EJERCICIOS EN CLASE
GRÁFICAR LAS DESIGUALDADES
EJERCICIO 1
a) Convertir la desigualdad en igualdad
2X1 + 4X2 = 12
b) Graficar una recta
 Recta.- representa una ecuación de 1°
 Curva.- representa una ecuación de 2°
c) Escojo un punto de ensayo: P(0,0)
d) Determino si el punto de ensayo satisface la desigualdad
2(0)+4(0) ≤ 12
0 < 12 VERDADERO
Si escojo otro punto de ensayo: P (6,4)
2(6)+4(4) ≤ 12
X1 X2
0 3
6 0
2X1 + 4X2 ≤ 12
28 ≤ 12 FALSO
EJERCICIO 2
3X1 + 6X2 = 17
X1 X2
0 2.8
5.7 0
P (0,0)
3(0)+6(0) ≥17
0 ≥ 17 FALSO
RESOLUCIÓN POR EL MÉTODO GRÁFICO
EJERCICIO 3
Una compañía de auditores se especializa en preparar liquidaciones y auditorías
de Empresas. Tienen interés en saber cuántas auditorías y liquidaciones pueden
realizar mensualmente para maximizar sus ingresos. Se dispone de 800 horas de
trabajo directo y 320 horas para revisión.
3X1 + 6X2 ≥ 17
Una auditoría en promedio requiere de 40 horas de trabajo directo y 10 horas de
revisión, además aporta un ingreso de $300. Una liquidación de impuesto requiere
de 8 horas de trabajo directo y de 5 horas de revisión, produce un ingreso de
$100. El máximo de liquidaciones mensuales disponible es de 60.
ESTRUCTURA DEL MODELO DE PROGRAMACIÓN LINEAL
F.O
S. a 8X1+40X2 ≤ 800
5X1+10X2 ≤ 320
X1 ≤ 60
X1, X2 ≥ 0
8X1+40X2 = 800
X1 X2
0 20
100 0
8(0)+40(0) ≤ 800
0 ≤ 800 VERDADERO
LIQUIDACIONES AUDITORÍAS DISPONGO DE :
X1 X2
HORAS DE TRABAJO 8 40 800
HORAS DE REVISIÓN 5 10 320
UTILIDAD 100 300
MAXIMIZAR:
Z= 100(X1) +300(X2)
5X1+10X2 = 320
X1 X2
0 32
64 0
5(0)+10(0) ≤ 320
0 ≤ 320 VERDADERO
X1 = 60
PUNTO X1 X2 Z
A 0 0 0
B 0 20 6000
C 40 12 7600
D 60 2 6600
E 60 0 6000
Para calcular los puntos C y D
8X1+40X2 = 800
5X1+10X2 = 320 (-4)
8X1 +40X2 = 800
-20X1-400X2 = -1280
-12X1 = - 480
X1 = 40
8(40) + 40X2 = 800
40X2 = 800 -320
X2 = 12
X1 = 60
5(60) + 10X2 = 320
10X2 = 320 – 300
X2 = 2
Solución Óptima (SO): Z =7600 Restricciones Activas (RA): 1,2
Variables Óptimas (VO): X1 = 40 Restricciones Inactivas: (RI): 3
X2 = 12
COMPROBACIÓN
8 X1 + 40 X2 ≤ 800
8(40)+40(12) ≤ 800
320 + 480 ≤ 800
800 ≤ 800 Equilibrio 8 X1 + 40 X2 + h1 = 800
8(40) + 40 (12) + h1 = 800
800 + h1 = 800
h1 = 0
5 X1 + 10 X2 ≤ 320
5(40) + 10(12) ≤ 320
200 + 120 ≤ 320
320 ≤ 320 Equilibrio 5 X1 + 10 X2 + h2 = 320
5(40) + 10(12) + h2 = 320
200 + 120 + h2 = 320
h2 = 0
X1 ≤ 60
40 ≤ 60 Hay Holgura X1 + h3 = 60
40 + h3 = 60
h3 = 20
Entonces, para maximizar los ingresos se debe hacer 40 liquidaciones y 12
auditorías para tener un ingreso de $7600.
Además existe una holgura de 20 liquidaciones respecto al límite máximo de
liquidaciones posibles en el mes.
EJERCICIO 4
Se va a organizar una planta de un taller de automóviles donde van a trabajar
electricistas y mecánicos. Por necesidades de mercado, es necesario que haya
mayor o igual número de mecánicos que de electricistas y que el número de
mecánicos no supere al doble que el de electricistas. En total hay disponibles 30
electricistas y 20 mecánicos. El beneficio de la Empresa por jornada es de 250
euros por electricista y 200 euros por mecánicos.
¿Cuántos trabajadores de cada clase deben elegirse para obtener el máximo
beneficio, y cuál es este?
F.O.
VARIABLES: X1= número de mecánicos
X2= número de electricistas
S.a
X1≥ X2
X1≤ 2X2
X2≤ 30
X1≤ 20
X1, X2 ≥ 0
X1= X2 X1= 2X2 X2= 30 X1=20
0 ≥ 0 0 ≤ 2(0) 0 ≤ 30
0 ≤ 20
V V V V
X1 X2
0 0
5 5
10 10
15 15
20 20
X1 X2
0 0
10 5
20 10
30 15
40 20
MAXIMIZAR: Z= 200(X1) +250(X2)
S O. Z= 9000
V.O. RA=1, 4
X1= 20 RI= 2, 3
X2=20
COMPROBACIÓN
1) X1≥ X2
20≥20 Equilibrio
2) X1≤ 2X2
20 ≤ 2(20)
3) 20 ≤ 40 Holgura
X1 + H1 = 2X2
20 + H1 = 2(20)
20 + H1 = 40
H1 = 20
4) X2≤ 30
20 ≤ 30 Holgura X2 + H2 = 30
20 + H2 = 30
H2 = 10
5) X1≤20
20 ≤ 20 Equilibrio
PUNTOS X1 X2 Z
B 20 10 6500
C 20 20 9000
PROFESIONALES DISPONIBLES HOLGURA EXCEDENTE
MECÁNICOS 20
ELECTRICISTAS 30 10
EJERCICIO 5
SOLUCIÓN ÚNICA
Función objetivo: Minimizar
-3x+2y <=6
Sujeto A
X +y<=10.5
-x+2y>=4
X,Y >=0
1) -3x+2y =6 2) X +y=10.5 3)-x+2y=4
X Y
0 3
-2 0
0<=6 0<=105 0>=4
V V F
X Y
0 2
-4 0
X Y
0 10.5
10.5 0
PUNTO A= (0; 2)
COMPROBACIÓN
-3x+2y <=6 -3(0)+2(2) <=6
4<=6
HOLGURA -3(0)+2(2)=6
4+H1=6
H1=3
X +y<=10.5 0+2<=10.5
2<=10.5
HOLGURA (0)+2=10.5
2+H2=10.5
H2=8.5
-x+2y>=4 -0+2(2)>=4
4>=4
HOLGURA -0+2(2)+H3=4
H3=0
SO
Z=6
V.O
X =0
Y= 2
RA=3
RI=1; 2
EJERCICIO No. 6
SOLUCIÓN MÚLTIPLE
Función objetivo: Maximizar
3x1+5x2 <=15
Sujeto a
5X1 +2x2<=10
X1;x2>=0
1) 3x1+5x2 <=15 2)5X1 +2x2<=10
0<=15 0<=10
V V
X1 X2
0 3
5 0
X1 X2
0 5
2 0
X2
Punto c
3x1+5x2 =15 (-2)
5X1 +2x2=10(5)
-6x1-10x2 =-30
25X1 +10x2=50
19x1 0 =20
X1=20/19
3(20/19)+5x2 =15
60/19+5x2 =15
X2 =45/19
PUNTO c= (20/19; 45/19)
Comprobación:
3x1+5x2 <=15 3(20/19)+5(45/19)
<=15
15<=15
HOLGURA 3(20/19)+2(45/19)=15
15+H1=15
H1=0
5X1 +2x2<=10 5(20/19)+2(45/19)
<=10
10<=10
HOLGURA 5(20/19)+2(45/19)=10
10+H2=10
H2=0
SO Z=5
V.O X1 =20/19
X2= 45/19
RA=1;2
Posibles soluciones optimas
X1 DESDE 20/19 HASTA 45/19
20/19 <= X1 <=2
X2 0 <= X2 <= 45/19 DONDE Z=5
EJERCICIO No. 7
NO ACOTADO PERO TIENE SOLUCIÓN
Un frutero necesita 16 cajas de naranja, 5 de plátanos y 20 de manzanas. Dos
mayoristas pueden suministrarle para satisfacer sus necesidades, pero solo
venden la fruta en contenedores completos.
El mayorista A envía cada contenedor 8 cajas de naranja, 1 de plátanos t 2 de
manzana.
El mayorista B envía en cada contenedor 2 cajas de naranjas, 1 de plátanos y 7 de
manzanas.
Sabiendo que el mayorista A se encuentra a 150km de distancia y el mayorista B
se encuentra a 300km. Calcular cuántos contenedores habrá de comprar a cada
mayorista con objeto de ahorrar tiempo y dinero, reduciendo al mínimo la distancia
de lo solicitado.
MAYORISTA A
X1
MAYORISTA B
X2
NECESITA
NARANJA 8 2 16
PLÁTANO 1 1 5
MANAZANA 2 7 20
DISTANCIA 150km 300km
F.O Minimizar
Variables: X1= Mayorista A
X2=Mayorista B
Z= 150X1+300X2
Sujeto a
Condición Técnica X1, X2 ≥ 0
1) 8X1+2X2≥16 2) 1X1+1X2 ≥5 3) 2X1+7X2 ≥20
8X1+2X2=16 1X1+1X2=5 2X1+7X2 =20
X1 X2
8X1+2X2≥16
1X1+1X2 ≥5
2X1+7X2 ≥20
0≥16 0≥5
0≥20
FALSO FALSO FALSO
GRÁFICA
NO ACOTADO PERO TIENE SOLUCIÓN
La solución óptima es Z = 1050
X1 = 3
X2 = 2
0 3
10 0
X1 X2
0 8
2 0
X1 X2
0 5
5 0
S.O Z= 1050
V.O X1= 3 ; X2= 2
COMPROBACIÓN: HOLGURAS-EXCEDENTES
1) 8X1+2X2≥16 2) 1X1+1X2 ≥5 3) 2X1+7X2 ≥20
8(3)+2( 2) ≥ 16 1(3 )+1( 2) ≥ 5 2( 3)+7(2 )
≥20
28 ≥ 16 5 ≥ 5 20
≥20
EXCEDENTE 8X1+2X2=16
8(3)+2(2)-H1 =16
28-H1 =16
H1=12
XI X2 DISPONIBLE HOLGURA EXCEDENTE
NARANJA 8 2 16 12
PLÁTANO 1 1 5
MANZANA 2 7 20
EJERCICIO No.8
PROBLEMAS NO FACTIBLES
F.O Maximizar
Variables: E
F
Z= 3000X1+4000X2
Condición Técnica E, F≥ 0
E+ F ≤ 5
E-3F ≤0
10E+15F ≤150
20E+10F≤160
30E+10F ≥150
1) E + F ≤ 5 2) E-3F ≤0 3) 10E+15F ≤150 4) 20E+10F≤160 5)
30E+10F≥150
E + F = 5 E=3F 10E+15F =150 20E+10F=160
30E+10F=150
0≤ 5 0 ≤0 0≤150 0≤160
0≥150
Verdadero Verdadero Verdadero Verdadero
Falso
NO HAY SOLUCIÓN
E F
0 5
5 0
E F
6 2
3 1
E F
0 16
8 0
E F
0 15
5 0
E F
0 10
15 0
246244973 ejercicios-en-clas1

246244973 ejercicios-en-clas1

  • 1.
    EJERCICIOS EN CLASE GRÁFICARLAS DESIGUALDADES EJERCICIO 1 a) Convertir la desigualdad en igualdad 2X1 + 4X2 = 12 b) Graficar una recta  Recta.- representa una ecuación de 1°  Curva.- representa una ecuación de 2° c) Escojo un punto de ensayo: P(0,0) d) Determino si el punto de ensayo satisface la desigualdad 2(0)+4(0) ≤ 12 0 < 12 VERDADERO Si escojo otro punto de ensayo: P (6,4) 2(6)+4(4) ≤ 12 X1 X2 0 3 6 0 2X1 + 4X2 ≤ 12
  • 2.
    28 ≤ 12FALSO EJERCICIO 2 3X1 + 6X2 = 17 X1 X2 0 2.8 5.7 0 P (0,0) 3(0)+6(0) ≥17 0 ≥ 17 FALSO RESOLUCIÓN POR EL MÉTODO GRÁFICO EJERCICIO 3 Una compañía de auditores se especializa en preparar liquidaciones y auditorías de Empresas. Tienen interés en saber cuántas auditorías y liquidaciones pueden realizar mensualmente para maximizar sus ingresos. Se dispone de 800 horas de trabajo directo y 320 horas para revisión. 3X1 + 6X2 ≥ 17
  • 3.
    Una auditoría enpromedio requiere de 40 horas de trabajo directo y 10 horas de revisión, además aporta un ingreso de $300. Una liquidación de impuesto requiere de 8 horas de trabajo directo y de 5 horas de revisión, produce un ingreso de $100. El máximo de liquidaciones mensuales disponible es de 60. ESTRUCTURA DEL MODELO DE PROGRAMACIÓN LINEAL F.O S. a 8X1+40X2 ≤ 800 5X1+10X2 ≤ 320 X1 ≤ 60 X1, X2 ≥ 0 8X1+40X2 = 800 X1 X2 0 20 100 0 8(0)+40(0) ≤ 800 0 ≤ 800 VERDADERO LIQUIDACIONES AUDITORÍAS DISPONGO DE : X1 X2 HORAS DE TRABAJO 8 40 800 HORAS DE REVISIÓN 5 10 320 UTILIDAD 100 300 MAXIMIZAR: Z= 100(X1) +300(X2)
  • 4.
    5X1+10X2 = 320 X1X2 0 32 64 0 5(0)+10(0) ≤ 320 0 ≤ 320 VERDADERO X1 = 60 PUNTO X1 X2 Z A 0 0 0 B 0 20 6000 C 40 12 7600 D 60 2 6600 E 60 0 6000 Para calcular los puntos C y D 8X1+40X2 = 800 5X1+10X2 = 320 (-4) 8X1 +40X2 = 800 -20X1-400X2 = -1280 -12X1 = - 480 X1 = 40
  • 5.
    8(40) + 40X2= 800 40X2 = 800 -320 X2 = 12 X1 = 60 5(60) + 10X2 = 320 10X2 = 320 – 300 X2 = 2 Solución Óptima (SO): Z =7600 Restricciones Activas (RA): 1,2 Variables Óptimas (VO): X1 = 40 Restricciones Inactivas: (RI): 3 X2 = 12 COMPROBACIÓN 8 X1 + 40 X2 ≤ 800 8(40)+40(12) ≤ 800 320 + 480 ≤ 800 800 ≤ 800 Equilibrio 8 X1 + 40 X2 + h1 = 800 8(40) + 40 (12) + h1 = 800 800 + h1 = 800 h1 = 0 5 X1 + 10 X2 ≤ 320 5(40) + 10(12) ≤ 320 200 + 120 ≤ 320 320 ≤ 320 Equilibrio 5 X1 + 10 X2 + h2 = 320 5(40) + 10(12) + h2 = 320 200 + 120 + h2 = 320 h2 = 0 X1 ≤ 60 40 ≤ 60 Hay Holgura X1 + h3 = 60 40 + h3 = 60 h3 = 20
  • 6.
    Entonces, para maximizarlos ingresos se debe hacer 40 liquidaciones y 12 auditorías para tener un ingreso de $7600. Además existe una holgura de 20 liquidaciones respecto al límite máximo de liquidaciones posibles en el mes. EJERCICIO 4 Se va a organizar una planta de un taller de automóviles donde van a trabajar electricistas y mecánicos. Por necesidades de mercado, es necesario que haya mayor o igual número de mecánicos que de electricistas y que el número de mecánicos no supere al doble que el de electricistas. En total hay disponibles 30 electricistas y 20 mecánicos. El beneficio de la Empresa por jornada es de 250 euros por electricista y 200 euros por mecánicos. ¿Cuántos trabajadores de cada clase deben elegirse para obtener el máximo beneficio, y cuál es este? F.O. VARIABLES: X1= número de mecánicos X2= número de electricistas S.a X1≥ X2 X1≤ 2X2 X2≤ 30 X1≤ 20 X1, X2 ≥ 0 X1= X2 X1= 2X2 X2= 30 X1=20 0 ≥ 0 0 ≤ 2(0) 0 ≤ 30 0 ≤ 20 V V V V X1 X2 0 0 5 5 10 10 15 15 20 20 X1 X2 0 0 10 5 20 10 30 15 40 20 MAXIMIZAR: Z= 200(X1) +250(X2)
  • 7.
    S O. Z=9000 V.O. RA=1, 4 X1= 20 RI= 2, 3 X2=20 COMPROBACIÓN 1) X1≥ X2 20≥20 Equilibrio 2) X1≤ 2X2 20 ≤ 2(20) 3) 20 ≤ 40 Holgura X1 + H1 = 2X2 20 + H1 = 2(20) 20 + H1 = 40 H1 = 20 4) X2≤ 30 20 ≤ 30 Holgura X2 + H2 = 30 20 + H2 = 30 H2 = 10 5) X1≤20 20 ≤ 20 Equilibrio PUNTOS X1 X2 Z B 20 10 6500 C 20 20 9000
  • 8.
    PROFESIONALES DISPONIBLES HOLGURAEXCEDENTE MECÁNICOS 20 ELECTRICISTAS 30 10 EJERCICIO 5 SOLUCIÓN ÚNICA Función objetivo: Minimizar -3x+2y <=6 Sujeto A X +y<=10.5 -x+2y>=4 X,Y >=0 1) -3x+2y =6 2) X +y=10.5 3)-x+2y=4 X Y 0 3 -2 0 0<=6 0<=105 0>=4 V V F X Y 0 2 -4 0 X Y 0 10.5 10.5 0
  • 9.
    PUNTO A= (0;2) COMPROBACIÓN -3x+2y <=6 -3(0)+2(2) <=6 4<=6 HOLGURA -3(0)+2(2)=6 4+H1=6 H1=3 X +y<=10.5 0+2<=10.5 2<=10.5 HOLGURA (0)+2=10.5 2+H2=10.5 H2=8.5 -x+2y>=4 -0+2(2)>=4 4>=4 HOLGURA -0+2(2)+H3=4 H3=0 SO Z=6 V.O X =0 Y= 2 RA=3 RI=1; 2
  • 10.
    EJERCICIO No. 6 SOLUCIÓNMÚLTIPLE Función objetivo: Maximizar 3x1+5x2 <=15 Sujeto a 5X1 +2x2<=10 X1;x2>=0 1) 3x1+5x2 <=15 2)5X1 +2x2<=10 0<=15 0<=10 V V X1 X2 0 3 5 0 X1 X2 0 5 2 0 X2
  • 11.
    Punto c 3x1+5x2 =15(-2) 5X1 +2x2=10(5) -6x1-10x2 =-30 25X1 +10x2=50 19x1 0 =20 X1=20/19 3(20/19)+5x2 =15 60/19+5x2 =15 X2 =45/19 PUNTO c= (20/19; 45/19) Comprobación: 3x1+5x2 <=15 3(20/19)+5(45/19) <=15 15<=15 HOLGURA 3(20/19)+2(45/19)=15 15+H1=15 H1=0 5X1 +2x2<=10 5(20/19)+2(45/19) <=10 10<=10 HOLGURA 5(20/19)+2(45/19)=10 10+H2=10 H2=0 SO Z=5 V.O X1 =20/19 X2= 45/19 RA=1;2 Posibles soluciones optimas X1 DESDE 20/19 HASTA 45/19 20/19 <= X1 <=2 X2 0 <= X2 <= 45/19 DONDE Z=5
  • 12.
    EJERCICIO No. 7 NOACOTADO PERO TIENE SOLUCIÓN Un frutero necesita 16 cajas de naranja, 5 de plátanos y 20 de manzanas. Dos mayoristas pueden suministrarle para satisfacer sus necesidades, pero solo venden la fruta en contenedores completos. El mayorista A envía cada contenedor 8 cajas de naranja, 1 de plátanos t 2 de manzana. El mayorista B envía en cada contenedor 2 cajas de naranjas, 1 de plátanos y 7 de manzanas. Sabiendo que el mayorista A se encuentra a 150km de distancia y el mayorista B se encuentra a 300km. Calcular cuántos contenedores habrá de comprar a cada mayorista con objeto de ahorrar tiempo y dinero, reduciendo al mínimo la distancia de lo solicitado. MAYORISTA A X1 MAYORISTA B X2 NECESITA NARANJA 8 2 16 PLÁTANO 1 1 5 MANAZANA 2 7 20 DISTANCIA 150km 300km F.O Minimizar Variables: X1= Mayorista A X2=Mayorista B Z= 150X1+300X2 Sujeto a Condición Técnica X1, X2 ≥ 0 1) 8X1+2X2≥16 2) 1X1+1X2 ≥5 3) 2X1+7X2 ≥20 8X1+2X2=16 1X1+1X2=5 2X1+7X2 =20 X1 X2 8X1+2X2≥16 1X1+1X2 ≥5 2X1+7X2 ≥20
  • 13.
    0≥16 0≥5 0≥20 FALSO FALSOFALSO GRÁFICA NO ACOTADO PERO TIENE SOLUCIÓN La solución óptima es Z = 1050 X1 = 3 X2 = 2 0 3 10 0 X1 X2 0 8 2 0 X1 X2 0 5 5 0
  • 14.
    S.O Z= 1050 V.OX1= 3 ; X2= 2 COMPROBACIÓN: HOLGURAS-EXCEDENTES 1) 8X1+2X2≥16 2) 1X1+1X2 ≥5 3) 2X1+7X2 ≥20 8(3)+2( 2) ≥ 16 1(3 )+1( 2) ≥ 5 2( 3)+7(2 ) ≥20 28 ≥ 16 5 ≥ 5 20 ≥20 EXCEDENTE 8X1+2X2=16 8(3)+2(2)-H1 =16 28-H1 =16 H1=12 XI X2 DISPONIBLE HOLGURA EXCEDENTE NARANJA 8 2 16 12 PLÁTANO 1 1 5 MANZANA 2 7 20 EJERCICIO No.8 PROBLEMAS NO FACTIBLES F.O Maximizar Variables: E F Z= 3000X1+4000X2 Condición Técnica E, F≥ 0 E+ F ≤ 5 E-3F ≤0 10E+15F ≤150 20E+10F≤160 30E+10F ≥150
  • 15.
    1) E +F ≤ 5 2) E-3F ≤0 3) 10E+15F ≤150 4) 20E+10F≤160 5) 30E+10F≥150 E + F = 5 E=3F 10E+15F =150 20E+10F=160 30E+10F=150 0≤ 5 0 ≤0 0≤150 0≤160 0≥150 Verdadero Verdadero Verdadero Verdadero Falso NO HAY SOLUCIÓN E F 0 5 5 0 E F 6 2 3 1 E F 0 16 8 0 E F 0 15 5 0 E F 0 10 15 0