SlideShare una empresa de Scribd logo
Redes Neuronales
 ( El Perceptron)
El Modelo Adaline

     La función tiende a cero cuando los pesos se hacen
mejores. Esta regla de aprendizaje se conoce como la
regla delta o de Widrow-Hoff o regla LMS (the Least
Mean Squared)

            Arquitectura del ADALINE
Comparaciones Perceptron - ADALINE

 La regla del aprendizaje de ADALINE es idéntica a la regla del
  Perceptron en el caso de una función de transferencia lineal. No
  obstante la motivación de ambas reglas no son las mismas: en el caso
  ADALINE, se busca minimizar la función de costo de funcionamiento
  del dispositivo, mientras que en el caso del Perceptron, se persigue la
  determinación de hiperplano separador entre dos clases.
 La regla de aprendizaje del Perceptron converge, en el caso de existir
  solución luego de un numero finito de iteraciones. Por su parte, la regla
  delta (caso ADALINE), es de convergencia asintótica, en principio
  luego de muchas iteraciones.
 El empleo de muchas funciones de transferencia sobre el mismo
  conjunto de entrenamiento, trae como consecuencia que la dinámica
  de aprendizaje tienda a resultados distintos para los pesos sinápticos.
Comparaciones Perceptron - ADALINE

   El enfoque de descenso de gradiente(ADALINE) es
    fácilmente generalizable a redes de varias capas,
    mientras que la regla del perceptron no lo es


            El Perceptron Multicapas
           El perceptrón multicapas es una red Neuronal
    artificial(RNA) formada por múltiples capas, lo cual le
    permite resolver problemas que no son linealmente
    separables, lo
         El perceptrón multicapas puede ser totalmente o
    localmente conectado.
     En el primer caso cada salida de una neurona de la capa
    "i" es entrada de todas las neuronas de la capa "i+1“.
El Perceptron Multicapas

      En el segundo caso, cada neurona de la capa "i" es
    entrada de una serie de neuronas (región) de la capa
    "i+1".
    Las capas pueden clasificarse en tres tipos:
   Capa de entrada: Constituida por aquellas neuronas
    que introducen los patrones de entrada en la red. En
    estas neuronas no se produce procesamiento.
   Capas ocultas: Formada por aquellas neuronas cuyas
    entradas provienen de capas anteriores y las salidas
    pasan a neuronas de capas posteriores.
   Capa de salida: Neuronas cuyos valores de salida se
    corresponden con las salidas de toda la red.
El Perceptron Multicapas

Representación del Perceptron Multicapas
El Perceptron Multicapas

   Las neuronas de la capa oculta usan como regla de
    propagación la suma ponderada de las entradas con los
    pesos sinápticos wij y sobre esa suma ponderada se
    aplica una función de transferencia de tipo sigmoide, que
    es acotada en respuesta.
          Forma funcional de una sigmoide
El Perceptron Multicapas

                        Aprendizaje
   El aprendizaje que se suele usar en este tipo de redes
    recibe el nombre de retropropagacion del error
    (backpropagation).
   Como función de coste global, se usa el error cuadrático
    medio. Es decir, que dado un par (xk, dk) correspondiente
    a la entrada k de los datos de entrenamiento y salida
    deseada asociada se calcula la cantidad:
         Formula del Error Cuadrático Medio
El Perceptron Multicapas

  que vemos que es la suma de los errores parciales
debido a cada patrón (índice p), resultantes de la
diferencia entre la salida deseada dp y la salida que da
la red f(.) ante el vector de entrada xk.
   Si estas salidas son muy diferentes de las salidas
deseadas, el error cuadrático medio Será grande. f es la
función de activación de las neuronas de la capa de
salida e y la salida que proporcionan las neuronas de la
ultima capa oculta.
   El procedimiento de minimización utilizado sobre la
función de coste global es el Descenso de Gradiente
El Perceptron Multicapas
                   Algoritmo Backpropagation
           La aplicación del algoritmo tiene dos fases, una hacia
    delante y otra hacia atrás. Durante la primera fase el patrón
    de entrada es presentado a la red y propagado a través de
    las capas hasta llegar a la capa de salida.
   Obtenidos los valores de salida de la red, se inicia la
    segunda fase, comparándose éstos valores con la salida
    esperada para obtener el error.
    Se ajustan los pesos de la última capa proporcionalmente
    al error. Se pasa a la capa anterior con una retropopagación
    del error, ajustando los pesos y continuando con este
    proceso hasta llegar a la primer capa.
   De esta manera se han modificado los pesos de las
    conexiones de la red para cada patrón de aprendizaje del
    problema, del que conocíamos su valor de entrada y la
    salida deseada que debería generar la red ante dicho
    patrón.
Backpropagation

   La técnica Backpropagation requiere el uso de neuronas
    cuya función de activación sea continua, y por lo tanto,
    diferenciable. Generalmente, la función utilizada será del
    tipo sigmoidal.
     Pasos para aplicar el algoritmo de entrenamiento
   Paso 1:Inicializar los pesos de la red con valores
    pequeños aleatorios.
   Paso 2:Presentar un patrón de entrada y especificar la
    salida deseada que debe generar la red.
   Paso 3:Calcular la salida actual de la red. Para ello
    presentamos las entradas a la red y vamos calculando la
    salida que presenta cada capa hasta llegar a la capa de
    salida, ésta será la salida de la red. Los pasos son los
    siguientes:
Backpropagation

   Se calculan las entradas netas para las neuronas ocultas
    procedentes de las neuronas de entrada. Para una neurona
    j oculta:




   en donde el índice h se refiere a magnitudes de la capa
    oculta; el subíndice p, al p-ésimo vector de entrenamiento,
    y j a la j-ésima neurona oculta. El término θ puede ser
    opcional, pues actúa como una entrada más.
Backpropagation

   Se calculan las salidas de las neuronas ocultas:




                                  .

   Se realizan los mismos cálculos para obtener las salidas
    de las neuronas de salida:
Backpropagation

   Paso 4:Calcular los términos de error para todas las
    neuronas.
     Si la neurona k es una neurona de la capa de salida, el
    valor de la delta es:


     La función f debe ser derivable. En general disponemos de
    dos formas de función de salida
    La función lineal :
    La función sigmoidal:
Backpropagation

   Paso 5:Actualización de los pesos: para ello utilizamos un algoritmo
    recursivo, comenzando por las neuronas de salida y trabajando
    hacia atrás hasta llegar a la capa de entrada, ajustando los pesos
    de la siguiente forma:
    Para los pesos de las neuronas de la capa de salida:




    Para los pesos de las neuronas de la capa oculta:




    En ambos casos, para acelerar el proceso de aprendizaje se puede
    añadir un término momento.
Backpropagation

   Paso 5:Actualización de los pesos: para ello utilizamos
    un algoritmo recursivo, comenzando por las neuronas de
    salida y trabajando hacia atrás hasta llegar a la capa de
    entrada, ajustando los pesos de la siguiente forma:
    Para los pesos de las neuronas de la capa de salida:
Backpropagation

   Paso 6: El proceso se repite hasta que el término de
    error             resulta aceptablemente pequeño para
    cada uno de los patrones aprendidos.

    Consideraciones sobre el algoritmo de aprendizaje

   El algoritmo encuentra un valor mínimo de error (local o
    global) mediante una aplicación de pasos (gradiente)
    descendentes.
   Cada punto de la superficie de la función corresponde a
    un conjunto de valores de los pesos de la red.
Backpropagation

   Con el gradiente descendente, siempre que se realiza
    un cambio en todos los pesos de la red, se asegura el
    descenso por la superficie del error hasta encontrar el
    valle más cercano, lo que puede hacer que el proceso
    de aprendizaje se detenga en un mínimo local de error.
   Uno de los problemas del algoritmo es que en busca de minimizar
    la función de error, puede caer en un mínimo local o en algún punto
    estacionario, con lo cual no se llega a encontrar el mínimo global de
    la función de error. Sin embargo, no tiene porqué alcanzarse el
    mínimo global en todas las aplicaciones, sino que puede ser
    suficiente con un error mínimo preestablecido.
Ejemplo usando un Perceptron

     Considere un modelo del perceptron simple, el cual
deberá ser entrenado para que lleve a cabo el
funcionamiento de una compuerta lógica OR.
 x1 x2 SD
  0 0 0
  0 1 1
  1 0 1
  1 1 1
Ejemplo usando un Perceptron


  Donde:
        n
ACT = ∑ ( xi ∗ wi ) + u
        i=1


E = SD − Y                ∆ wi = λ ∗ E ∗ xi          wi +1 = wi + ∆wi

u= u+ E
λ : Regula la velocidad de aprendizaje (0≤ λ ≤1 ; λ =1)
Ejemplo usando un Perceptron

Ite   X1   x2   w1 w2    u    act   Y   E    w1 w2    u


1     0    0    0,5 1,5 1,5 1,5     1   -1   0,5 1,5 0,5

1     0    1    0,5 1,5 0,5   2     1   0    0,5 1,5 0,5


1     1    0    0,5 1,5 0,5   1     1   0    0,5 1,5 0,5

1     1    1    0,5 1,5 0,5   2,5   1   0    0,5 1,5 0,5
Ejemplo usando un Perceptron


Ite   X1   x2   w1 w2    u     act   Y   E    w1 w2    u

2     0    0    0,5 1,5 0,5 0,5      1   -1   0,5 1,5 -0,5

2     0    1    0,5 1,5 -0,5   0     1   0    0,5 1,5 -0,5

2     1    0    0,5 1,5 -0,5   1     1   0    0,5 1,5 -0,5

2     1    1    0,5 1,5 -0,5 1,5     1   0    0,5 1,5 -0,5
Ejemplo usando un Perceptron


Ite   X1   x2   w1    w2   u     act   Y   E   w1    w2   u

3     0    0    0,5   1,5 -0,5 -0,5    0   0   0,5   1,5 -0,5

3     0    1    0,5   1,5 -0,5   0     1   0   0,5   1,5 -0,5

3     1    0    0,5   1,5 -0,5   1     1   0   0,5   1,5 -0,5

3     1    1    0,5   1,5 -0,5 1,5     1   0   0,5   1,5 -0,5
Ejemplo usando un Perceptron

     La compuerta OR, por ser una función linealmente
separable puede ser aprendida por un perceptron
GRACIAS POR SU ATENCION

Más contenido relacionado

La actualidad más candente

Redesde 2 puertos parámetros Z y parámetros Y
Redesde 2 puertos parámetros Z y parámetros YRedesde 2 puertos parámetros Z y parámetros Y
Redesde 2 puertos parámetros Z y parámetros Y
Israel Magaña
 
Multiplexores y demultiplexores en electrónica digital
Multiplexores y demultiplexores en electrónica digitalMultiplexores y demultiplexores en electrónica digital
Multiplexores y demultiplexores en electrónica digital
Israel Magaña
 
Lenguaje Ladder
Lenguaje LadderLenguaje Ladder
Lenguaje Ladder
Ruth Cano
 
Clase 5 teorema de superposición
Clase 5 teorema de superposiciónClase 5 teorema de superposición
Clase 5 teorema de superposición
Tensor
 
Practica del amplificador inversor y no inversor
Practica del amplificador inversor y no inversorPractica del amplificador inversor y no inversor
Practica del amplificador inversor y no inversor
cire04
 
Lugar geometrico de las raices
Lugar geometrico de las raicesLugar geometrico de las raices
Lugar geometrico de las raices
Ivan Salazar C
 
Unidad III: Polos y Ceros de una función de transferencia.
Unidad III: Polos y Ceros de una función de transferencia.Unidad III: Polos y Ceros de una función de transferencia.
Unidad III: Polos y Ceros de una función de transferencia.
Mayra Peña
 
Circuitos logicos de tres estados
Circuitos logicos de tres estadosCircuitos logicos de tres estados
Circuitos logicos de tres estados
Zy Mo
 
Cinemática Directa e Inversa de un robot de 3 Grados de Libertad
Cinemática Directa e Inversa de un robot de 3 Grados de LibertadCinemática Directa e Inversa de un robot de 3 Grados de Libertad
Cinemática Directa e Inversa de un robot de 3 Grados de Libertad
María Inés Cahuana Lázaro
 
Practica # 2
Practica # 2Practica # 2
Ejemplo metodo de sincronizacion de controladores
Ejemplo metodo de sincronizacion de controladoresEjemplo metodo de sincronizacion de controladores
Ejemplo metodo de sincronizacion de controladores
luis Knals
 
Unidad 3 c2-control/DISCRETIZACION DE FUNCIONES DE TRANSFERENCIA
Unidad 3 c2-control/DISCRETIZACION DE FUNCIONES DE TRANSFERENCIAUnidad 3 c2-control/DISCRETIZACION DE FUNCIONES DE TRANSFERENCIA
Unidad 3 c2-control/DISCRETIZACION DE FUNCIONES DE TRANSFERENCIA
Davinso Gonzalez
 
2.3. Configuraciones en Paralelo y Serie-Paralelo de Diodos
2.3. Configuraciones en Paralelo y Serie-Paralelo de Diodos2.3. Configuraciones en Paralelo y Serie-Paralelo de Diodos
2.3. Configuraciones en Paralelo y Serie-Paralelo de Diodos
Othoniel Hernandez Ovando
 
Instrumentacion y-sensores
Instrumentacion y-sensoresInstrumentacion y-sensores
Instrumentacion y-sensores
Kev-in Prak
 
ziegler nichols metodo 1
ziegler nichols metodo 1ziegler nichols metodo 1
ziegler nichols metodo 1
Rodrigo Alejandro Tay
 
2.3 interconexion-de-redes-de-dos-puertos
2.3 interconexion-de-redes-de-dos-puertos2.3 interconexion-de-redes-de-dos-puertos
2.3 interconexion-de-redes-de-dos-puertos
JoseUriel01
 
Sumador\Restador
Sumador\RestadorSumador\Restador
Sumador\Restador
Jeduard Ortega M
 
Unidad 2 control 2 /FUNCIÓN DE TRANSFERENCIA PULSO
Unidad 2 control 2 /FUNCIÓN DE TRANSFERENCIA PULSOUnidad 2 control 2 /FUNCIÓN DE TRANSFERENCIA PULSO
Unidad 2 control 2 /FUNCIÓN DE TRANSFERENCIA PULSO
Davinso Gonzalez
 
TRANSFORMADA DE LAPLACE PARA CIRCUITOS RLC
TRANSFORMADA  DE LAPLACE PARA CIRCUITOS RLCTRANSFORMADA  DE LAPLACE PARA CIRCUITOS RLC
TRANSFORMADA DE LAPLACE PARA CIRCUITOS RLC
JOe Torres Palomino
 
Perceptrón Simple – Redes Neuronales con Aprendizaje Supervisado
Perceptrón Simple – Redes Neuronales con Aprendizaje SupervisadoPerceptrón Simple – Redes Neuronales con Aprendizaje Supervisado
Perceptrón Simple – Redes Neuronales con Aprendizaje Supervisado
Andrea Lezcano
 

La actualidad más candente (20)

Redesde 2 puertos parámetros Z y parámetros Y
Redesde 2 puertos parámetros Z y parámetros YRedesde 2 puertos parámetros Z y parámetros Y
Redesde 2 puertos parámetros Z y parámetros Y
 
Multiplexores y demultiplexores en electrónica digital
Multiplexores y demultiplexores en electrónica digitalMultiplexores y demultiplexores en electrónica digital
Multiplexores y demultiplexores en electrónica digital
 
Lenguaje Ladder
Lenguaje LadderLenguaje Ladder
Lenguaje Ladder
 
Clase 5 teorema de superposición
Clase 5 teorema de superposiciónClase 5 teorema de superposición
Clase 5 teorema de superposición
 
Practica del amplificador inversor y no inversor
Practica del amplificador inversor y no inversorPractica del amplificador inversor y no inversor
Practica del amplificador inversor y no inversor
 
Lugar geometrico de las raices
Lugar geometrico de las raicesLugar geometrico de las raices
Lugar geometrico de las raices
 
Unidad III: Polos y Ceros de una función de transferencia.
Unidad III: Polos y Ceros de una función de transferencia.Unidad III: Polos y Ceros de una función de transferencia.
Unidad III: Polos y Ceros de una función de transferencia.
 
Circuitos logicos de tres estados
Circuitos logicos de tres estadosCircuitos logicos de tres estados
Circuitos logicos de tres estados
 
Cinemática Directa e Inversa de un robot de 3 Grados de Libertad
Cinemática Directa e Inversa de un robot de 3 Grados de LibertadCinemática Directa e Inversa de un robot de 3 Grados de Libertad
Cinemática Directa e Inversa de un robot de 3 Grados de Libertad
 
Practica # 2
Practica # 2Practica # 2
Practica # 2
 
Ejemplo metodo de sincronizacion de controladores
Ejemplo metodo de sincronizacion de controladoresEjemplo metodo de sincronizacion de controladores
Ejemplo metodo de sincronizacion de controladores
 
Unidad 3 c2-control/DISCRETIZACION DE FUNCIONES DE TRANSFERENCIA
Unidad 3 c2-control/DISCRETIZACION DE FUNCIONES DE TRANSFERENCIAUnidad 3 c2-control/DISCRETIZACION DE FUNCIONES DE TRANSFERENCIA
Unidad 3 c2-control/DISCRETIZACION DE FUNCIONES DE TRANSFERENCIA
 
2.3. Configuraciones en Paralelo y Serie-Paralelo de Diodos
2.3. Configuraciones en Paralelo y Serie-Paralelo de Diodos2.3. Configuraciones en Paralelo y Serie-Paralelo de Diodos
2.3. Configuraciones en Paralelo y Serie-Paralelo de Diodos
 
Instrumentacion y-sensores
Instrumentacion y-sensoresInstrumentacion y-sensores
Instrumentacion y-sensores
 
ziegler nichols metodo 1
ziegler nichols metodo 1ziegler nichols metodo 1
ziegler nichols metodo 1
 
2.3 interconexion-de-redes-de-dos-puertos
2.3 interconexion-de-redes-de-dos-puertos2.3 interconexion-de-redes-de-dos-puertos
2.3 interconexion-de-redes-de-dos-puertos
 
Sumador\Restador
Sumador\RestadorSumador\Restador
Sumador\Restador
 
Unidad 2 control 2 /FUNCIÓN DE TRANSFERENCIA PULSO
Unidad 2 control 2 /FUNCIÓN DE TRANSFERENCIA PULSOUnidad 2 control 2 /FUNCIÓN DE TRANSFERENCIA PULSO
Unidad 2 control 2 /FUNCIÓN DE TRANSFERENCIA PULSO
 
TRANSFORMADA DE LAPLACE PARA CIRCUITOS RLC
TRANSFORMADA  DE LAPLACE PARA CIRCUITOS RLCTRANSFORMADA  DE LAPLACE PARA CIRCUITOS RLC
TRANSFORMADA DE LAPLACE PARA CIRCUITOS RLC
 
Perceptrón Simple – Redes Neuronales con Aprendizaje Supervisado
Perceptrón Simple – Redes Neuronales con Aprendizaje SupervisadoPerceptrón Simple – Redes Neuronales con Aprendizaje Supervisado
Perceptrón Simple – Redes Neuronales con Aprendizaje Supervisado
 

Destacado

Perceptron Simple y Regla Aprendizaje
Perceptron  Simple y  Regla  AprendizajePerceptron  Simple y  Regla  Aprendizaje
Perceptron Simple y Regla Aprendizaje
Roberth Figueroa-Diaz
 
Implementacion de la funcion logica xor, mediante un modelo neuronal y el alg...
Implementacion de la funcion logica xor, mediante un modelo neuronal y el alg...Implementacion de la funcion logica xor, mediante un modelo neuronal y el alg...
Implementacion de la funcion logica xor, mediante un modelo neuronal y el alg...
Tribunal Electoral Provincia de Misiones
 
INTRODUCCION A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCION A LAS REDES NEURONALES ARTIFICIALESINTRODUCCION A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCION A LAS REDES NEURONALES ARTIFICIALES
ESCOM
 
Redes neuronales-funciones-activacion-hardlim- hardlims-matlab
Redes neuronales-funciones-activacion-hardlim- hardlims-matlabRedes neuronales-funciones-activacion-hardlim- hardlims-matlab
Redes neuronales-funciones-activacion-hardlim- hardlims-matlab
Ana Mora
 
Redes Neuronales
Redes NeuronalesRedes Neuronales
Redes Neuronales
Luis Sánchez Castellanos
 
Redes Neuronales
Redes NeuronalesRedes Neuronales
Redes Neuronales
gueste7b261
 
Perceptrón simple y multicapa
Perceptrón simple y multicapaPerceptrón simple y multicapa
Perceptrón simple y multicapa
Jefferson Guillen
 

Destacado (7)

Perceptron Simple y Regla Aprendizaje
Perceptron  Simple y  Regla  AprendizajePerceptron  Simple y  Regla  Aprendizaje
Perceptron Simple y Regla Aprendizaje
 
Implementacion de la funcion logica xor, mediante un modelo neuronal y el alg...
Implementacion de la funcion logica xor, mediante un modelo neuronal y el alg...Implementacion de la funcion logica xor, mediante un modelo neuronal y el alg...
Implementacion de la funcion logica xor, mediante un modelo neuronal y el alg...
 
INTRODUCCION A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCION A LAS REDES NEURONALES ARTIFICIALESINTRODUCCION A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCION A LAS REDES NEURONALES ARTIFICIALES
 
Redes neuronales-funciones-activacion-hardlim- hardlims-matlab
Redes neuronales-funciones-activacion-hardlim- hardlims-matlabRedes neuronales-funciones-activacion-hardlim- hardlims-matlab
Redes neuronales-funciones-activacion-hardlim- hardlims-matlab
 
Redes Neuronales
Redes NeuronalesRedes Neuronales
Redes Neuronales
 
Redes Neuronales
Redes NeuronalesRedes Neuronales
Redes Neuronales
 
Perceptrón simple y multicapa
Perceptrón simple y multicapaPerceptrón simple y multicapa
Perceptrón simple y multicapa
 

Similar a Perceptron parte 2

RED NEURONAL Backpropagation
RED NEURONAL BackpropagationRED NEURONAL Backpropagation
RED NEURONAL Backpropagation
ESCOM
 
RED De Retro-propagación Neuronal
RED De Retro-propagación NeuronalRED De Retro-propagación Neuronal
RED De Retro-propagación Neuronal
ESCOM
 
Algoritmo de Retropropagación
Algoritmo de RetropropagaciónAlgoritmo de Retropropagación
Algoritmo de Retropropagación
ESCOM
 
Aprendizaje Redes Neuronales
Aprendizaje Redes NeuronalesAprendizaje Redes Neuronales
Aprendizaje Redes Neuronales
Alex Jhampier Rojas Herrera
 
Inteligencia artificial avanzada
Inteligencia artificial avanzadaInteligencia artificial avanzada
Inteligencia artificial avanzada
Diego Guamán
 
Leccion 3 - Tema 3
Leccion 3 - Tema 3Leccion 3 - Tema 3
Leccion 3 - Tema 3
Michel Jraiche
 
Perceptron parte 1
Perceptron parte 1Perceptron parte 1
Perceptron parte 1
edeciofreitez
 
Utp 2015-2_ia_s6_adaline y backpropagation
 Utp 2015-2_ia_s6_adaline y backpropagation Utp 2015-2_ia_s6_adaline y backpropagation
Utp 2015-2_ia_s6_adaline y backpropagation
jcbp_peru
 
Utp 2015-2_sirn_s6_adaline y backpropagation
 Utp 2015-2_sirn_s6_adaline y backpropagation Utp 2015-2_sirn_s6_adaline y backpropagation
Utp 2015-2_sirn_s6_adaline y backpropagation
jcbenitezp
 
Boletin3
Boletin3Boletin3
Boletin3
Yin Quark
 
Utp sirn_s6_adaline y backpropagation
 Utp sirn_s6_adaline y backpropagation Utp sirn_s6_adaline y backpropagation
Utp sirn_s6_adaline y backpropagation
jcbp_peru
 
Construccion , Diseño y Entrenamiento de Redes Neuronales Artificiales
Construccion , Diseño y Entrenamiento de Redes Neuronales ArtificialesConstruccion , Diseño y Entrenamiento de Redes Neuronales Artificiales
Construccion , Diseño y Entrenamiento de Redes Neuronales Artificiales
ESCOM
 
Rna10
Rna10Rna10
REDES NEUROANLES ELMAN DEMO
REDES NEUROANLES ELMAN DEMOREDES NEUROANLES ELMAN DEMO
REDES NEUROANLES ELMAN DEMO
ESCOM
 
implementación simulated annealing-en-perceptronmulticapa
implementación simulated annealing-en-perceptronmulticapaimplementación simulated annealing-en-perceptronmulticapa
implementación simulated annealing-en-perceptronmulticapa
Brian Piragauta
 
Función Logsig y tansig
Función Logsig y tansigFunción Logsig y tansig
Función Logsig y tansig
Vane Erraez
 
Función de activación de Logsig y tansig
Función  de activación de Logsig y tansigFunción  de activación de Logsig y tansig
Función de activación de Logsig y tansig
Vanee2014
 
Red NEURONAL de Hamming
Red   NEURONAL    de HammingRed   NEURONAL    de Hamming
Red NEURONAL de Hamming
ESCOM
 
Red Neuronal Difusa
Red Neuronal DifusaRed Neuronal Difusa
Red Neuronal Difusa
ESCOM
 
Perceptron y Adaline
Perceptron y AdalinePerceptron y Adaline
Perceptron y Adaline
Spacetoshare
 

Similar a Perceptron parte 2 (20)

RED NEURONAL Backpropagation
RED NEURONAL BackpropagationRED NEURONAL Backpropagation
RED NEURONAL Backpropagation
 
RED De Retro-propagación Neuronal
RED De Retro-propagación NeuronalRED De Retro-propagación Neuronal
RED De Retro-propagación Neuronal
 
Algoritmo de Retropropagación
Algoritmo de RetropropagaciónAlgoritmo de Retropropagación
Algoritmo de Retropropagación
 
Aprendizaje Redes Neuronales
Aprendizaje Redes NeuronalesAprendizaje Redes Neuronales
Aprendizaje Redes Neuronales
 
Inteligencia artificial avanzada
Inteligencia artificial avanzadaInteligencia artificial avanzada
Inteligencia artificial avanzada
 
Leccion 3 - Tema 3
Leccion 3 - Tema 3Leccion 3 - Tema 3
Leccion 3 - Tema 3
 
Perceptron parte 1
Perceptron parte 1Perceptron parte 1
Perceptron parte 1
 
Utp 2015-2_ia_s6_adaline y backpropagation
 Utp 2015-2_ia_s6_adaline y backpropagation Utp 2015-2_ia_s6_adaline y backpropagation
Utp 2015-2_ia_s6_adaline y backpropagation
 
Utp 2015-2_sirn_s6_adaline y backpropagation
 Utp 2015-2_sirn_s6_adaline y backpropagation Utp 2015-2_sirn_s6_adaline y backpropagation
Utp 2015-2_sirn_s6_adaline y backpropagation
 
Boletin3
Boletin3Boletin3
Boletin3
 
Utp sirn_s6_adaline y backpropagation
 Utp sirn_s6_adaline y backpropagation Utp sirn_s6_adaline y backpropagation
Utp sirn_s6_adaline y backpropagation
 
Construccion , Diseño y Entrenamiento de Redes Neuronales Artificiales
Construccion , Diseño y Entrenamiento de Redes Neuronales ArtificialesConstruccion , Diseño y Entrenamiento de Redes Neuronales Artificiales
Construccion , Diseño y Entrenamiento de Redes Neuronales Artificiales
 
Rna10
Rna10Rna10
Rna10
 
REDES NEUROANLES ELMAN DEMO
REDES NEUROANLES ELMAN DEMOREDES NEUROANLES ELMAN DEMO
REDES NEUROANLES ELMAN DEMO
 
implementación simulated annealing-en-perceptronmulticapa
implementación simulated annealing-en-perceptronmulticapaimplementación simulated annealing-en-perceptronmulticapa
implementación simulated annealing-en-perceptronmulticapa
 
Función Logsig y tansig
Función Logsig y tansigFunción Logsig y tansig
Función Logsig y tansig
 
Función de activación de Logsig y tansig
Función  de activación de Logsig y tansigFunción  de activación de Logsig y tansig
Función de activación de Logsig y tansig
 
Red NEURONAL de Hamming
Red   NEURONAL    de HammingRed   NEURONAL    de Hamming
Red NEURONAL de Hamming
 
Red Neuronal Difusa
Red Neuronal DifusaRed Neuronal Difusa
Red Neuronal Difusa
 
Perceptron y Adaline
Perceptron y AdalinePerceptron y Adaline
Perceptron y Adaline
 

Más de edeciofreitez

Sistema Experto Ejemplo
Sistema Experto EjemploSistema Experto Ejemplo
Sistema Experto Ejemplo
edeciofreitez
 
La comunicacion didactica_en_los_chats_academicos
La comunicacion didactica_en_los_chats_academicosLa comunicacion didactica_en_los_chats_academicos
La comunicacion didactica_en_los_chats_academicos
edeciofreitez
 
Propuesta final del cuft
Propuesta final del cuftPropuesta final del cuft
Propuesta final del cuft
edeciofreitez
 
Tedes estocasticas
Tedes estocasticasTedes estocasticas
Tedes estocasticas
edeciofreitez
 
Conjuntos regulares 04[1]
Conjuntos regulares 04[1]Conjuntos regulares 04[1]
Conjuntos regulares 04[1]
edeciofreitez
 
Clase afd
Clase afdClase afd
Clase afd
edeciofreitez
 
Modu saya 4
Modu saya 4Modu saya 4
Modu saya 4
edeciofreitez
 
Mod auto 4
Mod auto 4Mod auto 4
Mod auto 4
edeciofreitez
 
Mod auto 4
Mod auto 4Mod auto 4
Mod auto 4
edeciofreitez
 
Infografia
InfografiaInfografia
Infografia
edeciofreitez
 

Más de edeciofreitez (10)

Sistema Experto Ejemplo
Sistema Experto EjemploSistema Experto Ejemplo
Sistema Experto Ejemplo
 
La comunicacion didactica_en_los_chats_academicos
La comunicacion didactica_en_los_chats_academicosLa comunicacion didactica_en_los_chats_academicos
La comunicacion didactica_en_los_chats_academicos
 
Propuesta final del cuft
Propuesta final del cuftPropuesta final del cuft
Propuesta final del cuft
 
Tedes estocasticas
Tedes estocasticasTedes estocasticas
Tedes estocasticas
 
Conjuntos regulares 04[1]
Conjuntos regulares 04[1]Conjuntos regulares 04[1]
Conjuntos regulares 04[1]
 
Clase afd
Clase afdClase afd
Clase afd
 
Modu saya 4
Modu saya 4Modu saya 4
Modu saya 4
 
Mod auto 4
Mod auto 4Mod auto 4
Mod auto 4
 
Mod auto 4
Mod auto 4Mod auto 4
Mod auto 4
 
Infografia
InfografiaInfografia
Infografia
 

Último

🔴 (AC-S18) Semana 18 -Tema 01Trabajo de Investigación - Contratos y franquici...
🔴 (AC-S18) Semana 18 -Tema 01Trabajo de Investigación - Contratos y franquici...🔴 (AC-S18) Semana 18 -Tema 01Trabajo de Investigación - Contratos y franquici...
🔴 (AC-S18) Semana 18 -Tema 01Trabajo de Investigación - Contratos y franquici...
FernandoEstebanLlont
 
ACERTIJOS DE LOS NOVIOS CELOSOS EN PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJOS DE LOS NOVIOS CELOSOS EN PARÍS. Por JAVIER SOLIS NOYOLAACERTIJOS DE LOS NOVIOS CELOSOS EN PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJOS DE LOS NOVIOS CELOSOS EN PARÍS. Por JAVIER SOLIS NOYOLA
JAVIER SOLIS NOYOLA
 
La Relación Mixta DA ( Riesgo)- Matriz DA
La Relación Mixta DA ( Riesgo)- Matriz DALa Relación Mixta DA ( Riesgo)- Matriz DA
La Relación Mixta DA ( Riesgo)- Matriz DA
JonathanCovena1
 
Introduccion-a-la-circunferencia area y longitud
Introduccion-a-la-circunferencia area y longitudIntroduccion-a-la-circunferencia area y longitud
Introduccion-a-la-circunferencia area y longitud
AsafHdez
 
Análisis y Evaluación del Impacto Ambiental.pdf
Análisis y Evaluación del Impacto Ambiental.pdfAnálisis y Evaluación del Impacto Ambiental.pdf
Análisis y Evaluación del Impacto Ambiental.pdf
JonathanCovena1
 
mapa conceptual animales foráneos traídos al Perú
mapa conceptual animales foráneos traídos  al Perúmapa conceptual animales foráneos traídos  al Perú
mapa conceptual animales foráneos traídos al Perú
KarlaSaldaaPerez
 
Danzas peruanas festividades importantes .
Danzas peruanas festividades importantes .Danzas peruanas festividades importantes .
Danzas peruanas festividades importantes .
Juan Luis Cunya Vicente
 
CONOCIENDO LA RECETA DEL JUANE EN LA SELVA DE MOYOBAMBA
CONOCIENDO LA RECETA DEL JUANE EN LA SELVA DE MOYOBAMBACONOCIENDO LA RECETA DEL JUANE EN LA SELVA DE MOYOBAMBA
CONOCIENDO LA RECETA DEL JUANE EN LA SELVA DE MOYOBAMBA
rafael28537
 
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
Sandra Mariela Ballón Aguedo
 
🔴 (AC-S18) Semana 18 - Tema 1 Informe sobre un tema del curso.docx
🔴 (AC-S18) Semana 18 - Tema 1 Informe sobre un tema del curso.docx🔴 (AC-S18) Semana 18 - Tema 1 Informe sobre un tema del curso.docx
🔴 (AC-S18) Semana 18 - Tema 1 Informe sobre un tema del curso.docx
FernandoEstebanLlont
 
PRESENTACIÓN TALLER INTENSIVO PARA DOCENTES JULIO 2024 WEB.pptx
PRESENTACIÓN TALLER INTENSIVO PARA DOCENTES JULIO 2024 WEB.pptxPRESENTACIÓN TALLER INTENSIVO PARA DOCENTES JULIO 2024 WEB.pptx
PRESENTACIÓN TALLER INTENSIVO PARA DOCENTES JULIO 2024 WEB.pptx
glopezmaciel
 
INSTRUMENTOS USADOS EN LA PSICOLOGÍA
INSTRUMENTOS USADOS EN LA PSICOLOGÍA INSTRUMENTOS USADOS EN LA PSICOLOGÍA
INSTRUMENTOS USADOS EN LA PSICOLOGÍA
Kiara Ocampo Apolo
 
Apuntes Unidad I Conceptos Básicos_compressed.pdf
Apuntes Unidad I Conceptos Básicos_compressed.pdfApuntes Unidad I Conceptos Básicos_compressed.pdf
Apuntes Unidad I Conceptos Básicos_compressed.pdf
VeronicaCabrera50
 
🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...
🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...
🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...
FernandoEstebanLlont
 
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
Sandra Mariela Ballón Aguedo
 
2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA
Sandra Mariela Ballón Aguedo
 
Lecciones 03 Esc. Sabática. Controversias.docx
Lecciones 03 Esc. Sabática. Controversias.docxLecciones 03 Esc. Sabática. Controversias.docx
Lecciones 03 Esc. Sabática. Controversias.docx
Alejandrino Halire Ccahuana
 
ACTIVIDAD riquezas de la region costa del peru
ACTIVIDAD riquezas de la region costa del peruACTIVIDAD riquezas de la region costa del peru
ACTIVIDAD riquezas de la region costa del peru
roxanariverom
 
homeostasis.pptx. Enfermería técnica periodo 1
homeostasis.pptx. Enfermería técnica periodo 1homeostasis.pptx. Enfermería técnica periodo 1
homeostasis.pptx. Enfermería técnica periodo 1
NohemiLumiereLopezHu1
 

Último (20)

🔴 (AC-S18) Semana 18 -Tema 01Trabajo de Investigación - Contratos y franquici...
🔴 (AC-S18) Semana 18 -Tema 01Trabajo de Investigación - Contratos y franquici...🔴 (AC-S18) Semana 18 -Tema 01Trabajo de Investigación - Contratos y franquici...
🔴 (AC-S18) Semana 18 -Tema 01Trabajo de Investigación - Contratos y franquici...
 
POR ENTRE AS ONDAS DO PARAÍSO .
POR ENTRE AS ONDAS DO PARAÍSO             .POR ENTRE AS ONDAS DO PARAÍSO             .
POR ENTRE AS ONDAS DO PARAÍSO .
 
ACERTIJOS DE LOS NOVIOS CELOSOS EN PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJOS DE LOS NOVIOS CELOSOS EN PARÍS. Por JAVIER SOLIS NOYOLAACERTIJOS DE LOS NOVIOS CELOSOS EN PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJOS DE LOS NOVIOS CELOSOS EN PARÍS. Por JAVIER SOLIS NOYOLA
 
La Relación Mixta DA ( Riesgo)- Matriz DA
La Relación Mixta DA ( Riesgo)- Matriz DALa Relación Mixta DA ( Riesgo)- Matriz DA
La Relación Mixta DA ( Riesgo)- Matriz DA
 
Introduccion-a-la-circunferencia area y longitud
Introduccion-a-la-circunferencia area y longitudIntroduccion-a-la-circunferencia area y longitud
Introduccion-a-la-circunferencia area y longitud
 
Análisis y Evaluación del Impacto Ambiental.pdf
Análisis y Evaluación del Impacto Ambiental.pdfAnálisis y Evaluación del Impacto Ambiental.pdf
Análisis y Evaluación del Impacto Ambiental.pdf
 
mapa conceptual animales foráneos traídos al Perú
mapa conceptual animales foráneos traídos  al Perúmapa conceptual animales foráneos traídos  al Perú
mapa conceptual animales foráneos traídos al Perú
 
Danzas peruanas festividades importantes .
Danzas peruanas festividades importantes .Danzas peruanas festividades importantes .
Danzas peruanas festividades importantes .
 
CONOCIENDO LA RECETA DEL JUANE EN LA SELVA DE MOYOBAMBA
CONOCIENDO LA RECETA DEL JUANE EN LA SELVA DE MOYOBAMBACONOCIENDO LA RECETA DEL JUANE EN LA SELVA DE MOYOBAMBA
CONOCIENDO LA RECETA DEL JUANE EN LA SELVA DE MOYOBAMBA
 
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
 
🔴 (AC-S18) Semana 18 - Tema 1 Informe sobre un tema del curso.docx
🔴 (AC-S18) Semana 18 - Tema 1 Informe sobre un tema del curso.docx🔴 (AC-S18) Semana 18 - Tema 1 Informe sobre un tema del curso.docx
🔴 (AC-S18) Semana 18 - Tema 1 Informe sobre un tema del curso.docx
 
PRESENTACIÓN TALLER INTENSIVO PARA DOCENTES JULIO 2024 WEB.pptx
PRESENTACIÓN TALLER INTENSIVO PARA DOCENTES JULIO 2024 WEB.pptxPRESENTACIÓN TALLER INTENSIVO PARA DOCENTES JULIO 2024 WEB.pptx
PRESENTACIÓN TALLER INTENSIVO PARA DOCENTES JULIO 2024 WEB.pptx
 
INSTRUMENTOS USADOS EN LA PSICOLOGÍA
INSTRUMENTOS USADOS EN LA PSICOLOGÍA INSTRUMENTOS USADOS EN LA PSICOLOGÍA
INSTRUMENTOS USADOS EN LA PSICOLOGÍA
 
Apuntes Unidad I Conceptos Básicos_compressed.pdf
Apuntes Unidad I Conceptos Básicos_compressed.pdfApuntes Unidad I Conceptos Básicos_compressed.pdf
Apuntes Unidad I Conceptos Básicos_compressed.pdf
 
🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...
🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...
🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...
 
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
 
2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA
 
Lecciones 03 Esc. Sabática. Controversias.docx
Lecciones 03 Esc. Sabática. Controversias.docxLecciones 03 Esc. Sabática. Controversias.docx
Lecciones 03 Esc. Sabática. Controversias.docx
 
ACTIVIDAD riquezas de la region costa del peru
ACTIVIDAD riquezas de la region costa del peruACTIVIDAD riquezas de la region costa del peru
ACTIVIDAD riquezas de la region costa del peru
 
homeostasis.pptx. Enfermería técnica periodo 1
homeostasis.pptx. Enfermería técnica periodo 1homeostasis.pptx. Enfermería técnica periodo 1
homeostasis.pptx. Enfermería técnica periodo 1
 

Perceptron parte 2

  • 1. Redes Neuronales ( El Perceptron)
  • 2. El Modelo Adaline La función tiende a cero cuando los pesos se hacen mejores. Esta regla de aprendizaje se conoce como la regla delta o de Widrow-Hoff o regla LMS (the Least Mean Squared) Arquitectura del ADALINE
  • 3. Comparaciones Perceptron - ADALINE  La regla del aprendizaje de ADALINE es idéntica a la regla del Perceptron en el caso de una función de transferencia lineal. No obstante la motivación de ambas reglas no son las mismas: en el caso ADALINE, se busca minimizar la función de costo de funcionamiento del dispositivo, mientras que en el caso del Perceptron, se persigue la determinación de hiperplano separador entre dos clases.  La regla de aprendizaje del Perceptron converge, en el caso de existir solución luego de un numero finito de iteraciones. Por su parte, la regla delta (caso ADALINE), es de convergencia asintótica, en principio luego de muchas iteraciones.  El empleo de muchas funciones de transferencia sobre el mismo conjunto de entrenamiento, trae como consecuencia que la dinámica de aprendizaje tienda a resultados distintos para los pesos sinápticos.
  • 4. Comparaciones Perceptron - ADALINE  El enfoque de descenso de gradiente(ADALINE) es fácilmente generalizable a redes de varias capas, mientras que la regla del perceptron no lo es El Perceptron Multicapas El perceptrón multicapas es una red Neuronal artificial(RNA) formada por múltiples capas, lo cual le permite resolver problemas que no son linealmente separables, lo El perceptrón multicapas puede ser totalmente o localmente conectado. En el primer caso cada salida de una neurona de la capa "i" es entrada de todas las neuronas de la capa "i+1“.
  • 5. El Perceptron Multicapas En el segundo caso, cada neurona de la capa "i" es entrada de una serie de neuronas (región) de la capa "i+1". Las capas pueden clasificarse en tres tipos:  Capa de entrada: Constituida por aquellas neuronas que introducen los patrones de entrada en la red. En estas neuronas no se produce procesamiento.  Capas ocultas: Formada por aquellas neuronas cuyas entradas provienen de capas anteriores y las salidas pasan a neuronas de capas posteriores.  Capa de salida: Neuronas cuyos valores de salida se corresponden con las salidas de toda la red.
  • 6. El Perceptron Multicapas Representación del Perceptron Multicapas
  • 7. El Perceptron Multicapas  Las neuronas de la capa oculta usan como regla de propagación la suma ponderada de las entradas con los pesos sinápticos wij y sobre esa suma ponderada se aplica una función de transferencia de tipo sigmoide, que es acotada en respuesta. Forma funcional de una sigmoide
  • 8. El Perceptron Multicapas Aprendizaje  El aprendizaje que se suele usar en este tipo de redes recibe el nombre de retropropagacion del error (backpropagation).  Como función de coste global, se usa el error cuadrático medio. Es decir, que dado un par (xk, dk) correspondiente a la entrada k de los datos de entrenamiento y salida deseada asociada se calcula la cantidad: Formula del Error Cuadrático Medio
  • 9. El Perceptron Multicapas que vemos que es la suma de los errores parciales debido a cada patrón (índice p), resultantes de la diferencia entre la salida deseada dp y la salida que da la red f(.) ante el vector de entrada xk. Si estas salidas son muy diferentes de las salidas deseadas, el error cuadrático medio Será grande. f es la función de activación de las neuronas de la capa de salida e y la salida que proporcionan las neuronas de la ultima capa oculta. El procedimiento de minimización utilizado sobre la función de coste global es el Descenso de Gradiente
  • 10. El Perceptron Multicapas Algoritmo Backpropagation La aplicación del algoritmo tiene dos fases, una hacia delante y otra hacia atrás. Durante la primera fase el patrón de entrada es presentado a la red y propagado a través de las capas hasta llegar a la capa de salida.  Obtenidos los valores de salida de la red, se inicia la segunda fase, comparándose éstos valores con la salida esperada para obtener el error.  Se ajustan los pesos de la última capa proporcionalmente al error. Se pasa a la capa anterior con una retropopagación del error, ajustando los pesos y continuando con este proceso hasta llegar a la primer capa.  De esta manera se han modificado los pesos de las conexiones de la red para cada patrón de aprendizaje del problema, del que conocíamos su valor de entrada y la salida deseada que debería generar la red ante dicho patrón.
  • 11. Backpropagation  La técnica Backpropagation requiere el uso de neuronas cuya función de activación sea continua, y por lo tanto, diferenciable. Generalmente, la función utilizada será del tipo sigmoidal. Pasos para aplicar el algoritmo de entrenamiento  Paso 1:Inicializar los pesos de la red con valores pequeños aleatorios.  Paso 2:Presentar un patrón de entrada y especificar la salida deseada que debe generar la red.  Paso 3:Calcular la salida actual de la red. Para ello presentamos las entradas a la red y vamos calculando la salida que presenta cada capa hasta llegar a la capa de salida, ésta será la salida de la red. Los pasos son los siguientes:
  • 12. Backpropagation  Se calculan las entradas netas para las neuronas ocultas procedentes de las neuronas de entrada. Para una neurona j oculta:  en donde el índice h se refiere a magnitudes de la capa oculta; el subíndice p, al p-ésimo vector de entrenamiento, y j a la j-ésima neurona oculta. El término θ puede ser opcional, pues actúa como una entrada más.
  • 13. Backpropagation  Se calculan las salidas de las neuronas ocultas: .  Se realizan los mismos cálculos para obtener las salidas de las neuronas de salida:
  • 14. Backpropagation  Paso 4:Calcular los términos de error para todas las neuronas. Si la neurona k es una neurona de la capa de salida, el valor de la delta es: La función f debe ser derivable. En general disponemos de dos formas de función de salida La función lineal : La función sigmoidal:
  • 15. Backpropagation  Paso 5:Actualización de los pesos: para ello utilizamos un algoritmo recursivo, comenzando por las neuronas de salida y trabajando hacia atrás hasta llegar a la capa de entrada, ajustando los pesos de la siguiente forma: Para los pesos de las neuronas de la capa de salida: Para los pesos de las neuronas de la capa oculta: En ambos casos, para acelerar el proceso de aprendizaje se puede añadir un término momento.
  • 16. Backpropagation  Paso 5:Actualización de los pesos: para ello utilizamos un algoritmo recursivo, comenzando por las neuronas de salida y trabajando hacia atrás hasta llegar a la capa de entrada, ajustando los pesos de la siguiente forma: Para los pesos de las neuronas de la capa de salida:
  • 17. Backpropagation  Paso 6: El proceso se repite hasta que el término de error resulta aceptablemente pequeño para cada uno de los patrones aprendidos. Consideraciones sobre el algoritmo de aprendizaje  El algoritmo encuentra un valor mínimo de error (local o global) mediante una aplicación de pasos (gradiente) descendentes.  Cada punto de la superficie de la función corresponde a un conjunto de valores de los pesos de la red.
  • 18. Backpropagation  Con el gradiente descendente, siempre que se realiza un cambio en todos los pesos de la red, se asegura el descenso por la superficie del error hasta encontrar el valle más cercano, lo que puede hacer que el proceso de aprendizaje se detenga en un mínimo local de error.  Uno de los problemas del algoritmo es que en busca de minimizar la función de error, puede caer en un mínimo local o en algún punto estacionario, con lo cual no se llega a encontrar el mínimo global de la función de error. Sin embargo, no tiene porqué alcanzarse el mínimo global en todas las aplicaciones, sino que puede ser suficiente con un error mínimo preestablecido.
  • 19. Ejemplo usando un Perceptron Considere un modelo del perceptron simple, el cual deberá ser entrenado para que lleve a cabo el funcionamiento de una compuerta lógica OR. x1 x2 SD 0 0 0 0 1 1 1 0 1 1 1 1
  • 20. Ejemplo usando un Perceptron Donde: n ACT = ∑ ( xi ∗ wi ) + u i=1 E = SD − Y ∆ wi = λ ∗ E ∗ xi wi +1 = wi + ∆wi u= u+ E λ : Regula la velocidad de aprendizaje (0≤ λ ≤1 ; λ =1)
  • 21. Ejemplo usando un Perceptron Ite X1 x2 w1 w2 u act Y E w1 w2 u 1 0 0 0,5 1,5 1,5 1,5 1 -1 0,5 1,5 0,5 1 0 1 0,5 1,5 0,5 2 1 0 0,5 1,5 0,5 1 1 0 0,5 1,5 0,5 1 1 0 0,5 1,5 0,5 1 1 1 0,5 1,5 0,5 2,5 1 0 0,5 1,5 0,5
  • 22. Ejemplo usando un Perceptron Ite X1 x2 w1 w2 u act Y E w1 w2 u 2 0 0 0,5 1,5 0,5 0,5 1 -1 0,5 1,5 -0,5 2 0 1 0,5 1,5 -0,5 0 1 0 0,5 1,5 -0,5 2 1 0 0,5 1,5 -0,5 1 1 0 0,5 1,5 -0,5 2 1 1 0,5 1,5 -0,5 1,5 1 0 0,5 1,5 -0,5
  • 23. Ejemplo usando un Perceptron Ite X1 x2 w1 w2 u act Y E w1 w2 u 3 0 0 0,5 1,5 -0,5 -0,5 0 0 0,5 1,5 -0,5 3 0 1 0,5 1,5 -0,5 0 1 0 0,5 1,5 -0,5 3 1 0 0,5 1,5 -0,5 1 1 0 0,5 1,5 -0,5 3 1 1 0,5 1,5 -0,5 1,5 1 0 0,5 1,5 -0,5
  • 24. Ejemplo usando un Perceptron La compuerta OR, por ser una función linealmente separable puede ser aprendida por un perceptron
  • 25. GRACIAS POR SU ATENCION