SlideShare una empresa de Scribd logo
1 de 38
Descargar para leer sin conexión
O        N           O

  TÓXICO
             Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                               O                    O
             Apuntes del curso de Bioensayos Febrero-Julio de 2010                              O
                         Prof. José Luis Peña Manjarrez

Introducción y conceptos básicos
Los Bioensayos son experimentos que se realizan bajo condiciones controladas
de laboratorio con el propósito de evaluar cualitativa y cuantitativamente el efecto
que los agentes xenobióticos producen sobre organismos vegetales o animales
cuidadosamente seleccionados.
                                         Otros     autores   conceptualizan   al   ensayo
                                         biológico como herramientas de diagnóstico
                                         para determinar el efecto de agentes físicos y
                                         químicos sobre organismos de prueba bajo
                                         condiciones     experimentales   específicas       y
                                         controladas. Un ejemplo típico, pero que está en
                                         desuso es el bioensayo en ratón (fig. 1) para
                                         determinar la presencia y la concentración de
                                         ciertas ficotoxinas del tipo paralizante (PSP)
                                         producida por un dinoflagelado del género
 Figura 1. Esquema general del          Gymnodinium o bien toxinas del tipo amnésico
 procedimiento para el bioensayo e
 ratón.                                 (ASP), producidas por diatomeas del género
                                        Pseudonitzschia sp.
Los efectos son muy diversos y pueden manifestarse como inhibición o
magnificación, son evaluados por la reacción de los organismos: muerte,
crecimiento, proliferación, multiplicación, cambios morfológicos, fisiológicos o
histológicos (fig. 2).

     Figura 2. efectos tóxicos de la radiación en el
     intestino. La exposición a radiaciones
     provoca apoptosis masiva de células madre
     en la base intestinal y células endoteliales de
     los vasos sanguíneos que alimentan el
     revestimiento del intestino. Este daño se
     acompaña de pérdida de altura en las
     vellosidades intestinales, afectando la
     capacidad para absorber nutrientes.




                                                                                            1
O           N           O

  TÓXICO
            Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                                 O                       O
            Apuntes del curso de Bioensayos Febrero-Julio de 2010                                    O
                        Prof. José Luis Peña Manjarrez

Los efectos pueden manifestarse a diferentes niveles:
   a) Efectos de los xenobióticos en estructuras subcelulares,




      Figura 3. Células animal y vegetal mostrando sus principales estructuras, las cuales
      pueden ser afectadas por diferentes agentes xenobióticos.




                                                                                                 2
O         N           O

  TÓXICO
            Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                                 O                    O
            Apuntes del curso de Bioensayos Febrero-Julio de 2010                                 O
                        Prof. José Luis Peña Manjarrez

En este punto de afectaciones a nivel subcelular, nos detendremos un poco para
revisar una de las reacciones más importantes para la vida en el planeta, nos
referimos a la fotosíntesis cuyo proceso toma lugar dentro del cloroplasto (un
organelo exclusivo de las células de las plantas y algas). Su estructura es aún más
compleja que la mitocondrial y un daño en su funcionamiento significa altos costos
que pueden afectar desde el nivel individual hasta nivel de biocenosis.
Desde el punto de vista de la vida terrestre, los cloroplastos desempeñan una
función aún más esencial que la de las mitocondrias: en ellos ocurre la
fotosíntesis; esta función consiste en utilizar la energía de la luz solar para activar
la síntesis de moléculas de carbono ricas en energía, y la liberación de oxígeno.
Los cloroplastos producen tanto las moléculas nutritivas como el oxígeno que
utilizan las mitocondrias.
Estructura del cloroplasto
Los cloroplastos (fig. 4), son organelos con forma de disco, de entre 4 y 6 μm de
diámetro y 10 μm o más de
longitud. Son más abundantes en
las células de las hojas, lugar en
el cual pueden orientarse hacia la
luz. Es posible que en una célula
haya entre cuarenta y cincuenta
cloroplastos, y en cada milímetro
cuadrado de la superficie de la
hoja hay 500.000 cloroplastos.

Cada cloroplasto está recubierto por       Figura 4. Estructura interna del cloroplasto

una membrana doble. El cloroplasto
contiene en su interior una sustancia básica denominada estroma, la cual está
atravesada por una red compleja de discos conectados entre sí, llamados
tilacoides. Muchos de los tilacoides se encuentran apilados como si fueran
montones de monedas; a estas pilas se les llama grana.



                                                                                              3
O         N           O

       TÓXICO
                 Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                                            O                     O
                 Apuntes del curso de Bioensayos Febrero-Julio de 2010                                        O
                             Prof. José Luis Peña Manjarrez

    Las moléculas de clorofila (fig. 5), que absorben la luz para llevar a cabo la
    fotosíntesis, están unidas a las membranas de los tilacoides. La energía luminosa
    capturada por la clorofila es convertida en adenosin-trifosfato (ATP, fig. 5) y
    moléculas reductoras de nicotinamida adenina dinucleótido fosfato (NADPH, fig. 5)
    mediante una serie de reacciones químicas que tienen lugar en los grana. Los
    cloroplastos también contienen gránulos pequeños de almidón donde se
    almacenan los productos de la fotosíntesis de forma temporal.




                                                                                      b




                                                                                                c


                         Figura 5.- Las moléculas de clorofila (a) son una familia de pigmentos que se
                         encuentran en las cianobacterias y en todos los organismos que contienen
                         plastos en sus células. Su estructura tiene dos partes: un anillo de porfirina y una
                         cadena larga llamada fitol, el anillo de porfirina es un tetrapirrol, con cuatro
                                                                                               2+
                    a anillos pentagonales de pirrol unidos a un átomo de magnesio (Mg ). El fitol es
                         una cadena hidrocarbonada con restos de metilo (-CH3) a lo largo. Tiene, un
                         carácter “hidrófobo” y sirve para anclar la molécula de clorofila en la estructura
                         anfipatica de los complejos moleculares en que residen las clorofilas.
(b) La molecula de Nicotinamida Adenina Dinucleótido Fosfato (NADP+ en su forma oxidada y NADPH en
su forma reducida) es una coenzima que interviene en numerosas vias anabólicas, su estructura contiene
la vitamina B3. El NADPH proporciona parte del poder reductor necesario para la biosíntesis. Interviene en
la fase oscura de la fotosíntesis, en la que se fija el CO2; el NADPH se genera durante la fase luminosa.
(c) El Adenosín Trifosfato (ATP), es un nucleótido fundamental en la obtención de energía celular. Está
formado por una base nitrogenada (adenina) unida al carbono 1 de un azúcar tipo pentosa, la ribosa, que
en su carbono 5 tiene tres grupos fosfato. Se encuentra incorporada en los acidos nucleicos. Se produce
durante la fotosíntesis y la respiración celular, es consumido por muchas enzimas en la catálisis de
numerosos procesos químicos.

                                                                                                          4
O        N           O

  TÓXICO
              Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                            O                   O
              Apuntes del curso de Bioensayos Febrero-Julio de 2010                         O
                          Prof. José Luis Peña Manjarrez

La ecuación más sencilla de la fotosíntesis que nos han enseñado a través de los
libros de texto en primaria y secundaria es la siguiente:

   6 CO2 + 6 H2O + Energía luminosa = (con clorofila)=       →     C6H12O6 + 6 O2

La siguiente ecuación considera, que el oxígeno que se libera proviene del agua:
6 CO2 + 12 H2O + Energía luminosa =(con clorofila)= →C6H12O6 + 6 O2 + 6 H2O
La fotosíntesis se realiza en dos fases conocidas como las reacciones de luz o
fase luminosa y las reacciones de obscuridad o ciclo de Calvin.


Fase luminosa de la fotosíntesis.
Los procesos que ocurren en la fase luminosa de la fotosíntesis se pueden resumir
en estos puntos:
1.- La fotólisis. Los paquetes de energía lumínica (quantos de luz) llevan un
electrón del fotosistema II (clorofila P680) a un nivel de energía más alto, quien al
caer de nuevo recorre el camino de la fotofosforilación acíclica y no regresa a la
clorofila. Esa clorofila lo repone de una molécula de agua, que es partida en el
proceso (dos electrones por molécula de agua, por ello doble reacción).
Resultado:
   a) Se libera el oxígeno,
   b) Iones de hidrógeno H+ se unen a las moléculas transportadoras de
           hidrógeno NADP.
2.- La Fotofosforilación. La fotofosforilación acíclica: el electrón del fotosistema II
cae a un nivel menor de energía y es recibido por la clorofila (P700) del
fotosistema I. En este proceso se forma un ATP. Esa clorofila, a su vez, por acción
de la luz eleva de nuevo un electrón a un nivel superior de energía. De allí cae un
poco, de nuevo a la molécula transportadora de energía NADP, que ahora, por los
electrones de la fotólisis, puede unir los iones de hidrógeno H +, formando NADPH.
Resultado:
   a) Los electrones se transfieren al NADP,
   b) Se forma ATP una vez.


                                                                                        5
O         N           O

  TÓXICO
           Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                          O                    O
           Apuntes del curso de Bioensayos Febrero-Julio de 2010                           O
                       Prof. José Luis Peña Manjarrez

2b.- La fotofosforilación cíclica. Un electrón del fotosistema I (clorofila P700) se
eleva a un mayor nivel de energía y durante la caída al nivel bajo de energía en la
misma clorofila se forman dos moléculas de ATP.
Resultado: Formación de 2 x ATP.
Los pigmentos presentes en los tilacoides de los cloroplastos se encuentran
organizados en fotosistemas (fig. 6), que son conjuntos funcionales formados por
más de 200 moléculas de pigmentos y proteínas. La luz captada en ellos por
pigmentos que hacen de antena, es llevada hasta la molécula de "clorofila a" que
se oxida al liberar un electrón, mismo que irá pasando por una serie de
transportadores, en cuyo recorrido liberará la energía.



                                                                 Figura 6. Existen dos
                                                                 tipos de fotosistemas,
                                                                 el fotosistema I (FSI),
                                                                 asociado a moléculas
                                                                 de     clorofila   que
                                                                 absorben a longitudes
                                                                 de ondas largas (700
                                                                 nm), se conoce como
                                                                 P700. El fotosistema
                                                                 II (FSII), asociado a
                                                                 moléculas de clorofila
                                                                 que absorben a 680
                                                                 nm,    se     denomina
                                                                 P680.



La luz es recibida en el FSII por la clorofila P680 que libera un electrón que
asciende a un nivel superior de energía; ese electrón es recogido por una
sustancia aceptora de electrones que se reduce, la Plastoquinona (PQ) y va
pasando a lo largo de una cadena transportadora de electrones (varios citocromos
(cyt b/f), hasta la plastocianina (PC) que los cederá a moléculas de clorofila del
FSI.
En el descenso por esta cadena, con oxidación y reducción en cada paso, el
electrón va liberando la energía que tenía en exceso y que se utiliza para bombear
protones desde el estroma hasta el interior de los tilacoides, generando un


                                                                                       6
O             N           O

  TÓXICO
           Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                        O                        O
           Apuntes del curso de Bioensayos Febrero-Julio de 2010                             O
                       Prof. José Luis Peña Manjarrez

gradiente electroquímico de protones. Estos protones vuelven al estroma a través
de la ATP-asa y se originan moléculas de ATP.
El PSII se reduce al recibir electrones procedentes del H2O, que por acción de la
luz, se descompone en hidrógeno y oxígeno, en el proceso llamado fotólisis del
H2O. De este modo se mantiene un flujo continuo de electrones desde el agua
hacia el PSII y de éste al PSI.
En el PSI, la luz produce el mismo efecto sobre la clorofila P700, de modo que
algún electrón adquiere un nivel energético superior y abandona la molécula, es
recogido por otro aceptor de electrones, la ferredoxina y pasa por una nueva
cadena de transporte hasta llegar a una molécula de NADP + que es reducida a
NADPH, al recibir dos electrones y un protón H + que también procede de la
descomposición del H2O.
Los dos fotosistemas pueden actuar conjuntamente, proceso conocido como
esquema en Z (figura 7), para producir la fotofosforilación (obtención de ATP) o
hacerlo solamente el PSI; se diferencia entonces entre fosforilación no cíclica o
acíclica cuando actúan los dos, y fotofosforilación cíclica, cuando actúa el PSI
unicamente. En la fotofosforilación acíclica se obtiene ATP y se reduce el NADP+
a NADPH, mientras que en la fotofosforilación cíclica únicamente se obtiene ATP y
no se libera oxígeno.




                                                                Figura 7.
                                                                Esquema Z, que
                                                                representa la ruta
                                                                del transporte de
                                                                electrones entre
                                                                los dos
                                                                fotosistemas y el
                                                                complejo del
                                                                citocromo b-f.




                                                                                         7
O        N           O

  TÓXICO
            Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                             O                    O
            Apuntes del curso de Bioensayos Febrero-Julio de 2010                             O
                        Prof. José Luis Peña Manjarrez

Mientras la luz llega a los fotosistemas, se mantiene un flujo de electrones desde
el agua al PSII, de éste al PSI, hasta llegar el NADP+ que los recoge; ésta
pequeña corriente eléctrica es la que mantiene el ciclo de la vida.


Fase obscura de la fotosíntesis.
En esta fase, se utiliza la energía química obtenida en la fase luminosa, y con ella
se va a reducir CO2, Nitratos y Sulfatos, y asimilar los bioelementos C, H, y S, con
el fin de sintetizar glúcidos, aminoácidos y otras sustancias. Las plantas obtienen
el CO2 del aire a través de los estomas de sus hojas. El proceso de reducción del
carbono es cíclico y se conoce como Ciclo de Calvin (figura 8), donde la fijación
del CO2 se produce en tres fases:
1.- Carboxilativa. El CO2 se fija a una molécula de 5C, la ribulosa 1,5 bifosfato
carboxilasa (Rubisco), formándose un compuesto inestable de 6C, que se divide
en dos moléculas de ácido 3 fosfoglicérico conocido también como PGA.
2.- Reductiva. El ácido 3 fosfoglicérico se reduce a gliceraldehido 3 fosfato
(PGAL), utilizándose ATP Y NADPH.




Figura 8. Ciclo de Calvin, donde la fijación del CO2 se produce en tres fases, reducción,
regeneración y fijación.


                                                                                          8
O        N           O

  TÓXICO
             Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                           O                   O
             Apuntes del curso de Bioensayos Febrero-Julio de 2010                         O
                         Prof. José Luis Peña Manjarrez

3.- Regenerativa / Sintética. Las moléculas de gliceraldehido 3 fosfato formadas
siguen diversas rutas; de cada seis moléculas, cinco se utilizan para regenerar la
Rubisco y hacer que el ciclo de Calvin pueda continuar, y una será empleada para
sintetizar   moléculas   de   glucosa   (vía   de   las   hexosas),   ácidos   grasos,
amoinoácidos... etc; y en general todas las moléculas que necesita la célula.




En el ciclo para fijar el CO2, intervienen varias enzimas, la más conocida es la
Rubisco (ribulosa 1,5 bifosfato carboxilasa/oxidasa), que puede actuar como
carboxilasa o como oxidasa, según la concentración de CO2.
Si la concentración de CO2 es baja, funciona como oxidasa, y se produce la
oxidación de glúcidos hasta CO2 y H2O, a este proceso se le conoce como
fotorrespiración. La fotorrespiración no debe confundirse con la respiración
mitocondrial, la energía se pierde y no se produce ni ATP ni NADPH; como se ve
en la fig. 9, se disminuye el rendimiento de la fotosíntesis, porque sólo se produce
una molécula de PGA que pasará al ciclo de Calvin; en cambio cuando funciona
como carboxilasa, se obtienen dos moléculas de PGA.




                                                                                       9
O           N          O

   TÓXICO
                Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                                                       O                     O
                Apuntes del curso de Bioensayos Febrero-Julio de 2010                                                    O
                            Prof. José Luis Peña Manjarrez




Figura 9. La Rubisco actua como carboxilasa cuando la concentración de CO2 es alta, esto incrementa la eficiencia
fotosintética y se producen 2 moleculas de PGAL. Si la concentración de O2 es mayor entonces actua como oxidasa y se
disminuye el rendimiento de la fotosíntesis, porque sólo se produce una molécula de PGA que pasará al ciclo de Calvin.



Hipótesis quimiosmótica de la fotofosforilación.
La síntesis de ATP en el cloroplasto se explica mediante la hipótesis
quimiosmótica. El transporte de electrones en la cadena transportadora de la
membrana tilacoidal produce el bombeo de protones desde el estroma hacia el
espacio tilacoidal a nivel del complejo citocromo b6 - f , lo que genera un gradiente
electroquímico (diferencia de pH). El flujo de protones a favor del gradiente desde
el espacio tilacoidal hasta el estroma, a través del canal de protones de la ATP -
sintetasa, activa la síntesis de ATP a partir de ADP y fosfato (ver figura 10).
Los electrones se emplean para reducir el NADP+ a NADPH. El ATP y el NADPH
producidos de esta forma pueden utilizarse en la fase oscura para las reacciones
de síntesis, en las que se reducen moléculas sencillas, como el CO2, para formar
glúcidos (glucosa-6 P) .




                                                                                                                   10
O         N         O

  TÓXICO
             Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                                    O                   O
             Apuntes del curso de Bioensayos Febrero-Julio de 2010                                  O
                         Prof. José Luis Peña Manjarrez




Figura 10. Producción de ATP en la membrana tilacoidal del cloroplasto, de acuerdo a lo propuesto
por Mitchel en su Hipótesis quimiosmótica de la fotofosforilación.


En la figura 11, se muestra a manera de resumen todas las reacciones del
proceso fotosintético y el lugar donde ocurren.




Figura 11. Diagramas esquematicos que presentan un resumen del sistema de transporte de
electrones en la membrana tilacoidal de los cloroplastos para realizar la fotosíntesis.




                                                                                              11
O         N         O

  TÓXICO
             Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                                    O                  O
             Apuntes del curso de Bioensayos Febrero-Julio de 2010                                 O
                         Prof. José Luis Peña Manjarrez

Después de haber revisado los detalles del proceso fotosintético, regresemos para
continuar el análisis de las posibles afectaciones de los agentes xenobioticos.
Habíamos acordado que las afectaciones pueden ocurrir a diferentes niveles y uno
de ellos era a nivel celular (organelos), entonces ahora podemos tener una idea
muy clara del daño que podría significar para una planta el hecho de exponerla a
una fuente de iluminación con longitudes de onda de alta energía como puede ser
la luz ultravioleta. Al respecto se ha documentado que los daños en el fotosistema
de algunas plantas y algas puede afectarse de forma irreversible.
También se ha documentado que en la naturaleza hay mecanismos de adaptación
que las plantas o animales utilizan para producir pigmentos o moléculas
fotoprotectoras, como los aminoácidos tipo micosporinas (figura 12).




Figura 12. Algunas moléculas de aminoácidos tipo micosporinas (asterina y palyteno, encontradas
en el mucus del pez labrido Thalassoma lunare en arrecifes coralinos de Australia. La función de
estas moléculas es fotoproteger del exceso de energía producida por la luz ultravioleta.

La radiación UV solar (figura 13) representa un factor ecológico importante que
influye sobre los organismos y los ecosistemas terrestres y acuáticos. La
investigación sobre la radiación UV y sus efectos en la Biosfera inicio en la década
de 1970-1980, cuando se descubrió la relación entre los Compuestos
Fluorocarbonados (CFCs) y la degradación del ozono estratosférico. En aquel
entonces, los trabajos acerca de los efectos de la radiación UV sobre los
organismos fotosintéticos eran muy reducidos. Hoy en día, los organismos más
estudiados son plantas herbáceas cultivadas, algas, líquenes, briófitos, y otros
tipos de plantas vasculares como arbustos y árboles. Dentro de los ecosistemas

                                                                                             12
O          N           O

  TÓXICO
               Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                                  O                     O
               Apuntes del curso de Bioensayos Febrero-Julio de 2010                             O
                           Prof. José Luis Peña Manjarrez

acuáticos, el fitoplancton y las macroalgas del medio marino son los que han
recibido mayor atención, de acuerdo con su importancia como productores
primarios y fuentes de alimentación y de importantes productos naturales.

                                                         Figura 13. Ilustración de la incidencia de
                                                         radiación solar sobre el planeta tierra.
                                                         Los efectos ecológicos por el daño a la
                                                         capa de ozono a través de la actividad
                                                         industrial, permite el paso de mayor
                                                         intensidad de este tipo de radiación, la
                                                         cual eventualmente podría afectar a las
                                                         poblaciones de peces y disminuir la
                                                         producción primaria del fitoplancton y
                                                         macroalgas      marinas,      con     serios
                                                         impactos sobre la biodiversidad. Efectos
                                                         del cambio global que no han sido
                                                         estudiados en México y que forman
                                                         parte de la bitácora científica de diversos
                                                         proyectos de investigación que se
                                                         desarrollan en instituciones como
                                                         CICESE y UABC.




Efectos de la radiación UV-B sobre organismos fotosintéticos
El impacto biológico de la radiación UV-B en
organismos fotosintéticos se resume en
diferentes expresiones de daños, reparación
y aclimatación. Estas respuestas dependen
de la dosis y el tipo de radiación aplicada
durante el experimento o recibida en el
campo,       así   como    de   las condiciones       Figura 14. Estructura de una hoja.
ambientales en las que el organismo ha crecido. Los daños más importantes
encontrados en organismos fotosintéticos son:
   1. Daños en el aparato fotosintético: degradación de clorofilas y carotenoides,
           de membranas fotosintéticas (tilacoides del estroma y de los grana),
           fotoinhibición de la fotosíntesis por destrucción de la proteína D1 del PSII,
           disminución del rendimiento cuántico de la fotosíntesis y de la tasa


                                                                                            13
O         N        O

  TÓXICO
                Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                            O                  O
                Apuntes del curso de Bioensayos Febrero-Julio de 2010                      O
                            Prof. José Luis Peña Manjarrez

           fotosintética, disminución de la actividad de la RUBISCO y de otras
           enzimas, y cambios ultrastructurales del cloroplasto.
   2. Daños en el ADN: aparición de dímeros de pirimidina ciclobutano (CPDs) y
           dímeros (6, 4) pirimidina-pirimidinona (fotoproductos 6, 4).
   3. Peroxidación de lípidos de membrana y otros daños oxidativos.
   4. Disminución del crecimiento y de la producción primaria.
   5. Disminución de la absorción de nutrientes minerales (N, P).
   6. Disminución en la concentración de proteínas y fosfolípidos.
   7. Disminución del tamaño de las hojas de las plantas vasculares.
   8. Alteraciones en la reproducción: reducción de la producción de flores,
           modificación de la época de floración, retraso en el crecimiento del tubo
           polínico, etc.
   9. Pérdida de movilidad y orientación en organismos móviles del fitoplancton.
   10. Aumento del volumen celular del fitoplancton, por desacoplamiento entre la
           fotosíntesis y la división celular.
Ante estos daños, los organismos fotosintéticos pueden desarrollar mecanismos
de protección y reparación, tanto estructural como bioquímica:
   1. Engrosamiento de las hojas, desarrollo de las cutículas, etc.
   2. Producción de compuestos absorbentes de radiación UV: flavonoides, fenil-
           propanoides, antocianos, micosporinas, etc. (se han detectado estímulos de
           los genes de la rutas metabólicas conducentes a la síntesis de algunos de
           estos compuestos).
   3. Desarrollo de mecanismos antioxidantes: aumentos en los niveles de
           glutatión y ascorbato, aumento en la actividad de enzimas, como
           peroxidasas y superóxido dismutasa.
   4. Mecanismos fotoprotectores, relacionados con el ciclo de las xantofilas.
   5. Mecanismos de reparación de ADN mediante enzimas (fotoliasas) que
           funcionan en presencia de radiación visible y a temperaturas favorables.
La respuesta más común a un aumento de radiación UV-B es la acumulación de
compuestos absorbentes de UV. Algunos autores estiman que es poco probable


                                                                                      14
O          N        O

  TÓXICO
                Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                                O                  O
                Apuntes del curso de Bioensayos Febrero-Julio de 2010                          O
                            Prof. José Luis Peña Manjarrez

una reducción real de la fotosíntesis, y que los resultados que avalan dicha
reducción están basados en artefactos experimentales, como la elevada
proporción UV-B / PAR utilizada en los experimentos de laboratorio o invernadero.
En los últimos años está adquiriendo gran importancia la investigación de los
mecanismos moleculares que subyacen a los efectos de la radiación UV-B, ya que
éstos dependen de la percepción de dicha radiación, de los mecanismos de
transducción de la señal, y de la modificación de la expresión génetica.
Las primeras evaluaciones de los efectos de la UV a nivel ecosistema
contemplaban reducciones de la productividad primaria del fitoplancton en la
Antártida entre un 6-23% y reducciones de la productividad agrícola global entre
20-25%. También se consideraba que entre un tercio y la mitad de las especies
vegetales estudiadas (alrededor de 600) eran sensibles a un aumento de la
radiación UV-B. Estas conclusiones fueron el resultado obtenido, principalmente,
en cámaras de crecimiento o invernadero, metodología que hoy en día se entiende
que sobredimensiona los efectos de la radiación UV-B. La tendencia actual es
que, en el contexto de ecosistema, los procesos que se verían más afectados son:
   1. La descomposición de los restos vegetales podría ser más lenta por la
           mayor proporción de compuestos difícilmente degradables, como la lignina,
           y la menor actividad de microorganismos sensibles a UV-B.
   2. Las plantas podrían ser más susceptibles a enfermedades y plagas, en
           especial por el enriquecimiento de las plantas en metabolitos secundarios y
           la   adquisición   de   características   estructurales   que   dificultasen   la
           penetración de los parásitos.
   3. La alimentación de los herbívoros podría ser más difícil por la presencia de
           características bioquímicas y estructurales que redujesen la palatabilidad de
           las plantas.
   4. Otras interacciones planta - animal que podrían alterarse son las
           relacionadas con aspectos reproductivos: épocas de floración, presencia de
           polinizadores, dispersión de semillas y frutos, etc.



                                                                                          15
O       N         O

  TÓXICO
               Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                           O                 O
               Apuntes del curso de Bioensayos Febrero-Julio de 2010                     O
                           Prof. José Luis Peña Manjarrez

   5. La competencia entre las especies podría modificarse por la distinta
           sensibilidad a la radiación UV-B, y las especies más sensibles serían
           desplazadas por las más tolerantes. Esto afectaría tanto a la estructura de
           las comunidades naturales como a las relaciones entre especies cultivadas
           y malas hierbas.
Lo anterior es válido en gran medida para los sistemas acuáticos, que a la vez
tienen ciertas particularidades por la estrecha relación entre productores,
consumidores y descomponedores. Así, los efectos de la radiación UV-B sobre los
consumidores o la remineralización de los nutrientes afectaría rápidamente a los
productores primarios. Además, muchos de los eslabones tróficos son de pequeño
tamaño (en gran parte, microscópicos), por lo que son más vulnerables a la UV-B.
Posiblemente los organismos más sensibles sean los componentes del
zooplancton, lo que favorecería indirectamente a los productores primarios. Pero
debe advertirse que las generalizaciones son arriesgadas.
Por otra parte, es probable que la respuesta frente a un aumento de la radiación
UV-B se vea afectada por cambios en otros factores ambientales. El interés se ha
centrado, especialmente, en la interacción con factores como la deposición de
contaminantes atmosféricos o los relacionados con el cambio climático, como es el
aumento de la temperatura, los cambios en la distribución de las precipitaciones
(disponibilidad de agua) y el aumento de CO2


Efectos de la radiación UV-B en briófitos
La mayor parte de la investigación realizada sobre los efectos de la radiación UV-
B en organismos fotosintéticos se ha centrado en plantas vasculares terrestres y
en algas marinas, mientras que los briófitos han recibido menos atención
(http://images.google.com.mx/imgres?imgurl=http://www3.unileon.es/personal/wwd
bvcac/images/Otros_Vegetales/Briofitos2.jpg&imgrefurl=http://www3.unileon.es/per
sonal/wwdbvcac/El%2520Herbario0.htm&usg=__U_dlxyd3C3JuRiKTPT9iCiT1ALs
=&h=768&w=1024&sz=121&hl=es&start=6&itbs=1&tbnid=f44VMmLmHbcU7M:&tb
nh=113&tbnw=150&prev=/). No obstante, los briófitos revisten gran interés por su


                                                                                    16
O       N         O

  TÓXICO
             Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                         O                 O
             Apuntes del curso de Bioensayos Febrero-Julio de 2010                     O
                         Prof. José Luis Peña Manjarrez

destacada presencia en muchos ecosistemas (en algunos de ellos como
dominantes) y por su probada capacidad bioindicadora.
Los briófitos terrestres, han sido los más estudiados, las especies más utilizadas
han sido las del género Sphagnum, Hylocomium splendens (un musgo típico de
suelos forestales) y Polytrichum commune (un musgo característico de ambientes
muy húmedos). Las aproximaciones metodológicas han sido muy variadas y
similares a las utilizadas en otros organismos fotosintéticos. Así, se han llevado a
cabo estudios en condiciones naturales y controladas, y en este último caso tanto
en laboratorio como en invernadero. El manejo de la radiación UV-B ha incluido
experimentos de exclusión mediante filtros, y de suplemento mediante lámparas
para simular diversos debilitamientos de la capa de ozono. La duración de los
experimentos ha variado desde unas pocas horas de exposición de las muestras
(en condiciones controladas) hasta periodos de varios años (en condiciones
naturales). Las respuestas de los briófitos se han evaluado mediante variables
morfológicas, fisiológicas y fenológicas: color, síntomas de degradación celular,
daños ultrastructurales, crecimiento (tanto en longitud como en peso seco),
fotosíntesis, respiración, fluorescencia de clorofilas, concentración de pigmentos
fotosintéticos (clorofilas, carotenoides), daños en el ADN, niveles de glúcidos y
proteínas, aparición de compuestos absorbentes de radiación ultravioleta (que
podrían servir de protección), concentración de elementos minerales y esfuerzo
reproductivo.
                          En varios estudios se ha encontrado una disminución en
                          el crecimiento de los briófitos como respuesta a la
                          radiación UV-B, pero este efecto parece depender de la
                          especie, del diseño experimental y de otros factores
                          adicionales como la disponibilidad de agua y la
                          concentración de CO2. Otros efectos lesivos son menos
                          claros, ya que se han obtenido resultados contradictorios,
                          y sólo en ocasiones se ha encontrado una mayor


    Figura 15. Briofito

                                                                                  17
O        N         O

  TÓXICO
           Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                           O                 O
           Apuntes del curso de Bioensayos Febrero-Julio de 2010                         O
                       Prof. José Luis Peña Manjarrez

concentración de compuestos absorbentes como respuesta al aumento de
radiación UV-B o a la disminución de ozono. Algunos autores han señalado
incluso efectos beneficiosos de la radiación UV-B sobre el crecimiento, lo cual
complica la interpretación global de los resultados.
Podría pensarse, en principio, que la simplicidad estructural típica de los briófitos
debería tener como consecuencia una gran sensibilidad a la radiación UV-B, ya
que carecen de las defensas estructurales que sí poseen los cromófitos: cutículas
gruesas, tricomas, hojas pluriestratificadas, etc. Debe recordarse que los filidios de
los briófitos son monoestratificados y carecen de espacios aéreos, lo cual reduce
drásticamente el camino de la radiación y por tanto la atenuación de ésta, un
fenómeno propio de las hojas de cormófitos. En consecuencia, los briófitos sólo
podrían tener acceso a las defensas bioquímicas, como por ejemplo los
compuestos absorbentes o los mecanismos antioxidantes y de reparación del
ADN. Sin embargo, los estudios realizados hasta el momento distan de apoyar
esta generalización, y apuntan hacia una sensibilidad dependiente de factores
tanto genéticos como ambientales: la especie, la temperatura, la disponibilidad de
agua y nutrientes, las condiciones previas de crecimiento, etc. En consecuencia,
no se puede establecer en la actualidad un modelo unificado y generalizado de
respuestas de los briófitos a la radiación UV-B, por lo que resulta conveniente
proseguir con las investigaciones en este ámbito.


   b) Efectos de los xenobióticos en sistemas enzimáticos

Por ejemplo, la intolerancia a la lactosa es un problema común que afecta a
millones de personas en todo el mundo. La enfermedad consiste en la dificultad
del organismo para asimilar la lactosa (azúcar predominante en la leche). La
intolerancia se debe a la incapacidad del intestino delgado de producir una enzima
llamada lactasa, que descompone el azúcar de la leche en formas más simples
(glucosa y galactosa) para que puedan ser absorbidas (fig. 16).
Puede tener diversos orígenes; a) la actividad de la lactasa va disminuyendo con
la edad, ya sean por enfermedades, diarrea, medicamentos o malnutrición. Los

                                                                                   18
O         N        O

  TÓXICO
               Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                                      O                 O
               Apuntes del curso de Bioensayos Febrero-Julio de 2010                                O
                           Prof. José Luis Peña Manjarrez

síntomas más comunes son náuseas, gases, dolor abdominal, diarrea o
calambres, y suelen manifestarse de 30 minutos a dos horas después de la
ingesta de alimentos que contienen lactosa.
La leche contiene calcio, que es esencial para el crecimiento y reparación de los
huesos. Las personas con intolerancia a la lactosa deberán obtener calcio
mediante dietas que no incluyan nada o muy pocas cantidades de leche. La
lactasa, se produce de forma natural en el tracto intestinal de los niños y de
muchos adultos. Pero está disponible en venta al por menor para utilizarla en
casa.




           Figura 16. Ejemplo de cómo la actividad enzimática puede ser afectada por los
           agentes xenobioticos. En la figura se muestra como la enzima lactasa actua sobre
           la lactosa para descomponerla en los azucares de la leche. La falta de producción
           de esta enzima produce intolerancia a la lactosa.

   c) Efectos de los xenobióticos a nivel de organismos completos
El zooplancton es un ejemplo de organismos "predadores" que se alimentan de
algas, es un eslabón importante entre los productores primarios y los peces. Las
comunidades acuáticas pueden sufrir un daño significativo por sustancias tóxicas,
tales como sulfato de cobre, que son más tóxicas para el zooplancton que para los
peces (Henry, 1988). En general, se ha encontrado que los cladóceros son más
sensibles que los peces a las sustancias tóxicas, presentan sistema nervioso, lo
cual sugiere la presencia de la acetilcolina (Ach), este neurotrasmisor
normalmente es hidrolizado por la AChA, la cual es muy sensible a diferentes


                                                                                               19
O         N         O

   TÓXICO
             Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                                      O                   O
             Apuntes del curso de Bioensayos Febrero-Julio de 2010                                    O
                         Prof. José Luis Peña Manjarrez

contaminantes, entre los que se pueden mencionar los metales pesados,
detergentes e hidrocarburos policíclicos (Martinez-Tabche et al., 1997). Es capaz
de detectar la presencia de, por ejemplo, 0,005 mg. de mercurio en el agua, y aún
menores concentraciones de numerosos pesticidas y residuos industriales (Paggi
y de Paggi, 2000). Los dáfnidos, tales como Daphnia purex (Figura 17), han sido
usados para bioensayos y existe considerable información sobre las técnicas de
cultivo y la sensibilidad a las sustancias tóxicas. Los requisitos de temperatura, luz
y nutrientes están bien definidos (Henry, 1988).




Figura 17. Fotomicrografía de cladóceros tipo Dafnia purex, ha sido muy utilizado en la realización
de bioensayos (tomado de Microsoft, encarta).




    d) Efectos de los xenobióticos a nivel de poblaciones o comunidades.
Contaminantes ambientales y su repercusión sobre las poblaciones de fauna
silvestre.
La actividad humana genera gran variedad de productos y elementos, de
naturaleza física o química, que entran a formar parte de todas las fases inertes y
seres vivos de los diversos ecosistemas, determinando en muchas ocasiones la
aparición de efectos no deseables en los mismos. Estos productos son los que
denominamos contaminantes ambientales, y por tanto al fenómeno se le
denomina contaminación ambiental.


                                                                                                20
O       N         O

  TÓXICO
           Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                         O                 O
           Apuntes del curso de Bioensayos Febrero-Julio de 2010                       O
                       Prof. José Luis Peña Manjarrez

Los equilibrios de la naturaleza son flexibles y adaptables, y por tanto capaces de
absorber efectos no deseables de manera que evolucionen con ellos hacia una
adaptación. La naturaleza posee mecanismos de defensa capaces de minimizar
los impactos generados por ciertos contaminantes ambientales, pero solo hasta un
cierto punto, después del cual, aparecen síntomas evidentes de degradación:
desertificación, calentamiento de la tierra, disminución de la capa de ozono, efecto
invernadero, lluvias ácidas, desaparición de especies, disminución de poblaciones,
enfermedades nuevas, etc.
Sería prácticamente imposible tratar acerca de todos los posibles contaminantes
ambientales con posibilidad de repercutir sobre la salud de los seres vivos, ya que
cualquiera de ellos es capaz de producir, ya sea a corto o a largo plazo, algún
efecto indeseable.
Nuestro objetivo, por tanto, será el de abordar los efectos que algunos de esos
contaminantes, han demostrado tener sobre la fauna silvestre, bien por su elevado
poder tóxico a bajas concentraciones, bien por su elevada presencia en el medio
ambiente lo que determina un elevado riesgo de exposición.


Características de la exposición y efecto de los contaminantes ambientales.
La exposición y los efectos de los contaminantes ambientales sobre la fauna
silvestre, son similares a los que se producen sobre cualquier especie animal,
incluida la especie humana. Dado que los contaminantes ambientales son
producto de la actividad humana parece lógico pensar que debe ser la especie
humana y las especies de animales domésticos las más expuestas a los mismos.
Por la misma razón, parece razonable que las especies silvestres, o la mayoría de
ellas, no sufran apenas exposición, o que ésta fuera tan mínima que no llegara a
producir efectos sobre las poblaciones de vida silvestre.
Sin embargo esta hipótesis, pierde valor cada vez que se realiza un estudio sobre
la impregnación de estos contaminantes sobre los fluidos y tejidos de las especies
de vida silvestre. Las especies de vida silvestre están tan expuestas a
contaminantes ambientales como cualquier otra, y en ocasiones incluso, en mayor


                                                                                  21
O       N         O

  TÓXICO
               Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                           O                 O
               Apuntes del curso de Bioensayos Febrero-Julio de 2010                     O
                           Prof. José Luis Peña Manjarrez

medida que las especies domésticas. Por ejemplo las elevadas concentraciones
de cadmio en tejidos de aves marinas, de plomo en aves acuáticas, de mercurio
en peces, etc. La experiencia ha demostrado que esto es tan cierto como el hecho
de que algunas de las concentraciones encontradas podrían poner en peligro la
salud de estos animales. Como ejemplo podemos citar los valores de plomo
encontrados en hígado y riñón de algunos jabalíes cazados en Sierra Morena
España), los cuales revelaban la posibilidad de que estos animales estuvieran
sufriendo síntomas claros de intoxicación plúmbica. Otro ejemplo es el de aves
marinas con niveles de cadmio renal suficientes como para provocar nefrosis.
Es necesario establecer algunos criterios que nos sirvan para clasificar a los
tóxicos dentro del grupo de contaminantes ambientales con repercusión sobre la
fauna.
Los criterios que utilizamos para ello son los siguientes:
   1- La exposición a contaminantes ambientales suele ser continua y a dosis
           relativamente bajas.
   2- La mayoría de los considerados como contaminantes ambientales son muy
           persistentes o permanentes en el medio ambiente.
   3- La mayoría de los contaminantes ambientales se acumulan lo suficiente en
           los tejidos como para suponer un riesgo añadido para el individuo expuesto.
   4- Muchos contaminantes ambientales se biomagnifican a lo largo de la
           cadena trófica.
   5- Los efectos tóxicos de la exposición ambiental suelen ser crónicos, de
           aparición lenta y, la mayoría de las veces, subclínicos.
   6- De entre los efectos sobre la fauna como consecuencia de la exposición
           ambiental deben destacarse: el aumento de la incidencia de tumores, las
           alteraciones a nivel de órganos sexuales, los cambios comportamentales,
           las alteraciones del sistema inmune y los problemas asociados a
           alteraciones endocrinas.
En ecotoxicología muchas veces las razones éticas y económicas impiden la
manipulación de experimentos de campo. En ausencia de experimentos que


                                                                                    22
O        N        O

  TÓXICO
            Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                          O                O
            Apuntes del curso de Bioensayos Febrero-Julio de 2010                      O
                        Prof. José Luis Peña Manjarrez

podamos controlar, los criterios epidemiológicos ayudan a elucidar asociaciones
entre contaminantes y efectos biológicos. Desde un punto de vista epidemiológico,
el establecimiento de la causa no requiere que un factor sea una condición
necesaria y suficiente para producir un efecto. Más aún, las asociaciones causales
implican que un factor es parte de un complejo que aumenta la probabilidad de un
efecto y reduciendo el factor se reduce la probabilidad del efecto.


Riesgos para las poblaciones de fauna silvestre:
Al evaluar el impacto que los contaminantes o sustancias químicas pueden tener
sobre las poblaciones hemos de hacer una serie de consideraciones que
marcarán la evolución de cada situación para cada especie o para cada población.
En principio, hemos de diferenciar entre las situaciones capaces de provocar la
muerte de forma inmediata y las situaciones que generan deterioros de la salud
más espaciados en el tiempo. Así podríamos asumir el siguiente esquema.
   1. Situaciones que provocan mortandad inmediata de los animales.
   1.1.    Mortandades masivas durante desastres ecológicos
           - Plumbismo
           - Los vertimientos masivos de contaminantes, pueden significar un
           riesgo importante incluso para poblaciones que en principio no estén en
           grave peligro si la dimensión del desastre y su persistencia es elevada.
           Suponen indudablemente un riesgo extremadamente grave cuando las
           poblaciones afectadas están en situación de peligro de extinción o
           fuertemente amenazadas.
   1.2.    Mortandades puntuales de individuos:
           - Uso intencionado de venenos en cotos de caza.
           - Pequeños vertimientos agrícolas o industriales en zonas concretas.
No suponen peligro importante para las poblaciones estables y poco amenazadas.
El impacto desde el punto de vista ecológico es reducido.
Mortandades masivas por desastres ecológicos
Mortandades puntuales de algunos individuos


                                                                                  23
O        N        O

  TÓXICO
            Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                                 O                 O
            Apuntes del curso de Bioensayos Febrero-Julio de 2010                              O
                        Prof. José Luis Peña Manjarrez

Periodo postdesastre ecológico
Exposición crónica de base


   2. Situaciones que provocan deterioro de la salud de los individuos.
   2.1.    Periodo post-desastre ecológico
           - Plumbismo.
           - Vertimientos masivos de contaminantes. Una vez pasado el desastre
           ecológico que determinó la muerte directa masiva de individuos, los
           supervivientes suelen presentar cuadros patológicos crónicos que
           arrastran durante meses y/o años. Son animales cuya vida media es
           inferior a la esperada y sus capacidades de relación y reproducción
           suelen también verse afectas.
           Suponen un riesgo muy grave para poblaciones amenazadas o en
           peligro. El riesgo para poblaciones estables y numerosas no suele ser
           elevado a medio plazo, sin embargo deberían considerarse riesgos a
           largo plazo.
   2.2.    Situaciones     de   exposición     crónica   de   base      a    contaminantes
           ambientales.
           - Uso indiscriminado de plaguicidas.
           - Actividades industriales ubicadas en zonas de impacto ambiental de
           riesgo.
           - Vertidos agrícolas e industriales incontrolados y mal gestionados.
Las    consecuencias      derivadas   de     estas   situaciones   no       suelen   generar
mortandades directas. Sin embargo, sí determinan un deterioro de la salud
difícilmente evaluable a corto y medio plazo, pero con consecuencias importantes
a largo plazo. Los efectos más peligrosos son los producidos sobre el material
genético mediante la aparición de mutaciones puntuales que pueden quedar
estables en la población y determinar cambios poblaciones en el futuro; o bien ser
la base de aparición de cáncer en individuos adultos.



                                                                                          24
O       N         O

  TÓXICO
              Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                       O                 O
              Apuntes del curso de Bioensayos Febrero-Julio de 2010                  O
                          Prof. José Luis Peña Manjarrez

Otro de los efectos no deseados es la interferencia con funciones reproductivas
básicas, bien por alteración directa sobre los órganos sexuales, bien por
interferencia con el sistema endocrino.
Ha sido también descrita la existencia de alteraciones del comportamiento,
debidas tanto a la interferencia hormonal como a los efectos crónicos sobre el
sistema nervioso central. Por último son también importantes los efectos sobre el
sistema inmunitario de los animales, lo que determinará una mayor susceptibilidad
al padecimiento de enfermedades infecciosas y parasitarias.


Efectos reproductivos de xenobióticos estrogénicos en embriones.
Hasta la fecha los únicos xenobióticos estrogénicos que han sido identificados
como       causantes de efectos sobre la diferenciación en        aves son los
organoclorados, los cuales se acumulan en el contenido de los huevos. Entre los
Contaminantes ambientales y fauna silvestre los organoclorados identificados
como estrogénicos podemos citar los siguientes:
DDT, metoxicloro, endosulfán, dicofol y kepone. El DDT y el metoxicloro
inoculados en huevos de gaviotas mimetizaron la acción de estrógenos y
provocaron anormalidades tanto en embriones macho como hembras. Los machos
presentaban signos de feminización.
Los derivasdos de bifenilos policlorados (PCBs) también han sido identificados
como estrogénicos con una gran variación entre los metabolitos hidroxilados.
Los alquil fenoles, ampliamente usados como agentes humectantes, surfactantes
y aditivos químicos industriales son también estrogénicos y han demostrado tener
efectos adversos sobre peces cuando se evaluaron vertidos municipales.
Por ejemplo, la respuesta a la exposición de alquil fenol en peces macho fue la
síntesis de vitelogenina, una proteína estrogénica sintetizada por el hígado y que
normalmente solo se expresa en las hembras. Sin embargo no existen estudios
que impliquen la actividad estrogénica en aves.
Un ejemplo de estrogenismo natural se ha descrito en codornices silvestres
cuando se alimentaban con leguminosas que contenían elevados niveles de


                                                                                25
O       N         O

  TÓXICO
           Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                        O                 O
           Apuntes del curso de Bioensayos Febrero-Julio de 2010                      O
                       Prof. José Luis Peña Manjarrez

isoflavonoides. Los isoflavonoides son considerados como fitoestrógenos y en
condiciones normales no suelen provocar efectos detectables.
Es difícil estimar el riesgo que supone la exposición a xenobióticos estrogénicos,
habida cuenta de que los animales han estado de siempre expuestos a
fitoestrógenos y han desarrollado vías metabólicas ajustadas a esta exposición
natural. En general se ha visto que los embriones aviares son más sensibles a
estos efectos que los mamíferos.
Se ha demostrado que la aplicación de contaminantes a los huevos es capaz de
provocar la muerte, reducir la incubabilidad, inducir teratogénesis y reducir la
proporción de huevos eclosionados. Además de los organoclorados, los metales
pesados, los hidrocarburos derivados del petróleo y muchos plaguicidas han sido
identificados como xenobióticos capaces provocar los efectos descritos. Estos
estudios se desarrollaron en gran medida en los Grandes Lagos donde se observó
un patrón patológico caracterizado por edema, malformación del pico, edema
cardíaco y malformaciones esqueléticas. Este patrón fue denominado como
GLEMEDS (Great Lakes Embryo Mortality, Edema and Deformity Syndrome). El
síndrome se correlaciona con equivalentes tóxicos de dioxinas, los cuales son el
resultado de la bioacumulación de congeneres coplanares de PCBs.
Es difícil que exista una aplicación directa de altas concentraciones de tóxicos en
los huevos de aves silvestres en condiciones naturales, sin embargo determinadas
situaciones pueden llevar a este fenómeno. Tal es el caso de hembras que
durante la incubación tengan las plumas manchadas con petróleo o la aplicación
directa de plaguicidas a los huevos y nidos en zonas agrícolas.
Se ha observado este efecto en la aplicación de insecticidas organofosforados,
algunos herbicidas como el paraquat, prometon y trifluralin; y fungicidas como el
maneb. Sin embargo los carbamatos no producen este tipo de alteraciones al igual
que tampoco lo hacen otros funguicidas distintos del maneb.


Efectos reproductivos en aves adultas. La mortalidad de aves adultas no es un
efecto reproductivo específico, sin embargo, sobre el nivel de población, la


                                                                                 26
O       N         O

  TÓXICO
            Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                       O                 O
            Apuntes del curso de Bioensayos Febrero-Julio de 2010                    O
                        Prof. José Luis Peña Manjarrez

reproducción sí se ve afectada al disminuir el número de reproductores. Las
exposiciones subletales pueden afectar por tanto indirectamente a la reproducción
a través de morbi-mortalidad no específica o incremento del estrés, lo cual
determina un descenso de la puesta, la interrupción de la incubación o la
desatención en el cuidado de la nidada. Se ha descrito que la exposición a aceites
del petróleo en aves en época reproductiva, ya sea por exposición del plumaje o
por ingestión del aceite, provoca un aumento del estrés con circulación elevada de
corticosterona circulante y un aparente retroceso de la regulación de la
reproducción a nivel pituitario.
Experimentos de laboratorio han demostrado que los hidrocarburos inducían
anemia hemolítica e inducción de oxidasas hepáticas de función mixta, lo cual
contribuye también a aumentar el estrés y reducir el éxito reproductivo. Estudios
de campo han demostrado que es suficiente una exposición a 0.1-0.2 ml de crudo
para impedir la formación del huevo y la puesta, así como para paralizar la
incubación y alterar la estabilidad de la unión de la pareja.
El comportamiento reproductivo también se ha visto afectado en aves tras la
exposición a organoclorados y organofosforados.
Un estudio con gaviotas en el Lago Ontario demostró que se producía una
desatención en la incubación y un descenso en la atención por la defensa del
territorio. Este tipo de alteraciones comportamentales también se ha observado en
palomas, gaviotas y ánades reales.


Alteraciones del sistema inmune inducidas por contaminantes ambientales.
Es un hecho demostrado por experimentos de campo y laboratorio que la
exposición a contaminantes ambientales puede suprimir la función inmunológica e
incrementar de esta forma la susceptibilidad a enfermedades infecciosas y
parasitarias. Este tipo de acciones es inducida normalmente por la exposición a
bajas dosis, pero se hace más patente cuando la exposición es durante el
desarrollo perinatal.



                                                                                27
O       N         O

  TÓXICO
           Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                        O                 O
           Apuntes del curso de Bioensayos Febrero-Julio de 2010                      O
                       Prof. José Luis Peña Manjarrez

Sin embargo los estudios sobre animales silvestres de vida libre son escasos y
aún menos en aves. Los estudios más determinantes son los que se han realizado
sobre las poblaciones que habitan los Grandes Lagos.
Los linfocitos T, que maduran en el timo, regulan las respuestas inmunes y atacan
a las células malignas e infectadas con virus. En los embriones de pollos se
ha visto que el congénere de PCB 126 induce la actividad de la EROD en el timo
lo que demuestra que el timo es órgano diana de su acción tóxica mediada por
receptor. En las aves y mamíferos en desarrollo los bajos niveles de estos
compuestos provocan atrofia del timo.
Numerosas funciones de las células T son Contaminantes ambientales y fauna
silvestre. Además los linfocitos B, que maduran en la bolsa de Fabricio en las aves
y en la médula espinal de mamíferos producen anticuerpos que atacan a los
organismos invasores. Se ha observado que ciertos hidrocarburos aromáticos
halogenados son capaces de suprimir la respuesta de los anticuerpos.
Los primeros estudios científicos que relacionaban la exposición a hidrocarburos
halogenados con las alteraciones del sistema inmune se remotan a finales de los
años 60 cuando se observó que la exposición de ánades reales a PCBs
determinaban un incremento en la mortalidad de los individuos expuestos al virus
de la hepatitis. Posteriormente, estudios de laboratorio demostraron también un
aumento de la susceptibilidad a bacterias, virus y protozoos.
Estos efectos también se observaron en ballenas en el Estuario de San Lorenzo,
en leones marinos de California en la Isla San Miguel, focas marinas en Europa y
delfines en el Océano Atlántico. En los lugares más contaminados de los Grandes
Lagos, los cormoranes de doble cresta (Phalacrocórax auritus) se mostraron muy
sensibles a infecciones asociadas con Pasteurella multocida.


Alteraciones del comportamiento inducidas por contaminantes ambientales.
Está claramente establecida la relación entre la exposición a algunos químicos
utilizados en las prácticas agrícolas y actividades industriales y la aparición de
efectos neurotóxicos caracterizados por disfunción motora, sensorial, cognitiva o


                                                                                28
O       N        O

     TÓXICO
                  Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                             O               O
                  Apuntes del curso de Bioensayos Febrero-Julio de 2010                  O
                              Prof. José Luis Peña Manjarrez

del sistema nervioso autónomo. Como ejemplo valgan los claros signos de
neurotoxicidad, tales como debilidad muscular, pérdida del control motor,
temblores, alteraciones visuales y cognitivas, que han sido descritas en
trabajadores expuestos a algunos herbicidas e insecticidas. Además se han
descrito más de 750 compuestos químicos industriales con actividad neurotóxica
tras exposiciones agudas y crónicas.
La asociación de los efectos neurotóxicos y la exposición a contaminantes
ambientales es particularmente difícil ya que en muchas ocasiones se achacan los
signos observados a otras condiciones, como pueden ser la avanzada edad o
enfermedades degenerativas de etiología distinta. Sin embargo, lo que es
muy habitual es la falta de diagnóstico, lo cual es más común en especies de vida
silvestre cuyos patrones comportamentales no están perfectamente estudiados.
Hasta hace poco, la búsqueda de compuestos químicos con actividad neurotóxica
se centraba en aquellos compuestos que provocan efectos estructurales sobre el
sistema nervioso. Sin embargo, en no pocas ocasiones podemos asistir a
alteraciones relacionadas con el sistema nervioso sin que aún se hayan producido
alteraciones en la estructura celular.
Hoy día se está prestando especial atención a los cambios en patrones
comportamentales, neurofisiológicos y neuroquímicos inducidos por agentes
químicos.         De   ellas,   las   medidas   comportamentales   son   las que   más
frecuentemente se están evaluando.


e)            Efectos de los xenobióticos a nivel de Biocenosis.
Los seres humanos han causado cambios sin precedentes en los ecosistemas de
todo el planeta y han redistribuido las especies vegetales y animales de forma
voluntaria o accidental. Como consecuencia de estos cambios ciertas especies
tienen un comportamiento invasivo en las localidades de introducción, siendo más
susceptibles los hábitats alterados o degradados. Estas invasiones llevan
asociadas varios problemas. A nivel ecológico destaca la pérdida de diversidad
autóctona y la degradación de los hábitats invadidos. Económicamente son


                                                                                    29
O       N         O

  TÓXICO
           Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                        O                 O
           Apuntes del curso de Bioensayos Febrero-Julio de 2010                      O
                       Prof. José Luis Peña Manjarrez

importantes los efectos directos sobre las actividades agropecuarias y la salud
pública. Una vez detectada la invasión, su control y erradicación son costosos y no
siempre posibles. Identificar los invasores potenciales y evitar su establecimiento
es el mejor camino para frenar un problema que incrementa al mismo ritmo que la
globalización
Las especies invasoras son animales, plantas u otros organismos transportados
e introducidos por el ser humano en lugares fuera de su área de distribución
natural y que han conseguido establecerse y dispersarse en la nueva región,
donde resultan dañinos. Que una especie invasora resulta dañina, significa que
produce cambios importantes en la composición, la estructura o los procesos de
los ecosistemas naturales o seminaturales, poniendo en peligro la diversidad
biológica nativa (en diversidad de especies, diversidad dentro de las poblaciones o
diversidad de ecosistemas).


Toxicidad y toxicología ambiental.
La Toxicidad, es la capacidad de una sustancia para ejercer un efecto nocivo
sobre un organismos o la biocenosis, y dependerá tanto de las propiedades
químicas del compuesto como de su concentración, según sea la duración y
frecuencia de la exposición al tóxico, y su relación con el ciclo de vida del
organismo; las pruebas podrán ser de tipo agudo o crónico.
El potencial nocivo de una sustancia tóxica puede ser contrarrestado por el
sistema biológico a través de diferentes estrategias, tales como reacciones
metabólicas de detoxificación, excreción de tóxicos, etcétera. Por tanto, la
toxicidad aparente evaluada en un ensayo biológico es el resultado de la
interacción entre la sustancia y el sistema biológico.
Además, se debe considerar que el efecto tóxico sobre los sistemas biológicos es
ejercido por la acción combinada de todas las sustancias nocivas presentes en el
medio, incluso aquellas que no son tóxicas en sí, pero que afectan las
propiedades químicas o físicas del sistema, y consecuentemente las condiciones
de vida de los organismos. En los sistemas acuáticos es característico el caso de


                                                                                 30
O       N         O

  TÓXICO
           Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                         O                 O
           Apuntes del curso de Bioensayos Febrero-Julio de 2010                       O
                       Prof. José Luis Peña Manjarrez

sustancias que agotan el oxígeno, o que son coloreadas, o que simplemente
impiden la propagación de la luz (caso de material particulado). También se deben
tener en cuenta aquellos efectos no directamente relacionados con sustancias,
tales como el deterioro o daño producido por acción de cambios en la temperatura
o por radiación. Inversamente, los ensayos biológicos también incluyen el efecto
de los organismos sobre las sustancias, como la degradación microbiana o
biodegradabilidad.
Los resultados de los bioensayos se refieren, en primer lugar, a los organismos
usados en el ensayo y las condiciones estipuladas en el procedimiento de prueba.
Un efecto nocivo evaluado por medio de ensayos biológicos normalizados puede
indicar niveles de peligrosidad trasladables y asimilables a organismos que forman
parte de los sistemas naturales y la biocenosis.
Debemos considerar que no existe ningún organismo ni biocenosis que pueda ser
usado para evaluar todos los efectos posibles sobre el ecosistema bajo las
diversas condiciones abióticas y bióticas presentes. En la práctica, solamente
unas pocas especies (especies modelo), que representen funciones ecológicas
relevantes, pueden ser ensayadas. Además de estas limitaciones fundamentales y
prácticas en la selección de organismos de ensayo, la muestra a ser ensayada
puede también plantear problemas experimentales para la realización de la
prueba.
Las aguas, en particular las de deshechos residuales (aguas servidas, efluentes),
son mezclas complejas y a menudo contienen sustancias poco solubles, volátiles,
inestables, coloreadas y/o a veces partículas coloidales en suspensión. La
complejidad y heterogeneidad de los materiales dan lugar a una variedad de
problemas experimentales cuando se practican los ensayos. Estos pueden estar
relacionados con la inestabilidad de la muestra debido a diferentes reacciones y
procesos, tales como separación de fases, sedimentación, volatilización, hidrólisis,
fotodegradación, precipitación, biodegradación, biotransformación e incorporación
por los organismos.



                                                                                 31
O        N         O

  TÓXICO
             Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                           O                 O
             Apuntes del curso de Bioensayos Febrero-Julio de 2010                       O
                         Prof. José Luis Peña Manjarrez

De manera general, los ensayos, también llamados pruebas de toxicidad, pueden
ser definidos de acuerdo con:
• Su duración: corto, mediano o largo plazo.
• El método utilizado para incorporar la muestra al sistema de ensayo: estático,
con renovación, de flujo continuo.
• El propósito para el cual son utilizados: control de calidad de vertidos, evaluación
de compuestos específicos, toxicidad relativa, sensibilidad relativa, etcétera.


Aplicación de los ensayos de toxicidad al diagnóstico ambiental de efectos
biológicos
La ecotoxicología, estudia y analiza los efectos de agentes químicos y físicos
sobre organismos vivos, con particular atención a poblaciones y comunidades de
ecosistemas definidos (Butler, 1978).
La ecotoxicología aplicada, tiene como objetivo el desarrollo de protocolos de
ensayo para ser utilizados como herramientas de predicción temprana que
permitan definir umbrales permisibles, con niveles de incertidumbre aceptables, y
sirvan de guía a las entidades reguladores para la toma de decisiones (Day et al.,
1988).
La evaluación de riesgo ecológico, es un proceso de asignación de magnitudes
y probabilidades a los efectos adversos de actividades antrópicas y catástrofes
naturales (Sutter, 1993); se apoya tanto en métodos predictivos para evaluar la
exposición, como en los efectos de sustancias tóxicas a diferentes niveles de
organización y escala trófica. Esta última es de interés en el uso de técnicas
bioanalíticas de diagnóstico con ensayos de toxicidad.
Históricamente, los efectos han sido estudiados en el nivel de los organismos, de
las poblaciones y de los ecosistemas. Ya que en la mayoría de los casos no es
posible la eliminación de la toxicidad, las agencias u organismos de protección
ambiental deben definir la proporción de mortalidad o la reducción del crecimiento
tolerable de las especies expuestas. Sin embargo, los ensayos de toxicidad y los
modelos de extrapolación no son suficientes para encarar este tipo de problemas.


                                                                                   32
O        N        O

  TÓXICO
             Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                               O                 O
             Apuntes del curso de Bioensayos Febrero-Julio de 2010                           O
                         Prof. José Luis Peña Manjarrez



Deberíamos preguntarnos ¿qué significa la muerte de un organismo en la escala
de las poblaciones? Probablemente nada, dado que puede ser reemplazado a
corto plazo, y además está programado, como condición de todo ser vivo, para
que esto suceda. El problema de interés se relaciona con la evaluación de los
efectos sobre la abundancia, producción y persistencia de las poblaciones y los
ecosistemas.
A pesar del limitado alcance de la información proveniente de los ensayos de
toxicidad para su extrapolación a escala ambiental, los estudios con organismos
en laboratorio, en condiciones controladas y estandarizadas para la evaluación de
respuestas, han venido siendo las fuentes de información predominantes para la
evaluación ecológica de los efectos de los contaminantes tóxicos. La ecología de
poblaciones debe conectar información toxicológica con modelos poblacionales
para predecir efectos a esa escala. Por otra parte, las evaluaciones
ecotoxicológicas realizadas en ecosistemas deben tener en cuenta características
como:      interacciones    entre   poblaciones   de   distintas   especies,       cambios
estructurales y cambios funcionales, observables en el contexto del ecosistema.
Sin embargo, las evaluaciones a este nivel tienen una serie de restricciones
relacionadas con el elevado costo y tiempo asociados, el limitado número de
diseños estandarizados, de puntos finales de evaluación y la cantidad de
información sobre efectos tóxicos requerida para su parametrización (Sutter,
1993).
Existen diversos organismos de protección ambiental nacionales e internacionales
(SSA,      PROFEPA,        SEMARNAT,    CONAGUA,       Environment     Canada,       EPA,
EUROEMAS, etc.) y de estandarización (ASTM, OECD, AOAC, ISO, entre otros)
que han concretado la elaboración e implementación de sistemas de diagnóstico,
base para la generación de estrategias ecosistémicas de protección. Ello, ha
orientado a la obtención de respuestas estandarizadas de laboratorio (bioensayos)
que permiten asegurar, dentro de un cierto grado de confiabilidad, la medida
obtenida. La estimación del riesgo ecológico se basa en modelos y procedimientos


                                                                                        33
O        N         O

  TÓXICO
              Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                          O                 O
              Apuntes del curso de Bioensayos Febrero-Julio de 2010                     O
                          Prof. José Luis Peña Manjarrez




recientemente incorporados (Bartell et al., 1992; Faustman y Omenn, 1996) por
algunos organismos de gestión de control ambiental.


Definiciones
El conjunto de las definiciones indicadas que se presentan a continuación se
basan en el documento EPS 1/RM/34 de Environment Canada (1999). Incluyen
términos o conceptos de interés en el marco de nuestro curso. Se han mantenido
las siglas de abreviaturas en inglés, dado el extendido uso de términos en forma
abreviada.
Agudo: ocurre dentro de un periodo corto (minutos, horas o algunos días) en
relación con el periodo de vida del organismo de ensayo.
Batería de ensayos: combinación de diversos ensayos de toxicidad con
diferentes organismos.
Bioensayo: ensayo en el cual el poder o potencia de una sustancia es medido a
través de la respuesta de organismos vivos o sistemas vivientes.
Carta control: es un gráfico utilizado para seguir cambios a través del tiempo del
punto final medido para un compuesto tóxico de referencia. En el eje X se grafica
la fecha del ensayo, y en el eje Y, la concentración tóxica efectiva. Se toman como
límite de alerta dos desviaciones estándar de la media histórica de la
concentración letal media.
Contaminante: sustancia ajena, presente en un sistema natural en una
concentración más elevada de lo normal por causa de actividad antrópica directa o
indirecta. En un sentido más amplio se le define como la presencia de cualquier
agente físico, químico o biológico, o de combinaciones de los mismos en lugares,
formas y concentraciones tales y con tal duración que sean o puedan ser nocivos
para la salud, la seguridad o bienestar de la población, o perjudiciales para la vida
animal y vegetal, o que impidan el uso y goce de las propiedades y lugares de
recreación.


                                                                                  34
O        N        O

  TÓXICO
           Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                       O                 O
           Apuntes del curso de Bioensayos Febrero-Julio de 2010                     O
                       Prof. José Luis Peña Manjarrez

Control: es un tratamiento en una investigación que duplica todos los factores que
puedan afectar el resultado, excepto la condición que está siendo investigada
(sinónimo de control negativo).
Control positivo: evaluación de la respuesta tóxica con una sustancia de
referencia, utilizada para controlar la sensibilidad de los organismos en el
momento en el cual se evalúa el material problema.
Crónico: ocurre durante un periodo relativamente largo de exposición (una
porción significativa de la vida del organismo >10%).
Cumplimiento:      de   acuerdo      con   reglamentaciones   gubernamentales   o
requerimientos para el otorgamiento de un permiso.
CE50/CI50: concentración efectiva o de inhibición media. Concentración del
material en agua, suelo o sedimento que se estima afecta al 50% de los
organismos de ensayo. La CE50 y sus límites de confianza (95%) son usualmente
derivados de análisis estadístico.
Ensayo de toxicidad: determinación del efecto de un material o mezcla sobre un
grupo de organismos seleccionados bajo condiciones definidas. Mide las
proporciones de organismos afectados (efecto cuantal) o el grado de efecto
(graduado) luego de la exposición a la muestra.
Factores de aplicación: multiplicadores aplicados a los CL50 para estimar
posibles umbrales subletales de efecto en comunidades acuáticas. Los valores
más comunes derivados de la experiencia práctica son:
• 1/10 del 96h-CL50 para compuestos no persistentes ni bioacumulables, o, 1/20 o
menos, como la concentración mediana después de la mezcla luego de 24 horas.
• 1/20 y 1/100 del 96h-CL50 para compuestos persistentes.
Factor de emisión de toxicidad: proporción de emisión de toxicidad de un
determinado efluente por unidad de producción (ejemplo: por tonelada de
producto) de la operación que genera el efluente.
Índices de toxicidad: expresan los resultados de diferentes ensayos de toxicidad
como un único valor numérico que clasifica, según categorías, a la muestra. No
existen reglas fijas para la designación de los índices.


                                                                                35
O       N         O

  TÓXICO
              Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                       O                 O
              Apuntes del curso de Bioensayos Febrero-Julio de 2010                  O
                          Prof. José Luis Peña Manjarrez

CL50: concentración letal media, concentración del material en agua, suelo o
sedimento que se estima letal para el 50% de los organismos de ensayo. La
CL50y sus límites de confianza (95%) son usualmente derivados de análisis
estadístico.
LOEC: concentración más baja a la cual se observa efecto (LOEC, por sus siglas
en inglés).
Nivel guía de calidad: es un valor numérico de concentración límite o indicación
narrativa, con base científica, recomendado para proteger y mantener organismos
nativos o un cuerpo de agua para un uso específico. Puede ser un nivel guía de
calidad para suelos, agua, sedimentos. El objetivo de calidad tiene la misma
definición, excepto que es aplicable a un sitio particular y refleja "condiciones
oficiales" deseadas para determinada región. Un estándar de calidad es un
objetivo que ha sido reconocido y es aplicado por legislación de control ambiental
a escala gubernamental.
NOEC: concentración a la cual no se observa efecto (NOEC, por sus siglas en
inglés).
PMTC (concentración mínima del tóxico esperada): término elaborado por
Environment Canada para su uso en el monitoreo ambiental de efectos de
efluentes. Concentración de un efluente en el cuerpo receptor por debajo de la
cual se esperaría que sólo un 5% de las muestras manifestaran efectos nocivos
subletales, estimado con un nivel de confianza del 95% (PMTC, por siglas en
inglés).
Proporción de emisión tóxica: es la potencia tóxica de un efluente multiplicado
por el volumen descargado. Por lo tanto, el valor de las unidades de toxicidad
deberá ser multiplicado por la descarga en metros cúbicos por día.
Protocolo: es un conjunto de procedimientos explícitos para un ensayo o
experimento, de acuerdo con lo establecido entre las partes y descrito en un
documento.
Punto final: medida o valor que expresa el resultado de un ensayo
(CL50/CE50/CI50). También significa la respuesta del organismo para mostrar el


                                                                                36
O        N        O

  TÓXICO
            Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                           O                 O
            Apuntes del curso de Bioensayos Febrero-Julio de 2010                        O
                        Prof. José Luis Peña Manjarrez

efecto que se utiliza para indicar la finalización del ensayo, definido por un
porcentaje de organismos y un tiempo de exposición.
Relación aguda-crónica (ACR): ACR, por sus siglas en inglés, es el inverso del
factor de aplicación. Se deriva de la relación medida entre un dato agudo de CL50
y un nivel subletal medido. Para la obtención de un valor más realista se puede
combinar la información de varios ensayos. Se la utiliza ampliamente en la
actualidad y tiene la ventaja de tener valores mayores a la unidad.
Replica: es una cámara o recipiente de ensayo, conteniendo un número
especificado de organismos en una concentración/dilución de muestra definida o
de agua de dilución como control. En un ensayo de toxicidad con cinco
concentraciones de ensayo y un control que usa tres replicados, se utilizan 18
cámaras de ensayo con tres cámaras por concentración. Un replicado debe ser
una unidad separada o independiente de ensayo.
TOEC: concentración umbral a la cual se observa efecto (media geométrica del
NOEC y LOEC).
Toxicidad aguda: efecto adverso (letal o subletal) inducido sobre los organismos
de ensayo en prueba durante un periodo de exposición del material de ensayo,
usualmente de pocos días.
Toxicidad crónica: efectos tóxicos a largo plazo relacionados con cambios en el
metabolismo, crecimiento o capacidad de supervivencia.


REFERENCIAS
Bartell, S.M., Gardner, R.H. & O'Neill, R.V., 1992, Ecological Risk Estimation,
Lewis Publishers, Boca Raton.
Butler, G.C., 1978, Principles of Ecotoxicology, SCOPE 12, John Wiley and Sons,
New York.
Day, K.E., Ongley, E.D., Scroggins, R.P. & Eisenhauer, R.P., 1988, "Biology in the
New Regulatory Framework for Aquatic Protection", Proceedings for the Alliston
Workshop,    National   Water   Research     Institute   (Burlington,   Ontario)   and
Environment Canada (Ottawa).

                                                                                    37
O       N         O

  TÓXICO
           Centro de Estudios Tecnológicos del Mar en Ensenada
                                                                       O                 O
           Apuntes del curso de Bioensayos Febrero-Julio de 2010                     O
                       Prof. José Luis Peña Manjarrez

Environment Canada, 1999, Guidance Document on Application and Interpretation
of Single-Species Tests in Environmental Toxicology, Method Development and
Application Section, Environmental Technology Centre, EPS 1/RM/34.
Faustman, E.M. & Omenn, G.S., 1996, "Risk Assessment", en: Casarett and
Doull's Toxicology, C.D. Klaassen editor, Chapter 4, McGraw-Hill, international
edition.
Sutter, G.W., 1993, Ecological Risk Assessment, Lewis Publishers, Boca Raton
Henry, L. 1988. Recomendaciones concernientes a la selección de organismos
bioensayos. www.cepis.ops-oms.org/eswww/fulltext/publica/orimuest/omnax51html
Martínez-Tabche, L., Ramírez, M., German, F., Galar, C., Madrigal, M., Ulloa, G. y
Orozco, F. 1997. Toxic effect of sodium dodecylbencensulfonate, lead, petroleum,
and their mixtures on the activity of acetylcholinesterase of Moina macrocopa in
vitro. Environ. Toxicol. Water. Qual. 12: 211-215.
Paggi, J. y de Paggi, S. 2000 Daphnia magna: el "canario" de las aguas.
www.ceride.gov.ar/servicios/comunica/canario.htm




                                                                               38

Más contenido relacionado

La actualidad más candente

002 conceptos basicos de txicologia
002 conceptos basicos de txicologia002 conceptos basicos de txicologia
002 conceptos basicos de txicologiaarielcallisayaacero
 
Equipo 6 toxicidad aguda y subaguda
Equipo 6 toxicidad aguda y subagudaEquipo 6 toxicidad aguda y subaguda
Equipo 6 toxicidad aguda y subagudaMarisol Villarreal
 
Toxicología ambiental conceptos básicos
Toxicología ambiental conceptos básicosToxicología ambiental conceptos básicos
Toxicología ambiental conceptos básicosHomero Ulises
 
Alcaloides derivados de la ornitina y lisina por Q.F. Marilú Roxana Soto Vásquez
Alcaloides derivados de la ornitina y lisina por Q.F. Marilú Roxana Soto VásquezAlcaloides derivados de la ornitina y lisina por Q.F. Marilú Roxana Soto Vásquez
Alcaloides derivados de la ornitina y lisina por Q.F. Marilú Roxana Soto VásquezMarilu Roxana Soto Vasquez
 
Informe 2 jarabe de citrato de piperazina
Informe 2 jarabe de citrato de piperazinaInforme 2 jarabe de citrato de piperazina
Informe 2 jarabe de citrato de piperazinaEvelynMarianaApoloPr1
 
Suspensiones 5210
Suspensiones 5210Suspensiones 5210
Suspensiones 5210Panchitouuu
 
Fitoquimica diapositivas
Fitoquimica diapositivasFitoquimica diapositivas
Fitoquimica diapositivasisaac_2011
 
TECNICAS Y PROCEDIMIENTOS PARA ANALISIS TOXICOLOGICO
TECNICAS Y PROCEDIMIENTOS PARA ANALISIS TOXICOLOGICOTECNICAS Y PROCEDIMIENTOS PARA ANALISIS TOXICOLOGICO
TECNICAS Y PROCEDIMIENTOS PARA ANALISIS TOXICOLOGICOVanessa Pauyac Gonzales
 
Diferencias entre-metabolitos-primarios-y-secundarios
Diferencias entre-metabolitos-primarios-y-secundariosDiferencias entre-metabolitos-primarios-y-secundarios
Diferencias entre-metabolitos-primarios-y-secundariosSarai Vara
 
Introduccfarmacognosia
IntroduccfarmacognosiaIntroduccfarmacognosia
Introduccfarmacognosiairenashh
 
Metabolitos secundarios
Metabolitos secundariosMetabolitos secundarios
Metabolitos secundariosNeenittoh Cn
 
Clase 3 identificación de plantas medicinales
Clase 3 identificación de plantas medicinalesClase 3 identificación de plantas medicinales
Clase 3 identificación de plantas medicinalesIgorVillalta
 
Clase de metabolitos secundarios y ruta de acido shikimico por Q.F Marilú Rox...
Clase de metabolitos secundarios y ruta de acido shikimico por Q.F Marilú Rox...Clase de metabolitos secundarios y ruta de acido shikimico por Q.F Marilú Rox...
Clase de metabolitos secundarios y ruta de acido shikimico por Q.F Marilú Rox...Marilu Roxana Soto Vasquez
 

La actualidad más candente (20)

ENSAYO DE TOXICIDAD EN SEMILLAS DE LECHUGA
ENSAYO DE TOXICIDAD EN SEMILLAS DE LECHUGAENSAYO DE TOXICIDAD EN SEMILLAS DE LECHUGA
ENSAYO DE TOXICIDAD EN SEMILLAS DE LECHUGA
 
002 conceptos basicos de txicologia
002 conceptos basicos de txicologia002 conceptos basicos de txicologia
002 conceptos basicos de txicologia
 
Equipo 6 toxicidad aguda y subaguda
Equipo 6 toxicidad aguda y subagudaEquipo 6 toxicidad aguda y subaguda
Equipo 6 toxicidad aguda y subaguda
 
Toxicología ambiental conceptos básicos
Toxicología ambiental conceptos básicosToxicología ambiental conceptos básicos
Toxicología ambiental conceptos básicos
 
Toxicodinamia
ToxicodinamiaToxicodinamia
Toxicodinamia
 
evaluación de la toxicidad
evaluación de la toxicidadevaluación de la toxicidad
evaluación de la toxicidad
 
Alcaloides derivados de la ornitina y lisina por Q.F. Marilú Roxana Soto Vásquez
Alcaloides derivados de la ornitina y lisina por Q.F. Marilú Roxana Soto VásquezAlcaloides derivados de la ornitina y lisina por Q.F. Marilú Roxana Soto Vásquez
Alcaloides derivados de la ornitina y lisina por Q.F. Marilú Roxana Soto Vásquez
 
Informe 2 jarabe de citrato de piperazina
Informe 2 jarabe de citrato de piperazinaInforme 2 jarabe de citrato de piperazina
Informe 2 jarabe de citrato de piperazina
 
Toxicocinetica
ToxicocineticaToxicocinetica
Toxicocinetica
 
Suspensiones 5210
Suspensiones 5210Suspensiones 5210
Suspensiones 5210
 
Fitoquimica diapositivas
Fitoquimica diapositivasFitoquimica diapositivas
Fitoquimica diapositivas
 
TECNICAS Y PROCEDIMIENTOS PARA ANALISIS TOXICOLOGICO
TECNICAS Y PROCEDIMIENTOS PARA ANALISIS TOXICOLOGICOTECNICAS Y PROCEDIMIENTOS PARA ANALISIS TOXICOLOGICO
TECNICAS Y PROCEDIMIENTOS PARA ANALISIS TOXICOLOGICO
 
Diferencias entre-metabolitos-primarios-y-secundarios
Diferencias entre-metabolitos-primarios-y-secundariosDiferencias entre-metabolitos-primarios-y-secundarios
Diferencias entre-metabolitos-primarios-y-secundarios
 
Alcaloides toxi
Alcaloides toxiAlcaloides toxi
Alcaloides toxi
 
Introduccfarmacognosia
IntroduccfarmacognosiaIntroduccfarmacognosia
Introduccfarmacognosia
 
Formas Farmacéuticas. José Luis Vila Jato
Formas Farmacéuticas. José Luis Vila JatoFormas Farmacéuticas. José Luis Vila Jato
Formas Farmacéuticas. José Luis Vila Jato
 
Metabolitos secundarios
Metabolitos secundariosMetabolitos secundarios
Metabolitos secundarios
 
Clase 3 identificación de plantas medicinales
Clase 3 identificación de plantas medicinalesClase 3 identificación de plantas medicinales
Clase 3 identificación de plantas medicinales
 
Clase de metabolitos secundarios y ruta de acido shikimico por Q.F Marilú Rox...
Clase de metabolitos secundarios y ruta de acido shikimico por Q.F Marilú Rox...Clase de metabolitos secundarios y ruta de acido shikimico por Q.F Marilú Rox...
Clase de metabolitos secundarios y ruta de acido shikimico por Q.F Marilú Rox...
 
2 toxicologia
2 toxicologia2 toxicologia
2 toxicologia
 

Destacado

Proceso de biotecnología
Proceso de biotecnologíaProceso de biotecnología
Proceso de biotecnologíaLuis Jimenez
 
Monografía final
Monografía finalMonografía final
Monografía finalJomaru2309
 
Determinacion de parametros_de_desempeño_del_metodo_analitic
Determinacion de parametros_de_desempeño_del_metodo_analiticDeterminacion de parametros_de_desempeño_del_metodo_analitic
Determinacion de parametros_de_desempeño_del_metodo_analiticTatiana Hernández
 
Alimentación y manejo de terneras
Alimentación y manejo de ternerasAlimentación y manejo de terneras
Alimentación y manejo de ternerasIsabel Claro
 
Toxicidad Aguda del Aceite Esencial Tomillo
Toxicidad Aguda del Aceite Esencial TomilloToxicidad Aguda del Aceite Esencial Tomillo
Toxicidad Aguda del Aceite Esencial TomilloRenée Condori Apaza
 
tratamiento de aguas domesticas
 tratamiento de aguas domesticas tratamiento de aguas domesticas
tratamiento de aguas domesticasUAAAN
 
Biomarcadores y bioindicadores
Biomarcadores y bioindicadoresBiomarcadores y bioindicadores
Biomarcadores y bioindicadoresANIBAL1987
 
Tipos de fermentacion
Tipos de fermentacionTipos de fermentacion
Tipos de fermentacionJuan Diego
 
10 conceptos de investigacion
10 conceptos de investigacion10 conceptos de investigacion
10 conceptos de investigacionosmir11
 
Cualidades de un investigador
Cualidades de un investigadorCualidades de un investigador
Cualidades de un investigadorIsabel07Miranda
 

Destacado (16)

Proceso de biotecnología
Proceso de biotecnologíaProceso de biotecnología
Proceso de biotecnología
 
Configuraciones de incidencia rasante
Configuraciones de incidencia rasanteConfiguraciones de incidencia rasante
Configuraciones de incidencia rasante
 
Semana 07 08
Semana 07 08Semana 07 08
Semana 07 08
 
Monografía final
Monografía finalMonografía final
Monografía final
 
Fitorremediación
FitorremediaciónFitorremediación
Fitorremediación
 
Determinacion de parametros_de_desempeño_del_metodo_analitic
Determinacion de parametros_de_desempeño_del_metodo_analiticDeterminacion de parametros_de_desempeño_del_metodo_analitic
Determinacion de parametros_de_desempeño_del_metodo_analitic
 
Alimentación y manejo de terneras
Alimentación y manejo de ternerasAlimentación y manejo de terneras
Alimentación y manejo de terneras
 
cantaminacion ambiental
cantaminacion ambientalcantaminacion ambiental
cantaminacion ambiental
 
Toxicidad Aguda del Aceite Esencial Tomillo
Toxicidad Aguda del Aceite Esencial TomilloToxicidad Aguda del Aceite Esencial Tomillo
Toxicidad Aguda del Aceite Esencial Tomillo
 
Fitorremediacion
FitorremediacionFitorremediacion
Fitorremediacion
 
tratamiento de aguas domesticas
 tratamiento de aguas domesticas tratamiento de aguas domesticas
tratamiento de aguas domesticas
 
Biomarcadores y bioindicadores
Biomarcadores y bioindicadoresBiomarcadores y bioindicadores
Biomarcadores y bioindicadores
 
Tipos de fermentacion
Tipos de fermentacionTipos de fermentacion
Tipos de fermentacion
 
10 conceptos de investigacion
10 conceptos de investigacion10 conceptos de investigacion
10 conceptos de investigacion
 
MAPAS MENTALES
MAPAS MENTALESMAPAS MENTALES
MAPAS MENTALES
 
Cualidades de un investigador
Cualidades de un investigadorCualidades de un investigador
Cualidades de un investigador
 

Similar a Apuntes Bioensayos

Trabajo Final Fitoplancton Fisiología Vegetal
Trabajo Final Fitoplancton Fisiología VegetalTrabajo Final Fitoplancton Fisiología Vegetal
Trabajo Final Fitoplancton Fisiología VegetalLuzAdelinaGonzalezFe
 
SEGUNDO BÁSICO TERCERA UNIDAD.pdf
SEGUNDO BÁSICO TERCERA UNIDAD.pdfSEGUNDO BÁSICO TERCERA UNIDAD.pdf
SEGUNDO BÁSICO TERCERA UNIDAD.pdfEddieCarrillo8
 
Daño celular en una población infantil potencialmente expuesta a pesticidas- ...
Daño celular en una población infantil potencialmente expuesta a pesticidas- ...Daño celular en una población infantil potencialmente expuesta a pesticidas- ...
Daño celular en una población infantil potencialmente expuesta a pesticidas- ...Ramón Copa
 
Aspectos diferenciadores de células vegetales y animales
Aspectos diferenciadores de células vegetales y animalesAspectos diferenciadores de células vegetales y animales
Aspectos diferenciadores de células vegetales y animalesJuan Carlos Valdelamar Villegas
 
Laboratorio de genetica
Laboratorio de geneticaLaboratorio de genetica
Laboratorio de geneticafray jin
 
practico__bacteria.pdf
practico__bacteria.pdfpractico__bacteria.pdf
practico__bacteria.pdfssuser669202
 
2. diferenciación de células eucariotas y procariotas
2. diferenciación de células eucariotas y procariotas2. diferenciación de células eucariotas y procariotas
2. diferenciación de células eucariotas y procariotasEsther Guzmán
 
Guia de laboratorio bcm 9
Guia de laboratorio bcm 9Guia de laboratorio bcm 9
Guia de laboratorio bcm 9Roberto Pineda
 
Ciclo1 biologia celular y mol 2010 ii
Ciclo1 biologia celular y mol 2010 iiCiclo1 biologia celular y mol 2010 ii
Ciclo1 biologia celular y mol 2010 iifacmedicinaudch
 
Monografia de bioquimica
Monografia de bioquimicaMonografia de bioquimica
Monografia de bioquimicasolasa bb
 
14 Estandares%20 Educativos%20 EducacióN%20 Media 0
14 Estandares%20 Educativos%20 EducacióN%20 Media 014 Estandares%20 Educativos%20 EducacióN%20 Media 0
14 Estandares%20 Educativos%20 EducacióN%20 Media 0Adalberto Martinez
 
Tinciones microbiológicas (lectura 2 tema 3) (1).pdf
Tinciones microbiológicas (lectura 2 tema 3) (1).pdfTinciones microbiológicas (lectura 2 tema 3) (1).pdf
Tinciones microbiológicas (lectura 2 tema 3) (1).pdfHctorGalvn5
 

Similar a Apuntes Bioensayos (20)

Cuestionario
CuestionarioCuestionario
Cuestionario
 
Trabajo Final Fitoplancton Fisiología Vegetal
Trabajo Final Fitoplancton Fisiología VegetalTrabajo Final Fitoplancton Fisiología Vegetal
Trabajo Final Fitoplancton Fisiología Vegetal
 
Permeabilidad celular
Permeabilidad celularPermeabilidad celular
Permeabilidad celular
 
Permeabilidad celular
Permeabilidad celularPermeabilidad celular
Permeabilidad celular
 
SEGUNDO BÁSICO TERCERA UNIDAD.pdf
SEGUNDO BÁSICO TERCERA UNIDAD.pdfSEGUNDO BÁSICO TERCERA UNIDAD.pdf
SEGUNDO BÁSICO TERCERA UNIDAD.pdf
 
Guia de laboratorio BIOLOGIA_bcm4a
Guia de laboratorio BIOLOGIA_bcm4aGuia de laboratorio BIOLOGIA_bcm4a
Guia de laboratorio BIOLOGIA_bcm4a
 
Biologia molecular
Biologia molecularBiologia molecular
Biologia molecular
 
Daño celular en una población infantil potencialmente expuesta a pesticidas- ...
Daño celular en una población infantil potencialmente expuesta a pesticidas- ...Daño celular en una población infantil potencialmente expuesta a pesticidas- ...
Daño celular en una población infantil potencialmente expuesta a pesticidas- ...
 
Aspectos diferenciadores de células vegetales y animales
Aspectos diferenciadores de células vegetales y animalesAspectos diferenciadores de células vegetales y animales
Aspectos diferenciadores de células vegetales y animales
 
Laboratorio de genetica
Laboratorio de geneticaLaboratorio de genetica
Laboratorio de genetica
 
Jornada 2 Nivel III -1.pptx
Jornada 2 Nivel III -1.pptxJornada 2 Nivel III -1.pptx
Jornada 2 Nivel III -1.pptx
 
practico__bacteria.pdf
practico__bacteria.pdfpractico__bacteria.pdf
practico__bacteria.pdf
 
162 act colab_1
162 act colab_1 162 act colab_1
162 act colab_1
 
2. diferenciación de células eucariotas y procariotas
2. diferenciación de células eucariotas y procariotas2. diferenciación de células eucariotas y procariotas
2. diferenciación de células eucariotas y procariotas
 
Guia de laboratorio bcm 9
Guia de laboratorio bcm 9Guia de laboratorio bcm 9
Guia de laboratorio bcm 9
 
Ciclo1 biologia celular y mol 2010 ii
Ciclo1 biologia celular y mol 2010 iiCiclo1 biologia celular y mol 2010 ii
Ciclo1 biologia celular y mol 2010 ii
 
Monografia de bioquimica
Monografia de bioquimicaMonografia de bioquimica
Monografia de bioquimica
 
14 Estandares%20 Educativos%20 EducacióN%20 Media 0
14 Estandares%20 Educativos%20 EducacióN%20 Media 014 Estandares%20 Educativos%20 EducacióN%20 Media 0
14 Estandares%20 Educativos%20 EducacióN%20 Media 0
 
Tinciones microbiológicas (lectura 2 tema 3) (1).pdf
Tinciones microbiológicas (lectura 2 tema 3) (1).pdfTinciones microbiológicas (lectura 2 tema 3) (1).pdf
Tinciones microbiológicas (lectura 2 tema 3) (1).pdf
 
Guía 7 hongos
Guía 7   hongosGuía 7   hongos
Guía 7 hongos
 

Último

Factores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFactores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFlor Idalia Espinoza Ortega
 
texto argumentativo, ejemplos y ejercicios prácticos
texto argumentativo, ejemplos y ejercicios prácticostexto argumentativo, ejemplos y ejercicios prácticos
texto argumentativo, ejemplos y ejercicios prácticosisabeltrejoros
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...JAVIER SOLIS NOYOLA
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Carlos Muñoz
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.José Luis Palma
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
Movimientos Precursores de La Independencia en Venezuela
Movimientos Precursores de La Independencia en VenezuelaMovimientos Precursores de La Independencia en Venezuela
Movimientos Precursores de La Independencia en Venezuelacocuyelquemao
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADauxsoporte
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoFundación YOD YOD
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxOscarEduardoSanchezC
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADOJosé Luis Palma
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadAlejandrino Halire Ccahuana
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdfgimenanahuel
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 
cortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuacortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuaDANNYISAACCARVAJALGA
 
EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.DaluiMonasterio
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleJonathanCovena1
 

Último (20)

Factores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFactores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamica
 
texto argumentativo, ejemplos y ejercicios prácticos
texto argumentativo, ejemplos y ejercicios prácticostexto argumentativo, ejemplos y ejercicios prácticos
texto argumentativo, ejemplos y ejercicios prácticos
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
 
Unidad 4 | Teorías de las Comunicación | MCDI
Unidad 4 | Teorías de las Comunicación | MCDIUnidad 4 | Teorías de las Comunicación | MCDI
Unidad 4 | Teorías de las Comunicación | MCDI
 
Movimientos Precursores de La Independencia en Venezuela
Movimientos Precursores de La Independencia en VenezuelaMovimientos Precursores de La Independencia en Venezuela
Movimientos Precursores de La Independencia en Venezuela
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativo
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
 
Unidad 3 | Teorías de la Comunicación | MCDI
Unidad 3 | Teorías de la Comunicación | MCDIUnidad 3 | Teorías de la Comunicación | MCDI
Unidad 3 | Teorías de la Comunicación | MCDI
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdad
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
cortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuacortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahua
 
EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo Sostenible
 

Apuntes Bioensayos

  • 1. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez Introducción y conceptos básicos Los Bioensayos son experimentos que se realizan bajo condiciones controladas de laboratorio con el propósito de evaluar cualitativa y cuantitativamente el efecto que los agentes xenobióticos producen sobre organismos vegetales o animales cuidadosamente seleccionados. Otros autores conceptualizan al ensayo biológico como herramientas de diagnóstico para determinar el efecto de agentes físicos y químicos sobre organismos de prueba bajo condiciones experimentales específicas y controladas. Un ejemplo típico, pero que está en desuso es el bioensayo en ratón (fig. 1) para determinar la presencia y la concentración de ciertas ficotoxinas del tipo paralizante (PSP) producida por un dinoflagelado del género Figura 1. Esquema general del Gymnodinium o bien toxinas del tipo amnésico procedimiento para el bioensayo e ratón. (ASP), producidas por diatomeas del género Pseudonitzschia sp. Los efectos son muy diversos y pueden manifestarse como inhibición o magnificación, son evaluados por la reacción de los organismos: muerte, crecimiento, proliferación, multiplicación, cambios morfológicos, fisiológicos o histológicos (fig. 2). Figura 2. efectos tóxicos de la radiación en el intestino. La exposición a radiaciones provoca apoptosis masiva de células madre en la base intestinal y células endoteliales de los vasos sanguíneos que alimentan el revestimiento del intestino. Este daño se acompaña de pérdida de altura en las vellosidades intestinales, afectando la capacidad para absorber nutrientes. 1
  • 2. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez Los efectos pueden manifestarse a diferentes niveles: a) Efectos de los xenobióticos en estructuras subcelulares, Figura 3. Células animal y vegetal mostrando sus principales estructuras, las cuales pueden ser afectadas por diferentes agentes xenobióticos. 2
  • 3. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez En este punto de afectaciones a nivel subcelular, nos detendremos un poco para revisar una de las reacciones más importantes para la vida en el planeta, nos referimos a la fotosíntesis cuyo proceso toma lugar dentro del cloroplasto (un organelo exclusivo de las células de las plantas y algas). Su estructura es aún más compleja que la mitocondrial y un daño en su funcionamiento significa altos costos que pueden afectar desde el nivel individual hasta nivel de biocenosis. Desde el punto de vista de la vida terrestre, los cloroplastos desempeñan una función aún más esencial que la de las mitocondrias: en ellos ocurre la fotosíntesis; esta función consiste en utilizar la energía de la luz solar para activar la síntesis de moléculas de carbono ricas en energía, y la liberación de oxígeno. Los cloroplastos producen tanto las moléculas nutritivas como el oxígeno que utilizan las mitocondrias. Estructura del cloroplasto Los cloroplastos (fig. 4), son organelos con forma de disco, de entre 4 y 6 μm de diámetro y 10 μm o más de longitud. Son más abundantes en las células de las hojas, lugar en el cual pueden orientarse hacia la luz. Es posible que en una célula haya entre cuarenta y cincuenta cloroplastos, y en cada milímetro cuadrado de la superficie de la hoja hay 500.000 cloroplastos. Cada cloroplasto está recubierto por Figura 4. Estructura interna del cloroplasto una membrana doble. El cloroplasto contiene en su interior una sustancia básica denominada estroma, la cual está atravesada por una red compleja de discos conectados entre sí, llamados tilacoides. Muchos de los tilacoides se encuentran apilados como si fueran montones de monedas; a estas pilas se les llama grana. 3
  • 4. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez Las moléculas de clorofila (fig. 5), que absorben la luz para llevar a cabo la fotosíntesis, están unidas a las membranas de los tilacoides. La energía luminosa capturada por la clorofila es convertida en adenosin-trifosfato (ATP, fig. 5) y moléculas reductoras de nicotinamida adenina dinucleótido fosfato (NADPH, fig. 5) mediante una serie de reacciones químicas que tienen lugar en los grana. Los cloroplastos también contienen gránulos pequeños de almidón donde se almacenan los productos de la fotosíntesis de forma temporal. b c Figura 5.- Las moléculas de clorofila (a) son una familia de pigmentos que se encuentran en las cianobacterias y en todos los organismos que contienen plastos en sus células. Su estructura tiene dos partes: un anillo de porfirina y una cadena larga llamada fitol, el anillo de porfirina es un tetrapirrol, con cuatro 2+ a anillos pentagonales de pirrol unidos a un átomo de magnesio (Mg ). El fitol es una cadena hidrocarbonada con restos de metilo (-CH3) a lo largo. Tiene, un carácter “hidrófobo” y sirve para anclar la molécula de clorofila en la estructura anfipatica de los complejos moleculares en que residen las clorofilas. (b) La molecula de Nicotinamida Adenina Dinucleótido Fosfato (NADP+ en su forma oxidada y NADPH en su forma reducida) es una coenzima que interviene en numerosas vias anabólicas, su estructura contiene la vitamina B3. El NADPH proporciona parte del poder reductor necesario para la biosíntesis. Interviene en la fase oscura de la fotosíntesis, en la que se fija el CO2; el NADPH se genera durante la fase luminosa. (c) El Adenosín Trifosfato (ATP), es un nucleótido fundamental en la obtención de energía celular. Está formado por una base nitrogenada (adenina) unida al carbono 1 de un azúcar tipo pentosa, la ribosa, que en su carbono 5 tiene tres grupos fosfato. Se encuentra incorporada en los acidos nucleicos. Se produce durante la fotosíntesis y la respiración celular, es consumido por muchas enzimas en la catálisis de numerosos procesos químicos. 4
  • 5. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez La ecuación más sencilla de la fotosíntesis que nos han enseñado a través de los libros de texto en primaria y secundaria es la siguiente: 6 CO2 + 6 H2O + Energía luminosa = (con clorofila)= → C6H12O6 + 6 O2 La siguiente ecuación considera, que el oxígeno que se libera proviene del agua: 6 CO2 + 12 H2O + Energía luminosa =(con clorofila)= →C6H12O6 + 6 O2 + 6 H2O La fotosíntesis se realiza en dos fases conocidas como las reacciones de luz o fase luminosa y las reacciones de obscuridad o ciclo de Calvin. Fase luminosa de la fotosíntesis. Los procesos que ocurren en la fase luminosa de la fotosíntesis se pueden resumir en estos puntos: 1.- La fotólisis. Los paquetes de energía lumínica (quantos de luz) llevan un electrón del fotosistema II (clorofila P680) a un nivel de energía más alto, quien al caer de nuevo recorre el camino de la fotofosforilación acíclica y no regresa a la clorofila. Esa clorofila lo repone de una molécula de agua, que es partida en el proceso (dos electrones por molécula de agua, por ello doble reacción). Resultado: a) Se libera el oxígeno, b) Iones de hidrógeno H+ se unen a las moléculas transportadoras de hidrógeno NADP. 2.- La Fotofosforilación. La fotofosforilación acíclica: el electrón del fotosistema II cae a un nivel menor de energía y es recibido por la clorofila (P700) del fotosistema I. En este proceso se forma un ATP. Esa clorofila, a su vez, por acción de la luz eleva de nuevo un electrón a un nivel superior de energía. De allí cae un poco, de nuevo a la molécula transportadora de energía NADP, que ahora, por los electrones de la fotólisis, puede unir los iones de hidrógeno H +, formando NADPH. Resultado: a) Los electrones se transfieren al NADP, b) Se forma ATP una vez. 5
  • 6. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez 2b.- La fotofosforilación cíclica. Un electrón del fotosistema I (clorofila P700) se eleva a un mayor nivel de energía y durante la caída al nivel bajo de energía en la misma clorofila se forman dos moléculas de ATP. Resultado: Formación de 2 x ATP. Los pigmentos presentes en los tilacoides de los cloroplastos se encuentran organizados en fotosistemas (fig. 6), que son conjuntos funcionales formados por más de 200 moléculas de pigmentos y proteínas. La luz captada en ellos por pigmentos que hacen de antena, es llevada hasta la molécula de "clorofila a" que se oxida al liberar un electrón, mismo que irá pasando por una serie de transportadores, en cuyo recorrido liberará la energía. Figura 6. Existen dos tipos de fotosistemas, el fotosistema I (FSI), asociado a moléculas de clorofila que absorben a longitudes de ondas largas (700 nm), se conoce como P700. El fotosistema II (FSII), asociado a moléculas de clorofila que absorben a 680 nm, se denomina P680. La luz es recibida en el FSII por la clorofila P680 que libera un electrón que asciende a un nivel superior de energía; ese electrón es recogido por una sustancia aceptora de electrones que se reduce, la Plastoquinona (PQ) y va pasando a lo largo de una cadena transportadora de electrones (varios citocromos (cyt b/f), hasta la plastocianina (PC) que los cederá a moléculas de clorofila del FSI. En el descenso por esta cadena, con oxidación y reducción en cada paso, el electrón va liberando la energía que tenía en exceso y que se utiliza para bombear protones desde el estroma hasta el interior de los tilacoides, generando un 6
  • 7. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez gradiente electroquímico de protones. Estos protones vuelven al estroma a través de la ATP-asa y se originan moléculas de ATP. El PSII se reduce al recibir electrones procedentes del H2O, que por acción de la luz, se descompone en hidrógeno y oxígeno, en el proceso llamado fotólisis del H2O. De este modo se mantiene un flujo continuo de electrones desde el agua hacia el PSII y de éste al PSI. En el PSI, la luz produce el mismo efecto sobre la clorofila P700, de modo que algún electrón adquiere un nivel energético superior y abandona la molécula, es recogido por otro aceptor de electrones, la ferredoxina y pasa por una nueva cadena de transporte hasta llegar a una molécula de NADP + que es reducida a NADPH, al recibir dos electrones y un protón H + que también procede de la descomposición del H2O. Los dos fotosistemas pueden actuar conjuntamente, proceso conocido como esquema en Z (figura 7), para producir la fotofosforilación (obtención de ATP) o hacerlo solamente el PSI; se diferencia entonces entre fosforilación no cíclica o acíclica cuando actúan los dos, y fotofosforilación cíclica, cuando actúa el PSI unicamente. En la fotofosforilación acíclica se obtiene ATP y se reduce el NADP+ a NADPH, mientras que en la fotofosforilación cíclica únicamente se obtiene ATP y no se libera oxígeno. Figura 7. Esquema Z, que representa la ruta del transporte de electrones entre los dos fotosistemas y el complejo del citocromo b-f. 7
  • 8. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez Mientras la luz llega a los fotosistemas, se mantiene un flujo de electrones desde el agua al PSII, de éste al PSI, hasta llegar el NADP+ que los recoge; ésta pequeña corriente eléctrica es la que mantiene el ciclo de la vida. Fase obscura de la fotosíntesis. En esta fase, se utiliza la energía química obtenida en la fase luminosa, y con ella se va a reducir CO2, Nitratos y Sulfatos, y asimilar los bioelementos C, H, y S, con el fin de sintetizar glúcidos, aminoácidos y otras sustancias. Las plantas obtienen el CO2 del aire a través de los estomas de sus hojas. El proceso de reducción del carbono es cíclico y se conoce como Ciclo de Calvin (figura 8), donde la fijación del CO2 se produce en tres fases: 1.- Carboxilativa. El CO2 se fija a una molécula de 5C, la ribulosa 1,5 bifosfato carboxilasa (Rubisco), formándose un compuesto inestable de 6C, que se divide en dos moléculas de ácido 3 fosfoglicérico conocido también como PGA. 2.- Reductiva. El ácido 3 fosfoglicérico se reduce a gliceraldehido 3 fosfato (PGAL), utilizándose ATP Y NADPH. Figura 8. Ciclo de Calvin, donde la fijación del CO2 se produce en tres fases, reducción, regeneración y fijación. 8
  • 9. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez 3.- Regenerativa / Sintética. Las moléculas de gliceraldehido 3 fosfato formadas siguen diversas rutas; de cada seis moléculas, cinco se utilizan para regenerar la Rubisco y hacer que el ciclo de Calvin pueda continuar, y una será empleada para sintetizar moléculas de glucosa (vía de las hexosas), ácidos grasos, amoinoácidos... etc; y en general todas las moléculas que necesita la célula. En el ciclo para fijar el CO2, intervienen varias enzimas, la más conocida es la Rubisco (ribulosa 1,5 bifosfato carboxilasa/oxidasa), que puede actuar como carboxilasa o como oxidasa, según la concentración de CO2. Si la concentración de CO2 es baja, funciona como oxidasa, y se produce la oxidación de glúcidos hasta CO2 y H2O, a este proceso se le conoce como fotorrespiración. La fotorrespiración no debe confundirse con la respiración mitocondrial, la energía se pierde y no se produce ni ATP ni NADPH; como se ve en la fig. 9, se disminuye el rendimiento de la fotosíntesis, porque sólo se produce una molécula de PGA que pasará al ciclo de Calvin; en cambio cuando funciona como carboxilasa, se obtienen dos moléculas de PGA. 9
  • 10. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez Figura 9. La Rubisco actua como carboxilasa cuando la concentración de CO2 es alta, esto incrementa la eficiencia fotosintética y se producen 2 moleculas de PGAL. Si la concentración de O2 es mayor entonces actua como oxidasa y se disminuye el rendimiento de la fotosíntesis, porque sólo se produce una molécula de PGA que pasará al ciclo de Calvin. Hipótesis quimiosmótica de la fotofosforilación. La síntesis de ATP en el cloroplasto se explica mediante la hipótesis quimiosmótica. El transporte de electrones en la cadena transportadora de la membrana tilacoidal produce el bombeo de protones desde el estroma hacia el espacio tilacoidal a nivel del complejo citocromo b6 - f , lo que genera un gradiente electroquímico (diferencia de pH). El flujo de protones a favor del gradiente desde el espacio tilacoidal hasta el estroma, a través del canal de protones de la ATP - sintetasa, activa la síntesis de ATP a partir de ADP y fosfato (ver figura 10). Los electrones se emplean para reducir el NADP+ a NADPH. El ATP y el NADPH producidos de esta forma pueden utilizarse en la fase oscura para las reacciones de síntesis, en las que se reducen moléculas sencillas, como el CO2, para formar glúcidos (glucosa-6 P) . 10
  • 11. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez Figura 10. Producción de ATP en la membrana tilacoidal del cloroplasto, de acuerdo a lo propuesto por Mitchel en su Hipótesis quimiosmótica de la fotofosforilación. En la figura 11, se muestra a manera de resumen todas las reacciones del proceso fotosintético y el lugar donde ocurren. Figura 11. Diagramas esquematicos que presentan un resumen del sistema de transporte de electrones en la membrana tilacoidal de los cloroplastos para realizar la fotosíntesis. 11
  • 12. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez Después de haber revisado los detalles del proceso fotosintético, regresemos para continuar el análisis de las posibles afectaciones de los agentes xenobioticos. Habíamos acordado que las afectaciones pueden ocurrir a diferentes niveles y uno de ellos era a nivel celular (organelos), entonces ahora podemos tener una idea muy clara del daño que podría significar para una planta el hecho de exponerla a una fuente de iluminación con longitudes de onda de alta energía como puede ser la luz ultravioleta. Al respecto se ha documentado que los daños en el fotosistema de algunas plantas y algas puede afectarse de forma irreversible. También se ha documentado que en la naturaleza hay mecanismos de adaptación que las plantas o animales utilizan para producir pigmentos o moléculas fotoprotectoras, como los aminoácidos tipo micosporinas (figura 12). Figura 12. Algunas moléculas de aminoácidos tipo micosporinas (asterina y palyteno, encontradas en el mucus del pez labrido Thalassoma lunare en arrecifes coralinos de Australia. La función de estas moléculas es fotoproteger del exceso de energía producida por la luz ultravioleta. La radiación UV solar (figura 13) representa un factor ecológico importante que influye sobre los organismos y los ecosistemas terrestres y acuáticos. La investigación sobre la radiación UV y sus efectos en la Biosfera inicio en la década de 1970-1980, cuando se descubrió la relación entre los Compuestos Fluorocarbonados (CFCs) y la degradación del ozono estratosférico. En aquel entonces, los trabajos acerca de los efectos de la radiación UV sobre los organismos fotosintéticos eran muy reducidos. Hoy en día, los organismos más estudiados son plantas herbáceas cultivadas, algas, líquenes, briófitos, y otros tipos de plantas vasculares como arbustos y árboles. Dentro de los ecosistemas 12
  • 13. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez acuáticos, el fitoplancton y las macroalgas del medio marino son los que han recibido mayor atención, de acuerdo con su importancia como productores primarios y fuentes de alimentación y de importantes productos naturales. Figura 13. Ilustración de la incidencia de radiación solar sobre el planeta tierra. Los efectos ecológicos por el daño a la capa de ozono a través de la actividad industrial, permite el paso de mayor intensidad de este tipo de radiación, la cual eventualmente podría afectar a las poblaciones de peces y disminuir la producción primaria del fitoplancton y macroalgas marinas, con serios impactos sobre la biodiversidad. Efectos del cambio global que no han sido estudiados en México y que forman parte de la bitácora científica de diversos proyectos de investigación que se desarrollan en instituciones como CICESE y UABC. Efectos de la radiación UV-B sobre organismos fotosintéticos El impacto biológico de la radiación UV-B en organismos fotosintéticos se resume en diferentes expresiones de daños, reparación y aclimatación. Estas respuestas dependen de la dosis y el tipo de radiación aplicada durante el experimento o recibida en el campo, así como de las condiciones Figura 14. Estructura de una hoja. ambientales en las que el organismo ha crecido. Los daños más importantes encontrados en organismos fotosintéticos son: 1. Daños en el aparato fotosintético: degradación de clorofilas y carotenoides, de membranas fotosintéticas (tilacoides del estroma y de los grana), fotoinhibición de la fotosíntesis por destrucción de la proteína D1 del PSII, disminución del rendimiento cuántico de la fotosíntesis y de la tasa 13
  • 14. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez fotosintética, disminución de la actividad de la RUBISCO y de otras enzimas, y cambios ultrastructurales del cloroplasto. 2. Daños en el ADN: aparición de dímeros de pirimidina ciclobutano (CPDs) y dímeros (6, 4) pirimidina-pirimidinona (fotoproductos 6, 4). 3. Peroxidación de lípidos de membrana y otros daños oxidativos. 4. Disminución del crecimiento y de la producción primaria. 5. Disminución de la absorción de nutrientes minerales (N, P). 6. Disminución en la concentración de proteínas y fosfolípidos. 7. Disminución del tamaño de las hojas de las plantas vasculares. 8. Alteraciones en la reproducción: reducción de la producción de flores, modificación de la época de floración, retraso en el crecimiento del tubo polínico, etc. 9. Pérdida de movilidad y orientación en organismos móviles del fitoplancton. 10. Aumento del volumen celular del fitoplancton, por desacoplamiento entre la fotosíntesis y la división celular. Ante estos daños, los organismos fotosintéticos pueden desarrollar mecanismos de protección y reparación, tanto estructural como bioquímica: 1. Engrosamiento de las hojas, desarrollo de las cutículas, etc. 2. Producción de compuestos absorbentes de radiación UV: flavonoides, fenil- propanoides, antocianos, micosporinas, etc. (se han detectado estímulos de los genes de la rutas metabólicas conducentes a la síntesis de algunos de estos compuestos). 3. Desarrollo de mecanismos antioxidantes: aumentos en los niveles de glutatión y ascorbato, aumento en la actividad de enzimas, como peroxidasas y superóxido dismutasa. 4. Mecanismos fotoprotectores, relacionados con el ciclo de las xantofilas. 5. Mecanismos de reparación de ADN mediante enzimas (fotoliasas) que funcionan en presencia de radiación visible y a temperaturas favorables. La respuesta más común a un aumento de radiación UV-B es la acumulación de compuestos absorbentes de UV. Algunos autores estiman que es poco probable 14
  • 15. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez una reducción real de la fotosíntesis, y que los resultados que avalan dicha reducción están basados en artefactos experimentales, como la elevada proporción UV-B / PAR utilizada en los experimentos de laboratorio o invernadero. En los últimos años está adquiriendo gran importancia la investigación de los mecanismos moleculares que subyacen a los efectos de la radiación UV-B, ya que éstos dependen de la percepción de dicha radiación, de los mecanismos de transducción de la señal, y de la modificación de la expresión génetica. Las primeras evaluaciones de los efectos de la UV a nivel ecosistema contemplaban reducciones de la productividad primaria del fitoplancton en la Antártida entre un 6-23% y reducciones de la productividad agrícola global entre 20-25%. También se consideraba que entre un tercio y la mitad de las especies vegetales estudiadas (alrededor de 600) eran sensibles a un aumento de la radiación UV-B. Estas conclusiones fueron el resultado obtenido, principalmente, en cámaras de crecimiento o invernadero, metodología que hoy en día se entiende que sobredimensiona los efectos de la radiación UV-B. La tendencia actual es que, en el contexto de ecosistema, los procesos que se verían más afectados son: 1. La descomposición de los restos vegetales podría ser más lenta por la mayor proporción de compuestos difícilmente degradables, como la lignina, y la menor actividad de microorganismos sensibles a UV-B. 2. Las plantas podrían ser más susceptibles a enfermedades y plagas, en especial por el enriquecimiento de las plantas en metabolitos secundarios y la adquisición de características estructurales que dificultasen la penetración de los parásitos. 3. La alimentación de los herbívoros podría ser más difícil por la presencia de características bioquímicas y estructurales que redujesen la palatabilidad de las plantas. 4. Otras interacciones planta - animal que podrían alterarse son las relacionadas con aspectos reproductivos: épocas de floración, presencia de polinizadores, dispersión de semillas y frutos, etc. 15
  • 16. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez 5. La competencia entre las especies podría modificarse por la distinta sensibilidad a la radiación UV-B, y las especies más sensibles serían desplazadas por las más tolerantes. Esto afectaría tanto a la estructura de las comunidades naturales como a las relaciones entre especies cultivadas y malas hierbas. Lo anterior es válido en gran medida para los sistemas acuáticos, que a la vez tienen ciertas particularidades por la estrecha relación entre productores, consumidores y descomponedores. Así, los efectos de la radiación UV-B sobre los consumidores o la remineralización de los nutrientes afectaría rápidamente a los productores primarios. Además, muchos de los eslabones tróficos son de pequeño tamaño (en gran parte, microscópicos), por lo que son más vulnerables a la UV-B. Posiblemente los organismos más sensibles sean los componentes del zooplancton, lo que favorecería indirectamente a los productores primarios. Pero debe advertirse que las generalizaciones son arriesgadas. Por otra parte, es probable que la respuesta frente a un aumento de la radiación UV-B se vea afectada por cambios en otros factores ambientales. El interés se ha centrado, especialmente, en la interacción con factores como la deposición de contaminantes atmosféricos o los relacionados con el cambio climático, como es el aumento de la temperatura, los cambios en la distribución de las precipitaciones (disponibilidad de agua) y el aumento de CO2 Efectos de la radiación UV-B en briófitos La mayor parte de la investigación realizada sobre los efectos de la radiación UV- B en organismos fotosintéticos se ha centrado en plantas vasculares terrestres y en algas marinas, mientras que los briófitos han recibido menos atención (http://images.google.com.mx/imgres?imgurl=http://www3.unileon.es/personal/wwd bvcac/images/Otros_Vegetales/Briofitos2.jpg&imgrefurl=http://www3.unileon.es/per sonal/wwdbvcac/El%2520Herbario0.htm&usg=__U_dlxyd3C3JuRiKTPT9iCiT1ALs =&h=768&w=1024&sz=121&hl=es&start=6&itbs=1&tbnid=f44VMmLmHbcU7M:&tb nh=113&tbnw=150&prev=/). No obstante, los briófitos revisten gran interés por su 16
  • 17. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez destacada presencia en muchos ecosistemas (en algunos de ellos como dominantes) y por su probada capacidad bioindicadora. Los briófitos terrestres, han sido los más estudiados, las especies más utilizadas han sido las del género Sphagnum, Hylocomium splendens (un musgo típico de suelos forestales) y Polytrichum commune (un musgo característico de ambientes muy húmedos). Las aproximaciones metodológicas han sido muy variadas y similares a las utilizadas en otros organismos fotosintéticos. Así, se han llevado a cabo estudios en condiciones naturales y controladas, y en este último caso tanto en laboratorio como en invernadero. El manejo de la radiación UV-B ha incluido experimentos de exclusión mediante filtros, y de suplemento mediante lámparas para simular diversos debilitamientos de la capa de ozono. La duración de los experimentos ha variado desde unas pocas horas de exposición de las muestras (en condiciones controladas) hasta periodos de varios años (en condiciones naturales). Las respuestas de los briófitos se han evaluado mediante variables morfológicas, fisiológicas y fenológicas: color, síntomas de degradación celular, daños ultrastructurales, crecimiento (tanto en longitud como en peso seco), fotosíntesis, respiración, fluorescencia de clorofilas, concentración de pigmentos fotosintéticos (clorofilas, carotenoides), daños en el ADN, niveles de glúcidos y proteínas, aparición de compuestos absorbentes de radiación ultravioleta (que podrían servir de protección), concentración de elementos minerales y esfuerzo reproductivo. En varios estudios se ha encontrado una disminución en el crecimiento de los briófitos como respuesta a la radiación UV-B, pero este efecto parece depender de la especie, del diseño experimental y de otros factores adicionales como la disponibilidad de agua y la concentración de CO2. Otros efectos lesivos son menos claros, ya que se han obtenido resultados contradictorios, y sólo en ocasiones se ha encontrado una mayor Figura 15. Briofito 17
  • 18. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez concentración de compuestos absorbentes como respuesta al aumento de radiación UV-B o a la disminución de ozono. Algunos autores han señalado incluso efectos beneficiosos de la radiación UV-B sobre el crecimiento, lo cual complica la interpretación global de los resultados. Podría pensarse, en principio, que la simplicidad estructural típica de los briófitos debería tener como consecuencia una gran sensibilidad a la radiación UV-B, ya que carecen de las defensas estructurales que sí poseen los cromófitos: cutículas gruesas, tricomas, hojas pluriestratificadas, etc. Debe recordarse que los filidios de los briófitos son monoestratificados y carecen de espacios aéreos, lo cual reduce drásticamente el camino de la radiación y por tanto la atenuación de ésta, un fenómeno propio de las hojas de cormófitos. En consecuencia, los briófitos sólo podrían tener acceso a las defensas bioquímicas, como por ejemplo los compuestos absorbentes o los mecanismos antioxidantes y de reparación del ADN. Sin embargo, los estudios realizados hasta el momento distan de apoyar esta generalización, y apuntan hacia una sensibilidad dependiente de factores tanto genéticos como ambientales: la especie, la temperatura, la disponibilidad de agua y nutrientes, las condiciones previas de crecimiento, etc. En consecuencia, no se puede establecer en la actualidad un modelo unificado y generalizado de respuestas de los briófitos a la radiación UV-B, por lo que resulta conveniente proseguir con las investigaciones en este ámbito. b) Efectos de los xenobióticos en sistemas enzimáticos Por ejemplo, la intolerancia a la lactosa es un problema común que afecta a millones de personas en todo el mundo. La enfermedad consiste en la dificultad del organismo para asimilar la lactosa (azúcar predominante en la leche). La intolerancia se debe a la incapacidad del intestino delgado de producir una enzima llamada lactasa, que descompone el azúcar de la leche en formas más simples (glucosa y galactosa) para que puedan ser absorbidas (fig. 16). Puede tener diversos orígenes; a) la actividad de la lactasa va disminuyendo con la edad, ya sean por enfermedades, diarrea, medicamentos o malnutrición. Los 18
  • 19. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez síntomas más comunes son náuseas, gases, dolor abdominal, diarrea o calambres, y suelen manifestarse de 30 minutos a dos horas después de la ingesta de alimentos que contienen lactosa. La leche contiene calcio, que es esencial para el crecimiento y reparación de los huesos. Las personas con intolerancia a la lactosa deberán obtener calcio mediante dietas que no incluyan nada o muy pocas cantidades de leche. La lactasa, se produce de forma natural en el tracto intestinal de los niños y de muchos adultos. Pero está disponible en venta al por menor para utilizarla en casa. Figura 16. Ejemplo de cómo la actividad enzimática puede ser afectada por los agentes xenobioticos. En la figura se muestra como la enzima lactasa actua sobre la lactosa para descomponerla en los azucares de la leche. La falta de producción de esta enzima produce intolerancia a la lactosa. c) Efectos de los xenobióticos a nivel de organismos completos El zooplancton es un ejemplo de organismos "predadores" que se alimentan de algas, es un eslabón importante entre los productores primarios y los peces. Las comunidades acuáticas pueden sufrir un daño significativo por sustancias tóxicas, tales como sulfato de cobre, que son más tóxicas para el zooplancton que para los peces (Henry, 1988). En general, se ha encontrado que los cladóceros son más sensibles que los peces a las sustancias tóxicas, presentan sistema nervioso, lo cual sugiere la presencia de la acetilcolina (Ach), este neurotrasmisor normalmente es hidrolizado por la AChA, la cual es muy sensible a diferentes 19
  • 20. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez contaminantes, entre los que se pueden mencionar los metales pesados, detergentes e hidrocarburos policíclicos (Martinez-Tabche et al., 1997). Es capaz de detectar la presencia de, por ejemplo, 0,005 mg. de mercurio en el agua, y aún menores concentraciones de numerosos pesticidas y residuos industriales (Paggi y de Paggi, 2000). Los dáfnidos, tales como Daphnia purex (Figura 17), han sido usados para bioensayos y existe considerable información sobre las técnicas de cultivo y la sensibilidad a las sustancias tóxicas. Los requisitos de temperatura, luz y nutrientes están bien definidos (Henry, 1988). Figura 17. Fotomicrografía de cladóceros tipo Dafnia purex, ha sido muy utilizado en la realización de bioensayos (tomado de Microsoft, encarta). d) Efectos de los xenobióticos a nivel de poblaciones o comunidades. Contaminantes ambientales y su repercusión sobre las poblaciones de fauna silvestre. La actividad humana genera gran variedad de productos y elementos, de naturaleza física o química, que entran a formar parte de todas las fases inertes y seres vivos de los diversos ecosistemas, determinando en muchas ocasiones la aparición de efectos no deseables en los mismos. Estos productos son los que denominamos contaminantes ambientales, y por tanto al fenómeno se le denomina contaminación ambiental. 20
  • 21. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez Los equilibrios de la naturaleza son flexibles y adaptables, y por tanto capaces de absorber efectos no deseables de manera que evolucionen con ellos hacia una adaptación. La naturaleza posee mecanismos de defensa capaces de minimizar los impactos generados por ciertos contaminantes ambientales, pero solo hasta un cierto punto, después del cual, aparecen síntomas evidentes de degradación: desertificación, calentamiento de la tierra, disminución de la capa de ozono, efecto invernadero, lluvias ácidas, desaparición de especies, disminución de poblaciones, enfermedades nuevas, etc. Sería prácticamente imposible tratar acerca de todos los posibles contaminantes ambientales con posibilidad de repercutir sobre la salud de los seres vivos, ya que cualquiera de ellos es capaz de producir, ya sea a corto o a largo plazo, algún efecto indeseable. Nuestro objetivo, por tanto, será el de abordar los efectos que algunos de esos contaminantes, han demostrado tener sobre la fauna silvestre, bien por su elevado poder tóxico a bajas concentraciones, bien por su elevada presencia en el medio ambiente lo que determina un elevado riesgo de exposición. Características de la exposición y efecto de los contaminantes ambientales. La exposición y los efectos de los contaminantes ambientales sobre la fauna silvestre, son similares a los que se producen sobre cualquier especie animal, incluida la especie humana. Dado que los contaminantes ambientales son producto de la actividad humana parece lógico pensar que debe ser la especie humana y las especies de animales domésticos las más expuestas a los mismos. Por la misma razón, parece razonable que las especies silvestres, o la mayoría de ellas, no sufran apenas exposición, o que ésta fuera tan mínima que no llegara a producir efectos sobre las poblaciones de vida silvestre. Sin embargo esta hipótesis, pierde valor cada vez que se realiza un estudio sobre la impregnación de estos contaminantes sobre los fluidos y tejidos de las especies de vida silvestre. Las especies de vida silvestre están tan expuestas a contaminantes ambientales como cualquier otra, y en ocasiones incluso, en mayor 21
  • 22. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez medida que las especies domésticas. Por ejemplo las elevadas concentraciones de cadmio en tejidos de aves marinas, de plomo en aves acuáticas, de mercurio en peces, etc. La experiencia ha demostrado que esto es tan cierto como el hecho de que algunas de las concentraciones encontradas podrían poner en peligro la salud de estos animales. Como ejemplo podemos citar los valores de plomo encontrados en hígado y riñón de algunos jabalíes cazados en Sierra Morena España), los cuales revelaban la posibilidad de que estos animales estuvieran sufriendo síntomas claros de intoxicación plúmbica. Otro ejemplo es el de aves marinas con niveles de cadmio renal suficientes como para provocar nefrosis. Es necesario establecer algunos criterios que nos sirvan para clasificar a los tóxicos dentro del grupo de contaminantes ambientales con repercusión sobre la fauna. Los criterios que utilizamos para ello son los siguientes: 1- La exposición a contaminantes ambientales suele ser continua y a dosis relativamente bajas. 2- La mayoría de los considerados como contaminantes ambientales son muy persistentes o permanentes en el medio ambiente. 3- La mayoría de los contaminantes ambientales se acumulan lo suficiente en los tejidos como para suponer un riesgo añadido para el individuo expuesto. 4- Muchos contaminantes ambientales se biomagnifican a lo largo de la cadena trófica. 5- Los efectos tóxicos de la exposición ambiental suelen ser crónicos, de aparición lenta y, la mayoría de las veces, subclínicos. 6- De entre los efectos sobre la fauna como consecuencia de la exposición ambiental deben destacarse: el aumento de la incidencia de tumores, las alteraciones a nivel de órganos sexuales, los cambios comportamentales, las alteraciones del sistema inmune y los problemas asociados a alteraciones endocrinas. En ecotoxicología muchas veces las razones éticas y económicas impiden la manipulación de experimentos de campo. En ausencia de experimentos que 22
  • 23. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez podamos controlar, los criterios epidemiológicos ayudan a elucidar asociaciones entre contaminantes y efectos biológicos. Desde un punto de vista epidemiológico, el establecimiento de la causa no requiere que un factor sea una condición necesaria y suficiente para producir un efecto. Más aún, las asociaciones causales implican que un factor es parte de un complejo que aumenta la probabilidad de un efecto y reduciendo el factor se reduce la probabilidad del efecto. Riesgos para las poblaciones de fauna silvestre: Al evaluar el impacto que los contaminantes o sustancias químicas pueden tener sobre las poblaciones hemos de hacer una serie de consideraciones que marcarán la evolución de cada situación para cada especie o para cada población. En principio, hemos de diferenciar entre las situaciones capaces de provocar la muerte de forma inmediata y las situaciones que generan deterioros de la salud más espaciados en el tiempo. Así podríamos asumir el siguiente esquema. 1. Situaciones que provocan mortandad inmediata de los animales. 1.1. Mortandades masivas durante desastres ecológicos - Plumbismo - Los vertimientos masivos de contaminantes, pueden significar un riesgo importante incluso para poblaciones que en principio no estén en grave peligro si la dimensión del desastre y su persistencia es elevada. Suponen indudablemente un riesgo extremadamente grave cuando las poblaciones afectadas están en situación de peligro de extinción o fuertemente amenazadas. 1.2. Mortandades puntuales de individuos: - Uso intencionado de venenos en cotos de caza. - Pequeños vertimientos agrícolas o industriales en zonas concretas. No suponen peligro importante para las poblaciones estables y poco amenazadas. El impacto desde el punto de vista ecológico es reducido. Mortandades masivas por desastres ecológicos Mortandades puntuales de algunos individuos 23
  • 24. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez Periodo postdesastre ecológico Exposición crónica de base 2. Situaciones que provocan deterioro de la salud de los individuos. 2.1. Periodo post-desastre ecológico - Plumbismo. - Vertimientos masivos de contaminantes. Una vez pasado el desastre ecológico que determinó la muerte directa masiva de individuos, los supervivientes suelen presentar cuadros patológicos crónicos que arrastran durante meses y/o años. Son animales cuya vida media es inferior a la esperada y sus capacidades de relación y reproducción suelen también verse afectas. Suponen un riesgo muy grave para poblaciones amenazadas o en peligro. El riesgo para poblaciones estables y numerosas no suele ser elevado a medio plazo, sin embargo deberían considerarse riesgos a largo plazo. 2.2. Situaciones de exposición crónica de base a contaminantes ambientales. - Uso indiscriminado de plaguicidas. - Actividades industriales ubicadas en zonas de impacto ambiental de riesgo. - Vertidos agrícolas e industriales incontrolados y mal gestionados. Las consecuencias derivadas de estas situaciones no suelen generar mortandades directas. Sin embargo, sí determinan un deterioro de la salud difícilmente evaluable a corto y medio plazo, pero con consecuencias importantes a largo plazo. Los efectos más peligrosos son los producidos sobre el material genético mediante la aparición de mutaciones puntuales que pueden quedar estables en la población y determinar cambios poblaciones en el futuro; o bien ser la base de aparición de cáncer en individuos adultos. 24
  • 25. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez Otro de los efectos no deseados es la interferencia con funciones reproductivas básicas, bien por alteración directa sobre los órganos sexuales, bien por interferencia con el sistema endocrino. Ha sido también descrita la existencia de alteraciones del comportamiento, debidas tanto a la interferencia hormonal como a los efectos crónicos sobre el sistema nervioso central. Por último son también importantes los efectos sobre el sistema inmunitario de los animales, lo que determinará una mayor susceptibilidad al padecimiento de enfermedades infecciosas y parasitarias. Efectos reproductivos de xenobióticos estrogénicos en embriones. Hasta la fecha los únicos xenobióticos estrogénicos que han sido identificados como causantes de efectos sobre la diferenciación en aves son los organoclorados, los cuales se acumulan en el contenido de los huevos. Entre los Contaminantes ambientales y fauna silvestre los organoclorados identificados como estrogénicos podemos citar los siguientes: DDT, metoxicloro, endosulfán, dicofol y kepone. El DDT y el metoxicloro inoculados en huevos de gaviotas mimetizaron la acción de estrógenos y provocaron anormalidades tanto en embriones macho como hembras. Los machos presentaban signos de feminización. Los derivasdos de bifenilos policlorados (PCBs) también han sido identificados como estrogénicos con una gran variación entre los metabolitos hidroxilados. Los alquil fenoles, ampliamente usados como agentes humectantes, surfactantes y aditivos químicos industriales son también estrogénicos y han demostrado tener efectos adversos sobre peces cuando se evaluaron vertidos municipales. Por ejemplo, la respuesta a la exposición de alquil fenol en peces macho fue la síntesis de vitelogenina, una proteína estrogénica sintetizada por el hígado y que normalmente solo se expresa en las hembras. Sin embargo no existen estudios que impliquen la actividad estrogénica en aves. Un ejemplo de estrogenismo natural se ha descrito en codornices silvestres cuando se alimentaban con leguminosas que contenían elevados niveles de 25
  • 26. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez isoflavonoides. Los isoflavonoides son considerados como fitoestrógenos y en condiciones normales no suelen provocar efectos detectables. Es difícil estimar el riesgo que supone la exposición a xenobióticos estrogénicos, habida cuenta de que los animales han estado de siempre expuestos a fitoestrógenos y han desarrollado vías metabólicas ajustadas a esta exposición natural. En general se ha visto que los embriones aviares son más sensibles a estos efectos que los mamíferos. Se ha demostrado que la aplicación de contaminantes a los huevos es capaz de provocar la muerte, reducir la incubabilidad, inducir teratogénesis y reducir la proporción de huevos eclosionados. Además de los organoclorados, los metales pesados, los hidrocarburos derivados del petróleo y muchos plaguicidas han sido identificados como xenobióticos capaces provocar los efectos descritos. Estos estudios se desarrollaron en gran medida en los Grandes Lagos donde se observó un patrón patológico caracterizado por edema, malformación del pico, edema cardíaco y malformaciones esqueléticas. Este patrón fue denominado como GLEMEDS (Great Lakes Embryo Mortality, Edema and Deformity Syndrome). El síndrome se correlaciona con equivalentes tóxicos de dioxinas, los cuales son el resultado de la bioacumulación de congeneres coplanares de PCBs. Es difícil que exista una aplicación directa de altas concentraciones de tóxicos en los huevos de aves silvestres en condiciones naturales, sin embargo determinadas situaciones pueden llevar a este fenómeno. Tal es el caso de hembras que durante la incubación tengan las plumas manchadas con petróleo o la aplicación directa de plaguicidas a los huevos y nidos en zonas agrícolas. Se ha observado este efecto en la aplicación de insecticidas organofosforados, algunos herbicidas como el paraquat, prometon y trifluralin; y fungicidas como el maneb. Sin embargo los carbamatos no producen este tipo de alteraciones al igual que tampoco lo hacen otros funguicidas distintos del maneb. Efectos reproductivos en aves adultas. La mortalidad de aves adultas no es un efecto reproductivo específico, sin embargo, sobre el nivel de población, la 26
  • 27. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez reproducción sí se ve afectada al disminuir el número de reproductores. Las exposiciones subletales pueden afectar por tanto indirectamente a la reproducción a través de morbi-mortalidad no específica o incremento del estrés, lo cual determina un descenso de la puesta, la interrupción de la incubación o la desatención en el cuidado de la nidada. Se ha descrito que la exposición a aceites del petróleo en aves en época reproductiva, ya sea por exposición del plumaje o por ingestión del aceite, provoca un aumento del estrés con circulación elevada de corticosterona circulante y un aparente retroceso de la regulación de la reproducción a nivel pituitario. Experimentos de laboratorio han demostrado que los hidrocarburos inducían anemia hemolítica e inducción de oxidasas hepáticas de función mixta, lo cual contribuye también a aumentar el estrés y reducir el éxito reproductivo. Estudios de campo han demostrado que es suficiente una exposición a 0.1-0.2 ml de crudo para impedir la formación del huevo y la puesta, así como para paralizar la incubación y alterar la estabilidad de la unión de la pareja. El comportamiento reproductivo también se ha visto afectado en aves tras la exposición a organoclorados y organofosforados. Un estudio con gaviotas en el Lago Ontario demostró que se producía una desatención en la incubación y un descenso en la atención por la defensa del territorio. Este tipo de alteraciones comportamentales también se ha observado en palomas, gaviotas y ánades reales. Alteraciones del sistema inmune inducidas por contaminantes ambientales. Es un hecho demostrado por experimentos de campo y laboratorio que la exposición a contaminantes ambientales puede suprimir la función inmunológica e incrementar de esta forma la susceptibilidad a enfermedades infecciosas y parasitarias. Este tipo de acciones es inducida normalmente por la exposición a bajas dosis, pero se hace más patente cuando la exposición es durante el desarrollo perinatal. 27
  • 28. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez Sin embargo los estudios sobre animales silvestres de vida libre son escasos y aún menos en aves. Los estudios más determinantes son los que se han realizado sobre las poblaciones que habitan los Grandes Lagos. Los linfocitos T, que maduran en el timo, regulan las respuestas inmunes y atacan a las células malignas e infectadas con virus. En los embriones de pollos se ha visto que el congénere de PCB 126 induce la actividad de la EROD en el timo lo que demuestra que el timo es órgano diana de su acción tóxica mediada por receptor. En las aves y mamíferos en desarrollo los bajos niveles de estos compuestos provocan atrofia del timo. Numerosas funciones de las células T son Contaminantes ambientales y fauna silvestre. Además los linfocitos B, que maduran en la bolsa de Fabricio en las aves y en la médula espinal de mamíferos producen anticuerpos que atacan a los organismos invasores. Se ha observado que ciertos hidrocarburos aromáticos halogenados son capaces de suprimir la respuesta de los anticuerpos. Los primeros estudios científicos que relacionaban la exposición a hidrocarburos halogenados con las alteraciones del sistema inmune se remotan a finales de los años 60 cuando se observó que la exposición de ánades reales a PCBs determinaban un incremento en la mortalidad de los individuos expuestos al virus de la hepatitis. Posteriormente, estudios de laboratorio demostraron también un aumento de la susceptibilidad a bacterias, virus y protozoos. Estos efectos también se observaron en ballenas en el Estuario de San Lorenzo, en leones marinos de California en la Isla San Miguel, focas marinas en Europa y delfines en el Océano Atlántico. En los lugares más contaminados de los Grandes Lagos, los cormoranes de doble cresta (Phalacrocórax auritus) se mostraron muy sensibles a infecciones asociadas con Pasteurella multocida. Alteraciones del comportamiento inducidas por contaminantes ambientales. Está claramente establecida la relación entre la exposición a algunos químicos utilizados en las prácticas agrícolas y actividades industriales y la aparición de efectos neurotóxicos caracterizados por disfunción motora, sensorial, cognitiva o 28
  • 29. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez del sistema nervioso autónomo. Como ejemplo valgan los claros signos de neurotoxicidad, tales como debilidad muscular, pérdida del control motor, temblores, alteraciones visuales y cognitivas, que han sido descritas en trabajadores expuestos a algunos herbicidas e insecticidas. Además se han descrito más de 750 compuestos químicos industriales con actividad neurotóxica tras exposiciones agudas y crónicas. La asociación de los efectos neurotóxicos y la exposición a contaminantes ambientales es particularmente difícil ya que en muchas ocasiones se achacan los signos observados a otras condiciones, como pueden ser la avanzada edad o enfermedades degenerativas de etiología distinta. Sin embargo, lo que es muy habitual es la falta de diagnóstico, lo cual es más común en especies de vida silvestre cuyos patrones comportamentales no están perfectamente estudiados. Hasta hace poco, la búsqueda de compuestos químicos con actividad neurotóxica se centraba en aquellos compuestos que provocan efectos estructurales sobre el sistema nervioso. Sin embargo, en no pocas ocasiones podemos asistir a alteraciones relacionadas con el sistema nervioso sin que aún se hayan producido alteraciones en la estructura celular. Hoy día se está prestando especial atención a los cambios en patrones comportamentales, neurofisiológicos y neuroquímicos inducidos por agentes químicos. De ellas, las medidas comportamentales son las que más frecuentemente se están evaluando. e) Efectos de los xenobióticos a nivel de Biocenosis. Los seres humanos han causado cambios sin precedentes en los ecosistemas de todo el planeta y han redistribuido las especies vegetales y animales de forma voluntaria o accidental. Como consecuencia de estos cambios ciertas especies tienen un comportamiento invasivo en las localidades de introducción, siendo más susceptibles los hábitats alterados o degradados. Estas invasiones llevan asociadas varios problemas. A nivel ecológico destaca la pérdida de diversidad autóctona y la degradación de los hábitats invadidos. Económicamente son 29
  • 30. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez importantes los efectos directos sobre las actividades agropecuarias y la salud pública. Una vez detectada la invasión, su control y erradicación son costosos y no siempre posibles. Identificar los invasores potenciales y evitar su establecimiento es el mejor camino para frenar un problema que incrementa al mismo ritmo que la globalización Las especies invasoras son animales, plantas u otros organismos transportados e introducidos por el ser humano en lugares fuera de su área de distribución natural y que han conseguido establecerse y dispersarse en la nueva región, donde resultan dañinos. Que una especie invasora resulta dañina, significa que produce cambios importantes en la composición, la estructura o los procesos de los ecosistemas naturales o seminaturales, poniendo en peligro la diversidad biológica nativa (en diversidad de especies, diversidad dentro de las poblaciones o diversidad de ecosistemas). Toxicidad y toxicología ambiental. La Toxicidad, es la capacidad de una sustancia para ejercer un efecto nocivo sobre un organismos o la biocenosis, y dependerá tanto de las propiedades químicas del compuesto como de su concentración, según sea la duración y frecuencia de la exposición al tóxico, y su relación con el ciclo de vida del organismo; las pruebas podrán ser de tipo agudo o crónico. El potencial nocivo de una sustancia tóxica puede ser contrarrestado por el sistema biológico a través de diferentes estrategias, tales como reacciones metabólicas de detoxificación, excreción de tóxicos, etcétera. Por tanto, la toxicidad aparente evaluada en un ensayo biológico es el resultado de la interacción entre la sustancia y el sistema biológico. Además, se debe considerar que el efecto tóxico sobre los sistemas biológicos es ejercido por la acción combinada de todas las sustancias nocivas presentes en el medio, incluso aquellas que no son tóxicas en sí, pero que afectan las propiedades químicas o físicas del sistema, y consecuentemente las condiciones de vida de los organismos. En los sistemas acuáticos es característico el caso de 30
  • 31. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez sustancias que agotan el oxígeno, o que son coloreadas, o que simplemente impiden la propagación de la luz (caso de material particulado). También se deben tener en cuenta aquellos efectos no directamente relacionados con sustancias, tales como el deterioro o daño producido por acción de cambios en la temperatura o por radiación. Inversamente, los ensayos biológicos también incluyen el efecto de los organismos sobre las sustancias, como la degradación microbiana o biodegradabilidad. Los resultados de los bioensayos se refieren, en primer lugar, a los organismos usados en el ensayo y las condiciones estipuladas en el procedimiento de prueba. Un efecto nocivo evaluado por medio de ensayos biológicos normalizados puede indicar niveles de peligrosidad trasladables y asimilables a organismos que forman parte de los sistemas naturales y la biocenosis. Debemos considerar que no existe ningún organismo ni biocenosis que pueda ser usado para evaluar todos los efectos posibles sobre el ecosistema bajo las diversas condiciones abióticas y bióticas presentes. En la práctica, solamente unas pocas especies (especies modelo), que representen funciones ecológicas relevantes, pueden ser ensayadas. Además de estas limitaciones fundamentales y prácticas en la selección de organismos de ensayo, la muestra a ser ensayada puede también plantear problemas experimentales para la realización de la prueba. Las aguas, en particular las de deshechos residuales (aguas servidas, efluentes), son mezclas complejas y a menudo contienen sustancias poco solubles, volátiles, inestables, coloreadas y/o a veces partículas coloidales en suspensión. La complejidad y heterogeneidad de los materiales dan lugar a una variedad de problemas experimentales cuando se practican los ensayos. Estos pueden estar relacionados con la inestabilidad de la muestra debido a diferentes reacciones y procesos, tales como separación de fases, sedimentación, volatilización, hidrólisis, fotodegradación, precipitación, biodegradación, biotransformación e incorporación por los organismos. 31
  • 32. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez De manera general, los ensayos, también llamados pruebas de toxicidad, pueden ser definidos de acuerdo con: • Su duración: corto, mediano o largo plazo. • El método utilizado para incorporar la muestra al sistema de ensayo: estático, con renovación, de flujo continuo. • El propósito para el cual son utilizados: control de calidad de vertidos, evaluación de compuestos específicos, toxicidad relativa, sensibilidad relativa, etcétera. Aplicación de los ensayos de toxicidad al diagnóstico ambiental de efectos biológicos La ecotoxicología, estudia y analiza los efectos de agentes químicos y físicos sobre organismos vivos, con particular atención a poblaciones y comunidades de ecosistemas definidos (Butler, 1978). La ecotoxicología aplicada, tiene como objetivo el desarrollo de protocolos de ensayo para ser utilizados como herramientas de predicción temprana que permitan definir umbrales permisibles, con niveles de incertidumbre aceptables, y sirvan de guía a las entidades reguladores para la toma de decisiones (Day et al., 1988). La evaluación de riesgo ecológico, es un proceso de asignación de magnitudes y probabilidades a los efectos adversos de actividades antrópicas y catástrofes naturales (Sutter, 1993); se apoya tanto en métodos predictivos para evaluar la exposición, como en los efectos de sustancias tóxicas a diferentes niveles de organización y escala trófica. Esta última es de interés en el uso de técnicas bioanalíticas de diagnóstico con ensayos de toxicidad. Históricamente, los efectos han sido estudiados en el nivel de los organismos, de las poblaciones y de los ecosistemas. Ya que en la mayoría de los casos no es posible la eliminación de la toxicidad, las agencias u organismos de protección ambiental deben definir la proporción de mortalidad o la reducción del crecimiento tolerable de las especies expuestas. Sin embargo, los ensayos de toxicidad y los modelos de extrapolación no son suficientes para encarar este tipo de problemas. 32
  • 33. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez Deberíamos preguntarnos ¿qué significa la muerte de un organismo en la escala de las poblaciones? Probablemente nada, dado que puede ser reemplazado a corto plazo, y además está programado, como condición de todo ser vivo, para que esto suceda. El problema de interés se relaciona con la evaluación de los efectos sobre la abundancia, producción y persistencia de las poblaciones y los ecosistemas. A pesar del limitado alcance de la información proveniente de los ensayos de toxicidad para su extrapolación a escala ambiental, los estudios con organismos en laboratorio, en condiciones controladas y estandarizadas para la evaluación de respuestas, han venido siendo las fuentes de información predominantes para la evaluación ecológica de los efectos de los contaminantes tóxicos. La ecología de poblaciones debe conectar información toxicológica con modelos poblacionales para predecir efectos a esa escala. Por otra parte, las evaluaciones ecotoxicológicas realizadas en ecosistemas deben tener en cuenta características como: interacciones entre poblaciones de distintas especies, cambios estructurales y cambios funcionales, observables en el contexto del ecosistema. Sin embargo, las evaluaciones a este nivel tienen una serie de restricciones relacionadas con el elevado costo y tiempo asociados, el limitado número de diseños estandarizados, de puntos finales de evaluación y la cantidad de información sobre efectos tóxicos requerida para su parametrización (Sutter, 1993). Existen diversos organismos de protección ambiental nacionales e internacionales (SSA, PROFEPA, SEMARNAT, CONAGUA, Environment Canada, EPA, EUROEMAS, etc.) y de estandarización (ASTM, OECD, AOAC, ISO, entre otros) que han concretado la elaboración e implementación de sistemas de diagnóstico, base para la generación de estrategias ecosistémicas de protección. Ello, ha orientado a la obtención de respuestas estandarizadas de laboratorio (bioensayos) que permiten asegurar, dentro de un cierto grado de confiabilidad, la medida obtenida. La estimación del riesgo ecológico se basa en modelos y procedimientos 33
  • 34. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez recientemente incorporados (Bartell et al., 1992; Faustman y Omenn, 1996) por algunos organismos de gestión de control ambiental. Definiciones El conjunto de las definiciones indicadas que se presentan a continuación se basan en el documento EPS 1/RM/34 de Environment Canada (1999). Incluyen términos o conceptos de interés en el marco de nuestro curso. Se han mantenido las siglas de abreviaturas en inglés, dado el extendido uso de términos en forma abreviada. Agudo: ocurre dentro de un periodo corto (minutos, horas o algunos días) en relación con el periodo de vida del organismo de ensayo. Batería de ensayos: combinación de diversos ensayos de toxicidad con diferentes organismos. Bioensayo: ensayo en el cual el poder o potencia de una sustancia es medido a través de la respuesta de organismos vivos o sistemas vivientes. Carta control: es un gráfico utilizado para seguir cambios a través del tiempo del punto final medido para un compuesto tóxico de referencia. En el eje X se grafica la fecha del ensayo, y en el eje Y, la concentración tóxica efectiva. Se toman como límite de alerta dos desviaciones estándar de la media histórica de la concentración letal media. Contaminante: sustancia ajena, presente en un sistema natural en una concentración más elevada de lo normal por causa de actividad antrópica directa o indirecta. En un sentido más amplio se le define como la presencia de cualquier agente físico, químico o biológico, o de combinaciones de los mismos en lugares, formas y concentraciones tales y con tal duración que sean o puedan ser nocivos para la salud, la seguridad o bienestar de la población, o perjudiciales para la vida animal y vegetal, o que impidan el uso y goce de las propiedades y lugares de recreación. 34
  • 35. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez Control: es un tratamiento en una investigación que duplica todos los factores que puedan afectar el resultado, excepto la condición que está siendo investigada (sinónimo de control negativo). Control positivo: evaluación de la respuesta tóxica con una sustancia de referencia, utilizada para controlar la sensibilidad de los organismos en el momento en el cual se evalúa el material problema. Crónico: ocurre durante un periodo relativamente largo de exposición (una porción significativa de la vida del organismo >10%). Cumplimiento: de acuerdo con reglamentaciones gubernamentales o requerimientos para el otorgamiento de un permiso. CE50/CI50: concentración efectiva o de inhibición media. Concentración del material en agua, suelo o sedimento que se estima afecta al 50% de los organismos de ensayo. La CE50 y sus límites de confianza (95%) son usualmente derivados de análisis estadístico. Ensayo de toxicidad: determinación del efecto de un material o mezcla sobre un grupo de organismos seleccionados bajo condiciones definidas. Mide las proporciones de organismos afectados (efecto cuantal) o el grado de efecto (graduado) luego de la exposición a la muestra. Factores de aplicación: multiplicadores aplicados a los CL50 para estimar posibles umbrales subletales de efecto en comunidades acuáticas. Los valores más comunes derivados de la experiencia práctica son: • 1/10 del 96h-CL50 para compuestos no persistentes ni bioacumulables, o, 1/20 o menos, como la concentración mediana después de la mezcla luego de 24 horas. • 1/20 y 1/100 del 96h-CL50 para compuestos persistentes. Factor de emisión de toxicidad: proporción de emisión de toxicidad de un determinado efluente por unidad de producción (ejemplo: por tonelada de producto) de la operación que genera el efluente. Índices de toxicidad: expresan los resultados de diferentes ensayos de toxicidad como un único valor numérico que clasifica, según categorías, a la muestra. No existen reglas fijas para la designación de los índices. 35
  • 36. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez CL50: concentración letal media, concentración del material en agua, suelo o sedimento que se estima letal para el 50% de los organismos de ensayo. La CL50y sus límites de confianza (95%) son usualmente derivados de análisis estadístico. LOEC: concentración más baja a la cual se observa efecto (LOEC, por sus siglas en inglés). Nivel guía de calidad: es un valor numérico de concentración límite o indicación narrativa, con base científica, recomendado para proteger y mantener organismos nativos o un cuerpo de agua para un uso específico. Puede ser un nivel guía de calidad para suelos, agua, sedimentos. El objetivo de calidad tiene la misma definición, excepto que es aplicable a un sitio particular y refleja "condiciones oficiales" deseadas para determinada región. Un estándar de calidad es un objetivo que ha sido reconocido y es aplicado por legislación de control ambiental a escala gubernamental. NOEC: concentración a la cual no se observa efecto (NOEC, por sus siglas en inglés). PMTC (concentración mínima del tóxico esperada): término elaborado por Environment Canada para su uso en el monitoreo ambiental de efectos de efluentes. Concentración de un efluente en el cuerpo receptor por debajo de la cual se esperaría que sólo un 5% de las muestras manifestaran efectos nocivos subletales, estimado con un nivel de confianza del 95% (PMTC, por siglas en inglés). Proporción de emisión tóxica: es la potencia tóxica de un efluente multiplicado por el volumen descargado. Por lo tanto, el valor de las unidades de toxicidad deberá ser multiplicado por la descarga en metros cúbicos por día. Protocolo: es un conjunto de procedimientos explícitos para un ensayo o experimento, de acuerdo con lo establecido entre las partes y descrito en un documento. Punto final: medida o valor que expresa el resultado de un ensayo (CL50/CE50/CI50). También significa la respuesta del organismo para mostrar el 36
  • 37. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez efecto que se utiliza para indicar la finalización del ensayo, definido por un porcentaje de organismos y un tiempo de exposición. Relación aguda-crónica (ACR): ACR, por sus siglas en inglés, es el inverso del factor de aplicación. Se deriva de la relación medida entre un dato agudo de CL50 y un nivel subletal medido. Para la obtención de un valor más realista se puede combinar la información de varios ensayos. Se la utiliza ampliamente en la actualidad y tiene la ventaja de tener valores mayores a la unidad. Replica: es una cámara o recipiente de ensayo, conteniendo un número especificado de organismos en una concentración/dilución de muestra definida o de agua de dilución como control. En un ensayo de toxicidad con cinco concentraciones de ensayo y un control que usa tres replicados, se utilizan 18 cámaras de ensayo con tres cámaras por concentración. Un replicado debe ser una unidad separada o independiente de ensayo. TOEC: concentración umbral a la cual se observa efecto (media geométrica del NOEC y LOEC). Toxicidad aguda: efecto adverso (letal o subletal) inducido sobre los organismos de ensayo en prueba durante un periodo de exposición del material de ensayo, usualmente de pocos días. Toxicidad crónica: efectos tóxicos a largo plazo relacionados con cambios en el metabolismo, crecimiento o capacidad de supervivencia. REFERENCIAS Bartell, S.M., Gardner, R.H. & O'Neill, R.V., 1992, Ecological Risk Estimation, Lewis Publishers, Boca Raton. Butler, G.C., 1978, Principles of Ecotoxicology, SCOPE 12, John Wiley and Sons, New York. Day, K.E., Ongley, E.D., Scroggins, R.P. & Eisenhauer, R.P., 1988, "Biology in the New Regulatory Framework for Aquatic Protection", Proceedings for the Alliston Workshop, National Water Research Institute (Burlington, Ontario) and Environment Canada (Ottawa). 37
  • 38. O N O TÓXICO Centro de Estudios Tecnológicos del Mar en Ensenada O O Apuntes del curso de Bioensayos Febrero-Julio de 2010 O Prof. José Luis Peña Manjarrez Environment Canada, 1999, Guidance Document on Application and Interpretation of Single-Species Tests in Environmental Toxicology, Method Development and Application Section, Environmental Technology Centre, EPS 1/RM/34. Faustman, E.M. & Omenn, G.S., 1996, "Risk Assessment", en: Casarett and Doull's Toxicology, C.D. Klaassen editor, Chapter 4, McGraw-Hill, international edition. Sutter, G.W., 1993, Ecological Risk Assessment, Lewis Publishers, Boca Raton Henry, L. 1988. Recomendaciones concernientes a la selección de organismos bioensayos. www.cepis.ops-oms.org/eswww/fulltext/publica/orimuest/omnax51html Martínez-Tabche, L., Ramírez, M., German, F., Galar, C., Madrigal, M., Ulloa, G. y Orozco, F. 1997. Toxic effect of sodium dodecylbencensulfonate, lead, petroleum, and their mixtures on the activity of acetylcholinesterase of Moina macrocopa in vitro. Environ. Toxicol. Water. Qual. 12: 211-215. Paggi, J. y de Paggi, S. 2000 Daphnia magna: el "canario" de las aguas. www.ceride.gov.ar/servicios/comunica/canario.htm 38