons s de esfuerzos totales. Luego: 750 kN 50 kN e β Ing. Civil - UJCM ltante es: des efectivas de la zapata. onsideran condiciones no www.elsolucionario.net
  • 83. Universidad José Carlos Mariátegui” ° = = 0 , 70 φ kPa cu Los factores de capacidad de apo 0 ; 1 ; 14 . 5 = = = γ N N N q c Los factores de forma, son afecta c q cs N N L B F ' ' 1+ = 117 . 1 14 . 5 1 ' 0 . 3 8 . 1 1 = × + = cs F φ tan ' ' 1 L B Fqs + = 1 = qs F Los factores de profundidad son: B D F f cd 4 . 0 1+ = 40 . 1 2 2 4 . 0 1 = × + = cd F 0 . 1 = qd F Los factores de inclinación, son: 2 90 1       ° − = = β qi ci F F 937 . 0 90 873 . 2 1 2 =       ° ° − = = qi ci F F La capacidad última de apoyo se 93 . 0 40 . 1 117 . 1 14 . 5 70 × × × × = u q kPa qu 7 . 564 = ui” pat_pv_pca_11@hotmail.com apoyo son: ectados por las dimensiones efectivas son: on: on: 37 será: 937 . 0 1 1 1 40 937 × × × × + Ing. Civil - UJCM www.elsolucionario.net
  • 84. Universidad José Carlos Mariátegui” Luego, la presión segura de apoy 3 7 . 564 = = FS q q u s qs = 188.2 kPa Además, se puede calcular la má       + = B e BL F q 6 1 max q 6 1 3 2 42 . 996 max    + × = Luego, el factor de seguridad rea max q q FS u real = 6 . 2 89 . 215 7 . 564 = = real FS b) Máxima presión admisible de Para la carga neta, k qn 07 . 126 = La carga segura bruta es de qs = Entonces, como no existe cambio ( ) 40 190− = n s q ( ) ( ) n n s q q n s S S kPa q > ⇒ = 150 La carga admisible viene dada en ui” pat_pv_pca_11@hotmail.com poyo para un factor de seguridad igual a 3, es: máxima presión en la base: kPa 89 . 215 2 1 . 0 =    × real es: 6 de apoyo considerando el asentamiento máxim kPa el asentamiento total es mm ST 109 = . kPa 190 = ⇒ la carga segura neta es ( ) n s q = bio en la posición del nivel freático: a en función a los asentamientos, entonces: Ing. Civil - UJCM es: ximo tolerable. ' ' o s q q − = . www.elsolucionario.net
  • 85. Universidad José Carlos Mariátegui” Iteración N° 1 kPa qn 50 = El incremento de esfuerzos prom tres: ) 50 ( 50 23 . 60 07 . 126 av p ∆ → → 07 . 126 23 . 60 50 ) 50 ( × = ∆ av p kPa pav 89 . 23 ) 50 ( = ∆ Entonces + = ∆ + ' . 23 8 . 40 av o p σ ' log 1 o o s T oed e H C S S σ σ + + = = 40 . 64 log 707 . 1 10 4 07 . 0 3 − × × = T S t T S mm mm S = > = 30 8 . 32 Iteración N° 2 kPa qn 48 = El incremento de esfuerzos prom tres: ) 50 ( 48 23 . 60 07 . 126 av p ∆ → → ui” pat_pv_pca_11@hotmail.com omedio, av p ∆ , para esa carga neta es determin 23 ⇒ = < = ' 13 . 74 69 . 64 89 . c kPa kPa σ Arcilla S ' o av p σ ∆ + 8 . 40 69 . tol NO CUMPLE omedio, av p ∆ , para esa carga neta es determin Ing. Civil - UJCM minado a partir de regla de a SC minado a partir de regla de www.elsolucionario.net
  • 86. Universidad José Carlos Mariátegui” 07 . 126 23 . 60 48 ) 50 ( × = ∆ av p kPa pav 93 . 22 ) 50 ( = ∆ Entonces + = ∆ + ' . 22 8 . 40 av o p σ ' log 1 o o s T oed e H C S S σ σ + + = = 40 . 63 log 707 . 1 10 4 07 . 0 3 − × × = T S t T S mm mm S = > = 30 8 . 31 Iteración N° 3 kPa qn 44 = El incremento de esfuerzos prom tres: ) 50 ( 44 23 . 60 07 . 126 av p ∆ → → 07 . 126 23 . 60 44 ) 50 ( × = ∆ av p kPa pav 02 . 21 ) 50 ( = ∆ Entonces + = ∆ + ' . 21 8 . 40 av o p σ ' log 1 o o s T oed e H C S S σ σ + + = = ui” pat_pv_pca_11@hotmail.com 23 ⇒ = < = ' 13 . 74 73 . 63 93 . c kPa kPa σ Arcilla S ' o av p σ ∆ + 8 . 40 73 . tol NO CUMPLE omedio, av p ∆ , para esa carga neta es determin 23 ⇒ = < = ' 13 . 74 30 . 62 02 . c kPa kPa σ Arcilla S ' o av p σ ∆ + Ing. Civil - UJCM a SC minado a partir de regla de a SC www.elsolucionario.net
  • 87. Universidad José Carlos Mariátegui” 8 . 40 30 . 62 log 707 . 1 10 4 07 . 0 3 − × × = T S tol T S mm mm S = > = 30 2 . 30 kPa qn 45 = ⇒ ' ' o a n q q q − = (No existe cambio e o a n q q q − = 40 45 + = + = o n a q q q qa = 85 kPa ui” pat_pv_pca_11@hotmail.com CUMPLE io en la posición del nivel freático) Ing. Civil - UJCM www.elsolucionario.net
  • 88. Universidad José Carlos Mariátegui” PROBLEMA 16 Para la Figura 10.18, determin Hansen para un factor de seguri construye muy lentamente. Figura 10.18. Perfil del suelo y z SOLUCIÓN La carga es: 5 . 0 20 1 17 × + × = q kPa q 27 = La capacidad última de apoyo se Con los valores de: 12 . 0 5 . 2 5 . 1 2 . 0 2 . 0 ' = × = = L B sc 3 . 0 0 . 1 4 . 0 4 . 0 ' = × = = k dc c = 45 kPa 0.5 m c' = 0 ' = 35° φ u 1.5 m x 2.5 m Concreto 24 kN/m 0.3 m x 0.3 m 1.0 m γ = c 550 kN 3 ( ) q d s c q c c u u + + + = ' ' 1 14 . 5 ui” pat_pv_pca_11@hotmail.com minar la máxima presión segura de apoyo u uridad de 3 sobre la carga neta aplicada, supo y zapata. será: m Arcilla γ = sat 0.25 m 20 kN/m 3 3 17 kN/m Arcilla γ = Ing. Civil - UJCM o utilizando el método de uponiendo que la zapata se www.elsolucionario.net
  • 89. Universidad José Carlos Mariátegui” 0 . 1 1 5 . 1 5 . 1 = = ⇒ ≤ = B D k B D La capacidad última de apoyo se ( ) 27 4 . 0 12 . 0 1 45 14 . 5 + + + × = u q kPa qu 58 . 378 = La carga segura neta será: ( ) ( ) FS q q net u net s = La carga última neta es: . 378 ' ' ) ( = − = − = o u o u net u q q q q q kPa q net u 58 . 351 ) ( = Entonces, la carga segura neta se kPa q net s 19 . 117 3 58 . 351 ) ( = = o s o s net s q q q q q − = − = ' ' ) ( La carga segura neta es: 27 19 . 117 ) ( + = + = o net s s q q q qs = 144.19 kPa ui” pat_pv_pca_11@hotmail.com será: 27 27 58 . 78 − a será: Ing. Civil - UJCM www.elsolucionario.net
  • 90. Universidad José Carlos Mariátegui” PROBLEMA 17 Para la Figura 10.19 determinar ecuación de Hansen. Figura 10.19. Características del SOLUCIÓN FS q q net net u s = net u q q FS net = La carga neta será: ' ' o n q q q − = Se determinan los valores de: o o o u q q − = ' kPa qo 55 2 19 1 17 = × + × = 1 in 7 6 5 4 3 2 0 fi ui” pat_pv_pca_11@hotmail.com nar el factor de seguridad aplicado a la carga ú del perfil del suelo. u c = 57 kPa ' = 32° c' = 5 kPa φ 500 kN B= 2.5 m x L= 2.5 m 0.3 m 20 kN/m γ = 3 Concreto 24 kN/m3 c γ = inicial γ = 17 kN/m Arcilla 3 3 final 19 kN/m γ = Ing. Civil - UJCM a última neta, utilizando la www.elsolucionario.net
  • 91. Universidad José Carlos Mariátegui” kPa uo 6 . 19 2 8 . 9 = × = kPa qo 4 . 35 6 . 19 55 ' = − = f u q q − = ' 25 . 6 5 . 2 5 . 2 ; A A F q = × = Σ = s c W W P F + + = Σ kN P 500 = ( Wc 2 . 0 2 . 0 3 . 0 5 . 2 5 . 2 24 × + × × = ( Ws 2 . 0 2 . 0 7 . 2 5 . 2 5 . 2 17 × + × × = q 2 . 133 25 . 6 04 . 285 59 . 47 500 = + + = 0 = f u kPa q 22 . 133 '= Entonces la carga neta será: 4 . 35 22 . 133 − = n q kPa qn 82 . 97 = La zapata está apoyada sobre a arcilla. La condición más desfavorable e ° = = 0 , 57 φ kPa cu Aplicando la ecuación de Hansen ui” pat_pv_pca_11@hotmail.com 2 m ) kN 59 . 47 7 . 2 2 = × ) kN 04 . 285 7 . 2 2 = × kPa 22 re arcilla, por tanto, los parámetros de resist le en arcilla se da a corto plazo. sen, la capacidad última de apoyo será: Ing. Civil - UJCM sistencia deben ser los de www.elsolucionario.net
  • 92. Universidad José Carlos Mariátegui” ( b i d s c q c c c c u u − − − + + = ' ' ' ' 1 14 . 5 Debido a que no existe inclinació 0 ' ' ' = = = c c c g b i Los factores de forma y profundi 2 . 0 5 . 2 5 . 2 2 . 0 2 . 0 ' = × = × = L B sc 350 . 0 876 . 0 4 . 0 4 . 0 ' = × = = k dc k B Df 1 2 . 1 5 . 2 / 3 / ⇒ > = = 876 . 0 = k La carga es: kPa q 51 3 17 = × = La capacidad última de apoyo se ( ) 35 . 0 2 . 0 1 57 14 . 5 + + + × × = u q kPa qu 12 . 505 = La efectiva será: kPa u q q f u u 12 . 505 ' = − = La carga última de apoyo neta se q q q o u unet 4 . 35 12 . 505 ' ' = − = − = El factor de seguridad será: 80 . 4 82 . 97 72 . 469 = = = n u q q FS net ui” pat_pv_pca_11@hotmail.com ) q gc + − ' ción de ningún tipo, entonces: ndidad son: B Df arctan = será: 51 a será: kPa 72 . 469 Ing. Civil - UJCM www.elsolucionario.net
  • 93. Universidad José Carlos Mariátegui” PROBLEMA 18 Para la Figura 10.20 determin Hansen para un factor de seguri construye en un instante de tiemp Figura 10.20. Características del La carga será: 5 . 0 20 1 17 × + × = q kPa q 27 = La capacidad última de apoyo se ( ) q d s c q c c u u + + + = ' ' 1 14 . 5 Con los valores de: 133 . 0 3 2 2 . 0 2 . 0 ' = × = = L B sc 3 . 0 75 . 0 4 . 0 4 . 0 ' = × = = k dc 7 . 0 2 5 . 1 1 2 5 . 1 = = = ⇒ < = B D k B D 0.3 m 0.5 m 1.0 m u c = 4 φ' = 3 c' = 0 ui” pat_pv_pca_11@hotmail.com inar la máxima presión segura de apoyo u uridad de 3 sobre la carga neta aplicada, supo empo (20 puntos). del perfil del suelo y de la fuerza que actúa en será: 75 2 m x 3 m m x 0.3 m 24 kN/m Concreto c γ = 3 sat 0.25 m Arcilla γ = Arcilla 3 17 kN/m γ = 20 kN/m 550 kN = 45 kPa = 35° = 0 Ing. Civil - UJCM o utilizando el método de uponiendo que la zapata se en la zapata. /m 3 www.elsolucionario.net
  • 94. Universidad José Carlos Mariátegui” La capacidad última de apoyo se ( ) 3 . 0 133 . 0 1 45 14 . 5 + + + × = u q kPa qu 45 . 358 = La carga segura neta es: ( ) ( ) FS q q net u net s = La carga última neta es: . 385 ' ' ) ( = − = − = o u o u net u q q q q q kPa q net u 45 . 331 ) ( = Con este valor se determina la ca q net s 110 3 45 . 331 ) ( = = s o s net s q q q q = − = ' ' ) ( 110 ) ( = + = o net s s q q q qs = 137.48 kPa ui” pat_pv_pca_11@hotmail.com será: 27 27 45 . 85 − carga segura neta que será: kPa 48 . 10 o q − 27 48 . 110 + Ing. Civil - UJCM www.elsolucionario.net
  • 95. Universidad José Carlos Mariátegui” $%& $%& $%& $%& PROBLEMA 1 Se pide: a) Determinar la razón de áreas respectivamente 86 mm y 90 mm b) Determinar la razón de áreas d 35 mm y 51 mm respectivament SOLUCIÓN a) razón de áreas de muestreo Shelby ) 100 ( 86 86 90 (%) ) 100 ( (%) 2 2 2 2 2 2 − = − = r I I O r A D D D A Ar (%) = 9,51 % Para que una muestra de suelo sea c igual o menor que 10%, por tanto el b) Razón de áreas de una cuchara de m ) 100 ( 35 35 51 (%) ) 100 ( (%) 2 2 2 2 2 2 − = − = r I I O r A D D D A Ar (%) = 112 % Este porcentaje indica que la muestra ui” pat_pv_pca_11@hotmail.com $%&' () *+& ,-.,-+&' $%&' () *+& ,-.,-+&' $%&' () *+& ,-.,-+&' $%&' () *+& ,-.,-+&' eas de un tubo de muestreo Shelby cuyos diámet mm. s de una cuchara de muestreo SPT cuyos diámetro ente. o Shelby. a considerada no disturbada, generalmente su rela el tubo Shelby está dentro de los parámetros acepta hara de muestreo SPT. uestra obtenida con la cuchara es altamente disturbada Ing. Civil - UJCM etros interno y externo son etros interno y externo son de elación de áreas tiene que ser eptables. sturbada. www.elsolucionario.net
  • 96. Universidad José Carlos Mariátegui” PROBLEMA 2 Los siguientes datos corresponden a Numero de golpes: N = 20 Profundidad de sondeo: L = 12m Diámetro de la perforación: 150 m Peso unitario promedio del suelo: Energía del martillo Er = 45 Muestreo sin liner. Realizar las correcciones necesarias SOLUCIÓN En el anexo I se presentan las formu 0 ) 12 )( 18 ( 76 , 95 1 2 = = ′ ′ = p p CN p′1 : Esfuerzo vertical efectivo e 64 , 0 70 45 1 = = η η2 =1,00 L>10m η3 =1,00 Práctica usual sin line η4 =1,05 Diámetro de 150mm )( 1 )( 1 )( 64 , 0 )( 20 )( 67 , 0 ( 70 4 3 2 1 70 = ′ η η η η = ′ N N C N N 70 N′ = 9 Transformamos a una energía ) 9 ( 60 70 60       = ′ N 60 N′ = 10 ui” pat_pv_pca_11@hotmail.com n a un ensayo de SPT, cuyo nivel freático no fue obs = 12m n: 150 mm el suelo: γ = 18 kN/m3 sarias para una energía Er = 70 y Er = 60 mulas de corrección para el ensayo de penetración 67 , 0 efectivo estándar = 95,6 kPa al sin linear 150mm ) 05 , 1 )( energía de Er = 60 Ing. Civil - UJCM observado. ón estándar. www.elsolucionario.net
  • 97. Universidad José Carlos Mariátegui” PROBLEMA 3 De los siguientes resultados de un en corregidos N′60 a varias profundidade unitario promedio de la arena como Diámetro de perforación: 150 m Energía de martillo Er = 50 Tipo de muestreo: sin liner Profundidad 2 4 6 8 10 SOLUCIÓN Empleamos la ecuación para la correcc 4 3 2 1 70 η η η η = ′ N C N N N′70 : Valor de SPT corregido CN : Ajuste por presión de sobr 1 2 p p CN ′ ′ = p′1 : Esfuerzo vertical efectivo e p′2 : Esfuerzo vertical efectivo e η1 : Eficiencia del martillo 70 1 r E = η Er : Energía del martillo (depen ui” pat_pv_pca_11@hotmail.com un ensayo de penetración estándar en arena: determ ndidades. El nivel freático no fue observado en todo el como γ=20 kN/m3 50 mm N 8 7 12 14 13 a corrección de N regido de sobrecarga efectivo estándar = 95,76 kPa efectivo en el lugar de ensayo o (depende del tipo de martillo y su sistema de golpe) Ing. Civil - UJCM : determine los números de SPT todo el proceso. Asumir el peso www.elsolucionario.net
  • 98. Universidad José Carlos Mariátegui” 71 , 0 70 50 1 = = η η2 : Corrección por profundida η3 : Corrección por muestreo ( η4: Corrección por diámetro de N : Valor de SPT obtenido en c Para convertir a N′60 se realiza el siguie 70 60 60 70 N N ′ = ′ En la siguiente tabla se resumen las Prof.H N P'1=γ γ γ γ h 2 8 40 4 7 80 6 12 120 8 14 160 10 13 200 ui” pat_pv_pca_11@hotmail.com fundidad (tabla I-1, anexo I) estreo (tabla I-2, anexo I) metro de perforación (tabla I-3, anexo I) nido en campo el siguiente factor de conversión: las operaciones efectuadas. CN η η η η1 η η η η2 η η η η3 η η η η4 1,55 0,71 0,75 1,00 1,05 1,09 0,71 0,75 1,00 1,05 0,89 0,71 0,85 1,00 1,05 0,77 0,71 0,95 1,00 1,05 0,69 0,71 1,00 1,00 1,05 Ing. Civil - UJCM N'70 N'60 7 8 4 5 7 8 8 9 7 8 www.elsolucionario.net
  • 99. Universidad José Carlos Mariátegui” PROBLEMA 4 El número N′70 de un ensayo de SPT correlaciones: la densidad relativa, el á SOLUCIÓN Mediante los valores de la tabla I- especificado y la consistencia del sue Interpolando tenemos: ( )+ −         − − = 35 , 0 65 , 0 8 20 8 15 r D Angulo de fricción interna: ( ) ⇒ + −         − − = φ 32 32 36 8 20 8 15 Peso unitario 1 130 ( 8 20 8 15 −         − − = γ Entonces: γ=122 kN/m3 ui” pat_pv_pca_11@hotmail.com de SPT fue de 15, siendo el suelo de consistencia medi tiva, el ángulo de fricción interna y el peso unitario del su -4 (anexo I ), encontramos el rango de valores suelo. ⇒ + 35 , 0 Dr = 0,52 ⇒ φ = 34º 110 ) 110 + Ing. Civil - UJCM cia media, estimar por medio de rio del suelo. es para el número de golpes www.elsolucionario.net
  • 100. Universidad José Carlos Mariátegui” PROBLEMA 5 Se realizó un ensayo con la veleta d torque hasta la falla de 70 Nxm. De considerar que su índice de plasticid SOLUCIÓN Para encontrar la solución se utilizara Asumimos el tipo de movilización del s u c d h d T u c 5 , 0 2 ) 152 , 0 ( 2 ) 076 , 0 ( 70 4 3 2 2 + π = β + π =             Corrección por plasticidad: , 1 )) 18 )(log( 54 , 0 ( 7 , 1 = − = λ Resistencia al corte no drenado: diseño u veleta u diseño u c c c ) 45118 )( 022 , 1 ( ) ( ) ( ) ( = = λ = 2 kN/m 46,1 = u(diseño) c ui” pat_pv_pca_11@hotmail.com a de corte, cuyas dimensiones son: d = 76 mm y h Determinar la resistencia al corte no drenado para ticidad es de PI = 18. utilizara la ecuación de Calding que se encuentre en la ión del suelo en los extremos como triangular, por tanto 2 N/m 45118 4 3 076 , 0 5 =     022 , 2 N/m 46117 Ing. Civil - UJCM = 152 mm, aplicándose un ara propósitos de diseño, tre en la sección I.3 del anexo I . or tanto β=1/2 www.elsolucionario.net
  • 101. Universidad José Carlos Mariátegui” PROBLEMA 6 Se realizó un ensayo de CPT cuyos metros en una arena con γ γ γ γ’=11,15 k mecánico. SOLUCIÓN Angulo de fricción interna para arenas I.        + = φ         σ + = φ − − 1 ( log ) 38 , 0 ( 1 , 0 tan log ) 38 , 0 ( 1 , 0 tan 1 1 q φ φ φ φ = 42,3º ui” pat_pv_pca_11@hotmail.com os resultados fueron los siguientes: qc=12 Mpa a u 5 kN/m3. Estimar el ángulo de fricción interna φ φ φ φ. a arenas normalmente consolidadas que se encuentra e ° =                σ 3 , 42 ) 8 )( 15 , 11 12000 'v c q Ing. Civil - UJCM a una profundidad de 8 . Se utilizó un cono uentra en la sección I.6 del anexo www.elsolucionario.net
  • 102. Universidad José Carlos Mariátegui” PROBLEMA 7 Se desea construir una fundación cua terreno en una arena medianamente por debajo de la superficie. Los valores Profundidad, m N (campo) Calcular la capacidad admisible del SOLUCIÓN Analizamos hasta una profundidad por debajo del nivel de fundación. El número de golpes debe ser corregid Profundidad (m) 2,0 2,8 3,6 4,4 5,2 6,0 Calculamos el número corregido de , 0 )( 45 , 17 ( ) 4 , 0 )( 04 , 19 ( 1 + = promedio N N1promedio = 18,13 ; ent ui” pat_pv_pca_11@hotmail.com ción cuadrada de 4,0 m. a una profundidad de 2,0 m amente densa de peso unitario 19,0 kN/m3 . El nivel de s valores obtenidos en un ensayo de penetración estánda 2,0 2,8 3,6 4,4 5,2 6,0 12 13 15 15 18 21 del suelo si el asentamiento está restringido a 25m dad igual al ancho de la fundación, es decir hasta u corregido, para tal efecto se presenta la siguiente tabla: ) / ( 2 m kN v σ µ (kN/m2 ) σ´v v N C σ = 76 , 95 38 0,0 38 1,587 53,2 0,0 53,2 1,342 68,4 0,0 68,4 1,183 83,6 3,92 79,68 1,096 98,8 11,76 87,04 1,049 114 19,6 94,4 1,007 de golpes promedio: 4 2 ( ) 8 , 0 )( 88 , 18 ( ) 8 , 0 )( 44 , 16 ( ) 9 , 0 )( 75 , 17 ( ) 7 , + + + + 13 ; entonces la capacidad admisible neta es Ing. Civil - UJCM e 2,0 m por debajo del nivel del nivel de agua se localiza a 4,0 m estándar son: 6,0 6,8 21 25 5mm. ta una profundidad 4.0 m e tabla: 76 N N1 12 19,04 13 17,45 15 17,75 15 16,44 18 18,88 21 21,15 ) 4 , 0 )( 15 , 21 www.elsolucionario.net
  • 103. Universidad José Carlos Mariátegui”    = 2 ) ( 95 , 1 pie ton q neta a       = 2 ) ( 7 , 186 m kN q neta a 0 ) ( q q q q neta a ⇒ − = ) 19 )( 2 ( 7 , 186 + = a q qa = 225 kN/m2 ui” pat_pv_pca_11@hotmail.com                      2 2 1 76 , 95 pie ton m kN    0 ) ( q q neta a + = ) Ing. Civil - UJCM www.elsolucionario.net
  • 104. Universidad José Carlos Mariátegui” PROBLEMA 8 Para los datos de la Figura 13.3, se pid siguientes datos: Equipo utilizado: Industria japo Diámetro del sondeo = 150 mm Cuchara sin recubrimiento. Nivel freático a 2 m de la supe El nivel de agua se mantuvo Figura 13.3. Características del perfil d SOLUCIÓN Ensayo SPT. De acuerdo a la tabla de factores de co • Martillo de rosquilla de industria j Er=67 70 ⇒ = rb E F 0 2 4 6 8 10 h[m] ui” pat_pv_pca_11@hotmail.com .3, se pide determinar la máxima capacidad admisible de stria japonesa. Martillo de rosquilla estirado por cable. 150 mm. la superficie. ntuvo al nivel del terreno durante la ejecución del sondeo l perfil de suelo y la fundación. res de corrección para el SPT, tenemos que: tria japonesa: 957 . 0 70 67 1 = = = rb r E E η FIGURA 3 N h 15 1 15 2 15 3 16 4 16 5 17 17 7 18 8 1 9 1 B=L=3m Arena =20 kN/m3 γ =19 kN/m3 γ Por debajo del N.F. Por encima del N.F stolerable=25 mm Ing. Civil - UJCM ble de apoyo considerando los cable. l sondeo SPT. 18 10 .F. .F. www.elsolucionario.net
  • 105. Universidad José Carlos Mariátegui” • Sin recubrimiento de lodo bentoní ⇒ • Diámetro de sondeo 150 mm. ⇒ Figura 13.4. Variación de esfuerzos en Determinación del número de golpes c ' 76 . 95 σ = N C ; ajuste por presión de 4 3 2 1 70 η η η η = ′ N C N N h CN η1 2 2.167 0.957 3 1.769 0.957 4 1.532 0.957 5 1.370 0.957 7 1.158 0.957 8 1.083 0.957 Determinación de la media ponderada 0 1 2 3 4 5 6 7 8 [m] 2B =19 γ =20 γ ui” pat_pv_pca_11@hotmail.com bentonítico durante la perforación. 00 . 1 3 = η 05 . 1 4 = η erzos en el perfil de suelo. golpes corregido por presión efectiva (N’70=Nc) para cada resión de sobrecarga. η2 η3 η4 N70 Nc 0.75 1.00 1.05 15 24.5 0.75 1.00 1.05 15 20.0 0.85 1.00 1.05 16 20.94 0.85 1.00 1.05 16 18.72 0.95 1.00 1.05 17 18.79 0.95 1.00 1.05 17 17.58 nderada del número de golpes corregido. 2B N=15 N=15 N=16 N=16 N=17 N=17 19 kN/m3 B=3 m σ'=10.2*2=20.4 kN σ'=30.6 kN/m3 σ'=40.8 kN/m3 σ'=51.0 kN/m3 σ'=71.4 kN/m3 σ'=81.6 kN/m3 20 Ing. Civil - UJCM ara cada subdivisión. N/m3 www.elsolucionario.net
  • 106. Universidad José Carlos Mariátegui” 71 . 19 94 . 20 1 * 20 5 . 0 * 5 . 24 = + + = Ncpr Ncpr El factor de profundidad es: B D F f d . 1 3 2 33 . 0 1 33 . 0 1 = + = + = La capacidad portante admisible neta Nc qan 98 . 11    ⋅ ⋅ = 2 09 . 344 3 * 28 . 3 1 3 * 28 . 3 * 71 . 19 * 98 . 11 m kN q q an an =       + = La capacidad portante admisible es: 34 = + = o an a q q q kPa qa 382 = ui” pat_pv_pca_11@hotmail.com 6 5 . 0 * 58 . 17 5 . 1 * 79 . 18 5 . 1 * 72 . 18 1 * 94 + + + Cumple 33 . 1 22 . ≤ ble neta es: m B para S F B B e d 22 . 1 4 . 25 * 28 . 3 1 * 28 . 3 2 ≥       ⋅    + 2 4 . 25 25 22 . 1 *          ble es: 2 * 19 09 . 344 + Ing. Civil - UJCM www.elsolucionario.net
  • 107. Universidad José Carlos Mariátegui” Tabla J.1 Ecuaciones d Terzaghi qu = c Nc sc + q Nq + 0,5 Para: continua circ sc = 1,0 1, sγ = 1,0 0, (Ver Tabla J.2 para val Meyerhof Carga vertical: qu = Carga inclinada: qu = (Ver Tabla J.3 para fac Hansen qu = cNcscdcicgcbc + qN Cuando φ φ φ φ = = = = 0º, Usar qu = 5,14 cu(1+ s′c+ d′c (Ver Tabla J.5 para fac Vesic Utilizar las ecuaciones (Ver Tabla J.5 para fac ui” pat_pv_pca_11@hotmail.com ANEXO CAPACIDAD PORTANTE s de capacidad portante (Bowles, 1995) 0,5 γ B Nγ sγ ircular cuadrada 1,3 1,3 0,6 0,8 valores de factores) Nq a = Nc Nγ = cNcscdc + qNqsqdq + 0,5γBNγsγdγ = cNcdcic + qNqdqiq + 0,5γBNγdγiγ factores de forma, profundidad, e inclinación) Nq Nc Nγ qNqsqdqiqgqbq + 0,5γBNγsγdγiγgγbγ c – i′c – b′c – g′c)+q factores de forma, profundidad, y otros) Nq Nc Nγ es de Hansen factores de forma, profundidad, y otros) Nq Nc Nγ Ing. Civil - UJCM = ( ) /2 cos a2 φ + 45 2 2 = e(0,75π-φ/2)tan φ = (Nq – 1) cot φ =         − φ φ γ 1 2 2 cos K tan p = eπtanφ tan2 (45+ 2 φ ) = (Nq – 1) cot φ = (Nq – 1) tan(1,4φ) = igual a Meyerhof = igual a Meyerhof = 1,5(Nq – 1) tan φ = igual a Meyerhof = igual a Meyerhof = 2 (Nq + 1) tan φ www.elsolucionario.net