• Físico: Galarza Espinoza.
• moisesperu15@gmail.com
 Ley de Hooke.
 Esfuerzo y Deformación Unitaria.
 
m
N
k
F
k
kF






0
0
0 


 






A
F
ndeformacio
esfuerzo
elasticomodulo


 A
F
Y


 1ra Condición de Equilibrio:
 2da condición de Equilibrio:
  0F










0
0
0
zF
yF
xF



  0













0
0
0
z
y
x



 Sumatoria:
 Coseno del doble:
  ....))(2)(1())(1()(11 321
 annnannana
n
  ....))(2)(1())(1()(11 321
 annnannana
n
  )(12 2
 SenCos 
Para ángulos pequeños:
  )(12 2
 SenCos 
60 1.04400 0.86602 1.73205
30 0.52200 0.50000 0.57735
15 0.26100 0.25881 0.26794
10 0.17400 0.17364 0.17632
5 0.08700 0.08715 0.08748
4 0.06960 0.06975 0.06992
3 0.05220 0.05233 0.05240
2 0.03480 0.03489 0.03492
1.5 0.02610 0.02617 0.02618
1 0.01740 0.01745 0.01745
0.5 0.00870 0.00872 0.00872
 rad )(Sen )(tg
 1.-Entre dos columnas
fue tendido un alambre de
longitud . En el alambre
exactamente al centro,
fue colgado un farol de
masa M. El área de la
sección transversal del
alambre es A, el modulo
de elasticidad es Y.
Determinar el ángulo ,
de pandeo del alambre,
considerándolo pequeño.
2

 2.-Se cuelga una viga
de 2000 Kg de dos
cables de la misma
sección, uno de
aluminio y otro de
acero. Al suspenderla,
ambos cables se
estiran lo mismo.
Calcular la tensión
que soporta cada uno.
 3.-En el sistema mostrado, ¿Cuánto bajara el
peso W respecto a la posición en la cual el
tensor no estaba deformado?.
 4.-Se tiene una columna de largo L, sección
transversal A, densidad , modulo de Young Y. se
jala sobre un piso liso de la manera como se
muestra en la figura. Calcule cuanto estira el
cuerpo.


Elasticidad semana 1

  • 1.
    • Físico: GalarzaEspinoza. • moisesperu15@gmail.com
  • 5.
     Ley deHooke.  Esfuerzo y Deformación Unitaria.   m N k F k kF       0 0 0            A F
  • 6.
  • 7.
     1ra Condiciónde Equilibrio:  2da condición de Equilibrio:   0F           0 0 0 zF yF xF      0              0 0 0 z y x   
  • 8.
     Sumatoria:  Cosenodel doble:   ....))(2)(1())(1()(11 321  annnannana n   ....))(2)(1())(1()(11 321  annnannana n   )(12 2  SenCos 
  • 9.
    Para ángulos pequeños:  )(12 2  SenCos  60 1.04400 0.86602 1.73205 30 0.52200 0.50000 0.57735 15 0.26100 0.25881 0.26794 10 0.17400 0.17364 0.17632 5 0.08700 0.08715 0.08748 4 0.06960 0.06975 0.06992 3 0.05220 0.05233 0.05240 2 0.03480 0.03489 0.03492 1.5 0.02610 0.02617 0.02618 1 0.01740 0.01745 0.01745 0.5 0.00870 0.00872 0.00872  rad )(Sen )(tg
  • 10.
     1.-Entre doscolumnas fue tendido un alambre de longitud . En el alambre exactamente al centro, fue colgado un farol de masa M. El área de la sección transversal del alambre es A, el modulo de elasticidad es Y. Determinar el ángulo , de pandeo del alambre, considerándolo pequeño. 2 
  • 11.
     2.-Se cuelgauna viga de 2000 Kg de dos cables de la misma sección, uno de aluminio y otro de acero. Al suspenderla, ambos cables se estiran lo mismo. Calcular la tensión que soporta cada uno.
  • 12.
     3.-En elsistema mostrado, ¿Cuánto bajara el peso W respecto a la posición en la cual el tensor no estaba deformado?.
  • 13.
     4.-Se tieneuna columna de largo L, sección transversal A, densidad , modulo de Young Y. se jala sobre un piso liso de la manera como se muestra en la figura. Calcule cuanto estira el cuerpo. 