SlideShare una empresa de Scribd logo
1 de 18
Descargar para leer sin conexión
181
UNIDAD 10
Características magnéticas de los
materiales
10.1 CUESTIONES DE AUTOEVALUACIÓN
1. ¿Cual de las siguientes características es un inconveniente para un material de núcleos de
máquinas de corriente alterna?:
a) Baja Bs.
b) Baja Br.
c) Bajo Hc.
d) Baja conductividad eléctrica.
2. Las pérdidas por corrientes parásitas de un núcleo magnético son mínimas para:
a) Hierro puro.
b) Hierro con un 3% de silicio en un bloque.
c) Ferrita cerámica.
d) Hierro con un 3% de silicio laminado.
3. Las pérdidas por histéresis en un núcleo magnético metálico se reducen al:
a) Aumentar el tamaño de grano.
b) Aumentar la resistividad.
c) Reducir el espesor de las chapas.
d) b y c.
4. Los valores más elevados de (B H)max en los imanes permanentes se obtienen con
estructuras magnéticas de:
a) Múltiples dominios martensíticos.
b) Dominios aislados alineados.
c) Dominios aislados al azar.
d) Múltiples dominios con estructuras recocidas.
5. ¿Cual de los siguientes materiales presenta mayor inducción remanente?:
a) Aleación Cu-Ni.
b) Acero con 0.10% de carbono, templado.
c) Acero con 0.60% de carbono, templado.
d) Acero con 0.60% de carbono, templado y revenido.
6. ¿Como se llama la temperatura a la cual un material magnético pierde su magnetismo?
a) Temperatura de Foucault.
b) Temperatura de Histéresis.
c) Temperatura de Curie.
d) Temperatura de Bloch.
Cuestiones y ejercicios de Fundamentos de Ciencia de Materiales
182
7. Un material magnético blando no sirve para fabricar:
a) Electroimanes.
b) Imanes para altavoces.
c) Transformadores de potencia.
d) Relés.
8. ¿Cómo se llama la temperatura a la cual un material magnético pierde su magnetismo?
a) Temperatura de fusión.
b) Temperatura de solubilización.
c) Temperatura de austenización.
d) Ninguna es correcta.
9. Un material magnético duro no sirve para fabricar:
a) Elevalunas eléctrico.
b) Cintas de vídeo.
c) Sistemas de fijación magnética.
d) Tarjetas de crédito.
10. Las pérdidas por corrientes de Foucault en un núcleo magnético metálico se reducen al:
a) Aumentar el tamaño de grano.
b) Aumentar la resistividad.
c) Reducir el espesor de las chapas.
d) b y c.
11. Al aumentar la temperatura de servicio hasta el punto de fusión, el Níquel:
a) Es siempre ferromagnético.
b) Pasa de ferro a paramagnético.
c) Pasa de ferro a diamagnético.
d) Pasa de para a ferromagnético.
12. El comportamiento ferromagnético se debe a:
a) El giro de electrones sobre si mismos.
b) El giro de los electrones alrededor del núcleo.
c) El giro del núcleo atómico sobre sí mismo.
d) El giro de electrones sobre sí mismos y en el orbital.
13. La magnetización M de un material diamagnético:
a) Es positiva y menor que µ0H.
b) Es positiva y mayor que µ0H.
c) Es nula.
d) Es negativa.
14. ¿Cuales de las siguientes modificaciones provoca un aumento en las pérdidas por histéresis
de una chapa magnética?:
a) La acritud.
b) La reducción del tamaño de grano.
c) El aumento de la frecuencia de la corriente alterna.
d) Todas las anteriores.
15. Para una misma sección, el material que permite pasar mayor flujo magnético es:
a) El hierro puro.
b) El níquel puro.
c) El cobalto puro.
Unidad 10 - Materiales magnéticos
183
d) Las chapas Fe-Si.
16. Un material blando para núcleos de máquinas de C.A. debe poseer:
a) Alto Bs.
b) Alto Br.
c) Alto Hc.
d) Alta µr.
17. Las pérdidas por corrientes parásitas en los núcleos de C.A. se reducen:
a) Al aumentar µr.
b) Al emplear núcleos laminados.
c) Al reducir las pérdidas por histéresis.
d) Al reducir la resistividad.
18. El recocido final aplicado a las chapas para núcleos tiene como finalidad:
a) Aumentar el tamaño de grano.
b) Reducir el límite elástico.
c) Eliminar tensiones internas.
d) Reducir el tamaño de grano.
19. La principal ventaja del supermalloy frente al acero al silicio es:
a) Su alta µinicial.
b) Su mayor Bs.
c) Su mayor resistividad.
d) Todas las anteriores.
20. Las ferritas cerámicas blandas poseen estructuras:
a) Hexagonal.
b) Tetragonal.
c) Cúbica.
d) Varía con la composición.
21. El empleo de ferritas como núcleo para máquinas eléctricas de C.A. está limitado por:
a) Su baja resistencia.
b) Su bajo Br.
c) Su bajo Bs.
d) Su baja permeabilidad.
22. La magnetización M de una ferrita (Zn0,15 Ni0,85)O·Fe2O3 la proporcionan:
a) Fe+2
y Fe+3
.
b) Fe+2
, Ni+2
y Fe+3
.
c) Zn+2
y Ni+2
.
d) Fe+3
y Ni+2
.
23. 14 - Una inducción de saturación superior a la del Fe puro sólo puede obtenerse con chapas:
a) Fe-Si.
b) Fe-Co.
c) Fe-Ni.
d) Vidrios metálicos.
24. La estructura ideal para la obtención de imanes permanentes de acero es:
a) Ferrita dura.
b) Martensita.
Cuestiones y ejercicios de Fundamentos de Ciencia de Materiales
184
c) Bainita.
d) Austenita.
25. La magnetización de los imanes ALNICO se realiza:
a) Después del temple.
b) Al cruzar la temperatura de Curie.
c) Después de un tratamiento de maduración
d) Durante la solidificación
26. La anisotropía de las ferritas duras se debe a:
a) Su estructura hexagonal
b) La forma alargada de los polvos
c) La estructura dendrítica de solidificación
d) Todas las anteriores
10.2 CUESTIONES DE HETEROEVALUACIÓN
1. Puntos importantes en una curva B-H de un material ferromagnético.
2. Clasificar las propiedades magnéticas en insensibles y sensibles a la estructura del material.
3. Factores estructurales que dificultan el libre movimiento de las paredes de Bloch.
4. Justifica los procedimientos que permiten desmagnetizar un imán permanente.
5. Indica las ventajas e inconvenientes de las ferritas cerámicas en núcleos de imanes de
corriente alterna.
6. Indica los parámetros de selección de un imán permanente
7. Describe el proceso de fabricación de un núcleo de transformador hecho con Fe-2% Si
orientado.
8. Las pérdidas por histéresis de chapas de acero al Si disminuyen al aumentar el tamaño de
grano. ¿Qué condiciones de deformación y recocido deben emplearse para conseguir un
tamaño de grano grueso?
9. Justifique el comportamiento ferromagnético de los metales
10.Defina y justifique el comportamiento antiferromagnético del Mn y Cr.
11.Justifique la existencia de dominios magnéticos.
12.Justifique cómo puede incrementarse la permeabilidad del hierro mediante aleación
13.Señale y justifique que propiedades magnéticas son deseables en un material blando para
núcleos.
14.Qué ventajas presenta el empleo de aleaciones hierro silicio.
15.Establezca, con indicación clara de las diferentes etapas, el proceso de fabricación de un
núcleo magnético para transformador de potencia con chapas Fe-Si de grano orientado.
Indique los procesos, tratamientos térmicos y el procedimiento de corte y montaje para
obtener las mejores prestaciones.
Unidad 10 - Materiales magnéticos
185
16.Indique las ventajas y características más relevantes de las aleaciones Ni-Fe frente a las
chapas de Fe-Si.
17.Justifique cómo afecta la estructura de los vídrios metálicos a sus propiedades magnéticas.
18.Señale y justifique las características magnéticas que definen la calidad de un imán
permanente
19.Justifique cómo afecta la estructura cristalina y metalúrgica de los imanes permanentes a su
comportamiento magnético.
20.¿Qué ventajas presentan las ferritas blandas frente a las aleaciones metálicas para imanes
blandos?
21.¿Qué ventajas presenta la anisotropía en las aplicaciones magnéticas?
10.3 PROBLEMAS Y EJERCICIOS PRACTICOS PROPUESTOS
Problema 10.1 El hierro tiene una magnetización de saturación de 1,71×106
A/m. ¿Cuál es el
número promedio de magnetones de Bohr por átomo que contribuyen a esa magnetización? El
hierro tiene una estructura cristalina BCC con a = 0,287 nm.
Problema 10.2 Calcular la magnetización por saturación teórica M en amperios/metro y la
inducción de saturación Bs en teslas para la ferrita FeO×Fe2O3. No hace falta tener en cuenta el
término µ0H para el cálculo de Bs. La constante de la celda unidad FeO×Fe2O3 es 0,839 nm.
Problema 10.3 Un campo magnético de 2000 A · m-1
se aplica a un material con una
permeabilidad relativa de 5000. Calcular: a) la magnetización y b) la inductancia.
Problema 10.4 Por una bobina de un
alambre de 0,5 m de longitud y con 20
vueltas transporta una corriente de 1 A.
a) Calcula la densidad de flujo si la
bobina está en el vacío.
b) Una barra de una aleación de Fe-Si,
cuyo comportamiento B · H se muestra
en la figura. ¿Cuánto vale la densidad
de flujo dentro de esta barra?
c) Supongas que una barra de molibdeno
se sitúa ahora dentro de la bobina.
¿Qué corriente debe circular para
producir en el Mo el mismo flujo magnético B en la aleación hierro-silicio usando 1 A?.
Considerar la susceptibilidad magnética del molibdeno = 1,19 x 10-4
.
Problema 10.5 Supermalloy es un material magnético blando. Sobre él se bobina un alambre de
20 m de longitud dando 30 vueltas, por la que pasa una corriente de 5 A. Calcular:
a) El campo magnético H.
5000
10000
15000
1,4
0,8
0,6
0,4
0,2
0,0
1,0
1,2
Campo magnético H (A/m)
0,2 0,6 0,6
30 40 50 60
0 10 20
0
Densidad
de
Flujo
B
(gauss)
Campo magnético H (Oersted)
Densidad
de
Flujo
B
(tesla)
Cuestiones y ejercicios de Fundamentos de Ciencia de Materiales
186
b) La magnetización M, y,
c) La inductancia B.
NOTA: Considerar la permeabilidad del vacío µ0 = 4π· 10-7
T· m· A-1
, y la permeabilidad
relativa de Supermalloy de 800000.
Problema 10.6 Usando un núcleo de Permalloy 45, cuya permeabilidad relativa es de 25000, se
quiere fabricar una bobina con un conductor de 19 m de longitud y 300 vueltas, que
proporcione una inductancia de 7,5 Teslas. ¿Qué corriente debe circular por el conductor?
Problema 10.7 La magnetización dentro de una barra de una aleación metálica es de 1,2 · 106
A/m, para un acampo H de 200 A/m. Calcular:
a) La susceptibilidad magnética.
b) La permeabilidad
c) La densidad de flujo magnético dentro de ese material
Problema 10.8 Suponer que el hierro-silicio (97Fe-3Si) alcanza el punto de saturación cuando
se coloca dentro de una bobina de 400 vueltas con una
longitud de 0,25 m y por la que atraviesa una intensidad de
corriente de 15 A. Calcular la magnetización de saturación.
Considerar el flujo magnético de saturación, Bs = 2,1
Teslas.
Problema 10.9 Hallar el producto energético máximo
(BH)máx para la aleación de Sm(Co, Cu)7,4. En la figura se
representa el segundo cuadrante correspondiente a la curva
de histéresis de esta aleación.
Problema 10.10 Utilizando el ciclo de
histéresis de la figura,
a) Calcular y dibujar el producto B · H
como una función del campo magnético.
b) Determinar el poder de magne-tización
del material, B · Hmax.
Problema 10.11 Utilizando la figura del
problema anterior, calcular:
a) La permeabilidad inicial, y,
b) La permeabilidad máxima.
Problema 10.12 En la tabla aparecen lo
datos para un acero al carbono.
BH
B
Br
- H
- Hc 0
1 2 3 4 5 x 103
Densidad de flujo
(Teslas)
Campo
magnético
(A/m)
-0.6
-5 -4 -3 -2 -1
-0.8
-0.4
0.4
0.6
0.8
Unidad 10 - Materiales magnéticos
187
H (A/m) B ( Teslas) H (A/m) B ( Teslas)
0
15
30
50
60
70
0
0.003
0.007
0.10
0.30
0.63
80
100
150
200
300
0.90
1.14
1.34
1.41
1.48
a) Calcular y construir la gráfica de B frente a H.
b) ¿Qué valores tienen la permeabilidad inicial y la permeabilidad inicial relativa?
c) ¿Cuál es el valor máximo de la permeabilidad?
d) ¿Para qué valor de H se da el máximo de permeabilidad?
e) ¿A qué valor de la susceptibilidad corresponde este máximo en la permeabilidad?
Problema 10.13 Un campo magnético obtenido a
partir de un bobina de 100 vueltas y 12 m de longitud,
produce una magnetización de 0.38 Teslas en el
material magnético, cuyo ciclo de histéresis se
muestra en la figura. Determinar:
a) El campo magnético necesario.
b) La permeabilidad relativa de este material en el
campo magnético.
c) La corriente necesaria para producir la
magnetización.
Problema 10.14 Un campo magnético de 1600 A/m
es producido por un redondo del material cuyo ciclo
se representa en el problema 10.10. Determinar:
a) La magnetización producida.
b) La permeabilidad relativa en este campo.
Problema 10.15 Calcular el valor teórico para la magnetización de saturación y la inducción
de saturación del níquel, suponiendo que todos sus electrones 3d contribuyen a la
magnetización. La red del níquel es c.c.c con parámetro reticular a = 0,352 nm.
Problema 10.16 Calcular la inducción de saturación de una ferrita NiFe2O4, considerando que
la celda elemental es cúbica con a = 4,17 Å.
Nota: el Ni+2
sustituye al Fe+2
en la fórmula tipo. El Ni+2
tiene 2 magnetones Bhor.
Problema 10.17 Por una bobina de 13 vueltas de un alambre de 2 metros de longitud se hace
pasar una corriente de 100 mA. ¿Cuál de los materiales de la tabla presentará mayor
inducción?
Densidad de flujo
(Teslas)
Campo
magnético
(A/m)
-0.6
1 3 5 x 103
-5 -3 -1
-0.8
-0.4
0.4
0.6
0.8
Cuestiones y ejercicios de Fundamentos de Ciencia de Materiales
188
Material µr Bs (Teslas)
Hierro comercial
Fe-Si (orientado)
Permalloy 45
Supermalloy
Ferroxcube A
Ferroxcube B
1500
14000
25000
800000
14000
6500
2.14
2.01
1.60
0.80
0.33
0.36
Considerar la permeabilidad del vacío = 4 π · 10-7
(T · m)/A, y que la densidad de flujo
magnético viene expresada por la ecuación:
l
I
n
H
π
4
.
0
=
Problema 10.18 Se quiere fabricar una bobina de 25 vueltas de un hilo de 3,5 metros de
longitud,
a) ¿Cuál de los materiales de la tabla siguiente presentará mayor inducción, si se hace pasar
una corriente de 1 A por el conductor?
Material µr Bs (Teslas)
Hierro comercial
Fe-Si (orientado)
Permalloy 45
Ferroxcube A
Ferroxcube B
1500
14000
25000
14000
6500
2.14
2.01
1.60
0.33
0.36
b) ¿Cuál sería la intensidad que debería circular por el Fe-Si para obtener una inducción
magnética de 1,5 Teslas?
Considerar que la permeabilidad del vacío es 4 π · 10-7
(T · m)/A, y que la densidad de flujo
magnético viene expresada por la ecuación:
l
I
n
H
π
4
.
0
=
Problema 10.19 Calcular la magnetización de saturación del Permalloy 45, con una
permeabilidad relativa de 25000, si alcanza la saturación, Bs = 1,60 T, en una bobina de 80
vueltas con una longitud de 2 m y por la que circula una intensidad de corriente de 1 A.
Considerar la permeabilidad del vacío = 4 π 10-7
(T·m)/A y que la densidad del flujo magnético
viene expresada por la ecuación:
l
I
n
H
π
4
.
0
=
Problema 10.20 De los materiales de la tabla siguiente, se desea seleccionar uno para fabricar
una bobina de 50 vueltas de un hilo de 5 metros de longitud por el que se hará pasar una
intensidad de 7.8 A.
Unidad 10 - Materiales magnéticos
189
Material µr Bs (Teslas)
Fe-Si (orientado)
Permalloy 45
Ferroxcube A
14000
25000
14000
2.01
1.60
0.33
a) ¿Cuál de los materiales presentará una mayor inducción?
b) ¿Cuál será la intensidad para la que alcanzará la inducción de saturación el Permalloy 45?
Considera que la permeabilidad del vacío es 4 π · 10-7
(T · m)/A, y que la densidad de flujo
magnético viene expresada por la ecuación:
l
I
n
H
π
4
.
0
=
SOLUCION A LAS CUESTIONES DE AUTOEVALUACION:
1 - a, 2 - c, 3 - a, 4 - b, 5 - c, 6 - c, 7 - b, 8 - d, 9 – b, 10 – d, 11 – b, 12 – d, 13 – d, 14 – d, 15 – a,
16 – a, 17 – b, 18 – a, 19 – a, 20 – c, 21 – c, 22 – d, 23 – b, 24 – b, 25 – b, 26 – a.
Cuestiones y ejercicios de Fundamentos de Ciencia de Materiales
190
10.4 PROBLEMAS Y EJERCICIOS PRACTICOS RESUELTOS
Solución al problema 10.1
La magnetización por saturación Ms en amperios por metro puede ser calculada por la
ecuación siguiente:
M
Atomos
m
N magnetones de Bohr
Atomo
A m
MagnetondeBohr
S
B
=





 ⋅





 ⋅
⋅ ⋅





 =
− −
3
24 2
9 27 10
µ ,
= respuesta en (A/m)
( )
( )
Densidad atomica n de atomos m
atomos C C celda unidad
m celda unidad
o
/
/ . .
, /
3
10 3
2
2 87 10
=
⋅
=
−
= 8,46 x 1028
átomos/m3
Nosotros reordenaremos esa ecuación y la utilizaremos para resolver NµB. Tras sustituir
los valores de Ms la densidad atómica y µB, podremos calcular el valor de NµB.
( )( ) ( ) ( )
=
⋅
⋅
⋅
⋅
⋅
=
µ
= −
µ 2
24
3
28
6
B
3
S
m
A
10
27
,
9
m
/
atomos
10
46
,
8
m
/
A
10
71
,
1
m
/
Atomos
M
N B
= 2,18 µB/átomos
Solución al problema 10.2
El momento magnético de una molécula de FeO×Fe2O3 es debido a los 4 magnetones de
Bohr del ión Fe2+
, ya que los electrones desapareados de los iones Fe3+
se cancelan unos a otros.
Como hay ocho moléculas de FeO×Fe2O3 en una celda unidad, el momento total por celda es:
4 magnetones de Bohr
subcelda
8 subceldas
celda unidad
=
32 magnetones de Bohr
celda unidad












entonces,
m
/
A
10
5,0
=
Bohr
de
ón
Magnet
m
A
10
9,27
)
m
10
(8,39
Bohr/celda
de
magnetones
32
=
M 5
2
-24
3
10
-
⋅







 ⋅
⋅






⋅
Bs en la saturación, asumiendo que todos los momentos están alineados, y despreciando los
términos H, viene dado por la ecuación Bs ≈ µ0M. Entonces,
s 0
-7 5
B M
4 10 T m
A
5,0 10 A
m
= 0,63 T
≈ ≈
⋅ ⋅






⋅






µ
π
Solución al problema 10.3
a) µ χ
r
M
H
= + = + =
1 1 5000
por tanto, la magnetización será:
Unidad 10 - Materiales magnéticos
191
( )
M H A m A m
= − = ⋅ = ⋅ ≈
5000 1 4999 2000 9 998 10 10
6 7
, / /
b) ( )
µ µ µ π
= ⋅ = ⋅ = ⋅ ⋅
−
r T m A
0
7 3
5000 4 10 6 28 10
, /
y la inductancia,
B H T m A A m Teslas
= ⋅ = ⋅ ⋅ × ⋅ =
− −
µ 6 28 10 2000 12 57
3 1
, / ,
Solución al problema 10.4
a) H
n I
l
A m
= =
⋅
=
0 4 0 4 20 1
0 5
50 27
, ,
,
, /
π π
b) Tal como se observa en la figura, la
densidad de flujo será alrededor de 1,35
Teslas.
c) B H H
r
= ⋅ ⇒ = ⋅
µ µ µ
1 35 0
,
Si, µ χ
r = + =
1 1 000119
,
y por tanto,
1 35 1 000119 4 10
0 4 20
0 5
7
, ,
,
,
= × ⋅
⋅ ⋅
−
π
π I
de donde,
I A
=
×
× × × ×
=
−
1 35 0 5
1 000119 4 10 0 4 20
21370
7
, ,
, ,
π π
Solución al problema 10.5
a) el campo magnético será:
H
n I
l
A m
= =
⋅
=
0 4 0 4 30 5
20
9 42
, ,
, /
π π
b) La magnetización la calcularemos a partir de la permeabilidad magnética, considerando:
µ χ
r
M
H
= + = + =
1 1 800000
de donde,
( ) ( )
M H A m A m
r
= − = − × = ⋅
µ 1 800000 1 9 42 7 53 106
, / , /
c) Y la inducción magnética, será:
B H H T m A A m Teslas
r
= ⋅ = ⋅ ⋅ = ⋅ × × × =
−
µ µ µ π
0
7
800000 4 10 9 42 9 47
/ , / ,
5000
10000
15000
1,4
0,8
0,6
0,4
0,2
0,0
1,0
1,2
Campo magnético H (A/m)
0,2 0,6 0,6
30 40 50 60
0 10 20
0
Densidad
de
Flujo
B
(gauss)
Campo magnético H (Oersted)
Densidad
de
Flujo
B
(tesla)
Cuestiones y ejercicios de Fundamentos de Ciencia de Materiales
192
Solución al problema 10.6
µ µ µ π
= ⋅ = ⋅ × × = ⋅ ⋅
− −
r T m A T m A
0
7 1
25000 4 10 0 0314
/ ,
B H H
B T
T m A
A m
= ⋅ ⇒ = =
⋅ ⋅
=
−
µ
µ
7 5
0,0314
238,73
1
,
/
Entonces, la intensidad será:
I
H l
n
A
=
×
×
=
×
×
=
0 4
238 73 19
0 4 300
12
,
,
,
π π
Solución al problema 10.7
a) χ = =
⋅
=
M
H
1 2 10
200
6000
6
,
b) µ µ µ
= ⋅
r 0
siendo µ χ
r = + =
1 6001
por lo que,
π
= × × = ⋅ ⋅ ⋅
− −
6001 4 10 7 54 10
7 1
, T A
c) B H m
= ⋅ = ⋅ =
−
µ 7 54 15
, /
El campo magnético será:
H
n
l
m
=
0 4 4 15
25
,
,
π π
La magnetización la calcularemos a partir del cálculo del flujo magnético en vacío y de la
permeabilidad magnética del material, por tanto,
B H T
0 0
7
4 10 30159 0 0379
= ⋅ = ⋅ ⋅ =
−
µ π ,
y, teniendo en cuenta que:
B H M
s s
= ⋅ + ⋅
µ µ
0 0
la magnetización de saturación será:
M
B B
A m
s
s
=
−
=
−
⋅
= ⋅
−
0
0
7
6
2 01 0 0379
4 10
157 10
µ π
, ,
, /
Solución al problema 10.9
Necesitamos encontrar el área del mayor rectángulo que puede colocarse dentro del
segundo cuadrante de la curva de desmagnetización de la aleación. La curva tendrá un aspecto
Unidad 10 - Materiales magnéticos
193
como el que se muestra en la figura adjunta.
A continuación se enumeran cuatro áreas de
prueba, representándose dicho rectángulo para la
primera de ellas:
Prueba 1 → (0,80 T · 250 kA/m) = 200 kJ/m3
(figura)
Prueba 2 → (0,60 T · 380 kA/m) = 228 kJ/m3
Prueba 3 → (0,55 T · 420 kA/m) = 231 kJ/m3
Prueba 4 → (0,50 T · 440 kA/m) = 220 kJ/m3
El mayor valor está alrededor de 231 kJ/m3
,
que se puede comparar con los 240 kJ/m3
catalogado
para aleaciones de Sm(Cu, Co).
Solución al problema 10.10
a) En la figura representamos el segundo cuadrante
de la curva de desmag-netización de la aleación,
dibujando el producto B x H como una función
del campo magnético.
b) El poder de desmagnetización del material
vendrá dado por el área del mayor rectángulo
que puede colocarse dentro de este segundo
cuadrante de la curva de desmagnetización.
Numérica-mente lo resolveremos de forma
aproximada mediante algunas pruebas:
Prueba 1 → (0,47 T · 2750 A/m) = 1292 J/m3
Prueba 2 → (0,54 T · 2500 A/m) = 1350 J/m3
Prueba 3 → (0,63 T · 2000 A/m) = 1260 J/m3
Prueba 4 → (0,69 T · 1000 A/m) = 690 J/m3
y el mayor valor está alrededor de los 1350 J/m3
.
Solución al problema 10.11
a) De la figura obtenemos que la permeabilidad, en
función de la densidad de flujo y el campo, será:
µi
T
T m A
= = ⋅ ⋅ ⋅
− −
0 3
3000
1 10 4 1
,
b) Y la permeabilidad máxima:
1
4
i A
m
T
10
48
,
2
2500
T
62
,
0 −
−
⋅
⋅
⋅
=
=
µ
1,1
0,8
250
500
B, T
H, kA/m
Br
-5 -4 -3 -2 -1
0.4
0.6
0.8
500 1000 1500
- H B·H
1 2 3 4 5 x 103
Densidad
de
flujo
(Teslas)
Campo magnético (A/m)
0.4
0.6
0.8
µi
µmax
Cuestiones y ejercicios de Fundamentos de Ciencia de Materiales
194
Solución al problema 10.12
a) En la figura siguiente se representa la gráfica obtenida del flujo magnético, B, frente al campo
magnético, H.
b) µi
B
H
T m A
= = = ⋅ ⋅ ⋅
− −
0,003
15
2 10 4 1
µ
µ
µ π
ri
i
= =
⋅
⋅
=
−
−
0
4
7
2 10
4 10
159
c) µmax T m A
≈ = ⋅ ⋅ −
114
100
0 0114 1
,
,
d) Del gráfico, aproximadamente H = 100 A/m
e) µ
µ
µ π
rmax
max
= =
⋅
=
−
0
7
0 0114
4 10
9072
,
χ µ
= − =
rmax 1 9071
Solución al problema 10.13
a) De la figura, H = 1800 A/m
b) 1
4
A
m
T
10
11
,
2
1800
38
,
0
H
B −
−
⋅
⋅
⋅
=
=
=
µ
c) La corriente necesaria será:
0
0,2
0,4
0,6
0,8
1
1,2
1,4
1,6
0 50 100 150 200 250 300
µmax
µi
Densidad
de
flujo
(Teslas)
Campo magnético (A/m)
Densidad de flujo
(Teslas)
Campo
magnético
(A/m)
-0.6
1 3 5 x 103
-5 -3 -1
-0.8
-0.4
0.4
0.6
0.8
Unidad 10 - Materiales magnéticos
195
A
9
,
171
100
4
,
0
12
1800
n
4
,
0
l
H
I =
×
π
×
=
×
π
×
=
Solución al problema 10.14
a) De la figura obtenemos que para H = 1600
A/m, B ≈ 0,41 Teslas.
a) La permeabilidad relativa será:
µ
µ
µ
r =
0
siendo,
1
4
A
m
T
10
56
,
2
1600
41
,
0
H
B −
−
⋅
⋅
⋅
=
=
=
µ
y por lo tanto,
7
,
203
10
4
10
56
,
2
7
4
0
r =
⋅
π
⋅
=
µ
µ
=
µ −
−
Solución al problema 10.15
La magnetización por saturación Ms en amperios por metro puede ser calculada por la
ecuación siguiente:
=







 ⋅
⋅
⋅








⋅






=
−
−
µ
Bohr
de
Magneton
m
A
10
27
,
9
Atomo
Bohr
de
magnetones
N
m
Atomos
M
2
24
3
S
B
( )
m
/
A
10
7
.
1
Bohr
de
Magnetón
m
A
10
27
,
9
Atomo
Bohr
de
magnetones
2
unidad
celda
/
m
10
352
,
0
unidad
celda
/
atomos
4 6
2
24
3
9
⋅
=
⋅
⋅
⋅
⋅
⋅
=
−
−
−
Bs en la saturación, asumiendo que todos los momentos están alineados, y despreciando los
términos H, viene dado por la ecuación Bs ≈ µ0M. Entonces,
T
14
,
2
=
m
A
10
7
,
1
A
m
T
10
4
M
B
6
-7
0
s 






 ⋅







 ⋅
⋅
π
≈
µ
≈
Solución al problema 10.16
El momento magnético de la ferrita NiFe2O4 es debido a los 2 magnetones de Bohr del
ión Ni2+
, ya que los electrones desapareados de los iones Fe3+
se cancelan unos a otros. Como
hay ocho moléculas de NiO×Fe2O3 en una celda unidad, de iguakl manera a la expuesta en el
problema 10.2, el momento total por celda será de 16 magmetones de Bohr, y entonces,
m
/
A
10
5
,0
2
=
Bohr
de
ón
Magnet
m
A
10
9,27
)
m
10
17
,
4
(
Bohr/celda
de
s
e
magneton
16
=
M 6
2
-24
3
10
-
⋅







 ⋅
⋅






⋅
1 2 3 4 5 x 103
Densidad de flujo
(Teslas)
Campo
magnético
(A/m)
-0.6
-5 -4 -3 -2 -1
-0.8
-0.4
0.4
0.6
0.8
0.41
Cuestiones y ejercicios de Fundamentos de Ciencia de Materiales
196
La inducción de saturación, asumiendo que todos los momentos están alineados y
despreciando los términos H, viene dado por la ecuación Bs ≈ µ0M. Entonces,
T
58
,
2
=
m
A
10
5
,0
2
A
m
T
10
4
M
B
6
7
0
s 






 ⋅










⋅
⋅
π
≈
µ
≈
−
Solución al problema 10.17
La densidad de flujo magnético será:
m
A
H /
817
.
0
2
10
100
13
4
.
0 3
=
⋅
⋅
⋅
=
−
π
y la inducción magnética vendrá expresada por:
B = µ · H = µr · µ0 · H
Por lo que, para las condiciones de la bobina, tendrá en principio mayor inducción el
material con mayor µr, es decir el Supermalloy, tal como se refleja en la siguiente tabla.
Material µr B (Teslas)
Hierro comercial
Fe-Si (orientado)
Permalloy 45
Supermalloy
Ferroxcube A
Ferroxcube B
1500
14000
25000
800000
14000
6500
1.5 · 10-3
0.014
0.0257
0.82
0.014
6.67 · 10-3
No obstante, el Supermalloy no lograría alcanzar la inducción calculada de 0.82 Teslas,
pues antes llega a la inducción de saturación Bs de 0.80 Teslas en la que permanecería.
Solución al problema 10.18
a) La densidad de flujo magnético vendrá dada por: m
/
A
976
,
8
5
,
3
1
25
4
.
0
H =
⋅
⋅
π
=
y la inducción magnética vendrá expresada por: B = µ · H = µr · µ0 · H
Por lo que, para las condiciones de la bobina, tendrá en principio mayor inducción el
material con mayor µr, es decir el Permalloy 45, tal como se refleja en la siguiente tabla.
Material µr B (Teslas)
Hierro comercial
Fe-Si (orientado)
Permalloy 45
Ferroxcube A
Ferroxcube B
1500
14000
25000
14000
6500
0,017
0,158
0,282
0,158
0,073
Unidad 10 - Materiales magnéticos
197
b) Para obtener en el Fe-Si una inducción magnética de 1,5 Teslas, la intensidad vendrá en
función del flujo magnético:
m
/
A
26
,
85
10
4
14000
T
5
,
1
B
H 7
=
π
⋅
=
µ
= −
y por tanto, la intensidad será:
A
5
,
9
25
4
,
0
5
,
3
26
,
85
n
4
,
0
l
H
I =
π
⋅
=
π
⋅
=
Solución al problema 10.19
La densidad de flujo magnético obtenida en la bobina será:
m
/
A
27
,
50
2
1
80
4
.
0
H =
⋅
⋅
π
=
y la magnetización vendrá expresada en función de la inducción magnética por:
B = µ · H = µr · µ0 · H = µ0 · H + µ0 · M
con lo que tendrá un valor de:
m
/
A
10
273
,
1
10
4
10
4
60
,
1
H
B
M 6
7
7
0
0
⋅
=
π
π
−
=
µ
µ
−
= −
−
Solución al problema 10.20
a) La inducción vendrá expresada por:
B = µ · H = µ0 · µr · H
siendo,
m
A
m
A
H /
02
.
98
5
8
.
7
50
4
.
0
=
⋅
⋅
=
π
con lo que tendremos los siguientes valores:
Material µr Bteórico (Teslas) Bmax (Teslas)
Fe-Si (orientado)
Permalloy 45
Ferroxcube A
14000
25000
14000
1.72
3.08
1.72
1.72
1.60
0.33
Por lo que el material que presentará mayor inducción será el Fe-Si orientado.
b) Para el Permalloy 45, cuya inducción de saturación es de 1.60 teslas, tendremos:
m
A
A
m
T
T
B
H
r
/
93
.
50
25000
/
10
4
60
.
1
7
0
=
⋅
⋅
=
⋅
= −
π
µ
µ
de donde la intensidad será:
Cuestiones y ejercicios de Fundamentos de Ciencia de Materiales
198
A
m
m
A
n
l
H
I 05
.
4
50
4
.
0
5
/
93
.
50
4
.
0
=
⋅
=
⋅
=
π
π

Más contenido relacionado

La actualidad más candente

Analytical Modeling of Tunneling Field Effect Transistor (TFET)
Analytical Modeling of Tunneling Field Effect Transistor (TFET)Analytical Modeling of Tunneling Field Effect Transistor (TFET)
Analytical Modeling of Tunneling Field Effect Transistor (TFET)Abu Obayda
 
Graphene Field Effect Transistor
Graphene Field Effect TransistorGraphene Field Effect Transistor
Graphene Field Effect TransistorAhmed AlAskalany
 
Soldadura robotizada ESPE-Latacunga
Soldadura robotizada ESPE-LatacungaSoldadura robotizada ESPE-Latacunga
Soldadura robotizada ESPE-LatacungaVinicio Acuña
 
MIL PRF-32535 for Military and Space
MIL PRF-32535 for Military and SpaceMIL PRF-32535 for Military and Space
MIL PRF-32535 for Military and SpaceRandall Ghany
 
TRANSFORMADORES DE MEDIDA RCH-SAIA
TRANSFORMADORES DE MEDIDA RCH-SAIATRANSFORMADORES DE MEDIDA RCH-SAIA
TRANSFORMADORES DE MEDIDA RCH-SAIAalchavezuft
 
Modulo 4 transformadores
Modulo 4 transformadoresModulo 4 transformadores
Modulo 4 transformadoresjohander suarez
 
Selling the Sun: A real estate agent's guide to valuing and selling residenti...
Selling the Sun: A real estate agent's guide to valuing and selling residenti...Selling the Sun: A real estate agent's guide to valuing and selling residenti...
Selling the Sun: A real estate agent's guide to valuing and selling residenti...Keep Me Certified
 

La actualidad más candente (12)

Analytical Modeling of Tunneling Field Effect Transistor (TFET)
Analytical Modeling of Tunneling Field Effect Transistor (TFET)Analytical Modeling of Tunneling Field Effect Transistor (TFET)
Analytical Modeling of Tunneling Field Effect Transistor (TFET)
 
Graphene Field Effect Transistor
Graphene Field Effect TransistorGraphene Field Effect Transistor
Graphene Field Effect Transistor
 
Soldadura robotizada ESPE-Latacunga
Soldadura robotizada ESPE-LatacungaSoldadura robotizada ESPE-Latacunga
Soldadura robotizada ESPE-Latacunga
 
MIL PRF-32535 for Military and Space
MIL PRF-32535 for Military and SpaceMIL PRF-32535 for Military and Space
MIL PRF-32535 for Military and Space
 
Lab. máquinas 4
Lab. máquinas 4Lab. máquinas 4
Lab. máquinas 4
 
TRANSFORMADORES DE MEDIDA RCH-SAIA
TRANSFORMADORES DE MEDIDA RCH-SAIATRANSFORMADORES DE MEDIDA RCH-SAIA
TRANSFORMADORES DE MEDIDA RCH-SAIA
 
Maquinas sincronas
Maquinas sincronasMaquinas sincronas
Maquinas sincronas
 
Modulo 4 transformadores
Modulo 4 transformadoresModulo 4 transformadores
Modulo 4 transformadores
 
Photonic Materials
Photonic MaterialsPhotonic Materials
Photonic Materials
 
Transformador
TransformadorTransformador
Transformador
 
Selling the Sun: A real estate agent's guide to valuing and selling residenti...
Selling the Sun: A real estate agent's guide to valuing and selling residenti...Selling the Sun: A real estate agent's guide to valuing and selling residenti...
Selling the Sun: A real estate agent's guide to valuing and selling residenti...
 
Carbon Nanotubes
Carbon NanotubesCarbon Nanotubes
Carbon Nanotubes
 

Similar a Ejercicio10.pdf

Tema 4. Defectos en estructuras cristalinas. Cristales reales.
Tema 4. Defectos en estructuras cristalinas. Cristales reales.Tema 4. Defectos en estructuras cristalinas. Cristales reales.
Tema 4. Defectos en estructuras cristalinas. Cristales reales.Ignacio Roldán Nogueras
 
Tema4defectossinsoluciones 140319013602-phpapp02
Tema4defectossinsoluciones 140319013602-phpapp02Tema4defectossinsoluciones 140319013602-phpapp02
Tema4defectossinsoluciones 140319013602-phpapp02Jose Perez
 
Ejercicios de traccion
Ejercicios de traccionEjercicios de traccion
Ejercicios de traccionfib71057
 
Mantenimiento de Maquinas eléctricas (Corrección examen de diagnostico)
Mantenimiento de Maquinas eléctricas (Corrección examen de diagnostico)Mantenimiento de Maquinas eléctricas (Corrección examen de diagnostico)
Mantenimiento de Maquinas eléctricas (Corrección examen de diagnostico)MichelleMorag98
 
4) efectos termicos de la corriente eléctrica propuestos
4) efectos termicos de la corriente eléctrica propuestos4) efectos termicos de la corriente eléctrica propuestos
4) efectos termicos de la corriente eléctrica propuestosMiguel Angel Sejas Villarroel
 
Corrección del examen de mantenimiento de máquinas eléctricas
Corrección del examen de mantenimiento de máquinas eléctricasCorrección del examen de mantenimiento de máquinas eléctricas
Corrección del examen de mantenimiento de máquinas eléctricasmaikol9806
 
Corrección del examen de mantenimiento de máquinas eléctricas
Corrección del examen de mantenimiento de máquinas eléctricasCorrección del examen de mantenimiento de máquinas eléctricas
Corrección del examen de mantenimiento de máquinas eléctricasmaikol9806
 
Corrección del examen de mantenimiento de máquinas eléctricas
Corrección del examen de mantenimiento de máquinas eléctricasCorrección del examen de mantenimiento de máquinas eléctricas
Corrección del examen de mantenimiento de máquinas eléctricasmaikol9806
 
Corrección del examen de mantenimiento de máquinas eléctricas
Corrección del examen de mantenimiento de máquinas eléctricasCorrección del examen de mantenimiento de máquinas eléctricas
Corrección del examen de mantenimiento de máquinas eléctricasmaikol9806
 
Nano cuba
Nano cubaNano cuba
Nano cubamihaelz
 

Similar a Ejercicio10.pdf (20)

Reactor nuclear
Reactor nuclearReactor nuclear
Reactor nuclear
 
4 p9-moya
4 p9-moya4 p9-moya
4 p9-moya
 
Tema 4. Defectos en estructuras cristalinas. Cristales reales.
Tema 4. Defectos en estructuras cristalinas. Cristales reales.Tema 4. Defectos en estructuras cristalinas. Cristales reales.
Tema 4. Defectos en estructuras cristalinas. Cristales reales.
 
Tema4defectossinsoluciones 140319013602-phpapp02
Tema4defectossinsoluciones 140319013602-phpapp02Tema4defectossinsoluciones 140319013602-phpapp02
Tema4defectossinsoluciones 140319013602-phpapp02
 
Ejercicio de corrosion
Ejercicio de corrosionEjercicio de corrosion
Ejercicio de corrosion
 
5Metalizaciones.ppt
5Metalizaciones.ppt5Metalizaciones.ppt
5Metalizaciones.ppt
 
Ejercicios de traccion
Ejercicios de traccionEjercicios de traccion
Ejercicios de traccion
 
Mantenimiento de Maquinas eléctricas (Corrección examen de diagnostico)
Mantenimiento de Maquinas eléctricas (Corrección examen de diagnostico)Mantenimiento de Maquinas eléctricas (Corrección examen de diagnostico)
Mantenimiento de Maquinas eléctricas (Corrección examen de diagnostico)
 
2673655.ppt
2673655.ppt2673655.ppt
2673655.ppt
 
4) efectos termicos de la corriente eléctrica propuestos
4) efectos termicos de la corriente eléctrica propuestos4) efectos termicos de la corriente eléctrica propuestos
4) efectos termicos de la corriente eléctrica propuestos
 
Correcciones
CorreccionesCorrecciones
Correcciones
 
Serie de problemas 1
Serie de problemas 1Serie de problemas 1
Serie de problemas 1
 
Tarea 1 materiales
Tarea 1   materialesTarea 1   materiales
Tarea 1 materiales
 
Motores dc maxonmotor
Motores dc maxonmotorMotores dc maxonmotor
Motores dc maxonmotor
 
Corrección del examen de mantenimiento de máquinas eléctricas
Corrección del examen de mantenimiento de máquinas eléctricasCorrección del examen de mantenimiento de máquinas eléctricas
Corrección del examen de mantenimiento de máquinas eléctricas
 
Corrección del examen de mantenimiento de máquinas eléctricas
Corrección del examen de mantenimiento de máquinas eléctricasCorrección del examen de mantenimiento de máquinas eléctricas
Corrección del examen de mantenimiento de máquinas eléctricas
 
Corrección del examen de mantenimiento de máquinas eléctricas
Corrección del examen de mantenimiento de máquinas eléctricasCorrección del examen de mantenimiento de máquinas eléctricas
Corrección del examen de mantenimiento de máquinas eléctricas
 
Corrección del examen de mantenimiento de máquinas eléctricas
Corrección del examen de mantenimiento de máquinas eléctricasCorrección del examen de mantenimiento de máquinas eléctricas
Corrección del examen de mantenimiento de máquinas eléctricas
 
Poster congreso nacional de materiales vigo 2006
Poster congreso nacional de materiales vigo 2006Poster congreso nacional de materiales vigo 2006
Poster congreso nacional de materiales vigo 2006
 
Nano cuba
Nano cubaNano cuba
Nano cuba
 

Último

ESPECIFICACIONES TECNICAS MURO DE CONTENCION.docx
ESPECIFICACIONES TECNICAS MURO DE CONTENCION.docxESPECIFICACIONES TECNICAS MURO DE CONTENCION.docx
ESPECIFICACIONES TECNICAS MURO DE CONTENCION.docxAnonymousk8JgrnuMSr
 
Sesión de Clase A dde sistemas de riego y otras obras
Sesión de Clase A dde sistemas de riego y otras obrasSesión de Clase A dde sistemas de riego y otras obras
Sesión de Clase A dde sistemas de riego y otras obrasBildStrify1
 
subestaciones electricas , elementos y caracteristicas
subestaciones electricas , elementos y caracteristicassubestaciones electricas , elementos y caracteristicas
subestaciones electricas , elementos y caracteristicaszaydaescalona
 
Ficha Técnica -Cemento YURA Multiproposito TIPO IP.pdf
Ficha Técnica -Cemento YURA  Multiproposito TIPO IP.pdfFicha Técnica -Cemento YURA  Multiproposito TIPO IP.pdf
Ficha Técnica -Cemento YURA Multiproposito TIPO IP.pdfEdgard Ampuero Cayo
 
PRACTICAS_DE_AUTOMATIZACION_industrial (1).pdf
PRACTICAS_DE_AUTOMATIZACION_industrial (1).pdfPRACTICAS_DE_AUTOMATIZACION_industrial (1).pdf
PRACTICAS_DE_AUTOMATIZACION_industrial (1).pdfjorge477728
 
las humanidades y su impotancia en la formación integral del ingeniero
las humanidades y su impotancia en la formación integral del ingenierolas humanidades y su impotancia en la formación integral del ingeniero
las humanidades y su impotancia en la formación integral del ingenieroJsValdez
 
CONCEPTOS BASICOS DE ROBOTICA, CLASES DE ROBOTS
CONCEPTOS BASICOS DE ROBOTICA, CLASES DE ROBOTSCONCEPTOS BASICOS DE ROBOTICA, CLASES DE ROBOTS
CONCEPTOS BASICOS DE ROBOTICA, CLASES DE ROBOTSrobinarielabellafern
 
UNIDAD III Esquemas de comunicacion pptx
UNIDAD III Esquemas de comunicacion pptxUNIDAD III Esquemas de comunicacion pptx
UNIDAD III Esquemas de comunicacion pptxElybe Hernandez
 
Cuestionario 20222222222222222222222224.pdf
Cuestionario 20222222222222222222222224.pdfCuestionario 20222222222222222222222224.pdf
Cuestionario 20222222222222222222222224.pdffredyflores58
 
S01.s1 - Clasificación de las Industrias.pdf
S01.s1 - Clasificación de las Industrias.pdfS01.s1 - Clasificación de las Industrias.pdf
S01.s1 - Clasificación de las Industrias.pdfSalomeRunco
 
subestaciones electricas, distribucion de energia
subestaciones electricas, distribucion de energiasubestaciones electricas, distribucion de energia
subestaciones electricas, distribucion de energiazaydaescalona
 
Diseño digital - M. Morris Mano - 3ed.pdf
Diseño digital - M. Morris Mano - 3ed.pdfDiseño digital - M. Morris Mano - 3ed.pdf
Diseño digital - M. Morris Mano - 3ed.pdfssuserf46a26
 
TIPOS DE BASTIDORES Y CARROCERIA EN LA INDUSTRIA AUTOMOTRIZ
TIPOS DE BASTIDORES Y CARROCERIA EN LA INDUSTRIA AUTOMOTRIZTIPOS DE BASTIDORES Y CARROCERIA EN LA INDUSTRIA AUTOMOTRIZ
TIPOS DE BASTIDORES Y CARROCERIA EN LA INDUSTRIA AUTOMOTRIZvarichard
 
6.1-Proclamación de la II República, la Constitución y el bienio reformista-L...
6.1-Proclamación de la II República, la Constitución y el bienio reformista-L...6.1-Proclamación de la II República, la Constitución y el bienio reformista-L...
6.1-Proclamación de la II República, la Constitución y el bienio reformista-L...jose880240
 
ESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdf
ESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdfESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdf
ESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdfSegundo Silva Maguiña
 
DIFERENCIA DE COMPRESION Y TENSION EN UN CUERPO
DIFERENCIA DE COMPRESION Y TENSION EN UN CUERPODIFERENCIA DE COMPRESION Y TENSION EN UN CUERPO
DIFERENCIA DE COMPRESION Y TENSION EN UN CUERPOSegundo Silva Maguiña
 
647913404-06-Partes-principales-de-las-Perforadoras-manuales-1.pdf
647913404-06-Partes-principales-de-las-Perforadoras-manuales-1.pdf647913404-06-Partes-principales-de-las-Perforadoras-manuales-1.pdf
647913404-06-Partes-principales-de-las-Perforadoras-manuales-1.pdfMirkaCBauer
 
Semana 1 - Introduccion - Fluidos - Unidades.pptx
Semana 1 - Introduccion - Fluidos - Unidades.pptxSemana 1 - Introduccion - Fluidos - Unidades.pptx
Semana 1 - Introduccion - Fluidos - Unidades.pptxJulio Lovon
 
TEST ESPACIAL CONTEO DE CUBOS y TEST DE MOSAICOS
TEST ESPACIAL CONTEO DE CUBOS y TEST DE MOSAICOSTEST ESPACIAL CONTEO DE CUBOS y TEST DE MOSAICOS
TEST ESPACIAL CONTEO DE CUBOS y TEST DE MOSAICOSCarlosHuamulloDavila1
 

Último (20)

ESPECIFICACIONES TECNICAS MURO DE CONTENCION.docx
ESPECIFICACIONES TECNICAS MURO DE CONTENCION.docxESPECIFICACIONES TECNICAS MURO DE CONTENCION.docx
ESPECIFICACIONES TECNICAS MURO DE CONTENCION.docx
 
Sesión de Clase A dde sistemas de riego y otras obras
Sesión de Clase A dde sistemas de riego y otras obrasSesión de Clase A dde sistemas de riego y otras obras
Sesión de Clase A dde sistemas de riego y otras obras
 
subestaciones electricas , elementos y caracteristicas
subestaciones electricas , elementos y caracteristicassubestaciones electricas , elementos y caracteristicas
subestaciones electricas , elementos y caracteristicas
 
Ficha Técnica -Cemento YURA Multiproposito TIPO IP.pdf
Ficha Técnica -Cemento YURA  Multiproposito TIPO IP.pdfFicha Técnica -Cemento YURA  Multiproposito TIPO IP.pdf
Ficha Técnica -Cemento YURA Multiproposito TIPO IP.pdf
 
PRACTICAS_DE_AUTOMATIZACION_industrial (1).pdf
PRACTICAS_DE_AUTOMATIZACION_industrial (1).pdfPRACTICAS_DE_AUTOMATIZACION_industrial (1).pdf
PRACTICAS_DE_AUTOMATIZACION_industrial (1).pdf
 
las humanidades y su impotancia en la formación integral del ingeniero
las humanidades y su impotancia en la formación integral del ingenierolas humanidades y su impotancia en la formación integral del ingeniero
las humanidades y su impotancia en la formación integral del ingeniero
 
CONCEPTOS BASICOS DE ROBOTICA, CLASES DE ROBOTS
CONCEPTOS BASICOS DE ROBOTICA, CLASES DE ROBOTSCONCEPTOS BASICOS DE ROBOTICA, CLASES DE ROBOTS
CONCEPTOS BASICOS DE ROBOTICA, CLASES DE ROBOTS
 
UNIDAD III Esquemas de comunicacion pptx
UNIDAD III Esquemas de comunicacion pptxUNIDAD III Esquemas de comunicacion pptx
UNIDAD III Esquemas de comunicacion pptx
 
Cuestionario 20222222222222222222222224.pdf
Cuestionario 20222222222222222222222224.pdfCuestionario 20222222222222222222222224.pdf
Cuestionario 20222222222222222222222224.pdf
 
S01.s1 - Clasificación de las Industrias.pdf
S01.s1 - Clasificación de las Industrias.pdfS01.s1 - Clasificación de las Industrias.pdf
S01.s1 - Clasificación de las Industrias.pdf
 
subestaciones electricas, distribucion de energia
subestaciones electricas, distribucion de energiasubestaciones electricas, distribucion de energia
subestaciones electricas, distribucion de energia
 
Diseño digital - M. Morris Mano - 3ed.pdf
Diseño digital - M. Morris Mano - 3ed.pdfDiseño digital - M. Morris Mano - 3ed.pdf
Diseño digital - M. Morris Mano - 3ed.pdf
 
TIPOS DE BASTIDORES Y CARROCERIA EN LA INDUSTRIA AUTOMOTRIZ
TIPOS DE BASTIDORES Y CARROCERIA EN LA INDUSTRIA AUTOMOTRIZTIPOS DE BASTIDORES Y CARROCERIA EN LA INDUSTRIA AUTOMOTRIZ
TIPOS DE BASTIDORES Y CARROCERIA EN LA INDUSTRIA AUTOMOTRIZ
 
6.1-Proclamación de la II República, la Constitución y el bienio reformista-L...
6.1-Proclamación de la II República, la Constitución y el bienio reformista-L...6.1-Proclamación de la II República, la Constitución y el bienio reformista-L...
6.1-Proclamación de la II República, la Constitución y el bienio reformista-L...
 
ESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdf
ESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdfESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdf
ESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdf
 
DIFERENCIA DE COMPRESION Y TENSION EN UN CUERPO
DIFERENCIA DE COMPRESION Y TENSION EN UN CUERPODIFERENCIA DE COMPRESION Y TENSION EN UN CUERPO
DIFERENCIA DE COMPRESION Y TENSION EN UN CUERPO
 
647913404-06-Partes-principales-de-las-Perforadoras-manuales-1.pdf
647913404-06-Partes-principales-de-las-Perforadoras-manuales-1.pdf647913404-06-Partes-principales-de-las-Perforadoras-manuales-1.pdf
647913404-06-Partes-principales-de-las-Perforadoras-manuales-1.pdf
 
Semana 1 - Introduccion - Fluidos - Unidades.pptx
Semana 1 - Introduccion - Fluidos - Unidades.pptxSemana 1 - Introduccion - Fluidos - Unidades.pptx
Semana 1 - Introduccion - Fluidos - Unidades.pptx
 
50870516-hidroponia. descargado en novppt
50870516-hidroponia. descargado en novppt50870516-hidroponia. descargado en novppt
50870516-hidroponia. descargado en novppt
 
TEST ESPACIAL CONTEO DE CUBOS y TEST DE MOSAICOS
TEST ESPACIAL CONTEO DE CUBOS y TEST DE MOSAICOSTEST ESPACIAL CONTEO DE CUBOS y TEST DE MOSAICOS
TEST ESPACIAL CONTEO DE CUBOS y TEST DE MOSAICOS
 

Ejercicio10.pdf

  • 1. 181 UNIDAD 10 Características magnéticas de los materiales 10.1 CUESTIONES DE AUTOEVALUACIÓN 1. ¿Cual de las siguientes características es un inconveniente para un material de núcleos de máquinas de corriente alterna?: a) Baja Bs. b) Baja Br. c) Bajo Hc. d) Baja conductividad eléctrica. 2. Las pérdidas por corrientes parásitas de un núcleo magnético son mínimas para: a) Hierro puro. b) Hierro con un 3% de silicio en un bloque. c) Ferrita cerámica. d) Hierro con un 3% de silicio laminado. 3. Las pérdidas por histéresis en un núcleo magnético metálico se reducen al: a) Aumentar el tamaño de grano. b) Aumentar la resistividad. c) Reducir el espesor de las chapas. d) b y c. 4. Los valores más elevados de (B H)max en los imanes permanentes se obtienen con estructuras magnéticas de: a) Múltiples dominios martensíticos. b) Dominios aislados alineados. c) Dominios aislados al azar. d) Múltiples dominios con estructuras recocidas. 5. ¿Cual de los siguientes materiales presenta mayor inducción remanente?: a) Aleación Cu-Ni. b) Acero con 0.10% de carbono, templado. c) Acero con 0.60% de carbono, templado. d) Acero con 0.60% de carbono, templado y revenido. 6. ¿Como se llama la temperatura a la cual un material magnético pierde su magnetismo? a) Temperatura de Foucault. b) Temperatura de Histéresis. c) Temperatura de Curie. d) Temperatura de Bloch.
  • 2. Cuestiones y ejercicios de Fundamentos de Ciencia de Materiales 182 7. Un material magnético blando no sirve para fabricar: a) Electroimanes. b) Imanes para altavoces. c) Transformadores de potencia. d) Relés. 8. ¿Cómo se llama la temperatura a la cual un material magnético pierde su magnetismo? a) Temperatura de fusión. b) Temperatura de solubilización. c) Temperatura de austenización. d) Ninguna es correcta. 9. Un material magnético duro no sirve para fabricar: a) Elevalunas eléctrico. b) Cintas de vídeo. c) Sistemas de fijación magnética. d) Tarjetas de crédito. 10. Las pérdidas por corrientes de Foucault en un núcleo magnético metálico se reducen al: a) Aumentar el tamaño de grano. b) Aumentar la resistividad. c) Reducir el espesor de las chapas. d) b y c. 11. Al aumentar la temperatura de servicio hasta el punto de fusión, el Níquel: a) Es siempre ferromagnético. b) Pasa de ferro a paramagnético. c) Pasa de ferro a diamagnético. d) Pasa de para a ferromagnético. 12. El comportamiento ferromagnético se debe a: a) El giro de electrones sobre si mismos. b) El giro de los electrones alrededor del núcleo. c) El giro del núcleo atómico sobre sí mismo. d) El giro de electrones sobre sí mismos y en el orbital. 13. La magnetización M de un material diamagnético: a) Es positiva y menor que µ0H. b) Es positiva y mayor que µ0H. c) Es nula. d) Es negativa. 14. ¿Cuales de las siguientes modificaciones provoca un aumento en las pérdidas por histéresis de una chapa magnética?: a) La acritud. b) La reducción del tamaño de grano. c) El aumento de la frecuencia de la corriente alterna. d) Todas las anteriores. 15. Para una misma sección, el material que permite pasar mayor flujo magnético es: a) El hierro puro. b) El níquel puro. c) El cobalto puro.
  • 3. Unidad 10 - Materiales magnéticos 183 d) Las chapas Fe-Si. 16. Un material blando para núcleos de máquinas de C.A. debe poseer: a) Alto Bs. b) Alto Br. c) Alto Hc. d) Alta µr. 17. Las pérdidas por corrientes parásitas en los núcleos de C.A. se reducen: a) Al aumentar µr. b) Al emplear núcleos laminados. c) Al reducir las pérdidas por histéresis. d) Al reducir la resistividad. 18. El recocido final aplicado a las chapas para núcleos tiene como finalidad: a) Aumentar el tamaño de grano. b) Reducir el límite elástico. c) Eliminar tensiones internas. d) Reducir el tamaño de grano. 19. La principal ventaja del supermalloy frente al acero al silicio es: a) Su alta µinicial. b) Su mayor Bs. c) Su mayor resistividad. d) Todas las anteriores. 20. Las ferritas cerámicas blandas poseen estructuras: a) Hexagonal. b) Tetragonal. c) Cúbica. d) Varía con la composición. 21. El empleo de ferritas como núcleo para máquinas eléctricas de C.A. está limitado por: a) Su baja resistencia. b) Su bajo Br. c) Su bajo Bs. d) Su baja permeabilidad. 22. La magnetización M de una ferrita (Zn0,15 Ni0,85)O·Fe2O3 la proporcionan: a) Fe+2 y Fe+3 . b) Fe+2 , Ni+2 y Fe+3 . c) Zn+2 y Ni+2 . d) Fe+3 y Ni+2 . 23. 14 - Una inducción de saturación superior a la del Fe puro sólo puede obtenerse con chapas: a) Fe-Si. b) Fe-Co. c) Fe-Ni. d) Vidrios metálicos. 24. La estructura ideal para la obtención de imanes permanentes de acero es: a) Ferrita dura. b) Martensita.
  • 4. Cuestiones y ejercicios de Fundamentos de Ciencia de Materiales 184 c) Bainita. d) Austenita. 25. La magnetización de los imanes ALNICO se realiza: a) Después del temple. b) Al cruzar la temperatura de Curie. c) Después de un tratamiento de maduración d) Durante la solidificación 26. La anisotropía de las ferritas duras se debe a: a) Su estructura hexagonal b) La forma alargada de los polvos c) La estructura dendrítica de solidificación d) Todas las anteriores 10.2 CUESTIONES DE HETEROEVALUACIÓN 1. Puntos importantes en una curva B-H de un material ferromagnético. 2. Clasificar las propiedades magnéticas en insensibles y sensibles a la estructura del material. 3. Factores estructurales que dificultan el libre movimiento de las paredes de Bloch. 4. Justifica los procedimientos que permiten desmagnetizar un imán permanente. 5. Indica las ventajas e inconvenientes de las ferritas cerámicas en núcleos de imanes de corriente alterna. 6. Indica los parámetros de selección de un imán permanente 7. Describe el proceso de fabricación de un núcleo de transformador hecho con Fe-2% Si orientado. 8. Las pérdidas por histéresis de chapas de acero al Si disminuyen al aumentar el tamaño de grano. ¿Qué condiciones de deformación y recocido deben emplearse para conseguir un tamaño de grano grueso? 9. Justifique el comportamiento ferromagnético de los metales 10.Defina y justifique el comportamiento antiferromagnético del Mn y Cr. 11.Justifique la existencia de dominios magnéticos. 12.Justifique cómo puede incrementarse la permeabilidad del hierro mediante aleación 13.Señale y justifique que propiedades magnéticas son deseables en un material blando para núcleos. 14.Qué ventajas presenta el empleo de aleaciones hierro silicio. 15.Establezca, con indicación clara de las diferentes etapas, el proceso de fabricación de un núcleo magnético para transformador de potencia con chapas Fe-Si de grano orientado. Indique los procesos, tratamientos térmicos y el procedimiento de corte y montaje para obtener las mejores prestaciones.
  • 5. Unidad 10 - Materiales magnéticos 185 16.Indique las ventajas y características más relevantes de las aleaciones Ni-Fe frente a las chapas de Fe-Si. 17.Justifique cómo afecta la estructura de los vídrios metálicos a sus propiedades magnéticas. 18.Señale y justifique las características magnéticas que definen la calidad de un imán permanente 19.Justifique cómo afecta la estructura cristalina y metalúrgica de los imanes permanentes a su comportamiento magnético. 20.¿Qué ventajas presentan las ferritas blandas frente a las aleaciones metálicas para imanes blandos? 21.¿Qué ventajas presenta la anisotropía en las aplicaciones magnéticas? 10.3 PROBLEMAS Y EJERCICIOS PRACTICOS PROPUESTOS Problema 10.1 El hierro tiene una magnetización de saturación de 1,71×106 A/m. ¿Cuál es el número promedio de magnetones de Bohr por átomo que contribuyen a esa magnetización? El hierro tiene una estructura cristalina BCC con a = 0,287 nm. Problema 10.2 Calcular la magnetización por saturación teórica M en amperios/metro y la inducción de saturación Bs en teslas para la ferrita FeO×Fe2O3. No hace falta tener en cuenta el término µ0H para el cálculo de Bs. La constante de la celda unidad FeO×Fe2O3 es 0,839 nm. Problema 10.3 Un campo magnético de 2000 A · m-1 se aplica a un material con una permeabilidad relativa de 5000. Calcular: a) la magnetización y b) la inductancia. Problema 10.4 Por una bobina de un alambre de 0,5 m de longitud y con 20 vueltas transporta una corriente de 1 A. a) Calcula la densidad de flujo si la bobina está en el vacío. b) Una barra de una aleación de Fe-Si, cuyo comportamiento B · H se muestra en la figura. ¿Cuánto vale la densidad de flujo dentro de esta barra? c) Supongas que una barra de molibdeno se sitúa ahora dentro de la bobina. ¿Qué corriente debe circular para producir en el Mo el mismo flujo magnético B en la aleación hierro-silicio usando 1 A?. Considerar la susceptibilidad magnética del molibdeno = 1,19 x 10-4 . Problema 10.5 Supermalloy es un material magnético blando. Sobre él se bobina un alambre de 20 m de longitud dando 30 vueltas, por la que pasa una corriente de 5 A. Calcular: a) El campo magnético H. 5000 10000 15000 1,4 0,8 0,6 0,4 0,2 0,0 1,0 1,2 Campo magnético H (A/m) 0,2 0,6 0,6 30 40 50 60 0 10 20 0 Densidad de Flujo B (gauss) Campo magnético H (Oersted) Densidad de Flujo B (tesla)
  • 6. Cuestiones y ejercicios de Fundamentos de Ciencia de Materiales 186 b) La magnetización M, y, c) La inductancia B. NOTA: Considerar la permeabilidad del vacío µ0 = 4π· 10-7 T· m· A-1 , y la permeabilidad relativa de Supermalloy de 800000. Problema 10.6 Usando un núcleo de Permalloy 45, cuya permeabilidad relativa es de 25000, se quiere fabricar una bobina con un conductor de 19 m de longitud y 300 vueltas, que proporcione una inductancia de 7,5 Teslas. ¿Qué corriente debe circular por el conductor? Problema 10.7 La magnetización dentro de una barra de una aleación metálica es de 1,2 · 106 A/m, para un acampo H de 200 A/m. Calcular: a) La susceptibilidad magnética. b) La permeabilidad c) La densidad de flujo magnético dentro de ese material Problema 10.8 Suponer que el hierro-silicio (97Fe-3Si) alcanza el punto de saturación cuando se coloca dentro de una bobina de 400 vueltas con una longitud de 0,25 m y por la que atraviesa una intensidad de corriente de 15 A. Calcular la magnetización de saturación. Considerar el flujo magnético de saturación, Bs = 2,1 Teslas. Problema 10.9 Hallar el producto energético máximo (BH)máx para la aleación de Sm(Co, Cu)7,4. En la figura se representa el segundo cuadrante correspondiente a la curva de histéresis de esta aleación. Problema 10.10 Utilizando el ciclo de histéresis de la figura, a) Calcular y dibujar el producto B · H como una función del campo magnético. b) Determinar el poder de magne-tización del material, B · Hmax. Problema 10.11 Utilizando la figura del problema anterior, calcular: a) La permeabilidad inicial, y, b) La permeabilidad máxima. Problema 10.12 En la tabla aparecen lo datos para un acero al carbono. BH B Br - H - Hc 0 1 2 3 4 5 x 103 Densidad de flujo (Teslas) Campo magnético (A/m) -0.6 -5 -4 -3 -2 -1 -0.8 -0.4 0.4 0.6 0.8
  • 7. Unidad 10 - Materiales magnéticos 187 H (A/m) B ( Teslas) H (A/m) B ( Teslas) 0 15 30 50 60 70 0 0.003 0.007 0.10 0.30 0.63 80 100 150 200 300 0.90 1.14 1.34 1.41 1.48 a) Calcular y construir la gráfica de B frente a H. b) ¿Qué valores tienen la permeabilidad inicial y la permeabilidad inicial relativa? c) ¿Cuál es el valor máximo de la permeabilidad? d) ¿Para qué valor de H se da el máximo de permeabilidad? e) ¿A qué valor de la susceptibilidad corresponde este máximo en la permeabilidad? Problema 10.13 Un campo magnético obtenido a partir de un bobina de 100 vueltas y 12 m de longitud, produce una magnetización de 0.38 Teslas en el material magnético, cuyo ciclo de histéresis se muestra en la figura. Determinar: a) El campo magnético necesario. b) La permeabilidad relativa de este material en el campo magnético. c) La corriente necesaria para producir la magnetización. Problema 10.14 Un campo magnético de 1600 A/m es producido por un redondo del material cuyo ciclo se representa en el problema 10.10. Determinar: a) La magnetización producida. b) La permeabilidad relativa en este campo. Problema 10.15 Calcular el valor teórico para la magnetización de saturación y la inducción de saturación del níquel, suponiendo que todos sus electrones 3d contribuyen a la magnetización. La red del níquel es c.c.c con parámetro reticular a = 0,352 nm. Problema 10.16 Calcular la inducción de saturación de una ferrita NiFe2O4, considerando que la celda elemental es cúbica con a = 4,17 Å. Nota: el Ni+2 sustituye al Fe+2 en la fórmula tipo. El Ni+2 tiene 2 magnetones Bhor. Problema 10.17 Por una bobina de 13 vueltas de un alambre de 2 metros de longitud se hace pasar una corriente de 100 mA. ¿Cuál de los materiales de la tabla presentará mayor inducción? Densidad de flujo (Teslas) Campo magnético (A/m) -0.6 1 3 5 x 103 -5 -3 -1 -0.8 -0.4 0.4 0.6 0.8
  • 8. Cuestiones y ejercicios de Fundamentos de Ciencia de Materiales 188 Material µr Bs (Teslas) Hierro comercial Fe-Si (orientado) Permalloy 45 Supermalloy Ferroxcube A Ferroxcube B 1500 14000 25000 800000 14000 6500 2.14 2.01 1.60 0.80 0.33 0.36 Considerar la permeabilidad del vacío = 4 π · 10-7 (T · m)/A, y que la densidad de flujo magnético viene expresada por la ecuación: l I n H π 4 . 0 = Problema 10.18 Se quiere fabricar una bobina de 25 vueltas de un hilo de 3,5 metros de longitud, a) ¿Cuál de los materiales de la tabla siguiente presentará mayor inducción, si se hace pasar una corriente de 1 A por el conductor? Material µr Bs (Teslas) Hierro comercial Fe-Si (orientado) Permalloy 45 Ferroxcube A Ferroxcube B 1500 14000 25000 14000 6500 2.14 2.01 1.60 0.33 0.36 b) ¿Cuál sería la intensidad que debería circular por el Fe-Si para obtener una inducción magnética de 1,5 Teslas? Considerar que la permeabilidad del vacío es 4 π · 10-7 (T · m)/A, y que la densidad de flujo magnético viene expresada por la ecuación: l I n H π 4 . 0 = Problema 10.19 Calcular la magnetización de saturación del Permalloy 45, con una permeabilidad relativa de 25000, si alcanza la saturación, Bs = 1,60 T, en una bobina de 80 vueltas con una longitud de 2 m y por la que circula una intensidad de corriente de 1 A. Considerar la permeabilidad del vacío = 4 π 10-7 (T·m)/A y que la densidad del flujo magnético viene expresada por la ecuación: l I n H π 4 . 0 = Problema 10.20 De los materiales de la tabla siguiente, se desea seleccionar uno para fabricar una bobina de 50 vueltas de un hilo de 5 metros de longitud por el que se hará pasar una intensidad de 7.8 A.
  • 9. Unidad 10 - Materiales magnéticos 189 Material µr Bs (Teslas) Fe-Si (orientado) Permalloy 45 Ferroxcube A 14000 25000 14000 2.01 1.60 0.33 a) ¿Cuál de los materiales presentará una mayor inducción? b) ¿Cuál será la intensidad para la que alcanzará la inducción de saturación el Permalloy 45? Considera que la permeabilidad del vacío es 4 π · 10-7 (T · m)/A, y que la densidad de flujo magnético viene expresada por la ecuación: l I n H π 4 . 0 = SOLUCION A LAS CUESTIONES DE AUTOEVALUACION: 1 - a, 2 - c, 3 - a, 4 - b, 5 - c, 6 - c, 7 - b, 8 - d, 9 – b, 10 – d, 11 – b, 12 – d, 13 – d, 14 – d, 15 – a, 16 – a, 17 – b, 18 – a, 19 – a, 20 – c, 21 – c, 22 – d, 23 – b, 24 – b, 25 – b, 26 – a.
  • 10. Cuestiones y ejercicios de Fundamentos de Ciencia de Materiales 190 10.4 PROBLEMAS Y EJERCICIOS PRACTICOS RESUELTOS Solución al problema 10.1 La magnetización por saturación Ms en amperios por metro puede ser calculada por la ecuación siguiente: M Atomos m N magnetones de Bohr Atomo A m MagnetondeBohr S B =       ⋅       ⋅ ⋅ ⋅       = − − 3 24 2 9 27 10 µ , = respuesta en (A/m) ( ) ( ) Densidad atomica n de atomos m atomos C C celda unidad m celda unidad o / / . . , / 3 10 3 2 2 87 10 = ⋅ = − = 8,46 x 1028 átomos/m3 Nosotros reordenaremos esa ecuación y la utilizaremos para resolver NµB. Tras sustituir los valores de Ms la densidad atómica y µB, podremos calcular el valor de NµB. ( )( ) ( ) ( ) = ⋅ ⋅ ⋅ ⋅ ⋅ = µ = − µ 2 24 3 28 6 B 3 S m A 10 27 , 9 m / atomos 10 46 , 8 m / A 10 71 , 1 m / Atomos M N B = 2,18 µB/átomos Solución al problema 10.2 El momento magnético de una molécula de FeO×Fe2O3 es debido a los 4 magnetones de Bohr del ión Fe2+ , ya que los electrones desapareados de los iones Fe3+ se cancelan unos a otros. Como hay ocho moléculas de FeO×Fe2O3 en una celda unidad, el momento total por celda es: 4 magnetones de Bohr subcelda 8 subceldas celda unidad = 32 magnetones de Bohr celda unidad             entonces, m / A 10 5,0 = Bohr de ón Magnet m A 10 9,27 ) m 10 (8,39 Bohr/celda de magnetones 32 = M 5 2 -24 3 10 - ⋅         ⋅ ⋅       ⋅ Bs en la saturación, asumiendo que todos los momentos están alineados, y despreciando los términos H, viene dado por la ecuación Bs ≈ µ0M. Entonces, s 0 -7 5 B M 4 10 T m A 5,0 10 A m = 0,63 T ≈ ≈ ⋅ ⋅       ⋅       µ π Solución al problema 10.3 a) µ χ r M H = + = + = 1 1 5000 por tanto, la magnetización será:
  • 11. Unidad 10 - Materiales magnéticos 191 ( ) M H A m A m = − = ⋅ = ⋅ ≈ 5000 1 4999 2000 9 998 10 10 6 7 , / / b) ( ) µ µ µ π = ⋅ = ⋅ = ⋅ ⋅ − r T m A 0 7 3 5000 4 10 6 28 10 , / y la inductancia, B H T m A A m Teslas = ⋅ = ⋅ ⋅ × ⋅ = − − µ 6 28 10 2000 12 57 3 1 , / , Solución al problema 10.4 a) H n I l A m = = ⋅ = 0 4 0 4 20 1 0 5 50 27 , , , , / π π b) Tal como se observa en la figura, la densidad de flujo será alrededor de 1,35 Teslas. c) B H H r = ⋅ ⇒ = ⋅ µ µ µ 1 35 0 , Si, µ χ r = + = 1 1 000119 , y por tanto, 1 35 1 000119 4 10 0 4 20 0 5 7 , , , , = × ⋅ ⋅ ⋅ − π π I de donde, I A = × × × × × = − 1 35 0 5 1 000119 4 10 0 4 20 21370 7 , , , , π π Solución al problema 10.5 a) el campo magnético será: H n I l A m = = ⋅ = 0 4 0 4 30 5 20 9 42 , , , / π π b) La magnetización la calcularemos a partir de la permeabilidad magnética, considerando: µ χ r M H = + = + = 1 1 800000 de donde, ( ) ( ) M H A m A m r = − = − × = ⋅ µ 1 800000 1 9 42 7 53 106 , / , / c) Y la inducción magnética, será: B H H T m A A m Teslas r = ⋅ = ⋅ ⋅ = ⋅ × × × = − µ µ µ π 0 7 800000 4 10 9 42 9 47 / , / , 5000 10000 15000 1,4 0,8 0,6 0,4 0,2 0,0 1,0 1,2 Campo magnético H (A/m) 0,2 0,6 0,6 30 40 50 60 0 10 20 0 Densidad de Flujo B (gauss) Campo magnético H (Oersted) Densidad de Flujo B (tesla)
  • 12. Cuestiones y ejercicios de Fundamentos de Ciencia de Materiales 192 Solución al problema 10.6 µ µ µ π = ⋅ = ⋅ × × = ⋅ ⋅ − − r T m A T m A 0 7 1 25000 4 10 0 0314 / , B H H B T T m A A m = ⋅ ⇒ = = ⋅ ⋅ = − µ µ 7 5 0,0314 238,73 1 , / Entonces, la intensidad será: I H l n A = × × = × × = 0 4 238 73 19 0 4 300 12 , , , π π Solución al problema 10.7 a) χ = = ⋅ = M H 1 2 10 200 6000 6 , b) µ µ µ = ⋅ r 0 siendo µ χ r = + = 1 6001 por lo que, π = × × = ⋅ ⋅ ⋅ − − 6001 4 10 7 54 10 7 1 , T A c) B H m = ⋅ = ⋅ = − µ 7 54 15 , / El campo magnético será: H n l m = 0 4 4 15 25 , , π π La magnetización la calcularemos a partir del cálculo del flujo magnético en vacío y de la permeabilidad magnética del material, por tanto, B H T 0 0 7 4 10 30159 0 0379 = ⋅ = ⋅ ⋅ = − µ π , y, teniendo en cuenta que: B H M s s = ⋅ + ⋅ µ µ 0 0 la magnetización de saturación será: M B B A m s s = − = − ⋅ = ⋅ − 0 0 7 6 2 01 0 0379 4 10 157 10 µ π , , , / Solución al problema 10.9 Necesitamos encontrar el área del mayor rectángulo que puede colocarse dentro del segundo cuadrante de la curva de desmagnetización de la aleación. La curva tendrá un aspecto
  • 13. Unidad 10 - Materiales magnéticos 193 como el que se muestra en la figura adjunta. A continuación se enumeran cuatro áreas de prueba, representándose dicho rectángulo para la primera de ellas: Prueba 1 → (0,80 T · 250 kA/m) = 200 kJ/m3 (figura) Prueba 2 → (0,60 T · 380 kA/m) = 228 kJ/m3 Prueba 3 → (0,55 T · 420 kA/m) = 231 kJ/m3 Prueba 4 → (0,50 T · 440 kA/m) = 220 kJ/m3 El mayor valor está alrededor de 231 kJ/m3 , que se puede comparar con los 240 kJ/m3 catalogado para aleaciones de Sm(Cu, Co). Solución al problema 10.10 a) En la figura representamos el segundo cuadrante de la curva de desmag-netización de la aleación, dibujando el producto B x H como una función del campo magnético. b) El poder de desmagnetización del material vendrá dado por el área del mayor rectángulo que puede colocarse dentro de este segundo cuadrante de la curva de desmagnetización. Numérica-mente lo resolveremos de forma aproximada mediante algunas pruebas: Prueba 1 → (0,47 T · 2750 A/m) = 1292 J/m3 Prueba 2 → (0,54 T · 2500 A/m) = 1350 J/m3 Prueba 3 → (0,63 T · 2000 A/m) = 1260 J/m3 Prueba 4 → (0,69 T · 1000 A/m) = 690 J/m3 y el mayor valor está alrededor de los 1350 J/m3 . Solución al problema 10.11 a) De la figura obtenemos que la permeabilidad, en función de la densidad de flujo y el campo, será: µi T T m A = = ⋅ ⋅ ⋅ − − 0 3 3000 1 10 4 1 , b) Y la permeabilidad máxima: 1 4 i A m T 10 48 , 2 2500 T 62 , 0 − − ⋅ ⋅ ⋅ = = µ 1,1 0,8 250 500 B, T H, kA/m Br -5 -4 -3 -2 -1 0.4 0.6 0.8 500 1000 1500 - H B·H 1 2 3 4 5 x 103 Densidad de flujo (Teslas) Campo magnético (A/m) 0.4 0.6 0.8 µi µmax
  • 14. Cuestiones y ejercicios de Fundamentos de Ciencia de Materiales 194 Solución al problema 10.12 a) En la figura siguiente se representa la gráfica obtenida del flujo magnético, B, frente al campo magnético, H. b) µi B H T m A = = = ⋅ ⋅ ⋅ − − 0,003 15 2 10 4 1 µ µ µ π ri i = = ⋅ ⋅ = − − 0 4 7 2 10 4 10 159 c) µmax T m A ≈ = ⋅ ⋅ − 114 100 0 0114 1 , , d) Del gráfico, aproximadamente H = 100 A/m e) µ µ µ π rmax max = = ⋅ = − 0 7 0 0114 4 10 9072 , χ µ = − = rmax 1 9071 Solución al problema 10.13 a) De la figura, H = 1800 A/m b) 1 4 A m T 10 11 , 2 1800 38 , 0 H B − − ⋅ ⋅ ⋅ = = = µ c) La corriente necesaria será: 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 0 50 100 150 200 250 300 µmax µi Densidad de flujo (Teslas) Campo magnético (A/m) Densidad de flujo (Teslas) Campo magnético (A/m) -0.6 1 3 5 x 103 -5 -3 -1 -0.8 -0.4 0.4 0.6 0.8
  • 15. Unidad 10 - Materiales magnéticos 195 A 9 , 171 100 4 , 0 12 1800 n 4 , 0 l H I = × π × = × π × = Solución al problema 10.14 a) De la figura obtenemos que para H = 1600 A/m, B ≈ 0,41 Teslas. a) La permeabilidad relativa será: µ µ µ r = 0 siendo, 1 4 A m T 10 56 , 2 1600 41 , 0 H B − − ⋅ ⋅ ⋅ = = = µ y por lo tanto, 7 , 203 10 4 10 56 , 2 7 4 0 r = ⋅ π ⋅ = µ µ = µ − − Solución al problema 10.15 La magnetización por saturación Ms en amperios por metro puede ser calculada por la ecuación siguiente: =         ⋅ ⋅ ⋅         ⋅       = − − µ Bohr de Magneton m A 10 27 , 9 Atomo Bohr de magnetones N m Atomos M 2 24 3 S B ( ) m / A 10 7 . 1 Bohr de Magnetón m A 10 27 , 9 Atomo Bohr de magnetones 2 unidad celda / m 10 352 , 0 unidad celda / atomos 4 6 2 24 3 9 ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ = − − − Bs en la saturación, asumiendo que todos los momentos están alineados, y despreciando los términos H, viene dado por la ecuación Bs ≈ µ0M. Entonces, T 14 , 2 = m A 10 7 , 1 A m T 10 4 M B 6 -7 0 s         ⋅         ⋅ ⋅ π ≈ µ ≈ Solución al problema 10.16 El momento magnético de la ferrita NiFe2O4 es debido a los 2 magnetones de Bohr del ión Ni2+ , ya que los electrones desapareados de los iones Fe3+ se cancelan unos a otros. Como hay ocho moléculas de NiO×Fe2O3 en una celda unidad, de iguakl manera a la expuesta en el problema 10.2, el momento total por celda será de 16 magmetones de Bohr, y entonces, m / A 10 5 ,0 2 = Bohr de ón Magnet m A 10 9,27 ) m 10 17 , 4 ( Bohr/celda de s e magneton 16 = M 6 2 -24 3 10 - ⋅         ⋅ ⋅       ⋅ 1 2 3 4 5 x 103 Densidad de flujo (Teslas) Campo magnético (A/m) -0.6 -5 -4 -3 -2 -1 -0.8 -0.4 0.4 0.6 0.8 0.41
  • 16. Cuestiones y ejercicios de Fundamentos de Ciencia de Materiales 196 La inducción de saturación, asumiendo que todos los momentos están alineados y despreciando los términos H, viene dado por la ecuación Bs ≈ µ0M. Entonces, T 58 , 2 = m A 10 5 ,0 2 A m T 10 4 M B 6 7 0 s         ⋅           ⋅ ⋅ π ≈ µ ≈ − Solución al problema 10.17 La densidad de flujo magnético será: m A H / 817 . 0 2 10 100 13 4 . 0 3 = ⋅ ⋅ ⋅ = − π y la inducción magnética vendrá expresada por: B = µ · H = µr · µ0 · H Por lo que, para las condiciones de la bobina, tendrá en principio mayor inducción el material con mayor µr, es decir el Supermalloy, tal como se refleja en la siguiente tabla. Material µr B (Teslas) Hierro comercial Fe-Si (orientado) Permalloy 45 Supermalloy Ferroxcube A Ferroxcube B 1500 14000 25000 800000 14000 6500 1.5 · 10-3 0.014 0.0257 0.82 0.014 6.67 · 10-3 No obstante, el Supermalloy no lograría alcanzar la inducción calculada de 0.82 Teslas, pues antes llega a la inducción de saturación Bs de 0.80 Teslas en la que permanecería. Solución al problema 10.18 a) La densidad de flujo magnético vendrá dada por: m / A 976 , 8 5 , 3 1 25 4 . 0 H = ⋅ ⋅ π = y la inducción magnética vendrá expresada por: B = µ · H = µr · µ0 · H Por lo que, para las condiciones de la bobina, tendrá en principio mayor inducción el material con mayor µr, es decir el Permalloy 45, tal como se refleja en la siguiente tabla. Material µr B (Teslas) Hierro comercial Fe-Si (orientado) Permalloy 45 Ferroxcube A Ferroxcube B 1500 14000 25000 14000 6500 0,017 0,158 0,282 0,158 0,073
  • 17. Unidad 10 - Materiales magnéticos 197 b) Para obtener en el Fe-Si una inducción magnética de 1,5 Teslas, la intensidad vendrá en función del flujo magnético: m / A 26 , 85 10 4 14000 T 5 , 1 B H 7 = π ⋅ = µ = − y por tanto, la intensidad será: A 5 , 9 25 4 , 0 5 , 3 26 , 85 n 4 , 0 l H I = π ⋅ = π ⋅ = Solución al problema 10.19 La densidad de flujo magnético obtenida en la bobina será: m / A 27 , 50 2 1 80 4 . 0 H = ⋅ ⋅ π = y la magnetización vendrá expresada en función de la inducción magnética por: B = µ · H = µr · µ0 · H = µ0 · H + µ0 · M con lo que tendrá un valor de: m / A 10 273 , 1 10 4 10 4 60 , 1 H B M 6 7 7 0 0 ⋅ = π π − = µ µ − = − − Solución al problema 10.20 a) La inducción vendrá expresada por: B = µ · H = µ0 · µr · H siendo, m A m A H / 02 . 98 5 8 . 7 50 4 . 0 = ⋅ ⋅ = π con lo que tendremos los siguientes valores: Material µr Bteórico (Teslas) Bmax (Teslas) Fe-Si (orientado) Permalloy 45 Ferroxcube A 14000 25000 14000 1.72 3.08 1.72 1.72 1.60 0.33 Por lo que el material que presentará mayor inducción será el Fe-Si orientado. b) Para el Permalloy 45, cuya inducción de saturación es de 1.60 teslas, tendremos: m A A m T T B H r / 93 . 50 25000 / 10 4 60 . 1 7 0 = ⋅ ⋅ = ⋅ = − π µ µ de donde la intensidad será:
  • 18. Cuestiones y ejercicios de Fundamentos de Ciencia de Materiales 198 A m m A n l H I 05 . 4 50 4 . 0 5 / 93 . 50 4 . 0 = ⋅ = ⋅ = π π