SlideShare una empresa de Scribd logo
1 de 66
LA ARMONIA EN LA NATURALEZA :  EL NUMERO AUREO   Jaime Bravo Febres 2007 La geometría tiene dos grandes tesoros: uno es el teorema de Pitágoras, y el otro el número áureo. El primero puede compararse a una medida de oro, y el segundo a una piedra preciosa.  Kepler
El número designado con letra griega    = 1,61803... (Fi), llamado número de oro y que es la inicial del nombre del escultor griego Fidias que lo tuvo presente en sus obras.   Es el llamado número de oro (representado habitualmente con la letra griega    ) o también sección áurea, proporción áurea o razón áurea
La sección áurea y el número de oro La sección áurea es la división armónica de un segmento en media y extrema razón. Es decir,  que el segmento menor es al segmento mayor, como este es a la totalidad.  Tomemos un segmento de longitud uno y hagamos en  é l la división indicada anteriormente .
Una de las soluciones de esta ecuación (la solución positiva) es:  ESTE ES EL NUMERO AUREO
El rectángulo áureo Dibujamos un cuadrado y marcamos el punto medio de uno de sus lados. Lo unimos con uno de los vértices del lado opuesto y llevamos esa distancia sobre el lado inicial, de esta manera obtenemos el lado mayor del rectángulo A B C o R Q
Construcción del rectángulo áureo: Para realizar esta construcción, necesitaremos regla y compás. Procederemos de la siguiente manera: 1 .  Construimos un cuadrado de lado   2 a 2a 2a
2.  Dividimos el cuadrado en dos rectángulos iguales , y trazamos la diagonal del segundo rectángulo : a a 2a Por el teorema de Pitágoras se tiene :
3.   marcamos dicha medida sobre la horizontal y se tiene: a a 2a A B C D ABCD, ES RECTANGULO AUREO
Como determinar cuando un rectángulo es áureo.  A B C D x y M N P y x Como los triángulos rectángulos ABC  y  AMN son semejantes resulta :  POR TANTO ABCD ES RECTANGULO AUREO
Si tomamos un rectángulo aúreo (largo/ancho   =   nº de oro) y lo dividimos en dos  partes de tal forma que una de ellas sea un cuadrado de lado el ancho del rectángulo, la otra parte es otro rectángulo aúreo. Podemos repetir esta operación de forma indefinida , logrando  una espiral como muestra el dibujo ESPIRAL AUREA O ESPIRAL DE DURERO
El resultado es otra similar cuya pulsación, el factor de crecimiento es el número áureo. Otra espíral gnómica basada en el número áureo es la que se construye tomando como base un  triángulo isósceles  cuyo ángulo menor mide 36°.  A partir de cada triángulo se construye otro triángulo isósceles cuyo lado menor coincide con el mayor del triángulo anterior.  Los cocientes entre el lado mayor y el lado menor de cada triángulo tiende hacia el número de oro. La espiral se construye uniendo mediante arcos de circunferencia los vértices consecutivos de estos triángulos. Espiral de Durero
La espiral (El número de oro) está en los moluscos como el NAUTILIUS,  EN LA NATURALEZA
En el huevo de las aves se encontrado también relaciones del numero áureo.
EN EL GIRASOL EN LAS FLORES Está también en todos los animales, plantas y objetos pentagonales : flores, estrellas de mar, etc
  En las hormigas  En las aves
En las flores En las Plantas
Galaxias del Universo
Galaxias Lenticulares
En el Tsunami de Asia 2003??
Su   carn et  de identidad  es un rectángulo áureo, y por tanto las  tarjetas de crédito,  y en gran parte de las tarjetas que utilizamos así como el frente de casi todas las  cajetillas de tabaco . EN LA ECONOMIA
a b En los objetos caseros
EN EL SER HUMANO EL PRIMERO EN ESTUDIAR LA RELACION DEL NUMERO AUREO EN EL HOMBRE FUE LEONARDO DA VINCI LEONARDO DA VINCI LUCA  PACIOLI LUCA PACIOLI A LA PROPORCION AUREA LA DENOMINO PROPORCION DIVINA POR SUS  PROPIEDADES.
LEONARDO DA VINCI ENCONTRO EL NUMERO AUREO EN RELACIONES CORPORALES DEL SER HUMANO. VITRUBIO
Este sería a juicio de un artista el rostro más perfecto de mujer
En la mano humana, la distancia entre las falanges están en razón áurea. Es áurea la relación entre la distancia entre los ojos y el ancho de los mismos.  Cuando los dientes no están juntos, la linea de los labios divide la parte inferior del rostro según la proporción áurea.
Un detalle curioso conocido por los clásicos es que la distancia del ombligo al suelo es justamente la razón áurea de su altura.
Para verificar las medidas antropométricas en el  ser humano podemos llenar la tabla siguiente, recordando que dos razones geométricas de igual valor pueden dar origen a una proporción geométrica.  ESTUDIANTE Estatura  a Longitud del ombligo hasta la planta del pie  b Longitud de la cima de la cabeza hasta el ombligo  (a – b) C a/b b/c
Esta espiral se encuentra en un gran nº de moluscos como el Nautilus de la foto . El número de oro está también en todos los animales, plantas y objetos pentagonales : flores, estrellas de mar, etc Si tomamos un rectángulo aúreo (largo/ancho   =   nº de oro) y lo dividimos en dos  partes de tal forma que una de ellas sea un cuadrado de lado el ancho del rectángulo, la otra parte es otro rectángulo aúreo.  Podemos repetir esta operación de forma indefinida , logrando  una espiral como muestra el dibujo
EN EL ARTE LA SAGRADA FAMILIA  MIGUEL ANGEL LA GIOCONDA LEONARDO DA VINCI
Leda  atómica,  pintado en 1949, sintetiza siglos de tradición matemática y simbólica, especialmente pitagórica. Se trata de una filigrana basada en la proporción áurea, pero elaborada de tal forma que no es evidente para el espectador.  En el boceto de 1947  se advierte la meticulosidad del análisis geométrico realizado por  Dalí  basado en el pentagrama místico pitagórico.
 
LEDA ATOMICA
Existen relaciones basadas en la sección áurea en algunas de las más célebres esculturas griegas como el Hermes de Praxíteles (390-330 a. C.)
Aparece en la Venus de Milo.  Venus de Milo  Museo del Louvre, París
EN LA ARQUITECTURA EL PARTENON GRIEGO Desde tiempos muy remotos el hombre ha realizado bellas y armoniosas construcciones teniendo en cuenta la proporción áurea
Ya vimos que el cociente entre la diagonal de un pentágono regular y el lado de dicho pentágono es el número áureo. En un pentágono regular está basada la construcción de la  Tumba Rupestre  de Mira en Asia Menor. Tumba Rupestre de Mira
Hay un precedente a la cultura griega donde también apareció el número de oro. En  La Gran Pirámide de Keops , el cociente entre la altura de uno de los tres triángulos que forman la pirámide y el lado es
Herodoto  relata que los sacerdotes egipcios le habian   enseñado  que  las proporciones establecidas en la Gran Pirámide  eran tales que:  El cuadrado de la altura de la piramide es igual al área de cada una de las caras triangulares .  Es  decir:  ( 1 ) Por el teorema de Pitágoras en el triángulo POM :  Sustituyendo  por su valor en  ( 1 )   y dividiendo por  se tiene: Tenemos  la ecuación del numero Áureo :
Se dice que  Pitágoras  había sido condenado a exiliarse de Samos por su aversión a la tiranía de Polícrates. Hacia el 530 a.C. se instaló en Crotona, una colonia griega al sur de Italia, donde fundó un movimiento con propósitos religiosos, políticos y filosóficos, conocido como pitagorismo. La filosofía de  Pitágoras  se conoce sólo a través de la obra de sus discípulos. Pitágoras y el número de oro Pitágoras  (c. 582-c. 500 a.C.), filósofo y matemático griego, nació en la isla de Samos.  Fue instruido en las enseñanzas de los primeros filósofos jonios Tales de Mileto, Anaximandro y Anaxímenes.
También podemos comprobar que los segmentos QN, NP y QP, que se hallan en la estrella pentagonal están en proporción áurea.   La estrella pentagonal o pentágono estrellado era, según la tradición, el símbolo de los seguidores de  Pitágoras . Los pitagóricos pensaban que el mundo estaba configurado según un orden numérico, donde sólo tenían cabida los números fraccionarios. La casualidad hizo que  en su propio símbolo  se encontrara un número raro:  el numero de oro. Así La relación entre la diagonal del pentágono y su lado es el número de oro.
A G F N M Considerando el  lado  del pentágono regular la unidad, ( AG = 1 ), se tiene : MF = NG = 1;  MG =   De donde se tiene:   Cuya raíz positiva es:
¿ Qué pudo hacer que los pitagóricos sintieran tanta admiración por el número áureo ?.  Casi con toda seguridad, para la escuela pitagórica la consideración del  irracional   ,   de cuya existencia tuvieron conciencia antes que,  tuvo que causar  una profunda reflexión en las teorías de la secta.
Unas proporciones armoniosas para el cuerpo, que estudiaron antes los griegos y romanos, las plasmó en el dibujo que  Leonardo da Vinci, hizo para ilustrar el libro  La   Divina Proporción  de Luca Paccioli, editado en 1509. "Huye de esos estudios cuyo resultado muere con el que los hace.“ Luca Paccioli Leonardo da Vinci
Resulta que el cociente entre la altura del hombre (lado del cuadrado) y la distancia del ombligo a la punta de la mano (radio de la circunferencia) es el número áureo Vitrubio Estirando manos y pies y haciendo centro en el ombligo se dibuja la circunferencia. El cuadrado tiene por lado la altura del cuerpo que coincide en un cuerpo armonioso, con la longitud entre los extremos de los dedos de ambas manos cuando los brazos están extendidos y formando un ángulo de90º con el tronco.   a b Es decir:
Conocemos desde la antiguedad la ubicación exacta de los puntos energéticos (Xue) utilizados en Medicina Tradicional China para el tratamiento de las enfermedades del hombre a través de la acupuntura . Conocemos también los efectos de cada uno de ellos y sabemos cómo utilizarlos ;  Pero, porqué los puntos tiene la ubicación que tienen ? A qué ley o regla obedece la uniformidad en la distribución? Y también, porqué esa ubicación es invariablemente la misma en cada ser humano? Así, la ubicación de los puntos chinos de acción energética específica responde a la ley geométrica y aritmética conocida, desde la antiguedad clásica, como : " sección áurea " (según leonardo Da Vinci), " sección divina "(según Kepler) o   " divina proporción "(según Luca Pacioli) y cuyo valor numérico, denominado " Número de oro “ .  El NUMERO DE ORO EN LA MEDICINA
En el caso que nos ocupa, diremos que el rostro humano visto de frente, puede encuadrarse en el interior de un rectángulo ABCD. Dr. Marcelo Manneti Médico Acupunturista
La serie de Fibonacci queda establecida mediante la serie numérica siguiente:   La sucesión de Fibonacci y el número áureo.    La serie de Fibonacci proviene de considerar la serie que se forma mediante (comenzando la serie por 1, se tiene) :  1 , 1 + 0 =  1 , 1 + 1 =  2 , 1 + 2 =  3 , ... , 8 + 13 =  21 , .... 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ..... C ada número es la suma de los dos números anteriores Leonardo de Pisa
La sucesión formada por los cocientes de números de Fibonacci consecutivos converge, rápidamente, hacia el número áureo .   ,[object Object],[object Object],[object Object],• f  5  / f  4  = 5 / 3 = 1, 66 66 66... ,[object Object],[object Object],• f  8  / f  7  = 21 / 13 = 1, 61 53 84 61 ... • f  9  / f  8  = 34 / 21 = 1, 61 90 47 76 ... ,[object Object],1,  1,  2,  3,  5,  8,  13,  21,  34,  55,  …  Finalmente se tiene:
Adviértase que,  1 / 0,618 = 1,618 1 / 1,618 = 0,618 Al dividir dos números consecutivos de la serie de Fibonacci,  13 / 21 = 0.619047619  21 / 34 = 0.617647058 34 / 55 = 0.618181818 21 / 13 = 1.615384615 34 / 21 = 1.619047619 55 / 34 = 1.617647059 el resultado converge a 0,618 ó 1,618
La razón entre cada par de términos consecutivos va oscilando por la  izquierda y la derecha  de la  razón áurea , y que conforme va avanzando la sucesión se va acercando más a este valor.   1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, … 1.618…. 2 1.5 1.66.. 1.6 1.625.. 1.615.. 1
 
[object Object]
Verdes – 8,  Rojas –13 Verdes – 5,  Naranjas –8
Otra  espiral de Fibonacci
La experiencia ha demostrado con rotundidad que en la práctica las medias móviles funcionan mejor cuando los periodos de tiempo elegidos para el cálculo de las medias móviles son números de la  Serie de Fibonacci.  Estos números de Fibonacci se ajustan bastante bien a periodos y ciclos bursátiles.  LA SERIE DE FIBONACCI  EN LA ECONOMÍA   Elliott escribió un libro llamado "Las leyes de la naturaleza"  donde se refiere específicamente a la serié numérica de Fibonacci como la base matemática para el principio de lo que conocemos como la teoría de las "Ondas de Elliott".  Esta teoría analiza el comportamiento de los mercados, pudiendo predecir los movimientos en ciclos de largo, mediano y corto plazo.  Libro de alberto moreno-internet:www.finanzas.com
LA SERIE DE FIBONACCI Y LA BOLSA Se puede observar las siguientes  reglas  se  que cumplen siempre en esta serie: La   proporción   que hay entre cada numero   (n) y   el siguiente   (n+1)   es siempre del   61,80% . 1. La  proporción   que hay entre cada numero   (n)   y uno más del siguiente   (n+2)   en la serie es siempre del   38.19% . 2. Una de las  aplicaciones prácticas  de la serie es el   análisis de las correc - ciones técnicas de la bolsa .  Cuando los mercados están en tendencia alcista o bajista, se ha podido comprobar que   las correcciones general - mente coinciden en porcentaje con las proporciones de Fibonacci . Cuando un mercado ha empezado a corregir después de una tendencia claramente alcista o bajista, se pueden establecer objetivos de corrección del 38% o del 62% del movimiento. Esta   aplicación es de especial interés a la hora de aplicar la teoría de Ellio t t .  Son las llamadas   lineas de Fibonacci ,  que suelen representar lineas  de soporte o resistencia .
Las  Li neas de Fibonacci son muy similares a las lineas de velocidad . Para trazarlas solo tenemos que seleccionar dos puntos significativos del grupo, por ejemplo, desde el inicio del alza hasta la primera parada, con un pequeño inicio de caída. Desde éste segundo punto trazamos la proyección hasta la altura del primer punto y dividimos esta distancia en dos lineas especiales: siguiendo las proporciones en la linea del 62% y la linea del 38%.
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],RECTÁNGULO ÁUREO CON CABRI
Introduzca la definición de razón áurea: r=(sqrt(5)-1)/2.  Sus potencias verifican la relación de recurrencia:  r^(n+1)=r^(n-1)-r^n .   raurea=(sqrt(5)-1)/2;   r=linspace(0,0,100) ;   r(1)=1;r(2)=raurea ;   for n=2:100       r(n+1)=r(n-1)-r(n);   end   fprintf(' n   r^n raurea^n'),   fprintf(' ___________________________'),   for n=1:10:101       fprintf('%3i,%10.5f, %g',n,r(n),raurea^n)   end   (UN ALGORITMO CON Matlab)
n        r^n            raurea^n   __________________ _____ _______________   1      1.00000,      0.618034   11     0.00813,      0.005025   21     0.00007,      4.08563e-05   31     0.00000,      3.32187e-07   41    -0.00000,      2.70089e-09   51    -0.00000,      2.19599e-11   61    -0.00008,      1.78548e-13   71    -0.01034,      1.4517e-15   81    -1.27202,      1.18032e-17   91    -156.44857,    9.59676e-20   101   -19241.90183,  7.80276e-22
ALGUNAS EXPRESIONES INFINITAS DEL NUMERO Fi Sabemos que: De donde: Por lo que   , lo obtenemos a través de la expresión infinita:
y sustituyendo, en forma reiterada,    por su valor en esta ecuación tenemos:  Otra expresion infinita de      ,  es a través de las Fracciones:
Rafael Alberti   A ti, maravillosa disciplina,  media, extrema razón de la hermosura,  que claramente acata la clausura  viva en la malla de tu ley divina.  A ti, cárcel feliz de la retina,  áurea sección, celeste cuadratura,  misteriosa fontana de mesura  que el Universo armónico origina.  A ti, mar de los sueños, angulares,  flor de las cinco formas regulares,  dodecaedro azul, arco sonoro.  Luces por alas un compás ardiente.  Tu canto es una esfera transparente.  A ti, divina proporción de oro.  Poema al Número Áureo
Espero que nuestros nietos me estarán agradecidos, no solamente por las cosas que he explicado aquí, sino también por las que he omitido intencionadamente a fin de dejarles el placer de descubrirlas.  Descartes (Geometría)
Gracias, Hasta la vista Jaime Bravo Febres [email_address]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Más contenido relacionado

La actualidad más candente

Teoría y problemas resueltos de porcentajes I ccesa007
Teoría y problemas resueltos de porcentajes I  ccesa007Teoría y problemas resueltos de porcentajes I  ccesa007
Teoría y problemas resueltos de porcentajes I ccesa007Demetrio Ccesa Rayme
 
Taller identidades trigonométricas fundamentales primer periodo
Taller identidades trigonométricas fundamentales primer periodoTaller identidades trigonométricas fundamentales primer periodo
Taller identidades trigonométricas fundamentales primer periodoJose Castellar
 
Trigonometria ejercicios resueltos
Trigonometria ejercicios resueltosTrigonometria ejercicios resueltos
Trigonometria ejercicios resueltosclaudiowins
 
Test de sistemas de medicion angular I periodo
Test de sistemas de medicion angular I periodoTest de sistemas de medicion angular I periodo
Test de sistemas de medicion angular I periodoMargarita Cardenas
 
TRIANGULO RECTANGULO :ppt
TRIANGULO RECTANGULO :pptTRIANGULO RECTANGULO :ppt
TRIANGULO RECTANGULO :pptbeatrizjyj2011
 
1. teoremas de seno y del coseno trigonométricas ejercicios
1. teoremas de seno y del coseno trigonométricas ejercicios1. teoremas de seno y del coseno trigonométricas ejercicios
1. teoremas de seno y del coseno trigonométricas ejerciciosAmigo VJ
 
segundo parcial de biofisica del cbc
segundo parcial de biofisica del cbcsegundo parcial de biofisica del cbc
segundo parcial de biofisica del cbcapuntescbc
 
Taller de recuperacion geometria ciclo octavo y noveno
Taller de recuperacion geometria ciclo octavo y novenoTaller de recuperacion geometria ciclo octavo y noveno
Taller de recuperacion geometria ciclo octavo y novenoJorge Didier Obando Montoya
 
Progresiones geométricas
Progresiones  geométricasProgresiones  geométricas
Progresiones geométricasAracelli7
 
Material pre universitario pedro de valdivia (PSU) 05 numeros reales
Material pre universitario pedro de valdivia (PSU) 05 numeros realesMaterial pre universitario pedro de valdivia (PSU) 05 numeros reales
Material pre universitario pedro de valdivia (PSU) 05 numeros realesMarcelo Calderón
 
Triangulos notables
Triangulos notablesTriangulos notables
Triangulos notablesJazmin
 

La actualidad más candente (20)

Teoría y problemas resueltos de porcentajes I ccesa007
Teoría y problemas resueltos de porcentajes I  ccesa007Teoría y problemas resueltos de porcentajes I  ccesa007
Teoría y problemas resueltos de porcentajes I ccesa007
 
Taller identidades trigonométricas fundamentales primer periodo
Taller identidades trigonométricas fundamentales primer periodoTaller identidades trigonométricas fundamentales primer periodo
Taller identidades trigonométricas fundamentales primer periodo
 
Trigonometria ejercicios resueltos
Trigonometria ejercicios resueltosTrigonometria ejercicios resueltos
Trigonometria ejercicios resueltos
 
Test de sistemas de medicion angular I periodo
Test de sistemas de medicion angular I periodoTest de sistemas de medicion angular I periodo
Test de sistemas de medicion angular I periodo
 
TRIANGULO RECTANGULO :ppt
TRIANGULO RECTANGULO :pptTRIANGULO RECTANGULO :ppt
TRIANGULO RECTANGULO :ppt
 
Triángulos y semejanza
Triángulos y semejanzaTriángulos y semejanza
Triángulos y semejanza
 
1. teoremas de seno y del coseno trigonométricas ejercicios
1. teoremas de seno y del coseno trigonométricas ejercicios1. teoremas de seno y del coseno trigonométricas ejercicios
1. teoremas de seno y del coseno trigonométricas ejercicios
 
Logaritmos
LogaritmosLogaritmos
Logaritmos
 
Reduccion al primer cuadrante
Reduccion al primer cuadranteReduccion al primer cuadrante
Reduccion al primer cuadrante
 
Semana 5
Semana 5Semana 5
Semana 5
 
segundo parcial de biofisica del cbc
segundo parcial de biofisica del cbcsegundo parcial de biofisica del cbc
segundo parcial de biofisica del cbc
 
Taller de recuperacion geometria ciclo octavo y noveno
Taller de recuperacion geometria ciclo octavo y novenoTaller de recuperacion geometria ciclo octavo y noveno
Taller de recuperacion geometria ciclo octavo y noveno
 
Practica de logaritmos
Practica de logaritmosPractica de logaritmos
Practica de logaritmos
 
Progresiones geométricas
Progresiones  geométricasProgresiones  geométricas
Progresiones geométricas
 
Trigonometria 7
Trigonometria 7Trigonometria 7
Trigonometria 7
 
Examen de admisión 2008 2
Examen de admisión 2008 2Examen de admisión 2008 2
Examen de admisión 2008 2
 
Razones y proporciones
Razones y proporcionesRazones y proporciones
Razones y proporciones
 
Material pre universitario pedro de valdivia (PSU) 05 numeros reales
Material pre universitario pedro de valdivia (PSU) 05 numeros realesMaterial pre universitario pedro de valdivia (PSU) 05 numeros reales
Material pre universitario pedro de valdivia (PSU) 05 numeros reales
 
Triangulos notables
Triangulos notablesTriangulos notables
Triangulos notables
 
CRUCIGRAMA GEOMETRICO
CRUCIGRAMA GEOMETRICOCRUCIGRAMA GEOMETRICO
CRUCIGRAMA GEOMETRICO
 

Similar a Armonia En La Naturaleza

Similar a Armonia En La Naturaleza (20)

Armonia en la naturaleza: La Perfección
Armonia en la naturaleza: La PerfecciónArmonia en la naturaleza: La Perfección
Armonia en la naturaleza: La Perfección
 
Armonia en la naturaleza
Armonia en la naturalezaArmonia en la naturaleza
Armonia en la naturaleza
 
Armonia en la naturaleza
Armonia en la naturalezaArmonia en la naturaleza
Armonia en la naturaleza
 
Como se-realiza-un-rectangulo-aureo
Como se-realiza-un-rectangulo-aureoComo se-realiza-un-rectangulo-aureo
Como se-realiza-un-rectangulo-aureo
 
Armonia en la naturaleza
Armonia en la naturalezaArmonia en la naturaleza
Armonia en la naturaleza
 
Numeroaureo 090905013407-phpapp02
Numeroaureo 090905013407-phpapp02Numeroaureo 090905013407-phpapp02
Numeroaureo 090905013407-phpapp02
 
Ensayo 2400 palabras rectángulo áureo
Ensayo 2400 palabras rectángulo áureoEnsayo 2400 palabras rectángulo áureo
Ensayo 2400 palabras rectángulo áureo
 
Un numero muy_pesado
Un numero muy_pesadoUn numero muy_pesado
Un numero muy_pesado
 
Número aureo
Número aureo Número aureo
Número aureo
 
Número áureo
Número áureoNúmero áureo
Número áureo
 
Numero de-oro-recursos-didacticos
Numero de-oro-recursos-didacticosNumero de-oro-recursos-didacticos
Numero de-oro-recursos-didacticos
 
Numero de-oro-recursos-didacticos
Numero de-oro-recursos-didacticosNumero de-oro-recursos-didacticos
Numero de-oro-recursos-didacticos
 
Numero de-oro-recursos-didacticos
Numero de-oro-recursos-didacticosNumero de-oro-recursos-didacticos
Numero de-oro-recursos-didacticos
 
Aureo 1222276026916352-9
Aureo 1222276026916352-9Aureo 1222276026916352-9
Aureo 1222276026916352-9
 
numero aureo
numero aureonumero aureo
numero aureo
 
Rectangulo aureo
Rectangulo aureoRectangulo aureo
Rectangulo aureo
 
Aureo
AureoAureo
Aureo
 
Aureo
AureoAureo
Aureo
 
Aureo
AureoAureo
Aureo
 
Aureo
AureoAureo
Aureo
 

Último

Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdf
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdfResolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdf
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxjosetrinidadchavez
 
Herramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfHerramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfMARIAPAULAMAHECHAMOR
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxAna Fernandez
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PCCesarFernandez937857
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptxJunkotantik
 
cortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuacortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuaDANNYISAACCARVAJALGA
 
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxPRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxinformacionasapespu
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosCesarFernandez937857
 
Manual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfManual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfMaryRotonda1
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleJonathanCovena1
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfAngélica Soledad Vega Ramírez
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Carlos Muñoz
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para eventoDiegoMtsS
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptELENA GALLARDO PAÚLS
 

Último (20)

Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdf
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdfResolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdf
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdf
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
 
La Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdfLa Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdf
 
Herramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfHerramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdf
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docx
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PC
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptx
 
cortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuacortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahua
 
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxPRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos Básicos
 
Manual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfManual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdf
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo Sostenible
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para evento
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
 

Armonia En La Naturaleza

  • 1. LA ARMONIA EN LA NATURALEZA : EL NUMERO AUREO Jaime Bravo Febres 2007 La geometría tiene dos grandes tesoros: uno es el teorema de Pitágoras, y el otro el número áureo. El primero puede compararse a una medida de oro, y el segundo a una piedra preciosa. Kepler
  • 2. El número designado con letra griega  = 1,61803... (Fi), llamado número de oro y que es la inicial del nombre del escultor griego Fidias que lo tuvo presente en sus obras. Es el llamado número de oro (representado habitualmente con la letra griega  ) o también sección áurea, proporción áurea o razón áurea
  • 3. La sección áurea y el número de oro La sección áurea es la división armónica de un segmento en media y extrema razón. Es decir, que el segmento menor es al segmento mayor, como este es a la totalidad. Tomemos un segmento de longitud uno y hagamos en é l la división indicada anteriormente .
  • 4. Una de las soluciones de esta ecuación (la solución positiva) es: ESTE ES EL NUMERO AUREO
  • 5. El rectángulo áureo Dibujamos un cuadrado y marcamos el punto medio de uno de sus lados. Lo unimos con uno de los vértices del lado opuesto y llevamos esa distancia sobre el lado inicial, de esta manera obtenemos el lado mayor del rectángulo A B C o R Q
  • 6. Construcción del rectángulo áureo: Para realizar esta construcción, necesitaremos regla y compás. Procederemos de la siguiente manera: 1 . Construimos un cuadrado de lado 2 a 2a 2a
  • 7. 2. Dividimos el cuadrado en dos rectángulos iguales , y trazamos la diagonal del segundo rectángulo : a a 2a Por el teorema de Pitágoras se tiene :
  • 8. 3. marcamos dicha medida sobre la horizontal y se tiene: a a 2a A B C D ABCD, ES RECTANGULO AUREO
  • 9. Como determinar cuando un rectángulo es áureo. A B C D x y M N P y x Como los triángulos rectángulos ABC y AMN son semejantes resulta : POR TANTO ABCD ES RECTANGULO AUREO
  • 10. Si tomamos un rectángulo aúreo (largo/ancho = nº de oro) y lo dividimos en dos partes de tal forma que una de ellas sea un cuadrado de lado el ancho del rectángulo, la otra parte es otro rectángulo aúreo. Podemos repetir esta operación de forma indefinida , logrando una espiral como muestra el dibujo ESPIRAL AUREA O ESPIRAL DE DURERO
  • 11. El resultado es otra similar cuya pulsación, el factor de crecimiento es el número áureo. Otra espíral gnómica basada en el número áureo es la que se construye tomando como base un triángulo isósceles cuyo ángulo menor mide 36°. A partir de cada triángulo se construye otro triángulo isósceles cuyo lado menor coincide con el mayor del triángulo anterior. Los cocientes entre el lado mayor y el lado menor de cada triángulo tiende hacia el número de oro. La espiral se construye uniendo mediante arcos de circunferencia los vértices consecutivos de estos triángulos. Espiral de Durero
  • 12. La espiral (El número de oro) está en los moluscos como el NAUTILIUS, EN LA NATURALEZA
  • 13. En el huevo de las aves se encontrado también relaciones del numero áureo.
  • 14. EN EL GIRASOL EN LAS FLORES Está también en todos los animales, plantas y objetos pentagonales : flores, estrellas de mar, etc
  • 15.   En las hormigas En las aves
  • 16. En las flores En las Plantas
  • 19. En el Tsunami de Asia 2003??
  • 20. Su carn et de identidad es un rectángulo áureo, y por tanto las tarjetas de crédito, y en gran parte de las tarjetas que utilizamos así como el frente de casi todas las cajetillas de tabaco . EN LA ECONOMIA
  • 21. a b En los objetos caseros
  • 22. EN EL SER HUMANO EL PRIMERO EN ESTUDIAR LA RELACION DEL NUMERO AUREO EN EL HOMBRE FUE LEONARDO DA VINCI LEONARDO DA VINCI LUCA PACIOLI LUCA PACIOLI A LA PROPORCION AUREA LA DENOMINO PROPORCION DIVINA POR SUS PROPIEDADES.
  • 23. LEONARDO DA VINCI ENCONTRO EL NUMERO AUREO EN RELACIONES CORPORALES DEL SER HUMANO. VITRUBIO
  • 24. Este sería a juicio de un artista el rostro más perfecto de mujer
  • 25. En la mano humana, la distancia entre las falanges están en razón áurea. Es áurea la relación entre la distancia entre los ojos y el ancho de los mismos. Cuando los dientes no están juntos, la linea de los labios divide la parte inferior del rostro según la proporción áurea.
  • 26. Un detalle curioso conocido por los clásicos es que la distancia del ombligo al suelo es justamente la razón áurea de su altura.
  • 27. Para verificar las medidas antropométricas en el ser humano podemos llenar la tabla siguiente, recordando que dos razones geométricas de igual valor pueden dar origen a una proporción geométrica. ESTUDIANTE Estatura a Longitud del ombligo hasta la planta del pie b Longitud de la cima de la cabeza hasta el ombligo (a – b) C a/b b/c
  • 28. Esta espiral se encuentra en un gran nº de moluscos como el Nautilus de la foto . El número de oro está también en todos los animales, plantas y objetos pentagonales : flores, estrellas de mar, etc Si tomamos un rectángulo aúreo (largo/ancho = nº de oro) y lo dividimos en dos partes de tal forma que una de ellas sea un cuadrado de lado el ancho del rectángulo, la otra parte es otro rectángulo aúreo. Podemos repetir esta operación de forma indefinida , logrando una espiral como muestra el dibujo
  • 29. EN EL ARTE LA SAGRADA FAMILIA MIGUEL ANGEL LA GIOCONDA LEONARDO DA VINCI
  • 30. Leda atómica, pintado en 1949, sintetiza siglos de tradición matemática y simbólica, especialmente pitagórica. Se trata de una filigrana basada en la proporción áurea, pero elaborada de tal forma que no es evidente para el espectador. En el boceto de 1947 se advierte la meticulosidad del análisis geométrico realizado por Dalí basado en el pentagrama místico pitagórico.
  • 31.  
  • 33. Existen relaciones basadas en la sección áurea en algunas de las más célebres esculturas griegas como el Hermes de Praxíteles (390-330 a. C.)
  • 34. Aparece en la Venus de Milo. Venus de Milo Museo del Louvre, París
  • 35. EN LA ARQUITECTURA EL PARTENON GRIEGO Desde tiempos muy remotos el hombre ha realizado bellas y armoniosas construcciones teniendo en cuenta la proporción áurea
  • 36. Ya vimos que el cociente entre la diagonal de un pentágono regular y el lado de dicho pentágono es el número áureo. En un pentágono regular está basada la construcción de la Tumba Rupestre de Mira en Asia Menor. Tumba Rupestre de Mira
  • 37. Hay un precedente a la cultura griega donde también apareció el número de oro. En La Gran Pirámide de Keops , el cociente entre la altura de uno de los tres triángulos que forman la pirámide y el lado es
  • 38. Herodoto relata que los sacerdotes egipcios le habian enseñado que las proporciones establecidas en la Gran Pirámide eran tales que: El cuadrado de la altura de la piramide es igual al área de cada una de las caras triangulares . Es decir: ( 1 ) Por el teorema de Pitágoras en el triángulo POM : Sustituyendo por su valor en ( 1 ) y dividiendo por se tiene: Tenemos la ecuación del numero Áureo :
  • 39. Se dice que Pitágoras había sido condenado a exiliarse de Samos por su aversión a la tiranía de Polícrates. Hacia el 530 a.C. se instaló en Crotona, una colonia griega al sur de Italia, donde fundó un movimiento con propósitos religiosos, políticos y filosóficos, conocido como pitagorismo. La filosofía de Pitágoras se conoce sólo a través de la obra de sus discípulos. Pitágoras y el número de oro Pitágoras (c. 582-c. 500 a.C.), filósofo y matemático griego, nació en la isla de Samos. Fue instruido en las enseñanzas de los primeros filósofos jonios Tales de Mileto, Anaximandro y Anaxímenes.
  • 40. También podemos comprobar que los segmentos QN, NP y QP, que se hallan en la estrella pentagonal están en proporción áurea.   La estrella pentagonal o pentágono estrellado era, según la tradición, el símbolo de los seguidores de Pitágoras . Los pitagóricos pensaban que el mundo estaba configurado según un orden numérico, donde sólo tenían cabida los números fraccionarios. La casualidad hizo que en su propio símbolo se encontrara un número raro: el numero de oro. Así La relación entre la diagonal del pentágono y su lado es el número de oro.
  • 41. A G F N M Considerando el lado del pentágono regular la unidad, ( AG = 1 ), se tiene : MF = NG = 1; MG =  De donde se tiene: Cuya raíz positiva es:
  • 42. ¿ Qué pudo hacer que los pitagóricos sintieran tanta admiración por el número áureo ?. Casi con toda seguridad, para la escuela pitagórica la consideración del irracional , de cuya existencia tuvieron conciencia antes que, tuvo que causar una profunda reflexión en las teorías de la secta.
  • 43. Unas proporciones armoniosas para el cuerpo, que estudiaron antes los griegos y romanos, las plasmó en el dibujo que Leonardo da Vinci, hizo para ilustrar el libro La Divina Proporción de Luca Paccioli, editado en 1509. "Huye de esos estudios cuyo resultado muere con el que los hace.“ Luca Paccioli Leonardo da Vinci
  • 44. Resulta que el cociente entre la altura del hombre (lado del cuadrado) y la distancia del ombligo a la punta de la mano (radio de la circunferencia) es el número áureo Vitrubio Estirando manos y pies y haciendo centro en el ombligo se dibuja la circunferencia. El cuadrado tiene por lado la altura del cuerpo que coincide en un cuerpo armonioso, con la longitud entre los extremos de los dedos de ambas manos cuando los brazos están extendidos y formando un ángulo de90º con el tronco. a b Es decir:
  • 45. Conocemos desde la antiguedad la ubicación exacta de los puntos energéticos (Xue) utilizados en Medicina Tradicional China para el tratamiento de las enfermedades del hombre a través de la acupuntura . Conocemos también los efectos de cada uno de ellos y sabemos cómo utilizarlos ; Pero, porqué los puntos tiene la ubicación que tienen ? A qué ley o regla obedece la uniformidad en la distribución? Y también, porqué esa ubicación es invariablemente la misma en cada ser humano? Así, la ubicación de los puntos chinos de acción energética específica responde a la ley geométrica y aritmética conocida, desde la antiguedad clásica, como : " sección áurea " (según leonardo Da Vinci), " sección divina "(según Kepler) o " divina proporción "(según Luca Pacioli) y cuyo valor numérico, denominado " Número de oro “ . El NUMERO DE ORO EN LA MEDICINA
  • 46. En el caso que nos ocupa, diremos que el rostro humano visto de frente, puede encuadrarse en el interior de un rectángulo ABCD. Dr. Marcelo Manneti Médico Acupunturista
  • 47. La serie de Fibonacci queda establecida mediante la serie numérica siguiente: La sucesión de Fibonacci y el número áureo.    La serie de Fibonacci proviene de considerar la serie que se forma mediante (comenzando la serie por 1, se tiene) : 1 , 1 + 0 = 1 , 1 + 1 = 2 , 1 + 2 = 3 , ... , 8 + 13 = 21 , .... 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ..... C ada número es la suma de los dos números anteriores Leonardo de Pisa
  • 48.
  • 49. Adviértase que, 1 / 0,618 = 1,618 1 / 1,618 = 0,618 Al dividir dos números consecutivos de la serie de Fibonacci, 13 / 21 = 0.619047619 21 / 34 = 0.617647058 34 / 55 = 0.618181818 21 / 13 = 1.615384615 34 / 21 = 1.619047619 55 / 34 = 1.617647059 el resultado converge a 0,618 ó 1,618
  • 50. La razón entre cada par de términos consecutivos va oscilando por la izquierda y la derecha de la razón áurea , y que conforme va avanzando la sucesión se va acercando más a este valor. 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, … 1.618…. 2 1.5 1.66.. 1.6 1.625.. 1.615.. 1
  • 51.  
  • 52.
  • 53. Verdes – 8, Rojas –13 Verdes – 5, Naranjas –8
  • 54. Otra espiral de Fibonacci
  • 55. La experiencia ha demostrado con rotundidad que en la práctica las medias móviles funcionan mejor cuando los periodos de tiempo elegidos para el cálculo de las medias móviles son números de la Serie de Fibonacci. Estos números de Fibonacci se ajustan bastante bien a periodos y ciclos bursátiles. LA SERIE DE FIBONACCI EN LA ECONOMÍA Elliott escribió un libro llamado "Las leyes de la naturaleza" donde se refiere específicamente a la serié numérica de Fibonacci como la base matemática para el principio de lo que conocemos como la teoría de las "Ondas de Elliott". Esta teoría analiza el comportamiento de los mercados, pudiendo predecir los movimientos en ciclos de largo, mediano y corto plazo. Libro de alberto moreno-internet:www.finanzas.com
  • 56. LA SERIE DE FIBONACCI Y LA BOLSA Se puede observar las siguientes reglas se que cumplen siempre en esta serie: La proporción que hay entre cada numero (n) y el siguiente (n+1) es siempre del 61,80% . 1. La proporción que hay entre cada numero (n) y uno más del siguiente (n+2) en la serie es siempre del 38.19% . 2. Una de las aplicaciones prácticas de la serie es el análisis de las correc - ciones técnicas de la bolsa . Cuando los mercados están en tendencia alcista o bajista, se ha podido comprobar que las correcciones general - mente coinciden en porcentaje con las proporciones de Fibonacci . Cuando un mercado ha empezado a corregir después de una tendencia claramente alcista o bajista, se pueden establecer objetivos de corrección del 38% o del 62% del movimiento. Esta aplicación es de especial interés a la hora de aplicar la teoría de Ellio t t . Son las llamadas lineas de Fibonacci , que suelen representar lineas de soporte o resistencia .
  • 57. Las Li neas de Fibonacci son muy similares a las lineas de velocidad . Para trazarlas solo tenemos que seleccionar dos puntos significativos del grupo, por ejemplo, desde el inicio del alza hasta la primera parada, con un pequeño inicio de caída. Desde éste segundo punto trazamos la proyección hasta la altura del primer punto y dividimos esta distancia en dos lineas especiales: siguiendo las proporciones en la linea del 62% y la linea del 38%.
  • 58.
  • 59. Introduzca la definición de razón áurea: r=(sqrt(5)-1)/2. Sus potencias verifican la relación de recurrencia: r^(n+1)=r^(n-1)-r^n . raurea=(sqrt(5)-1)/2; r=linspace(0,0,100) ; r(1)=1;r(2)=raurea ; for n=2:100     r(n+1)=r(n-1)-r(n); end fprintf(' n   r^n raurea^n'), fprintf(' ___________________________'), for n=1:10:101     fprintf('%3i,%10.5f, %g',n,r(n),raurea^n) end (UN ALGORITMO CON Matlab)
  • 60. n      r^n          raurea^n __________________ _____ _______________ 1      1.00000,      0.618034 11     0.00813,      0.005025 21     0.00007,      4.08563e-05 31     0.00000,      3.32187e-07 41    -0.00000,      2.70089e-09 51    -0.00000,      2.19599e-11 61    -0.00008,      1.78548e-13 71    -0.01034,      1.4517e-15 81    -1.27202,      1.18032e-17 91    -156.44857,    9.59676e-20 101   -19241.90183,  7.80276e-22
  • 61. ALGUNAS EXPRESIONES INFINITAS DEL NUMERO Fi Sabemos que: De donde: Por lo que  , lo obtenemos a través de la expresión infinita:
  • 62. y sustituyendo, en forma reiterada,  por su valor en esta ecuación tenemos: Otra expresion infinita de  , es a través de las Fracciones:
  • 63. Rafael Alberti A ti, maravillosa disciplina, media, extrema razón de la hermosura, que claramente acata la clausura viva en la malla de tu ley divina. A ti, cárcel feliz de la retina, áurea sección, celeste cuadratura, misteriosa fontana de mesura que el Universo armónico origina. A ti, mar de los sueños, angulares, flor de las cinco formas regulares, dodecaedro azul, arco sonoro. Luces por alas un compás ardiente. Tu canto es una esfera transparente. A ti, divina proporción de oro. Poema al Número Áureo
  • 64. Espero que nuestros nietos me estarán agradecidos, no solamente por las cosas que he explicado aquí, sino también por las que he omitido intencionadamente a fin de dejarles el placer de descubrirlas. Descartes (Geometría)
  • 65. Gracias, Hasta la vista Jaime Bravo Febres [email_address]
  • 66.