SlideShare una empresa de Scribd logo
Instituto Universitariode Tecnología
“Antoni José de Sucre”
Extensión de Barquisimeto
Escuela de informática
Proceso de inferencia
Alumno:
Keiber jose herrera
C.I: V-22.182.384
Funciones proposicionales
Consideramos una función proposicional (A, P(x)) con dominio un conjunto A. Al
reemplazar la variable x de p(x) por elementos de A obtenemos proposiciones verdaderas o
falsas. Nos preguntamos ¿para cuántos elementos de A, P(x) es verdadera?. Como posible
respuestas tenemos:
Para todos los elementos de A.
Para algunos elementos de A.
Para ningún elemento de A.
Los términos todos, algunos, un solo y ninguno, por indicar cantidad, son llamados
cuantificadores. De estos, los fundamentales son todos, algunos y, como caso particular de
este último, un único.
Así, podemos decir que una función proposicional está constituida por los siguientes
elementos:
P(x): que es una proposición abierta que contiene la variable x.
A : que es un conjunto llamado dominio o universo del discurso.
Denotaremos a una función proposicional con dominio A y proposición abierta P(x)
como (A, P(x)). Los elementos de A que hacen a P(x) verdadera forman el conjunto
llamado dominio de verdad de la función proposicional.
Cuantificadores universales
El cuantificador todo se llama cuantificador universal y se le denota con el símbolo  que es una A
invertida (de "all" palabra inglesa para "todos").
Al cuantificar a la función proposicional P(x) mediante el cuantificador universal obtenemos la
proposición:
Para todo elemento x de A, P(x), que se simboliza del modo siguiente:
( xA) ( P(x) )....................................................... (1)
A las proposiciones que tienen esta forma las llamaremos proposiciones universales.
Otras maneras de leer la proposición (1), son las siguientes:
a. Para cada x en A, P(x)
b. Cualquiera que sea x en A, p(x)
c. P(x), para cada x en A
d. P(x), para todo x en A
Con mucha frecuencia, cuando el dominio A de P(x) está sobreentendido, la proposición (1) la
escribimos simplemente así: ( x) ( p(x) )
La proposición ( x A) ( P(x) ) es verdadera si y sólo si P(x) es verdadera para todo elemento
x de A; esto es, si y sólo si el dominio de verdad P(x) coincide con A.
Ejemplo
Simbolizar las siguientes proposiciones y determinar su valor lógico:
a. Todo hombre es mortal.
b. Cada número natural es menor que.
Solución
Considerar la siguiente función proposicional:
M(x) : x es mortal.
Con dominio el conjunto S formado todos los seres humanos.
La proposición a se escribe simbólicamente así:
(x S) (M(x)).
Esta proposición es verdadera.
a. La proposición b se escribe simbólicamente así:
( n  N) (n > 1)
Esta proposición es falsa, ya que para el número natural n=1 no es cierto que 1>1.
Cuantificador existencial
El Cuantificador: Existe al menos uno, se llama cuantificador existencial, y se le denota con el
símbolo , que es un E al revés.
A la Proposición: Existe al menos un x de A tal que P(x)
La escribiremos simbólicamente del modo siguiente:
( xÎ A) ( P(x)) (2)
A las proposiciones que tienen esta forma las llamaremos proposiciones existenciales.
Otras maneras de leer la proposición (2) son:
a. Para algún x en A, P(x)
b. Existe un x en A tal que p(x)
c. P(x), para algún x en A
Si el dominio de la función proposicional está sobreentendido, a la proposición (2) la
escribiremos simplemente así:
($ x) ( P(x))
La proposición ($ x Î A) (P(x)) es verdadera si y sólo si P(x) es verdadera al menos para un x de
A. Esto es, si y sólo si el dominio de verdad de P(x) es no vacío.
Ejemplo
Simbolizar las siguientes proposiciones y determinar su valor lógico:
a. Algunos hombres son genios.
b. Existe un número natural mayor que 1.
c. Existe un número real cuyo cuadrado es negativo.
Solución
Considerar la función proposicional:
a. G(x): x es un genio.
Con dominio el conjunto S formado por todos los seres humanos.
La proposición a, se simboliza así:
($ x Î S) ( G(x))
Esta proposición es verdadera.
b. La proposición b, se simboliza así:
($ n Î N) (n > 1)
y es verdadera.
c. La proposición c, se simboliza así:
($ x Î R) (x2 < 0)
Esta proposición es falsa, ya que el cuadrado de todo número real es no negativo.
Cuantificador existencialde unidad
Como un caso particular del cuantificador existencial "existe al menos uno" tenemos el
cuantificador existe un único o existe sólo uno, que lo llamaremos cuantificador existencial de
unicidad y lo simbolizaremos por  !. Así la expresión:
( ! x  A) ( P(x))....................................... (3)
Se leerá de cualquiera de las siguientes formas:
a. Existe un único x en A tal que P(x)
b. Existe un sólo x en A tal que P(x)
c. Existe uno y sólo un x en A tal que P(x)
d. P(x), para un único x en A
La proposición (3) es verdadera si y sólo si el dominio de verdad de P(x) es un conjunto
unitario, esto es, si y sólo si P(x) es verdadero para un único x de A.
Ejemplo
Simbolizar las siguientes proposiciones y determinar su valor lógico:
a. Existe un único número natural que sumado con 3 da 10 .
b. Existe sólo un número real tal que su cuadrado es 16.
c. Existe un único número real tal que su cuadrado es - 4.
Solución
a.  ! x  N) ( 3 + x = 10 )
Verdadero: Sólo el número 7 cumple con 7 + 3 = 10
b. ( ! x  R) (x2 = 16 )
Falsa: x= -4 y x= 4 cumplen con x2 = 16
c. ( ! x  R) (x2 =- 4)
Falsa: no existe ningún número real cuyo cuadrado sea - 4.
Negaciónde cuantificadores
Las dos leyes de De Morgan nos proporcionan las relaciones entre la negación, la conjunción y la
disyunción. Como las proposiciones universales y existenciales son generalizaciones de la
conjunción y disyunción, respectivamente, es de esperar que las leyes de De Morgan también
tengan sus respectivas generalizaciones. Efectivamente así sucede con de De Morgan o reglas de la
negación de cuantificadores. Estas dicen lo siguiente:
1. ~ ((" x Î A) (P(x))) º ($ x Î A) (~ P(x))
2. ~ (($ x Î A) ( P(x))) º (" x Î A) (~ P(x))
Estas reglas nos dicen que para negar una proposición con cuantificadores se cambia el
cuantificador, de universal a existencial o viceversa, y se niega la proposición cuantificada.
Ejemplo
Usando las reglas de la negación de cuantificadores hallar la negación de las siguientes
proposiciones:
a. ($ n Î N) (n2 = n)
b. (" x Î R) (x > 2 ® x2 > 3)
Solución
a. ~ [($ n Î N) (n2 = n )] º (" n Î N) ~ ( n2 = n) (Negación de cuantificadores)
º (" n Î N) ( n2 ¹ n) (Negación de la función proposicional)
b. ~ [(" x Î R) (x > 2 ® x2 > 3)] º ($ x Î R) ~ (x > 2 ® x2 > 3)
º ($ x Î R) ~ (~ (x > 2) Ú (x2 >3) (L. del condicional)
º ($ x Î R) (x > 2) Ù (x2 £ 3) (L.de De Morgan)
Proposiciones con dos Cuantificadores
Podemos considerar funciones proposicionales de varias variables de la forma
(A,B,C,P(x,y,z)), pero en nuestro caso trabajaremos con funciones proposicionales de dos
variables, las cuales denotaremos por (A,B,P(x)) con dominio de x el conjunto A y dominio de y el
conjunto B. Así podemos obtener las siguientes proposiciones:
(" xÎ A)(" yÎ B)(P(x,y))º (" yÎ B)(" xÎ A)(P(x,y))
1. ($ xÎ A)($ yÎ B)(P(x,y)) º ($ yÎ B)($ xÎ A)(P(x,y))
2. (" xÎ A)($ yÎ B)(P(x,y))
3. (" yÎ B)($ xÎ A)(P(x,y))
4. ($ xÎ A)(" yÎ B)(P(x,y))
5. ($ yÎ B)(" xÎ A)(P(x,y))
Proposiciones como las anteriores son llamadas funciones proposicionales de dos
variables. De dichas proposiciones obtenemos el valor lógico, analizando el dominio de sus
variables y los cuantificadores que contiene.
Ejemplo Determinar el valor lógico de las siguientes proposiciones:
1. (" xÎ N)($ yÎ N) (y> x)
2. ($ xÎ R)(" yÎ R)(x+y = 0)
3. (" xÎ R)($ yÎ R)(x+y = 0)
Solución
VL[(" xÎ N)($ yÎ N)(y> x)] = 1, ya que para cualquier x en N existe y = x+1 tal que y> x.
VL[($ xÎ R)(" yÎ R)(x+y = 0)] = 0, no existe ningún número real que sumado con todo número
real sea igual a cero.
VL[(" xÎ R)($ yÎ R)(x+y = 0)] = 0, ya que dado un número real x existe y = -x tal que x+y=0.
Veamos ahora como podemos negar proposiciones con dos cuantificadores.
Negación de Proposiciones con dos Cuantificadores
~ [(" xÎ A)($ yÎ B)(P(x,y))] º ($ xÎ A)(" yÎ B)(~ P(x,y))
~ [(" xÎ A)(" yÎ B)(P(x,y))] º ($ xÎ A)($ yÎ B)(~ P(x,y))
~ [($ xÎ A)(" yÎ B)(P(x,y))] º (" xÎ A)($ yÎ B)(~ P(x,y))
~ [($ yÎ B)($ xÎ A)(P(x,y))] º (" yÎ B)(" xÎ A)(~ P(x,y))
Ejemplo
Negar la proposición ($ xÎ R)(" yÎ R)(x+y = 0)
Solución
~ [($ xÎ R)(" yÎ R)(x+y = 0)] º (" xÎ R)($ yÎ R)(~ (x+y = 0))
º (" xÎ R)($ yÎ R)(x+y ¹ 0))
Inferencias lógicas
La inferencia lógica es llamada también llamada LÓGICA INFERENCIAL. Es un proceso
que consiste en pasar de un conjunto de premisas a una conclusión, sin la necesidad de
elaborar tablas o cuadros muy extensos.
· Todo ejercicio o problema que se resuelve usando inferencia lógica, tiene la
forma:(p^q^r^s^………..^w)C
· Aquí: p; q; r; s; t; ..... ; w son llamadas premisas.
· Este conjunto de premisas originan como consecuencia otra proposición
“ C ” , llamada CONCLUSIÓN, la cual también se le llama ARGUMENTO
LÓGICO.
Ejemplo.
Si Maradona es un argentino es aficionado al futbol. Pero Maradona no es aficionado al
futbol. Por lo tanto, no es argentino.
Solución: (Se recomienda seguir los siguientes pasos para resolver una inferencia lógica)
1). Determinar todos las proposiciones y las simbolizamos. Sean las proposiciones:
P: Maradona es argentino;
Q: Maradona es aficionado al futbol.
2). Elaboramos el esquema molecular [(pq) ^(~q)] ~p
3) Identificamos a las premisas y al conclusión.
Premisas: (pq)
(~q)
Conclusión: (~p)
4) Elaboramos y analizamos la tabla de la verdad del esquema molecular.
p q [(pq) ^ (~q)]  ~p
V V V F F V F
V F F F V V F
F V V F F V V
F F V V V V V
5). Respuesta: como el resultado final es una tautología, la conjugación de premisas implica
la conclusión, por lo tanto la inferencia es válida.

Más contenido relacionado

La actualidad más candente

Funciones y progresiones
Funciones y progresionesFunciones y progresiones
Funciones y progresiones
Jose Miguel Montero Hernandez
 
Funciones y Progresiones
Funciones y ProgresionesFunciones y Progresiones
Funciones y Progresiones
ark477
 
Proyecto de aplicación de la primera y segunda derivada
Proyecto de aplicación de la primera y segunda derivadaProyecto de aplicación de la primera y segunda derivada
Proyecto de aplicación de la primera y segunda derivada
Leo Eduardo Bobadilla Atao
 
Trabajo calculo 2 zuly lopez
Trabajo calculo 2 zuly lopezTrabajo calculo 2 zuly lopez
Trabajo calculo 2 zuly lopez
zuly1922
 
Alg boole
Alg booleAlg boole
Alg boole
Javi Segurado
 
Algebra 3
Algebra 3Algebra 3
Algebra 3
Cerveza Horas
 
Tema3
Tema3Tema3
Algebra 2
Algebra 2Algebra 2
Algebra 2
Cerveza Horas
 
Funciones [Lineales, Cuadráticas, Polinomiales, Racionales, Exponenciales y L...
Funciones [Lineales, Cuadráticas, Polinomiales, Racionales, Exponenciales y L...Funciones [Lineales, Cuadráticas, Polinomiales, Racionales, Exponenciales y L...
Funciones [Lineales, Cuadráticas, Polinomiales, Racionales, Exponenciales y L...
RfigueroaS
 
Funciones algebraicas polinomial racionales e irracionales
Funciones algebraicas polinomial racionales e irracionalesFunciones algebraicas polinomial racionales e irracionales
Funciones algebraicas polinomial racionales e irracionales
Francisco Rodriguez
 
Integral definida
Integral definidaIntegral definida
Integral definida
Jesus Torrealba
 
Funciones
FuncionesFunciones
Documento 05 variable_aleatoria
Documento 05 variable_aleatoriaDocumento 05 variable_aleatoria
Documento 05 variable_aleatoria
Luis Tapia Nuñez
 
Derivadast
DerivadastDerivadast
Funciones
FuncionesFunciones
Funciones
LMartinezGarcia
 
Funciones reales
Funciones realesFunciones reales
Funciones reales
José Luis Alvarez
 
Funciones
FuncionesFunciones
Funciones
Kenny Gil
 
Secciones conicas
Secciones conicasSecciones conicas
Secciones conicas
JHON WILLY CARMONA
 

La actualidad más candente (18)

Funciones y progresiones
Funciones y progresionesFunciones y progresiones
Funciones y progresiones
 
Funciones y Progresiones
Funciones y ProgresionesFunciones y Progresiones
Funciones y Progresiones
 
Proyecto de aplicación de la primera y segunda derivada
Proyecto de aplicación de la primera y segunda derivadaProyecto de aplicación de la primera y segunda derivada
Proyecto de aplicación de la primera y segunda derivada
 
Trabajo calculo 2 zuly lopez
Trabajo calculo 2 zuly lopezTrabajo calculo 2 zuly lopez
Trabajo calculo 2 zuly lopez
 
Alg boole
Alg booleAlg boole
Alg boole
 
Algebra 3
Algebra 3Algebra 3
Algebra 3
 
Tema3
Tema3Tema3
Tema3
 
Algebra 2
Algebra 2Algebra 2
Algebra 2
 
Funciones [Lineales, Cuadráticas, Polinomiales, Racionales, Exponenciales y L...
Funciones [Lineales, Cuadráticas, Polinomiales, Racionales, Exponenciales y L...Funciones [Lineales, Cuadráticas, Polinomiales, Racionales, Exponenciales y L...
Funciones [Lineales, Cuadráticas, Polinomiales, Racionales, Exponenciales y L...
 
Funciones algebraicas polinomial racionales e irracionales
Funciones algebraicas polinomial racionales e irracionalesFunciones algebraicas polinomial racionales e irracionales
Funciones algebraicas polinomial racionales e irracionales
 
Integral definida
Integral definidaIntegral definida
Integral definida
 
Funciones
FuncionesFunciones
Funciones
 
Documento 05 variable_aleatoria
Documento 05 variable_aleatoriaDocumento 05 variable_aleatoria
Documento 05 variable_aleatoria
 
Derivadast
DerivadastDerivadast
Derivadast
 
Funciones
FuncionesFunciones
Funciones
 
Funciones reales
Funciones realesFunciones reales
Funciones reales
 
Funciones
FuncionesFunciones
Funciones
 
Secciones conicas
Secciones conicasSecciones conicas
Secciones conicas
 

Similar a proceso de inferencia

Logica de predicados1
Logica de predicados1Logica de predicados1
Logica de predicados1
Cesar Mujica
 
itiel vilasmil
itiel vilasmilitiel vilasmil
itiel vilasmil
itielvillasmil
 
Trabajo de saia estructura
Trabajo de saia estructuraTrabajo de saia estructura
Trabajo de saia estructura
amredeconondes
 
Resumen gabrel yanez
Resumen gabrel yanezResumen gabrel yanez
Resumen gabrel yanez
Gabriel Yanez
 
Cuantificadores
CuantificadoresCuantificadores
Calculo de predicados
Calculo de predicadosCalculo de predicados
Calculo de predicados
alexandra escalona
 
Calculo de Predicados
Calculo de PredicadosCalculo de Predicados
Calculo de Predicados
Alexandra Escalona
 
Calculo de predicados, estructuras discretas.
Calculo de predicados, estructuras discretas. Calculo de predicados, estructuras discretas.
Calculo de predicados, estructuras discretas.
kartorrealba
 
Función proposicional y cuantificadores
Función proposicional y cuantificadoresFunción proposicional y cuantificadores
Función proposicional y cuantificadores
Pacheco Huarotto, Luis
 
FMMA010_apunte_s11.pdf
FMMA010_apunte_s11.pdfFMMA010_apunte_s11.pdf
FMMA010_apunte_s11.pdf
PaulinaCornejoMeza
 
Conjuntos
ConjuntosConjuntos
Conjuntos
JOHANA MONTOYA
 
Calculos de predicados
Calculos de predicadosCalculos de predicados
Calculos de predicados
robert eleasther hernandez escobar
 
Principios de los Cuantificadores en matematicas y otros areas.ppt
Principios de  los Cuantificadores en matematicas y otros areas.pptPrincipios de  los Cuantificadores en matematicas y otros areas.ppt
Principios de los Cuantificadores en matematicas y otros areas.ppt
ssuser69d543
 
Tabla de símbolos matemáticos
Tabla de símbolos matemáticosTabla de símbolos matemáticos
Tabla de símbolos matemáticos
Celso Herrera Cáceres
 
Dea01 Cuantificadores
Dea01 CuantificadoresDea01 Cuantificadores
Dea01 Cuantificadores
Saúl Qc
 
Logica de Primer Orden.
Logica de Primer Orden.Logica de Primer Orden.
Logica de Primer Orden.
Sam Arr
 
Simbolos matematicos
Simbolos matematicosSimbolos matematicos
Simbolos matematicos
Guillermo Yabar Pilco
 
Función proposicional y cuantificadores
Función proposicional y cuantificadoresFunción proposicional y cuantificadores
Función proposicional y cuantificadores
Marilect Montes
 
Predicados y cuantificadores_universales
Predicados y cuantificadores_universalesPredicados y cuantificadores_universales
Predicados y cuantificadores_universales
Silvio Fabian Marin Gorotiza
 
Aplicacion de las funciones atematicas a la vida diaria
Aplicacion de las funciones atematicas a la vida diariaAplicacion de las funciones atematicas a la vida diaria
Aplicacion de las funciones atematicas a la vida diaria
Jhunior Romero
 

Similar a proceso de inferencia (20)

Logica de predicados1
Logica de predicados1Logica de predicados1
Logica de predicados1
 
itiel vilasmil
itiel vilasmilitiel vilasmil
itiel vilasmil
 
Trabajo de saia estructura
Trabajo de saia estructuraTrabajo de saia estructura
Trabajo de saia estructura
 
Resumen gabrel yanez
Resumen gabrel yanezResumen gabrel yanez
Resumen gabrel yanez
 
Cuantificadores
CuantificadoresCuantificadores
Cuantificadores
 
Calculo de predicados
Calculo de predicadosCalculo de predicados
Calculo de predicados
 
Calculo de Predicados
Calculo de PredicadosCalculo de Predicados
Calculo de Predicados
 
Calculo de predicados, estructuras discretas.
Calculo de predicados, estructuras discretas. Calculo de predicados, estructuras discretas.
Calculo de predicados, estructuras discretas.
 
Función proposicional y cuantificadores
Función proposicional y cuantificadoresFunción proposicional y cuantificadores
Función proposicional y cuantificadores
 
FMMA010_apunte_s11.pdf
FMMA010_apunte_s11.pdfFMMA010_apunte_s11.pdf
FMMA010_apunte_s11.pdf
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Calculos de predicados
Calculos de predicadosCalculos de predicados
Calculos de predicados
 
Principios de los Cuantificadores en matematicas y otros areas.ppt
Principios de  los Cuantificadores en matematicas y otros areas.pptPrincipios de  los Cuantificadores en matematicas y otros areas.ppt
Principios de los Cuantificadores en matematicas y otros areas.ppt
 
Tabla de símbolos matemáticos
Tabla de símbolos matemáticosTabla de símbolos matemáticos
Tabla de símbolos matemáticos
 
Dea01 Cuantificadores
Dea01 CuantificadoresDea01 Cuantificadores
Dea01 Cuantificadores
 
Logica de Primer Orden.
Logica de Primer Orden.Logica de Primer Orden.
Logica de Primer Orden.
 
Simbolos matematicos
Simbolos matematicosSimbolos matematicos
Simbolos matematicos
 
Función proposicional y cuantificadores
Función proposicional y cuantificadoresFunción proposicional y cuantificadores
Función proposicional y cuantificadores
 
Predicados y cuantificadores_universales
Predicados y cuantificadores_universalesPredicados y cuantificadores_universales
Predicados y cuantificadores_universales
 
Aplicacion de las funciones atematicas a la vida diaria
Aplicacion de las funciones atematicas a la vida diariaAplicacion de las funciones atematicas a la vida diaria
Aplicacion de las funciones atematicas a la vida diaria
 

Último

Nuevos espacios,nuevos tiempos,nuevas practica.pptx
Nuevos espacios,nuevos tiempos,nuevas practica.pptxNuevos espacios,nuevos tiempos,nuevas practica.pptx
Nuevos espacios,nuevos tiempos,nuevas practica.pptx
lautyzaracho4
 
Mundo ABC Examen 1 Grado- Tercer Trimestre.pdf
Mundo ABC Examen 1 Grado- Tercer Trimestre.pdfMundo ABC Examen 1 Grado- Tercer Trimestre.pdf
Mundo ABC Examen 1 Grado- Tercer Trimestre.pdf
ViriEsteva
 
Sesión: El espiritismo desenmascarado.pdf
Sesión: El espiritismo desenmascarado.pdfSesión: El espiritismo desenmascarado.pdf
Sesión: El espiritismo desenmascarado.pdf
https://gramadal.wordpress.com/
 
CUENTOS EN MAYÚSCULAS PARA APRENDER A LEER.pdf
CUENTOS EN MAYÚSCULAS PARA APRENDER A LEER.pdfCUENTOS EN MAYÚSCULAS PARA APRENDER A LEER.pdf
CUENTOS EN MAYÚSCULAS PARA APRENDER A LEER.pdf
Inslvarez5
 
Presentación de proyecto en acuarela moderna verde.pdf
Presentación de proyecto en acuarela moderna verde.pdfPresentación de proyecto en acuarela moderna verde.pdf
Presentación de proyecto en acuarela moderna verde.pdf
LuanaJaime1
 
CONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIA
CONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIACONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIA
CONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIA
ginnazamudio
 
2° año LA VESTIMENTA-ciencias sociales 2 grado
2° año LA VESTIMENTA-ciencias sociales 2 grado2° año LA VESTIMENTA-ciencias sociales 2 grado
2° año LA VESTIMENTA-ciencias sociales 2 grado
GiselaBerrios3
 
PPT_Servicio de Bandeja a Paciente Hospitalizado.pptx
PPT_Servicio de Bandeja a Paciente Hospitalizado.pptxPPT_Servicio de Bandeja a Paciente Hospitalizado.pptx
PPT_Servicio de Bandeja a Paciente Hospitalizado.pptx
gamcoaquera
 
Manual de procedimiento para gráficos HC
Manual de procedimiento para gráficos HCManual de procedimiento para gráficos HC
Manual de procedimiento para gráficos HC
josseanlo1581
 
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdfFEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
Jose Luis Jimenez Rodriguez
 
Guia para Docentes como usar ChatGPT Mineduc Ccesa007.pdf
Guia para Docentes como usar ChatGPT  Mineduc Ccesa007.pdfGuia para Docentes como usar ChatGPT  Mineduc Ccesa007.pdf
Guia para Docentes como usar ChatGPT Mineduc Ccesa007.pdf
Demetrio Ccesa Rayme
 
Camus, Albert - El Extranjero.pdf
Camus, Albert -        El Extranjero.pdfCamus, Albert -        El Extranjero.pdf
Camus, Albert - El Extranjero.pdf
AlexDeLonghi
 
Planificación Ejemplo con la metodología TPACK
Planificación Ejemplo con la metodología  TPACKPlanificación Ejemplo con la metodología  TPACK
Planificación Ejemplo con la metodología TPACK
ssusera6697f
 
Hablemos de ESI para estudiantes Cuadernillo
Hablemos de ESI para estudiantes CuadernilloHablemos de ESI para estudiantes Cuadernillo
Hablemos de ESI para estudiantes Cuadernillo
Mónica Sánchez
 
pueblos originarios de chile presentacion twinkl.pptx
pueblos originarios de chile presentacion twinkl.pptxpueblos originarios de chile presentacion twinkl.pptx
pueblos originarios de chile presentacion twinkl.pptx
RAMIREZNICOLE
 
CORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZA
CORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZACORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZA
CORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZA
Sandra Mariela Ballón Aguedo
 
Las Tecnologias Digitales en los Aprendizajesdel Siglo XXI UNESCO Ccesa007.pdf
Las Tecnologias Digitales en los Aprendizajesdel Siglo XXI  UNESCO Ccesa007.pdfLas Tecnologias Digitales en los Aprendizajesdel Siglo XXI  UNESCO Ccesa007.pdf
Las Tecnologias Digitales en los Aprendizajesdel Siglo XXI UNESCO Ccesa007.pdf
Demetrio Ccesa Rayme
 
3° SES COMU LUN10 CUENTO DIA DEL PADRE 933623393 PROF YESSENIA (1).docx
3° SES COMU LUN10  CUENTO DIA DEL PADRE  933623393 PROF YESSENIA (1).docx3° SES COMU LUN10  CUENTO DIA DEL PADRE  933623393 PROF YESSENIA (1).docx
3° SES COMU LUN10 CUENTO DIA DEL PADRE 933623393 PROF YESSENIA (1).docx
rosannatasaycoyactay
 
Libro Integrado 8vo egb len-mat-ccnn-eess
Libro Integrado 8vo egb len-mat-ccnn-eessLibro Integrado 8vo egb len-mat-ccnn-eess
Libro Integrado 8vo egb len-mat-ccnn-eess
maxgamesofficial15
 
Liturgia día del Padre del siguiente domingo.pptx
Liturgia día del Padre del siguiente domingo.pptxLiturgia día del Padre del siguiente domingo.pptx
Liturgia día del Padre del siguiente domingo.pptx
YeniferGarcia36
 

Último (20)

Nuevos espacios,nuevos tiempos,nuevas practica.pptx
Nuevos espacios,nuevos tiempos,nuevas practica.pptxNuevos espacios,nuevos tiempos,nuevas practica.pptx
Nuevos espacios,nuevos tiempos,nuevas practica.pptx
 
Mundo ABC Examen 1 Grado- Tercer Trimestre.pdf
Mundo ABC Examen 1 Grado- Tercer Trimestre.pdfMundo ABC Examen 1 Grado- Tercer Trimestre.pdf
Mundo ABC Examen 1 Grado- Tercer Trimestre.pdf
 
Sesión: El espiritismo desenmascarado.pdf
Sesión: El espiritismo desenmascarado.pdfSesión: El espiritismo desenmascarado.pdf
Sesión: El espiritismo desenmascarado.pdf
 
CUENTOS EN MAYÚSCULAS PARA APRENDER A LEER.pdf
CUENTOS EN MAYÚSCULAS PARA APRENDER A LEER.pdfCUENTOS EN MAYÚSCULAS PARA APRENDER A LEER.pdf
CUENTOS EN MAYÚSCULAS PARA APRENDER A LEER.pdf
 
Presentación de proyecto en acuarela moderna verde.pdf
Presentación de proyecto en acuarela moderna verde.pdfPresentación de proyecto en acuarela moderna verde.pdf
Presentación de proyecto en acuarela moderna verde.pdf
 
CONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIA
CONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIACONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIA
CONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIA
 
2° año LA VESTIMENTA-ciencias sociales 2 grado
2° año LA VESTIMENTA-ciencias sociales 2 grado2° año LA VESTIMENTA-ciencias sociales 2 grado
2° año LA VESTIMENTA-ciencias sociales 2 grado
 
PPT_Servicio de Bandeja a Paciente Hospitalizado.pptx
PPT_Servicio de Bandeja a Paciente Hospitalizado.pptxPPT_Servicio de Bandeja a Paciente Hospitalizado.pptx
PPT_Servicio de Bandeja a Paciente Hospitalizado.pptx
 
Manual de procedimiento para gráficos HC
Manual de procedimiento para gráficos HCManual de procedimiento para gráficos HC
Manual de procedimiento para gráficos HC
 
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdfFEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
 
Guia para Docentes como usar ChatGPT Mineduc Ccesa007.pdf
Guia para Docentes como usar ChatGPT  Mineduc Ccesa007.pdfGuia para Docentes como usar ChatGPT  Mineduc Ccesa007.pdf
Guia para Docentes como usar ChatGPT Mineduc Ccesa007.pdf
 
Camus, Albert - El Extranjero.pdf
Camus, Albert -        El Extranjero.pdfCamus, Albert -        El Extranjero.pdf
Camus, Albert - El Extranjero.pdf
 
Planificación Ejemplo con la metodología TPACK
Planificación Ejemplo con la metodología  TPACKPlanificación Ejemplo con la metodología  TPACK
Planificación Ejemplo con la metodología TPACK
 
Hablemos de ESI para estudiantes Cuadernillo
Hablemos de ESI para estudiantes CuadernilloHablemos de ESI para estudiantes Cuadernillo
Hablemos de ESI para estudiantes Cuadernillo
 
pueblos originarios de chile presentacion twinkl.pptx
pueblos originarios de chile presentacion twinkl.pptxpueblos originarios de chile presentacion twinkl.pptx
pueblos originarios de chile presentacion twinkl.pptx
 
CORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZA
CORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZACORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZA
CORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZA
 
Las Tecnologias Digitales en los Aprendizajesdel Siglo XXI UNESCO Ccesa007.pdf
Las Tecnologias Digitales en los Aprendizajesdel Siglo XXI  UNESCO Ccesa007.pdfLas Tecnologias Digitales en los Aprendizajesdel Siglo XXI  UNESCO Ccesa007.pdf
Las Tecnologias Digitales en los Aprendizajesdel Siglo XXI UNESCO Ccesa007.pdf
 
3° SES COMU LUN10 CUENTO DIA DEL PADRE 933623393 PROF YESSENIA (1).docx
3° SES COMU LUN10  CUENTO DIA DEL PADRE  933623393 PROF YESSENIA (1).docx3° SES COMU LUN10  CUENTO DIA DEL PADRE  933623393 PROF YESSENIA (1).docx
3° SES COMU LUN10 CUENTO DIA DEL PADRE 933623393 PROF YESSENIA (1).docx
 
Libro Integrado 8vo egb len-mat-ccnn-eess
Libro Integrado 8vo egb len-mat-ccnn-eessLibro Integrado 8vo egb len-mat-ccnn-eess
Libro Integrado 8vo egb len-mat-ccnn-eess
 
Liturgia día del Padre del siguiente domingo.pptx
Liturgia día del Padre del siguiente domingo.pptxLiturgia día del Padre del siguiente domingo.pptx
Liturgia día del Padre del siguiente domingo.pptx
 

proceso de inferencia

  • 1. Instituto Universitariode Tecnología “Antoni José de Sucre” Extensión de Barquisimeto Escuela de informática Proceso de inferencia Alumno: Keiber jose herrera C.I: V-22.182.384
  • 2. Funciones proposicionales Consideramos una función proposicional (A, P(x)) con dominio un conjunto A. Al reemplazar la variable x de p(x) por elementos de A obtenemos proposiciones verdaderas o falsas. Nos preguntamos ¿para cuántos elementos de A, P(x) es verdadera?. Como posible respuestas tenemos: Para todos los elementos de A. Para algunos elementos de A. Para ningún elemento de A. Los términos todos, algunos, un solo y ninguno, por indicar cantidad, son llamados cuantificadores. De estos, los fundamentales son todos, algunos y, como caso particular de este último, un único. Así, podemos decir que una función proposicional está constituida por los siguientes elementos: P(x): que es una proposición abierta que contiene la variable x. A : que es un conjunto llamado dominio o universo del discurso. Denotaremos a una función proposicional con dominio A y proposición abierta P(x) como (A, P(x)). Los elementos de A que hacen a P(x) verdadera forman el conjunto llamado dominio de verdad de la función proposicional. Cuantificadores universales El cuantificador todo se llama cuantificador universal y se le denota con el símbolo  que es una A invertida (de "all" palabra inglesa para "todos"). Al cuantificar a la función proposicional P(x) mediante el cuantificador universal obtenemos la proposición: Para todo elemento x de A, P(x), que se simboliza del modo siguiente:
  • 3. ( xA) ( P(x) )....................................................... (1) A las proposiciones que tienen esta forma las llamaremos proposiciones universales. Otras maneras de leer la proposición (1), son las siguientes: a. Para cada x en A, P(x) b. Cualquiera que sea x en A, p(x) c. P(x), para cada x en A d. P(x), para todo x en A Con mucha frecuencia, cuando el dominio A de P(x) está sobreentendido, la proposición (1) la escribimos simplemente así: ( x) ( p(x) ) La proposición ( x A) ( P(x) ) es verdadera si y sólo si P(x) es verdadera para todo elemento x de A; esto es, si y sólo si el dominio de verdad P(x) coincide con A. Ejemplo Simbolizar las siguientes proposiciones y determinar su valor lógico: a. Todo hombre es mortal. b. Cada número natural es menor que. Solución Considerar la siguiente función proposicional: M(x) : x es mortal. Con dominio el conjunto S formado todos los seres humanos. La proposición a se escribe simbólicamente así: (x S) (M(x)). Esta proposición es verdadera.
  • 4. a. La proposición b se escribe simbólicamente así: ( n  N) (n > 1) Esta proposición es falsa, ya que para el número natural n=1 no es cierto que 1>1. Cuantificador existencial El Cuantificador: Existe al menos uno, se llama cuantificador existencial, y se le denota con el símbolo , que es un E al revés. A la Proposición: Existe al menos un x de A tal que P(x) La escribiremos simbólicamente del modo siguiente: ( xÎ A) ( P(x)) (2) A las proposiciones que tienen esta forma las llamaremos proposiciones existenciales. Otras maneras de leer la proposición (2) son: a. Para algún x en A, P(x) b. Existe un x en A tal que p(x) c. P(x), para algún x en A Si el dominio de la función proposicional está sobreentendido, a la proposición (2) la escribiremos simplemente así: ($ x) ( P(x)) La proposición ($ x Î A) (P(x)) es verdadera si y sólo si P(x) es verdadera al menos para un x de A. Esto es, si y sólo si el dominio de verdad de P(x) es no vacío. Ejemplo Simbolizar las siguientes proposiciones y determinar su valor lógico: a. Algunos hombres son genios. b. Existe un número natural mayor que 1.
  • 5. c. Existe un número real cuyo cuadrado es negativo. Solución Considerar la función proposicional: a. G(x): x es un genio. Con dominio el conjunto S formado por todos los seres humanos. La proposición a, se simboliza así: ($ x Î S) ( G(x)) Esta proposición es verdadera. b. La proposición b, se simboliza así: ($ n Î N) (n > 1) y es verdadera. c. La proposición c, se simboliza así: ($ x Î R) (x2 < 0) Esta proposición es falsa, ya que el cuadrado de todo número real es no negativo. Cuantificador existencialde unidad Como un caso particular del cuantificador existencial "existe al menos uno" tenemos el cuantificador existe un único o existe sólo uno, que lo llamaremos cuantificador existencial de unicidad y lo simbolizaremos por  !. Así la expresión: ( ! x  A) ( P(x))....................................... (3) Se leerá de cualquiera de las siguientes formas: a. Existe un único x en A tal que P(x) b. Existe un sólo x en A tal que P(x) c. Existe uno y sólo un x en A tal que P(x)
  • 6. d. P(x), para un único x en A La proposición (3) es verdadera si y sólo si el dominio de verdad de P(x) es un conjunto unitario, esto es, si y sólo si P(x) es verdadero para un único x de A. Ejemplo Simbolizar las siguientes proposiciones y determinar su valor lógico: a. Existe un único número natural que sumado con 3 da 10 . b. Existe sólo un número real tal que su cuadrado es 16. c. Existe un único número real tal que su cuadrado es - 4. Solución a.  ! x  N) ( 3 + x = 10 ) Verdadero: Sólo el número 7 cumple con 7 + 3 = 10 b. ( ! x  R) (x2 = 16 ) Falsa: x= -4 y x= 4 cumplen con x2 = 16 c. ( ! x  R) (x2 =- 4) Falsa: no existe ningún número real cuyo cuadrado sea - 4. Negaciónde cuantificadores Las dos leyes de De Morgan nos proporcionan las relaciones entre la negación, la conjunción y la disyunción. Como las proposiciones universales y existenciales son generalizaciones de la conjunción y disyunción, respectivamente, es de esperar que las leyes de De Morgan también tengan sus respectivas generalizaciones. Efectivamente así sucede con de De Morgan o reglas de la negación de cuantificadores. Estas dicen lo siguiente: 1. ~ ((" x Î A) (P(x))) º ($ x Î A) (~ P(x)) 2. ~ (($ x Î A) ( P(x))) º (" x Î A) (~ P(x)) Estas reglas nos dicen que para negar una proposición con cuantificadores se cambia el cuantificador, de universal a existencial o viceversa, y se niega la proposición cuantificada.
  • 7. Ejemplo Usando las reglas de la negación de cuantificadores hallar la negación de las siguientes proposiciones: a. ($ n Î N) (n2 = n) b. (" x Î R) (x > 2 ® x2 > 3) Solución a. ~ [($ n Î N) (n2 = n )] º (" n Î N) ~ ( n2 = n) (Negación de cuantificadores) º (" n Î N) ( n2 ¹ n) (Negación de la función proposicional) b. ~ [(" x Î R) (x > 2 ® x2 > 3)] º ($ x Î R) ~ (x > 2 ® x2 > 3) º ($ x Î R) ~ (~ (x > 2) Ú (x2 >3) (L. del condicional) º ($ x Î R) (x > 2) Ù (x2 £ 3) (L.de De Morgan) Proposiciones con dos Cuantificadores Podemos considerar funciones proposicionales de varias variables de la forma (A,B,C,P(x,y,z)), pero en nuestro caso trabajaremos con funciones proposicionales de dos variables, las cuales denotaremos por (A,B,P(x)) con dominio de x el conjunto A y dominio de y el conjunto B. Así podemos obtener las siguientes proposiciones: (" xÎ A)(" yÎ B)(P(x,y))º (" yÎ B)(" xÎ A)(P(x,y)) 1. ($ xÎ A)($ yÎ B)(P(x,y)) º ($ yÎ B)($ xÎ A)(P(x,y)) 2. (" xÎ A)($ yÎ B)(P(x,y)) 3. (" yÎ B)($ xÎ A)(P(x,y)) 4. ($ xÎ A)(" yÎ B)(P(x,y)) 5. ($ yÎ B)(" xÎ A)(P(x,y))
  • 8. Proposiciones como las anteriores son llamadas funciones proposicionales de dos variables. De dichas proposiciones obtenemos el valor lógico, analizando el dominio de sus variables y los cuantificadores que contiene. Ejemplo Determinar el valor lógico de las siguientes proposiciones: 1. (" xÎ N)($ yÎ N) (y> x) 2. ($ xÎ R)(" yÎ R)(x+y = 0) 3. (" xÎ R)($ yÎ R)(x+y = 0) Solución VL[(" xÎ N)($ yÎ N)(y> x)] = 1, ya que para cualquier x en N existe y = x+1 tal que y> x. VL[($ xÎ R)(" yÎ R)(x+y = 0)] = 0, no existe ningún número real que sumado con todo número real sea igual a cero. VL[(" xÎ R)($ yÎ R)(x+y = 0)] = 0, ya que dado un número real x existe y = -x tal que x+y=0. Veamos ahora como podemos negar proposiciones con dos cuantificadores. Negación de Proposiciones con dos Cuantificadores ~ [(" xÎ A)($ yÎ B)(P(x,y))] º ($ xÎ A)(" yÎ B)(~ P(x,y)) ~ [(" xÎ A)(" yÎ B)(P(x,y))] º ($ xÎ A)($ yÎ B)(~ P(x,y)) ~ [($ xÎ A)(" yÎ B)(P(x,y))] º (" xÎ A)($ yÎ B)(~ P(x,y)) ~ [($ yÎ B)($ xÎ A)(P(x,y))] º (" yÎ B)(" xÎ A)(~ P(x,y)) Ejemplo Negar la proposición ($ xÎ R)(" yÎ R)(x+y = 0) Solución ~ [($ xÎ R)(" yÎ R)(x+y = 0)] º (" xÎ R)($ yÎ R)(~ (x+y = 0)) º (" xÎ R)($ yÎ R)(x+y ¹ 0))
  • 10. La inferencia lógica es llamada también llamada LÓGICA INFERENCIAL. Es un proceso que consiste en pasar de un conjunto de premisas a una conclusión, sin la necesidad de elaborar tablas o cuadros muy extensos. · Todo ejercicio o problema que se resuelve usando inferencia lógica, tiene la forma:(p^q^r^s^………..^w)C · Aquí: p; q; r; s; t; ..... ; w son llamadas premisas. · Este conjunto de premisas originan como consecuencia otra proposición “ C ” , llamada CONCLUSIÓN, la cual también se le llama ARGUMENTO LÓGICO. Ejemplo. Si Maradona es un argentino es aficionado al futbol. Pero Maradona no es aficionado al futbol. Por lo tanto, no es argentino. Solución: (Se recomienda seguir los siguientes pasos para resolver una inferencia lógica) 1). Determinar todos las proposiciones y las simbolizamos. Sean las proposiciones: P: Maradona es argentino; Q: Maradona es aficionado al futbol. 2). Elaboramos el esquema molecular [(pq) ^(~q)] ~p 3) Identificamos a las premisas y al conclusión. Premisas: (pq) (~q) Conclusión: (~p)
  • 11. 4) Elaboramos y analizamos la tabla de la verdad del esquema molecular. p q [(pq) ^ (~q)]  ~p V V V F F V F V F F F V V F F V V F F V V F F V V V V V 5). Respuesta: como el resultado final es una tautología, la conjugación de premisas implica la conclusión, por lo tanto la inferencia es válida.