SlideShare una empresa de Scribd logo
Problema de flujo máximo
           TEORIA DE REDES
    Investigación de operaciones II


            MATERIAL PREPARADO POR:
        M.C. ADRIANA NIETO CASTELLANOS
      INSTITUTO TECNOLOGICO DE TEHUACÁN


18/04/2011
Hay problemas en donde lo importante es la
 cantidad de flujo que pasa a través de la red,
 como por ejemplo: en las líneas de gasoductos,
   redes eléctricas o de transmisión de datos.

  En dichos problemas, podría ser interesante
determinar el flujo máximo que pasa a través de
                    dicha red.

  Naturalmente, en este tipo de problemas, es
   necesario que existan restricciones para la
            capacidad de los arcos.
Ejemplo: Tres refinerías envían su producto de gasolina a dos
terminales. La demanda que no se pueda satisfacer se adquiere
de otras fuentes. El producto de gasolina se transporta a las
terminales por medio de una red de conductos que son
impulsados por tres estaciones de bombeo. La tabla siguiente
contiene la información de la red, sus enlaces y su capacidad de
bombeo (en barriles por minuto):
Refinerías: R1, R2, R3
Estaciones de bombeo: E1, E2, E3
Terminales: T1, T2
   De      A      Capacidad          De       A     Capacidad
   R1      E1        20              E1      E3        10
   R2      E1        35              E2      E3        30
   R2      E2        45              E1      T1        10
   R3      E2        15              E2      T2        30
   E1      E2        20              E3      T1        50
   E2      E1        10              E3      T2        20
¿Cuánto flujo, como máximo, debe pasar por cada estación de bombeo?.
Se muestra el diagrama de red del problema, donde se muestra la capacidad
de cada arco:




               R1
                      20
                                            10
                             E1                        T1
                      35               10
                                                  50
               R2          20     10         E3
                                                  20
                                       30
                      45
                             E2                        T2
                                            30
                      15
               R3
Es necesario introducir los nodos ficticios I (inicio) y F (fin) para que la red
tenga un inicio y un fin, que indique el flujo máximo desde un nodo a otro.

Las capacidades asignadas a los arcos ficticios, derivados de la
generación de estos nodos, será considerada infinita ().


                R1
                        20

                                                 10
                       35
                                  E1                        T1   
                                            10
                                                       50
    I          R2           20        10         E3                    F
                                                       20
                                            30
                        45
                                 E2
                                                 30
                                                            T2
                                                                 
                        15
                R3
El concepto principal del método para encontrar el
flujo máximo a través de una red es la de establecer
  trayectorias (llamadas de penetración) desde el
nodo inicial al final, e ir asignando el mayor “tránsito”.


Si es necesario se hace una pequeña modificación al
diagrama, transformando los arcos dirigidos a no
  dirigidos, indicando la cantidad de flujo desde el
          nodo hacia la dirección del flujo.
Red modificada para iniciar el método:
 Una manera de escoger la trayectoria de penetración
 es a través de los arcos con mayor capacidad
 remanente. Dicha capacidad es resultado de restar
 en el sentido del flujo (y sumarlo en el sentido
 opuesto) el flujo máximo remanente que puede pasar
 por esa trayectoria.


                                                             Capacidad
Trayectoria
                                                             remanente
    1         I      R2      E2      T2              F      30
    2         I      R2      E1      E2    E3  T1  F      20
    3         I      R1      E1      T1              F      10
    4         I      R2      E1      E3    T1       F      10
    5         I      R3      E2      E3    T2       F      10
R1
                       20
                                                          10
                                     E1                                           T1
                       35
                                                     10
                                                                         50
I            R2                 20        10                  E3                               F
                                                30                       20
                       45
                                     E2                                           T2
                                                          30
                       15
             R3


        0 R1 20

                            0
                                           10                                 0
                            0        E1                                           T1   ∞
                                20
                                           10                                 0
                  35                                      0         50                     0
I      0    R2                                                E3                              F
                  45                                      0         20                     0
                               0 10 30                                       0
                                  E2                                              T2
                                0    30                                       0        ∞
        0    R3
                  15


            Transformación de arcos dirigidos a arcos no dirigida
0 R1 20
                               0
                               0    E1 10                      0
                                                                 T1 ∞
                                  20 10
                                                               0
   30                     35                              50                0         30
         I       30 R2                          0
                                                     E3                           F
                          15          10         0        20               30
                                30    30                      0
                                    E2                              T2 ∞
                                  0     0                      30

                   0 R3 15

                   0 R1 20
                               0
                               0    E1 10                      0
                                                                 T1 
                                  20 10
                                                               0
                          35                              50                0
   30
         I       30 R2                          0
                                                     E3                           F
                                                                                      30
                          15          10         0        20               30
                                30    30                      0
                                    E2                              T2 
                                  0     0                      30

                   0 R3 15
Procedimiento de solución del problema:     Trayectoria 1: I  R2  E2  T2  F
                                            Flujo máximo: 30
Trayectoria 2: I  R2  E1  E2  E3  T1  F              Flujo máximo: 20
                 0 R1 20
                              0
                              0     E1 10                         0
                                                                    T1 ∞
                                  20 10
                                                                  0
                        35                                50                  0
20
       I       30 R2                           0
                                                     E3                             F
                                                                                        20
                        15             10       0         20                  30
                                 30    30                        0
                                     E2                               T2 ∞
                                   0     0                       30

                 0 R3 15

                0 R1 20
                              0
                             20    E1 10                         0
                                                                    T1 ∞
30                                0 10                   30     20
                                                                               20       30
                        15
20
      I        50 R2                           0
                                                     E3                             F
                                                                                        20
                        15         20           20        20                  30
                             30    10                           0
                                 E2                                   T2 ∞
                               0     0                           30

                 0 R3 15
Trayectoria 3: I  R1  E1  T1  F       Flujo máximo: 10
                 0 R1 20
                              0
                             20   E1 10                   0
                                                             T1 ∞
                                 0 10               30   20
                                                                       20
                        15
       I       50 R2                      0
                                                E3                          F
                        15          20     20        20               30
                              30    10                   0
                                  E2                           T2 ∞
                                0     0                   30

                 0 R3 15

                10 R1 10
                              10
30                                 0                      10                    30
                             20 E1                           T1 ∞
20                              0 10                30   20
                                                                       30       20
10                      15
      I        50 R2                      0
                                                E3                          F
                                                                                10
                        15          20    20         20               30
                              30    10                   0
                                  E2                           T2 ∞
                                0     0                   30

                 0 R3 15
Trayectoria 4: I  R2  E1  E3  T1  F                     Flujo máximo: 10

               10 R1 10
                                10
                                      E1 0
                                                                 10
                               20                                     T1 
                                    0
                                         10             30       20
                                                                                 30
                          15                  0
      I        50
                     R2                            E3                                 F
                          15          20      20        20                      30
                                30     10                        0
                                    E2                                T2 
                                 0       0                       30

                0 R3 15

               10 R1 10
                                10
                                      E1 0
30                                                               10                       30
                               30                                     T1 
20                                      0              20       30                       20
10                        5          0        10
                                                                                 40       10
      I        60
                     R2                            E3                                 F
10                        15          20      20        20                      30        10
                                30     10                        0
                                    E2                                T2 
                                 0       0                       30

                0 R3 15
Trayectoria 5: I  R3  E2  E3  T2  F                        Flujo máximo: 10
               10 R1 10
                                10
                                       E1 0
                                                                    10
                               30                                        T1 
                                     0
                                          0                20       30
                                                                                    40
                          5                      10
      I        60
                     R2                               E3                                 F
                          15          20         20        20                      30
                                30     10                           0
                                    E2                                   T2 
                                 0       0                          30

                0 R3 15

               10 R1 10
                                10
                                       E1 0
30                                                                  10                       30
                               30                                        T1 
20                                       0                20       30                       20
10                        5           0          10
                                                                                    40       10
      I        60
                     R2                               E3                                 F
10                        15            20       30        10                      40        10
10                              30          0                      10                       10
                                      E2                                 T2 
                                 10          0                      30

                10 R3 5
Trayectoria 5: I  R3  E2  E3  T2  F                        Flujo máximo: 10




               10 R1 10
                                10
                                       E1 0
30                                                                  10                       30
                               30                                        T1 
20                                       0                20       30                       20
10                        5           0          10
                                                                                    40       10
      I        60
                     R2                               E3                                 F
10                        15            20       30        10                      40        10
10                              30          0                      10                       10
                                      E2                                 T2 
                                 10          0                      30

                10 R3 5



Ya no pueden encontrarse nuevas trayectorias, por lo que ésta última es la solución.
Interpretación:
 Refinería 1: envío de 10 barriles/min.
 Refinería 2: envío de 60 barriles/min.
 Refinería 3: envío de 10 barriles/min..

                                     Terminal 1: recepción de 40 barriles/min.
            10
                 R1                  Terminal 2: recepción de 40 barriles/min.
                         10
                                            10                  40
                                E1                         T1
                       30              10             30
            60
                 R2           20                 E3
                                      30              10
                       30
                                E2                         T2   40
                                                 30
            10          10
                 R3

Estación de bombeo 1: recibe 40 barriles/min, y envía 10 barriles/min a la
              terminal 1, 20 a la estación de bombeo 2 y 10 a la estación 3.
Estación de bombeo 2: recibe 60 barriles/min, y envía 30 a la estación 3, y
              otros 30 a la terminal 2.
Estación de bombeo 3: recibe 40 barriles/min, y envía 30 a la terminal 1, y
              10 a la terminal 2.
           Flujo máximo en la red: 80 barriles/min.
Cabe destacar que no es una solución única.
 Una manera de aproximarnos rápidamente al resultado de flujo máximo es con
el concepto de llamado “flujo máximo y corte mínimo”, que establece que en
una red de un solo origen y un solo destino, el flujo máximo es igual al valor
de corte mínimo en la red
Un corte se define como el conjunto de arcos dirigidos que van del nodo origen
al destino, su flujo máximo posible sería la suma de flujos de todos los arcos
cortados. Por ejemplo, en nuestra red es posible hacer varios cortes para
determinar el flujo máximo:

Más contenido relacionado

La actualidad más candente

METODO DUAL : EJERCICIOS RESUELTOS DE INVESTIGACIONES DE OPERACIONES
METODO DUAL : EJERCICIOS RESUELTOS DE INVESTIGACIONES DE OPERACIONESMETODO DUAL : EJERCICIOS RESUELTOS DE INVESTIGACIONES DE OPERACIONES
METODO DUAL : EJERCICIOS RESUELTOS DE INVESTIGACIONES DE OPERACIONES
JuanMiguelCustodioMo
 
Estadística Probabilidades
Estadística ProbabilidadesEstadística Probabilidades
Estadística Probabilidades
Edwin Lema
 
Tarea 4 operativa luis
Tarea 4 operativa luisTarea 4 operativa luis
Tarea 4 operativa luis
El Raptor Rebelde
 
Clase 18. arbol de minima expansión
Clase 18. arbol de minima expansiónClase 18. arbol de minima expansión
Clase 18. arbol de minima expansión
Lucas Mosquera
 
MINIMIZAR METODO SIMPLEX
MINIMIZAR METODO SIMPLEXMINIMIZAR METODO SIMPLEX
MINIMIZAR METODO SIMPLEXcabriales
 
Método simplex
Método simplex Método simplex
Método simplex
yaz de Zurita
 
Resolucion problemas 5
Resolucion problemas 5Resolucion problemas 5
Resolucion problemas 5lineal
 
Investigación de Operaciones 1/2
Investigación de Operaciones 1/2Investigación de Operaciones 1/2
Investigación de Operaciones 1/2CEMEX
 
Método de transporte - Vogel
Método de transporte - VogelMétodo de transporte - Vogel
Método de transporte - Vogel
Karem Chérrez
 
Terminologia de teoria de redes
Terminologia de teoria de redesTerminologia de teoria de redes
Terminologia de teoria de redes
ADRIANA NIETO
 
Ejercicios resueltos-programacion-lineal
Ejercicios resueltos-programacion-linealEjercicios resueltos-programacion-lineal
Ejercicios resueltos-programacion-lineal
Gabriel Chavez
 
Análisis de regresión múltiple
Análisis de regresión múltipleAnálisis de regresión múltiple
Análisis de regresión múltiple
Alberth ibañez Fauched
 
Ejercicios metodo grafico
Ejercicios metodo graficoEjercicios metodo grafico
Ejercicios metodo graficoDianitaMagaly
 
Ejemplo de flujo a costo minimo 1
Ejemplo de flujo a costo minimo 1Ejemplo de flujo a costo minimo 1
Ejemplo de flujo a costo minimo 1eduardo307
 
Unidad 3. decisiones bajo certidumbre
Unidad 3. decisiones bajo certidumbreUnidad 3. decisiones bajo certidumbre
Unidad 3. decisiones bajo certidumbrealixindriago2013
 
Distribucion binomial
Distribucion binomialDistribucion binomial
Distribucion binomial
Anthony Ulloa Castillo
 
Problemas resueltos-cadenas-de-markov
Problemas resueltos-cadenas-de-markovProblemas resueltos-cadenas-de-markov
Problemas resueltos-cadenas-de-markovKbl Julus Saraccini
 
21065991 ejercicios-resueltos-de-metodo-de-asignacion-y-metodo-de-transportes...
21065991 ejercicios-resueltos-de-metodo-de-asignacion-y-metodo-de-transportes...21065991 ejercicios-resueltos-de-metodo-de-asignacion-y-metodo-de-transportes...
21065991 ejercicios-resueltos-de-metodo-de-asignacion-y-metodo-de-transportes...joinergac
 

La actualidad más candente (20)

METODO DUAL : EJERCICIOS RESUELTOS DE INVESTIGACIONES DE OPERACIONES
METODO DUAL : EJERCICIOS RESUELTOS DE INVESTIGACIONES DE OPERACIONESMETODO DUAL : EJERCICIOS RESUELTOS DE INVESTIGACIONES DE OPERACIONES
METODO DUAL : EJERCICIOS RESUELTOS DE INVESTIGACIONES DE OPERACIONES
 
Estadística Probabilidades
Estadística ProbabilidadesEstadística Probabilidades
Estadística Probabilidades
 
Tarea6 inv op1_2011
Tarea6 inv op1_2011Tarea6 inv op1_2011
Tarea6 inv op1_2011
 
Tarea 4 operativa luis
Tarea 4 operativa luisTarea 4 operativa luis
Tarea 4 operativa luis
 
Clase 18. arbol de minima expansión
Clase 18. arbol de minima expansiónClase 18. arbol de minima expansión
Clase 18. arbol de minima expansión
 
MINIMIZAR METODO SIMPLEX
MINIMIZAR METODO SIMPLEXMINIMIZAR METODO SIMPLEX
MINIMIZAR METODO SIMPLEX
 
Método simplex
Método simplex Método simplex
Método simplex
 
Resolucion problemas 5
Resolucion problemas 5Resolucion problemas 5
Resolucion problemas 5
 
Investigación de Operaciones 1/2
Investigación de Operaciones 1/2Investigación de Operaciones 1/2
Investigación de Operaciones 1/2
 
Método de transporte - Vogel
Método de transporte - VogelMétodo de transporte - Vogel
Método de transporte - Vogel
 
Terminologia de teoria de redes
Terminologia de teoria de redesTerminologia de teoria de redes
Terminologia de teoria de redes
 
Ejercicios resueltos-programacion-lineal
Ejercicios resueltos-programacion-linealEjercicios resueltos-programacion-lineal
Ejercicios resueltos-programacion-lineal
 
Análisis de regresión múltiple
Análisis de regresión múltipleAnálisis de regresión múltiple
Análisis de regresión múltiple
 
Ejercicios metodo grafico
Ejercicios metodo graficoEjercicios metodo grafico
Ejercicios metodo grafico
 
Ejemplo de flujo a costo minimo 1
Ejemplo de flujo a costo minimo 1Ejemplo de flujo a costo minimo 1
Ejemplo de flujo a costo minimo 1
 
Unidad 3. decisiones bajo certidumbre
Unidad 3. decisiones bajo certidumbreUnidad 3. decisiones bajo certidumbre
Unidad 3. decisiones bajo certidumbre
 
Distribucion binomial
Distribucion binomialDistribucion binomial
Distribucion binomial
 
Problemas resueltos-cadenas-de-markov
Problemas resueltos-cadenas-de-markovProblemas resueltos-cadenas-de-markov
Problemas resueltos-cadenas-de-markov
 
Formulas lineas de espera
Formulas lineas de esperaFormulas lineas de espera
Formulas lineas de espera
 
21065991 ejercicios-resueltos-de-metodo-de-asignacion-y-metodo-de-transportes...
21065991 ejercicios-resueltos-de-metodo-de-asignacion-y-metodo-de-transportes...21065991 ejercicios-resueltos-de-metodo-de-asignacion-y-metodo-de-transportes...
21065991 ejercicios-resueltos-de-metodo-de-asignacion-y-metodo-de-transportes...
 

Destacado

5.7 modelo de redes usando winqsb
5.7 modelo de redes usando winqsb5.7 modelo de redes usando winqsb
5.7 modelo de redes usando winqsbADRIANA NIETO
 
Hoja de verificación ok
Hoja de verificación okHoja de verificación ok
Hoja de verificación ok
ADRIANA NIETO
 
1.3.ruta mas corta con programación dinámica
1.3.ruta mas corta con programación dinámica1.3.ruta mas corta con programación dinámica
1.3.ruta mas corta con programación dinámica
ADRIANA NIETO
 
5.2 la ruta mas corta
5.2  la ruta mas corta5.2  la ruta mas corta
5.2 la ruta mas cortaADRIANA NIETO
 
5.2 la ruta mas corta
5.2 la ruta mas corta5.2 la ruta mas corta
5.2 la ruta mas corta
ADRIANA NIETO
 
Programación Lineal de un diagrama de red para un problema de Flujo Máximo a ...
Programación Lineal de un diagrama de red para un problema de Flujo Máximo a ...Programación Lineal de un diagrama de red para un problema de Flujo Máximo a ...
Programación Lineal de un diagrama de red para un problema de Flujo Máximo a ...
ADRIANA NIETO
 
5.3 árbol de expansión mínima
5.3 árbol de expansión mínima5.3 árbol de expansión mínima
5.3 árbol de expansión mínima
ADRIANA NIETO
 
5.1 TERMINOLOGÍA DE OPTIMIZACIÓN DE REDES
5.1  TERMINOLOGÍA DE OPTIMIZACIÓN DE REDES5.1  TERMINOLOGÍA DE OPTIMIZACIÓN DE REDES
5.1 TERMINOLOGÍA DE OPTIMIZACIÓN DE REDES
ADRIANA NIETO
 
ASIGNACIÓN DE RECURSOS CON PROGRAMACIÓN DINAMICA
ASIGNACIÓN DE RECURSOS CON PROGRAMACIÓN DINAMICA ASIGNACIÓN DE RECURSOS CON PROGRAMACIÓN DINAMICA
ASIGNACIÓN DE RECURSOS CON PROGRAMACIÓN DINAMICA
ADRIANA NIETO
 
5.3 arbol expansión minima algoritmo de kruskal
5.3 arbol expansión minima algoritmo de kruskal5.3 arbol expansión minima algoritmo de kruskal
5.3 arbol expansión minima algoritmo de kruskal
ADRIANA NIETO
 
5.3 arbol de expansión minima algoritmo de prim
5.3 arbol de expansión minima algoritmo de prim5.3 arbol de expansión minima algoritmo de prim
5.3 arbol de expansión minima algoritmo de prim
ADRIANA NIETO
 

Destacado (11)

5.7 modelo de redes usando winqsb
5.7 modelo de redes usando winqsb5.7 modelo de redes usando winqsb
5.7 modelo de redes usando winqsb
 
Hoja de verificación ok
Hoja de verificación okHoja de verificación ok
Hoja de verificación ok
 
1.3.ruta mas corta con programación dinámica
1.3.ruta mas corta con programación dinámica1.3.ruta mas corta con programación dinámica
1.3.ruta mas corta con programación dinámica
 
5.2 la ruta mas corta
5.2  la ruta mas corta5.2  la ruta mas corta
5.2 la ruta mas corta
 
5.2 la ruta mas corta
5.2 la ruta mas corta5.2 la ruta mas corta
5.2 la ruta mas corta
 
Programación Lineal de un diagrama de red para un problema de Flujo Máximo a ...
Programación Lineal de un diagrama de red para un problema de Flujo Máximo a ...Programación Lineal de un diagrama de red para un problema de Flujo Máximo a ...
Programación Lineal de un diagrama de red para un problema de Flujo Máximo a ...
 
5.3 árbol de expansión mínima
5.3 árbol de expansión mínima5.3 árbol de expansión mínima
5.3 árbol de expansión mínima
 
5.1 TERMINOLOGÍA DE OPTIMIZACIÓN DE REDES
5.1  TERMINOLOGÍA DE OPTIMIZACIÓN DE REDES5.1  TERMINOLOGÍA DE OPTIMIZACIÓN DE REDES
5.1 TERMINOLOGÍA DE OPTIMIZACIÓN DE REDES
 
ASIGNACIÓN DE RECURSOS CON PROGRAMACIÓN DINAMICA
ASIGNACIÓN DE RECURSOS CON PROGRAMACIÓN DINAMICA ASIGNACIÓN DE RECURSOS CON PROGRAMACIÓN DINAMICA
ASIGNACIÓN DE RECURSOS CON PROGRAMACIÓN DINAMICA
 
5.3 arbol expansión minima algoritmo de kruskal
5.3 arbol expansión minima algoritmo de kruskal5.3 arbol expansión minima algoritmo de kruskal
5.3 arbol expansión minima algoritmo de kruskal
 
5.3 arbol de expansión minima algoritmo de prim
5.3 arbol de expansión minima algoritmo de prim5.3 arbol de expansión minima algoritmo de prim
5.3 arbol de expansión minima algoritmo de prim
 

Flujo máximo teoria de redes

  • 1. Problema de flujo máximo TEORIA DE REDES Investigación de operaciones II MATERIAL PREPARADO POR: M.C. ADRIANA NIETO CASTELLANOS INSTITUTO TECNOLOGICO DE TEHUACÁN 18/04/2011
  • 2. Hay problemas en donde lo importante es la cantidad de flujo que pasa a través de la red, como por ejemplo: en las líneas de gasoductos, redes eléctricas o de transmisión de datos. En dichos problemas, podría ser interesante determinar el flujo máximo que pasa a través de dicha red. Naturalmente, en este tipo de problemas, es necesario que existan restricciones para la capacidad de los arcos.
  • 3. Ejemplo: Tres refinerías envían su producto de gasolina a dos terminales. La demanda que no se pueda satisfacer se adquiere de otras fuentes. El producto de gasolina se transporta a las terminales por medio de una red de conductos que son impulsados por tres estaciones de bombeo. La tabla siguiente contiene la información de la red, sus enlaces y su capacidad de bombeo (en barriles por minuto): Refinerías: R1, R2, R3 Estaciones de bombeo: E1, E2, E3 Terminales: T1, T2 De A Capacidad De A Capacidad R1 E1 20 E1 E3 10 R2 E1 35 E2 E3 30 R2 E2 45 E1 T1 10 R3 E2 15 E2 T2 30 E1 E2 20 E3 T1 50 E2 E1 10 E3 T2 20
  • 4. ¿Cuánto flujo, como máximo, debe pasar por cada estación de bombeo?. Se muestra el diagrama de red del problema, donde se muestra la capacidad de cada arco: R1 20 10 E1 T1 35 10 50 R2 20 10 E3 20 30 45 E2 T2 30 15 R3
  • 5. Es necesario introducir los nodos ficticios I (inicio) y F (fin) para que la red tenga un inicio y un fin, que indique el flujo máximo desde un nodo a otro. Las capacidades asignadas a los arcos ficticios, derivados de la generación de estos nodos, será considerada infinita (). R1 20 10  35 E1 T1  10 50 I  R2 20 10 E3 F 20 30 45  E2 30 T2  15 R3
  • 6. El concepto principal del método para encontrar el flujo máximo a través de una red es la de establecer trayectorias (llamadas de penetración) desde el nodo inicial al final, e ir asignando el mayor “tránsito”. Si es necesario se hace una pequeña modificación al diagrama, transformando los arcos dirigidos a no dirigidos, indicando la cantidad de flujo desde el nodo hacia la dirección del flujo.
  • 7. Red modificada para iniciar el método: Una manera de escoger la trayectoria de penetración es a través de los arcos con mayor capacidad remanente. Dicha capacidad es resultado de restar en el sentido del flujo (y sumarlo en el sentido opuesto) el flujo máximo remanente que puede pasar por esa trayectoria. Capacidad Trayectoria remanente 1 I  R2  E2  T2  F 30 2 I  R2  E1  E2  E3  T1  F 20 3 I  R1  E1  T1  F 10 4 I  R2  E1  E3  T1  F 10 5 I  R3  E2  E3  T2  F 10
  • 8. R1 20 10 E1 T1 35 10 50 I R2 20 10 E3 F 30 20 45 E2 T2 30 15 R3 0 R1 20 0 10 0 0 E1 T1 ∞  20 10 0 35 0 50 0 I  0 R2 E3 F 45 0 20 0  0 10 30 0 E2 T2 0 30 0 ∞ 0 R3 15 Transformación de arcos dirigidos a arcos no dirigida
  • 9. 0 R1 20 0 0 E1 10 0 T1 ∞  20 10 0 30 35 50 0 30 I  30 R2 0 E3 F 15 10 0 20 30  30 30 0 E2 T2 ∞ 0 0 30 0 R3 15 0 R1 20 0 0 E1 10 0 T1   20 10 0 35 50 0 30 I  30 R2 0 E3 F 30 15 10 0 20 30  30 30 0 E2 T2  0 0 30 0 R3 15 Procedimiento de solución del problema: Trayectoria 1: I  R2  E2  T2  F Flujo máximo: 30
  • 10. Trayectoria 2: I  R2  E1  E2  E3  T1  F Flujo máximo: 20 0 R1 20 0 0 E1 10 0 T1 ∞  20 10 0 35 50 0 20 I  30 R2 0 E3 F 20 15 10 0 20 30  30 30 0 E2 T2 ∞ 0 0 30 0 R3 15 0 R1 20 0 20 E1 10 0 T1 ∞ 30  0 10 30 20 20 30 15 20 I  50 R2 0 E3 F 20 15 20 20 20 30  30 10 0 E2 T2 ∞ 0 0 30 0 R3 15
  • 11. Trayectoria 3: I  R1  E1  T1  F Flujo máximo: 10 0 R1 20 0 20 E1 10 0 T1 ∞  0 10 30 20 20 15 I  50 R2 0 E3 F 15 20 20 20 30  30 10 0 E2 T2 ∞ 0 0 30 0 R3 15 10 R1 10 10 30 0 10 30 20 E1 T1 ∞ 20  0 10 30 20 30 20 10 15 I  50 R2 0 E3 F 10 15 20 20 20 30  30 10 0 E2 T2 ∞ 0 0 30 0 R3 15
  • 12. Trayectoria 4: I  R2  E1  E3  T1  F Flujo máximo: 10 10 R1 10 10 E1 0 10 20 T1   0 10 30 20 30 15 0 I  50 R2 E3 F 15 20 20 20 30  30 10 0 E2 T2  0 0 30 0 R3 15 10 R1 10 10 E1 0 30 10 30 30 T1  20  0 20 30 20 10 5 0 10 40 10 I  60 R2 E3 F 10 15 20 20 20 30 10  30 10 0 E2 T2  0 0 30 0 R3 15
  • 13. Trayectoria 5: I  R3  E2  E3  T2  F Flujo máximo: 10 10 R1 10 10 E1 0 10 30 T1   0 0 20 30 40 5 10 I  60 R2 E3 F 15 20 20 20 30  30 10 0 E2 T2  0 0 30 0 R3 15 10 R1 10 10 E1 0 30 10 30 30 T1  20  0 20 30 20 10 5 0 10 40 10 I  60 R2 E3 F 10 15 20 30 10 40 10 10  30 0 10 10 E2 T2  10 0 30 10 R3 5
  • 14. Trayectoria 5: I  R3  E2  E3  T2  F Flujo máximo: 10 10 R1 10 10 E1 0 30 10 30 30 T1  20  0 20 30 20 10 5 0 10 40 10 I  60 R2 E3 F 10 15 20 30 10 40 10 10  30 0 10 10 E2 T2  10 0 30 10 R3 5 Ya no pueden encontrarse nuevas trayectorias, por lo que ésta última es la solución.
  • 15. Interpretación: Refinería 1: envío de 10 barriles/min. Refinería 2: envío de 60 barriles/min. Refinería 3: envío de 10 barriles/min.. Terminal 1: recepción de 40 barriles/min. 10 R1 Terminal 2: recepción de 40 barriles/min. 10 10 40 E1 T1 30 10 30 60 R2 20 E3 30 10 30 E2 T2 40 30 10 10 R3 Estación de bombeo 1: recibe 40 barriles/min, y envía 10 barriles/min a la terminal 1, 20 a la estación de bombeo 2 y 10 a la estación 3. Estación de bombeo 2: recibe 60 barriles/min, y envía 30 a la estación 3, y otros 30 a la terminal 2. Estación de bombeo 3: recibe 40 barriles/min, y envía 30 a la terminal 1, y 10 a la terminal 2. Flujo máximo en la red: 80 barriles/min.
  • 16. Cabe destacar que no es una solución única. Una manera de aproximarnos rápidamente al resultado de flujo máximo es con el concepto de llamado “flujo máximo y corte mínimo”, que establece que en una red de un solo origen y un solo destino, el flujo máximo es igual al valor de corte mínimo en la red Un corte se define como el conjunto de arcos dirigidos que van del nodo origen al destino, su flujo máximo posible sería la suma de flujos de todos los arcos cortados. Por ejemplo, en nuestra red es posible hacer varios cortes para determinar el flujo máximo: