SlideShare una empresa de Scribd logo
Contenido
INTRODUCCION
La programación lineal es un procedimiento o algoritmo matemático mediante el
cual se resuelve un problema indeterminado, formulado a través de un sistema de
inecuaciones lineales, optimizando la función objetivo, también lineal
Consiste en optimizar (minimizar o maximizar) una función lineal, denominada
función objetivo, de tal forma que las variables de dicha función estén sujetas a
una serie de restricciones que expresamos mediante un sistema de inecuaciones
lineales
Es un enfoque de solución de problemas elaborado para ayudar a tomar
decisiones. Es un modelo matemático con una función objetivo lineal, un conjunto
de restricciones lineales variables no negativas. En el ambiente de negocios
actual, pueden encontrarse gran cantidad de aplicaciones.
La función objetivo define la cantidad que se va a maximizar o minimizar en un
modelo de programación lineal.
Las restricciones limitan o reducen el grado en que puede perseguirse el objetivo.
Las variables son las entradas controlables en el problema.
1. Entender el problema a fondo.
2. Describir el objetivo.
3. Describir cada restricción.
4. Definir las variables de decisión.
5. Escribir el objetivo en función de las
variables de decisión.
6. Escribir las restricciones en función de
las variables de decisión.
7. Agregar las restricciones de no negatividad.
Representación de un problema donde el objetivo y todas las condiciones de restricción
se describen con expresiones matemáticas.
Conjunto de restricciones que requiere que todas las variables sean no negativas.
Solución que satisface simultáneamente todas las restricciones.
Conjunto de todas las soluciones factibles.
Variable agregada al lado izquierdo de una restricción de "menos o igual que" para
convertir la restricción en una igualdad. El valor de esta variable comúnmente puede
interpretarse como la cantidad de recurso no usado.
Programación lineal en el que todas las restricciones están escritas como igualdades.
La solución óptima de la forma estándar de un programa lineal es la misma que la
solución óptima de la formulación original del programa lineal.
Desde el punto de vista gráfico, los puntos extremos son los puntos de solución factible
que ocurren en los vértices o "esquinas" de la región factible. Con problemas de dos
variables, los puntos extremos están determinados por la intersección de las líneas de
restricción.
Variable restada del lado izquierdo de una restricción de "mayor o igual que" para
convertir dicha restricción en una igualdad. Generalmente el valor de esta variable
puede interpretarse como la cantidad por encima de algún nivel mínimo requerido
La programaciónlineal estudialassituacionesenlasque se exige maximizarominimizarfunciones
que se encuentransujetasadeterminadas limitaciones,que llamaremosrestricciones.
Funciónobjetivo
La programaciónlineal consiste enoptimizar(maximizarominimizar) unafunciónobjetivo,que es
una funciónlinealde variasvariables:
Función objetivo
Restricciones
Maximizarominimizar
Condicionesque satisfacen el
sistema de igualdad y
desigualdad >o<
Unos grandes almacenes encargan a un fabricante pantalones y chaquetas
deportivas. El fabricante dispone para la confección de 750 m de tejido de algodón y 1000
m de tejido de poliéster. Cada pantalón precisa 1 m de algodón y 2 m de poliéster. Para
cada chaqueta se necesitan 1.5 m de algodón y 1 m de poliéster. El precio del pantalón se
fija en 50 € y el de la chaqueta en 40 €. ¿Qué número de pantalones y chaquetas debe
suministrar el fabricante a los almacenes para que estos consigan una venta máxima?
Resolución
x = número de pantalones
y = número de chaquetas
Función objetivo
f(x,y)= 50x + 40y
3 Restricciones
Para escribir las restricciones vamos a ayudarnos de una tabla:
Pantalones chaquetas disponibles
Algodón 1 1.5 750
Poliéster 2 1 1000
x + 1.5y ≤ 750 2x+3y≤1500
2x + y ≤ 1000
Como el número de pantalones y chaquetas son números naturales, tendremos dos
restricciones más:
x ≥ 0
y ≥ 0
Ejercicios 1
4 Hallar el conjunto de soluciones factibles
Tenemos que representar gráficamente las restricciones.
Al ser x ≥ 0 e y ≥ 0, trabajaremos en el primer cuadrante.
Representamos las rectas, a partir de sus puntos de corte con los ejes.
Resolvemos gráficamente la inecuación: 2x + 3y ≤ 1500, para ello tomamos un punto del
plano, por ejemplo el (0,0).
2·0 + 3·0 ≤ 1 500
Como 0 ≤ 1 500 entonces el punto (0,0) se encuentra en el semiplano donde se cumple la
desigualdad.
De modo análogo resolvemos 2x + y ≤ 1000.
2·0 + 0 ≤ 1 00
La zona de intersección de las soluciones de las inecuaciones sería la solución al sistema de
inecuaciones, que constituye el conjunto de las soluciones factibles.
5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.
La solución óptima, si es única, se encuentra en un vértice del recinto. estos son las
soluciones a los sistemas:
2x + 3y = 1500; x = 0 (0, 500)
2x + y = 1000; y = 0 (500, 0)
2x + 3y =1500; 2x + y = 1000 (375, 250)
6 Calcular el valor de la función objetivo
En la función objetivo sustituimos cada uno de
los vértices.
f(x, y) = 50x + 40y
f(0, 500) = 50 · 0 + 40 · 500 = 20000 €
f(500, 0) = 50 · 500 + 40 · 0 = 25000 €
f(375, 250) = 50 · 375 + 40 · 250 = 28750
€ Máximo
La solución óptima es fabricar 375 pantalones y
250 chaquetas para obtener un beneficio de 28750 €
Una empresa de transportes tiene dos tipos de camiones, los del tipo A con un
espacio refrigerado de 20 m3 y un espacio no refrigerado de 40 m3. Los del tipo B, con
igual cubicaje total, al 50% de refrigerado y no refrigerado. La contratan para el transporte
de 3 000 m3 de producto que necesita refrigeración y 4 000 m3 de otro que no la necesita. El
coste por kilómetro de un camión del tipo A es de 30 € y el B de 40 €. ¿Cuántos camiones
de cada tipo ha de utilizar para que el coste total sea mínimo?
1 Elección de las incógnitas.
x = camiones de tipo A
y = camiones de tipo B
2 Función objetivo
f(x,y) = 30x + 40y
3 Restricciones
A B TOTAL
Refrigeradora 20 30 3000
No refrigeradora 40 30 4000
20x + 30y ≥ 3 000
40x + 30y ≥ 4 000
x ≥ 0
y ≥ 0
EEJERCICIO 2
2ERCICIO2
4 Hallar el conjunto de soluciones factibles
.-
5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.
6 Calcular el valor de la función objetivo
f(0, 400/3) = 30 · 0 + 40 · 400/3 = 5 333.332
f(150, 0) = 30 · 150 + 40 · 0 = 4 500
Como x e y han de ser números naturales redondeamos el valor de y.
f(50, 67) = 30 · 50 + 40 · 67 = 4180 Mínimo
El coste mínimo son 4 180 € para A = 50 yz B = 67.
Con el comienzo del curso se va a lanzar unas ofertas de material escolar. Unos almacenes
quieren ofrecer 600 cuadernos, 500 carpetas y 400 bolígrafos para la oferta,
empaquetándolo de dos formas distintas; en el primer bloque pondrá 2 cuadernos, 1 carpeta
y 2 bolígrafos; en el segundo, pondrán 3 cuadernos, 1 carpeta y 1 bolígrafo. Los precios de
cada paquete serán 6.5 y 7 €, respectivamente. ¿Cuántos paquetes le conviene poner de
cada tipo para obtener el máximo beneficio?
1 Elección de las incógnitas.
x = P1
y = P2
2 Función objetivo
f(x, y) = 6.5x + 7y
3 Restricciones
P1 P2 DISPONIBLE
CUADERNOS 2 3 600
CARPETAS 1 1 500
BOLIGRAFOS 2 1 400
2x + 3y ≤ 600
x + y ≤ 500
2x + y ≤ 400
x ≥ 0
y ≥ 0
EJERCICIO 3
4 Hallar el conjunto de soluciones factibles
5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.
6 Calcular el valor de la función objetivo
f(x,y) = 6.5 · 200 + 7 · 0 = 1300 €
f(x,y)= 6.5 · 0 + 7 · 200 = 1 400 €
f(x,y)= 6.5 · 150 + 7 · 100 = 1 675 € Máximo
La solución óptima son 150 P1 y 100 P2 con la que se obtienen 1 675 €
Unos grandes almacenes desean liquidar 200 camisas y 100 pantalones de la temporada
anterior. Para ello lanzan, dos ofertas, A y B. La oferta A consiste en un lote de una camisa
y un pantalón, que se venden a 30 €; la oferta B consiste en un lote de tres camisas y un
pantalón, que se vende a 50 €. No se desea ofrecer menos de 20 lotes de la oferta A ni
menos de 10 de la B. ¿Cuántos lotes ha de vender de cada tipo para maximizar la ganancia?
1 Elección de las incógnitas.
x = nº de lotes de A
y = nº de lotes de B
2 Función objetivo
f(x, y) = 30x + 50y
3 Restricciones
A B MINIMO
CAMISAS 1 3 200
PANTALONES 1 1 100
x + 3y ≤ 200
x + y ≤ 100
x ≥ 20
y ≥ 10
Ejercicio 4
4 Hallar el conjunto de soluciones factibles
5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.
6 Calcular el valor de la función objetivo
f(x, y) = 30 · 20 + 50 · 10 = 1100 €
f(x, y) = 30 · 90 + 50 · 10 = 3200 €
f(x, y) = 30 · 20 + 50 · 60 = 3600 €
f(x, y) = 30 · 50 + 50 · 50 = 4000 € Máximo
Con 50 lotes de cada tipo se obtiene una ganancia máxima de 4000 €.
Se dispone de 600 g de un determinado fármaco para elaborar pastillas grandes y pequeñas.
Las grandes pesan 40 g y las pequeñas 30 g. Se necesitan al menos tres pastillas grandes, y
al menos el doble de pequeñas que de las grandes. Cada pastilla grande proporciona un
beneficio de 2 € y la pequeña de 1 €. ¿Cuántas pastillas se han de elaborar de cada clase
para que el beneficio sea máximo?
1 Elección de las incógnitas.
x = Pastillas grandes
y = Pastillas pequeñas
2 Función objetivo
f(x, y) = 2x + y
3 Restricciones
40x + 30y ≤ 600
x ≥ 3
y ≥ 2x
x ≥ 0
y ≥ 0
4 Hallar el conjunto de soluciones factibles
Ejercicio 5
5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.
6 Calcular el valor de la función objetivo
f(x, y) = 2 · 3 + 16 = 22 €
f(x, y) = 2 · 3 + 6 = 12 €
f(x, y) = 2 · 6 + 12 = 24 € Máximo
El máximo beneficio es de 24 €, y se obtiene fabricando 6 pastillas grandes y 12 pequeñas.
Se dispone de 600 g de un determinado fármaco para elaborar pastillas grandes y pequeñas.
Las grandes pesan 40 g y las pequeñas 30 g. Se necesitan al menos tres pastillas grandes, y
al menos el doble de pequeñas que de las grandes. Cada pastilla grande proporciona un
beneficio de 2 € y la pequeña de 1 €. ¿Cuántas pastillas se han de elaborar de cada clase
para que el beneficio sea máximo?
1 Elección de las incógnitas.
x = Pastillas grandes
y = Pastillas pequeñas
2 Función objetivo
f(x, y) = 2x + y
3 Restricciones
40x + 30y ≤ 600
x ≥ 3
y ≥ 2x
x ≥ 0
y ≥ 0
4 Hallar el conjunto de soluciones factibles
5 Calcular las coordenadas de los vértices
del recinto de las soluciones factibles.
Ejercicio 6
6 Calcular el valor de la función objetivo
f(x, y) = 2 · 3 + 16 = 22 €
f(x, y) = 2 · 3 + 6 = 12 €
f(x, y) = 2 · 6 + 12 = 24 € Máximo
El máximo beneficio es de 24 €, y se obtiene fabricando 6 pastillas grandes y 12 pequeñas.
Una compañía fabrica y venden dos modelos de lámpara L1 y L2. Para su
fabricación se necesita un trabajo manual de 20 minutos para el modelo L1 y de 30 minutos
para el L2; y un trabajo de máquina para L1 y de 10 minutos para L2. Se dispone para el
trabajo manual de 100 horas al mes y para la máquina 80 horas al mes. Sabiendo que el
beneficio por unidad es de 15 y 10 euros para L1 y L2, respectivamente, planificar la
producción para obtener el máximo beneficio.
1 Elección de las incógnitas.
x = nº de lámparas L1
y = nº de lámparas L2
2 Función objetivo
f(x, y) = 15x + 10y
3 Restricciones
Pasamos los tiempos a horas
20 min = 1/3 h
30 min = 1/2 h
10 min = 1/6 h
Para escribir las restricciones vamos a ayudarnos de una tabla:
L1 L2 TIEMPO
MANUAL 1/3 1/2 100
MAQUINA 1/3 1/2 80
1/3x + 1/2y ≤ 100
1/3x + 1/6y ≤ 80
Como el número de lámparas son números naturales, tendremos dos restricciones más:
x ≥ 0
y ≥ 0
EJERCICIO 7
4 Hallar el conjunto de soluciones factibles
Tenemos que representar gráficamente las restricciones.
Al ser x ≥ 0 e y ≥ 0, trabajaremos en el primer cuadrante.
Representamos las rectas, a partir de sus puntos de corte con los ejes.
Resolvemos gráficamente la inecuación: 1/3 x + 1/2 y ≤ 100; para ello tomamos un punto
del plano, por ejemplo el (0,0).
1/3·0 + 1/2·0 ≤ 100
1/3·0 + 1/6·0 ≤ 80
La zona de intersección de las soluciones de las inecuaciones sería la solución al sistema de
inecuaciones, que constituye el conjunto de las soluciones factibles.
5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.
La solución óptima si es única se encuentra en un vértice del recinto. estos son las
soluciones a los sistemas:
1/3x + 1/2y = 100; x = 0 (0, 200)
1/3x + 1/6y = 80; y = 0(240, 0)
1/3x + 1/2y = 100; 1/3x + 1/6y = 80(210, 60)
6 Calcular el valor de la función objetivo
En la función objetivo sustituimos cada uno de los vértices.
f(x, y) = 15x + 10y
f(0, 200) = 15·0 + 10·200 = 2 000 €
f(240, 0 ) = 15·240 + 10·0 = 3 600 €
f(210, 60) = 15·210 + 10·60 = 3 750 € Máximo
La solución óptima es fabricar 210 del modelo L1 y 60 del modelo L1 para obtener un
beneficio de 3 750 €
En una granja de pollos se da una dieta, para engordar, con una composición
mínima de 15 unidades de una sustancia A y otras 15 de una sustancia B. En el mercado
sólo se encuentra dos clases de compuestos: el tipo X con una composición de una unidad
de A y 5 de B, y el otro tipo, Y, con una composición de cinco unidades de A y una de B.
El precio del tipo X es de 10 euros y del tipo Y es de 30 €. ¿Qué cantidades se han de
comprar de cada tipo para cubrir las necesidades con un coste mínimo?
1 Elección de las incógnitas.
x = X
y = Y
2 Función objetivo
f(x,y) = 10x + 30y
3 Restricciones
X Y Mínimo
A 1 5 15
B 5 1 15
x + 5y ≥ 15
5x + y ≥ 15
x ≥ 0
y ≥ 0
EJERCICIO 8
4 Hallar el conjunto de soluciones factibles
5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.
6 Calcular el valor de la función objetivo
f(0, 15) = 10 · 0 + 30 · 15 = 450
f(15, 0) = 10 · 15 + 30 · 0 = 150
f(5/2, 5/2) = 10 · 5/2 + 30 · 5/2 = 100 Mínimo
El coste mínimo son 100 € para X = 5/2 e Y = 5/2.

Más contenido relacionado

La actualidad más candente

Ejercicios resueltos-programacion-lineal
Ejercicios resueltos-programacion-linealEjercicios resueltos-programacion-lineal
Ejercicios resueltos-programacion-lineal
Gabriel Chavez
 
2 precio dual y costo reducido (1)
2 precio dual y costo reducido (1)2 precio dual y costo reducido (1)
2 precio dual y costo reducido (1)
Pierina Diaz Meza
 
Ejercicios resueltos io 1 parte 1
Ejercicios resueltos io 1   parte 1Ejercicios resueltos io 1   parte 1
Ejercicios resueltos io 1 parte 1
fzeus
 
Ejercicios metodo simplex practica
Ejercicios metodo simplex practicaEjercicios metodo simplex practica
Ejercicios metodo simplex practica
Southern Copper Corporation
 
Problemas rsueltos pl
Problemas rsueltos plProblemas rsueltos pl
Problemas rsueltos pl
Maykol Fernandez Huayhua
 
Vbtora98
Vbtora98Vbtora98
Programación lineal. bicicletas
Programación lineal. bicicletasProgramación lineal. bicicletas
Programación lineal. bicicletas
Rotakit
 
Problemas de tarea trasporte
Problemas de tarea trasporteProblemas de tarea trasporte
Problemas de tarea trasporte
Jaime Medrano
 
solucionario Investigación de operaciones Hamdy a. Taha
 solucionario Investigación de operaciones Hamdy a. Taha solucionario Investigación de operaciones Hamdy a. Taha
solucionario Investigación de operaciones Hamdy a. Taha
angel05az
 
ejercicios-resueltos-programacion-lineal
 ejercicios-resueltos-programacion-lineal ejercicios-resueltos-programacion-lineal
ejercicios-resueltos-programacion-lineal
Andres Sanchez
 
investigacion de operaciones
investigacion de operacionesinvestigacion de operaciones
investigacion de operaciones
Angel Chirinos Quispe
 
5.0 programación lineal
5.0 programación lineal5.0 programación lineal
5.0 programación lineal
jaldanam
 
Ejercicios resueltos programacion lineal
Ejercicios resueltos programacion linealEjercicios resueltos programacion lineal
Ejercicios resueltos programacion lineal
Johana Rios Solano
 
Programación lineal entera y binaria
Programación lineal entera y binariaProgramación lineal entera y binaria
Programación lineal entera y binaria
Jaime Medrano
 
Semana 6.7 modelo de trasbordo
Semana 6.7 modelo de trasbordoSemana 6.7 modelo de trasbordo
Semana 6.7 modelo de trasbordo
adik barreto
 
Clase Nº5 Programacion Lineal
Clase Nº5 Programacion LinealClase Nº5 Programacion Lineal
Clase Nº5 Programacion Lineal
jotape74
 
Método gráfico
Método gráficoMétodo gráfico
Método gráfico
Jaime Medrano
 
Unidad 1. Programación entera
Unidad 1. Programación enteraUnidad 1. Programación entera
Unidad 1. Programación entera
Universidad del golfo de México Norte
 
Problemas resueltos(1)
Problemas resueltos(1)Problemas resueltos(1)
Problemas resueltos(1)
luis antonio riveros capia
 
Ejercicios resueltos de maximización: de método simplex
Ejercicios resueltos de maximización: de método simplexEjercicios resueltos de maximización: de método simplex
Ejercicios resueltos de maximización: de método simplex
JuanMiguelCustodioMo
 

La actualidad más candente (20)

Ejercicios resueltos-programacion-lineal
Ejercicios resueltos-programacion-linealEjercicios resueltos-programacion-lineal
Ejercicios resueltos-programacion-lineal
 
2 precio dual y costo reducido (1)
2 precio dual y costo reducido (1)2 precio dual y costo reducido (1)
2 precio dual y costo reducido (1)
 
Ejercicios resueltos io 1 parte 1
Ejercicios resueltos io 1   parte 1Ejercicios resueltos io 1   parte 1
Ejercicios resueltos io 1 parte 1
 
Ejercicios metodo simplex practica
Ejercicios metodo simplex practicaEjercicios metodo simplex practica
Ejercicios metodo simplex practica
 
Problemas rsueltos pl
Problemas rsueltos plProblemas rsueltos pl
Problemas rsueltos pl
 
Vbtora98
Vbtora98Vbtora98
Vbtora98
 
Programación lineal. bicicletas
Programación lineal. bicicletasProgramación lineal. bicicletas
Programación lineal. bicicletas
 
Problemas de tarea trasporte
Problemas de tarea trasporteProblemas de tarea trasporte
Problemas de tarea trasporte
 
solucionario Investigación de operaciones Hamdy a. Taha
 solucionario Investigación de operaciones Hamdy a. Taha solucionario Investigación de operaciones Hamdy a. Taha
solucionario Investigación de operaciones Hamdy a. Taha
 
ejercicios-resueltos-programacion-lineal
 ejercicios-resueltos-programacion-lineal ejercicios-resueltos-programacion-lineal
ejercicios-resueltos-programacion-lineal
 
investigacion de operaciones
investigacion de operacionesinvestigacion de operaciones
investigacion de operaciones
 
5.0 programación lineal
5.0 programación lineal5.0 programación lineal
5.0 programación lineal
 
Ejercicios resueltos programacion lineal
Ejercicios resueltos programacion linealEjercicios resueltos programacion lineal
Ejercicios resueltos programacion lineal
 
Programación lineal entera y binaria
Programación lineal entera y binariaProgramación lineal entera y binaria
Programación lineal entera y binaria
 
Semana 6.7 modelo de trasbordo
Semana 6.7 modelo de trasbordoSemana 6.7 modelo de trasbordo
Semana 6.7 modelo de trasbordo
 
Clase Nº5 Programacion Lineal
Clase Nº5 Programacion LinealClase Nº5 Programacion Lineal
Clase Nº5 Programacion Lineal
 
Método gráfico
Método gráficoMétodo gráfico
Método gráfico
 
Unidad 1. Programación entera
Unidad 1. Programación enteraUnidad 1. Programación entera
Unidad 1. Programación entera
 
Problemas resueltos(1)
Problemas resueltos(1)Problemas resueltos(1)
Problemas resueltos(1)
 
Ejercicios resueltos de maximización: de método simplex
Ejercicios resueltos de maximización: de método simplexEjercicios resueltos de maximización: de método simplex
Ejercicios resueltos de maximización: de método simplex
 

Destacado

Programacion lineal trabajo final-
Programacion lineal  trabajo final-Programacion lineal  trabajo final-
Programacion lineal trabajo final-
Dayana Castro
 
Informe Proyecto Programación lineal
Informe Proyecto Programación linealInforme Proyecto Programación lineal
Informe Proyecto Programación lineal
Michelle Cordano
 
Proyecto programación lineal
Proyecto   programación linealProyecto   programación lineal
Proyecto programación lineal
Michelle Cordano
 
“PROGRAMACIÓN LINEAL: COMO HERRAMIENTA PARA LA TOMA DE DECISIONES”
“PROGRAMACIÓN LINEAL: COMO HERRAMIENTA PARA LA TOMA DE DECISIONES”“PROGRAMACIÓN LINEAL: COMO HERRAMIENTA PARA LA TOMA DE DECISIONES”
“PROGRAMACIÓN LINEAL: COMO HERRAMIENTA PARA LA TOMA DE DECISIONES”
vanessa sobvio
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
Juliana Isola
 
Herramientas de programación lineal
Herramientas de programación linealHerramientas de programación lineal
Herramientas de programación lineal
Manuel Abanto Flores
 
Ejercicios de Programacion Lineal, LINDO, teoria de decisiones
Ejercicios de Programacion Lineal, LINDO, teoria de decisionesEjercicios de Programacion Lineal, LINDO, teoria de decisiones
Ejercicios de Programacion Lineal, LINDO, teoria de decisiones
Héctor Antonio Barba Nanfuñay
 
Programación lineal
Programación linealProgramación lineal
Programación lineal
CarlaAucancela
 
Programación lineal
Programación linealProgramación lineal
Programación lineal
Mari Carmen Torres Alonso
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
Marcelo Patricio
 
Trabajo colaborativo 1_grupo_100404_143
Trabajo colaborativo 1_grupo_100404_143Trabajo colaborativo 1_grupo_100404_143
Trabajo colaborativo 1_grupo_100404_143
Pablo Ayala
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
Willito1495
 
Momento 2 aporte individual
Momento 2 aporte individualMomento 2 aporte individual
Momento 2 aporte individual
Angel Eduardo Rodriguez Wiesner
 
Tc2 301403 21
Tc2 301403 21Tc2 301403 21
Tc2 301403 21
Emerson Quintero
 
Trabajo colaborativo 2_ edw acuaciones diferenciales
Trabajo colaborativo 2_ edw acuaciones diferencialesTrabajo colaborativo 2_ edw acuaciones diferenciales
Trabajo colaborativo 2_ edw acuaciones diferenciales
wilsontellez
 
Programación Lineal con WinQsb
Programación Lineal con WinQsbProgramación Lineal con WinQsb
Programación Lineal con WinQsb
Yolanda Paredes
 
Programación lineal
Programación linealProgramación lineal
Programación lineal
danile889_l
 
Programación lineal
Programación linealProgramación lineal
Programación lineal
fabioernestoU
 
PROGRAMACION LINEAL - METODO SIMPLEX
PROGRAMACION LINEAL - METODO SIMPLEXPROGRAMACION LINEAL - METODO SIMPLEX
PROGRAMACION LINEAL - METODO SIMPLEX
jjsch01
 
MANUAL WINQSB
MANUAL WINQSBMANUAL WINQSB
MANUAL WINQSB
MANUEL GARCIA
 

Destacado (20)

Programacion lineal trabajo final-
Programacion lineal  trabajo final-Programacion lineal  trabajo final-
Programacion lineal trabajo final-
 
Informe Proyecto Programación lineal
Informe Proyecto Programación linealInforme Proyecto Programación lineal
Informe Proyecto Programación lineal
 
Proyecto programación lineal
Proyecto   programación linealProyecto   programación lineal
Proyecto programación lineal
 
“PROGRAMACIÓN LINEAL: COMO HERRAMIENTA PARA LA TOMA DE DECISIONES”
“PROGRAMACIÓN LINEAL: COMO HERRAMIENTA PARA LA TOMA DE DECISIONES”“PROGRAMACIÓN LINEAL: COMO HERRAMIENTA PARA LA TOMA DE DECISIONES”
“PROGRAMACIÓN LINEAL: COMO HERRAMIENTA PARA LA TOMA DE DECISIONES”
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
 
Herramientas de programación lineal
Herramientas de programación linealHerramientas de programación lineal
Herramientas de programación lineal
 
Ejercicios de Programacion Lineal, LINDO, teoria de decisiones
Ejercicios de Programacion Lineal, LINDO, teoria de decisionesEjercicios de Programacion Lineal, LINDO, teoria de decisiones
Ejercicios de Programacion Lineal, LINDO, teoria de decisiones
 
Programación lineal
Programación linealProgramación lineal
Programación lineal
 
Programación lineal
Programación linealProgramación lineal
Programación lineal
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
 
Trabajo colaborativo 1_grupo_100404_143
Trabajo colaborativo 1_grupo_100404_143Trabajo colaborativo 1_grupo_100404_143
Trabajo colaborativo 1_grupo_100404_143
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
 
Momento 2 aporte individual
Momento 2 aporte individualMomento 2 aporte individual
Momento 2 aporte individual
 
Tc2 301403 21
Tc2 301403 21Tc2 301403 21
Tc2 301403 21
 
Trabajo colaborativo 2_ edw acuaciones diferenciales
Trabajo colaborativo 2_ edw acuaciones diferencialesTrabajo colaborativo 2_ edw acuaciones diferenciales
Trabajo colaborativo 2_ edw acuaciones diferenciales
 
Programación Lineal con WinQsb
Programación Lineal con WinQsbProgramación Lineal con WinQsb
Programación Lineal con WinQsb
 
Programación lineal
Programación linealProgramación lineal
Programación lineal
 
Programación lineal
Programación linealProgramación lineal
Programación lineal
 
PROGRAMACION LINEAL - METODO SIMPLEX
PROGRAMACION LINEAL - METODO SIMPLEXPROGRAMACION LINEAL - METODO SIMPLEX
PROGRAMACION LINEAL - METODO SIMPLEX
 
MANUAL WINQSB
MANUAL WINQSBMANUAL WINQSB
MANUAL WINQSB
 

Similar a Trabajo final programación lineal

Integrales racionales o fracción simple
Integrales racionales o fracción simpleIntegrales racionales o fracción simple
Integrales racionales o fracción simple
Jeider Luque F
 
Ejercio resuelto
Ejercio resueltoEjercio resuelto
Ejercio resuelto
Manuel Bedoya D
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
Juan Salvador
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
Juan Salvador
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
Juan Salvador
 
Problemas de programacion lineal
Problemas de programacion linealProblemas de programacion lineal
Problemas de programacion lineal
CALDE24
 
SIMULACION REPASO USO SOLVER.ppt
SIMULACION REPASO  USO SOLVER.pptSIMULACION REPASO  USO SOLVER.ppt
SIMULACION REPASO USO SOLVER.ppt
DennisRecharte
 
05 programacion lineal a
05 programacion lineal a05 programacion lineal a
05 programacion lineal a
Jhonatan Chuquilin
 
Sem 4_modelo_matematico_Metodo_grafico_Casos especiales - copia.pdf
Sem 4_modelo_matematico_Metodo_grafico_Casos especiales - copia.pdfSem 4_modelo_matematico_Metodo_grafico_Casos especiales - copia.pdf
Sem 4_modelo_matematico_Metodo_grafico_Casos especiales - copia.pdf
NelsonMartinez771386
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
CHANEL SCHNEIDER
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
ramirezjr
 
Algoritmos especiales
Algoritmos especialesAlgoritmos especiales
Algoritmos especiales
Thania2608
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
Ing_Yarelis_Vargas
 
Programacion Lineal
Programacion LinealProgramacion Lineal
Programacion Lineal
domingcm2014
 
Separata proglineal
Separata proglinealSeparata proglineal
Separata proglineal
Talento Universitario
 
Programacion lineal 2
Programacion lineal 2Programacion lineal 2
Programacion lineal 2
Vilma Bravo
 
Programacion lineal 2014
Programacion lineal 2014Programacion lineal 2014
Programacion lineal 2014
doreligp21041969
 
Funciones lineales
Funciones linealesFunciones lineales
Funciones lineales
PachitoRodriguezBaen
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
israeldixz
 
Introducción a la programación
Introducción a la programaciónIntroducción a la programación
Introducción a la programación
Huguier Sánchez del Castillo
 

Similar a Trabajo final programación lineal (20)

Integrales racionales o fracción simple
Integrales racionales o fracción simpleIntegrales racionales o fracción simple
Integrales racionales o fracción simple
 
Ejercio resuelto
Ejercio resueltoEjercio resuelto
Ejercio resuelto
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
 
Problemas de programacion lineal
Problemas de programacion linealProblemas de programacion lineal
Problemas de programacion lineal
 
SIMULACION REPASO USO SOLVER.ppt
SIMULACION REPASO  USO SOLVER.pptSIMULACION REPASO  USO SOLVER.ppt
SIMULACION REPASO USO SOLVER.ppt
 
05 programacion lineal a
05 programacion lineal a05 programacion lineal a
05 programacion lineal a
 
Sem 4_modelo_matematico_Metodo_grafico_Casos especiales - copia.pdf
Sem 4_modelo_matematico_Metodo_grafico_Casos especiales - copia.pdfSem 4_modelo_matematico_Metodo_grafico_Casos especiales - copia.pdf
Sem 4_modelo_matematico_Metodo_grafico_Casos especiales - copia.pdf
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
 
Algoritmos especiales
Algoritmos especialesAlgoritmos especiales
Algoritmos especiales
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
 
Programacion Lineal
Programacion LinealProgramacion Lineal
Programacion Lineal
 
Separata proglineal
Separata proglinealSeparata proglineal
Separata proglineal
 
Programacion lineal 2
Programacion lineal 2Programacion lineal 2
Programacion lineal 2
 
Programacion lineal 2014
Programacion lineal 2014Programacion lineal 2014
Programacion lineal 2014
 
Funciones lineales
Funciones linealesFunciones lineales
Funciones lineales
 
Programacion lineal
Programacion linealProgramacion lineal
Programacion lineal
 
Introducción a la programación
Introducción a la programaciónIntroducción a la programación
Introducción a la programación
 

Último

CORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZA
CORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZACORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZA
CORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZA
Sandra Mariela Ballón Aguedo
 
Hablemos de ESI para estudiantes Cuadernillo
Hablemos de ESI para estudiantes CuadernilloHablemos de ESI para estudiantes Cuadernillo
Hablemos de ESI para estudiantes Cuadernillo
Mónica Sánchez
 
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdfFEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
Jose Luis Jimenez Rodriguez
 
Blogs_y_Educacion_Por Zaracho Lautaro_.pdf
Blogs_y_Educacion_Por Zaracho Lautaro_.pdfBlogs_y_Educacion_Por Zaracho Lautaro_.pdf
Blogs_y_Educacion_Por Zaracho Lautaro_.pdf
lautyzaracho4
 
El Cerebro se Cambia a si Mismo-Norman Doidge.pdf
El Cerebro se Cambia a si Mismo-Norman Doidge.pdfEl Cerebro se Cambia a si Mismo-Norman Doidge.pdf
El Cerebro se Cambia a si Mismo-Norman Doidge.pdf
Robert Zuñiga Vargas
 
Docentes y el uso de chatGPT en el Aula Ccesa007.pdf
Docentes y el uso de chatGPT   en el Aula Ccesa007.pdfDocentes y el uso de chatGPT   en el Aula Ccesa007.pdf
Docentes y el uso de chatGPT en el Aula Ccesa007.pdf
Demetrio Ccesa Rayme
 
Lecciones 10 Esc. Sabática. El espiritismo desenmascarado docx
Lecciones 10 Esc. Sabática. El espiritismo desenmascarado docxLecciones 10 Esc. Sabática. El espiritismo desenmascarado docx
Lecciones 10 Esc. Sabática. El espiritismo desenmascarado docx
Alejandrino Halire Ccahuana
 
Respuesta del icfes pre saber verificadas
Respuesta del icfes pre saber verificadasRespuesta del icfes pre saber verificadas
Respuesta del icfes pre saber verificadas
KarenCaicedo28
 
SEMIOLOGIA DE HEMORRAGIAS DIGESTIVAS.pptx
SEMIOLOGIA DE HEMORRAGIAS DIGESTIVAS.pptxSEMIOLOGIA DE HEMORRAGIAS DIGESTIVAS.pptx
SEMIOLOGIA DE HEMORRAGIAS DIGESTIVAS.pptx
Osiris Urbano
 
Manual de procedimiento para gráficos HC
Manual de procedimiento para gráficos HCManual de procedimiento para gráficos HC
Manual de procedimiento para gráficos HC
josseanlo1581
 
PPT_Servicio de Bandeja a Paciente Hospitalizado.pptx
PPT_Servicio de Bandeja a Paciente Hospitalizado.pptxPPT_Servicio de Bandeja a Paciente Hospitalizado.pptx
PPT_Servicio de Bandeja a Paciente Hospitalizado.pptx
gamcoaquera
 
200. Efemerides junio para trabajar en periodico mural
200. Efemerides junio para trabajar en periodico mural200. Efemerides junio para trabajar en periodico mural
200. Efemerides junio para trabajar en periodico mural
shirherrer
 
Planificación Ejemplo con la metodología TPACK
Planificación Ejemplo con la metodología  TPACKPlanificación Ejemplo con la metodología  TPACK
Planificación Ejemplo con la metodología TPACK
ssusera6697f
 
Evaluacion del tercer trimestre del 2023-2024
Evaluacion del tercer trimestre del 2023-2024Evaluacion del tercer trimestre del 2023-2024
Evaluacion del tercer trimestre del 2023-2024
israelsouza67
 
tema 7. Los siglos XVI y XVII ( resumen)
tema 7. Los siglos XVI y XVII ( resumen)tema 7. Los siglos XVI y XVII ( resumen)
tema 7. Los siglos XVI y XVII ( resumen)
saradocente
 
Camus, Albert - El Extranjero.pdf
Camus, Albert -        El Extranjero.pdfCamus, Albert -        El Extranjero.pdf
Camus, Albert - El Extranjero.pdf
AlexDeLonghi
 
Power Point: El espiritismo desenmascarado
Power Point: El espiritismo desenmascaradoPower Point: El espiritismo desenmascarado
Power Point: El espiritismo desenmascarado
https://gramadal.wordpress.com/
 
RETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docx
RETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docxRETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docx
RETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docx
100078171
 
CONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIA
CONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIACONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIA
CONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIA
ginnazamudio
 
Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...
Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...
Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...
Unidad de Espiritualidad Eudista
 

Último (20)

CORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZA
CORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZACORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZA
CORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZA
 
Hablemos de ESI para estudiantes Cuadernillo
Hablemos de ESI para estudiantes CuadernilloHablemos de ESI para estudiantes Cuadernillo
Hablemos de ESI para estudiantes Cuadernillo
 
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdfFEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
 
Blogs_y_Educacion_Por Zaracho Lautaro_.pdf
Blogs_y_Educacion_Por Zaracho Lautaro_.pdfBlogs_y_Educacion_Por Zaracho Lautaro_.pdf
Blogs_y_Educacion_Por Zaracho Lautaro_.pdf
 
El Cerebro se Cambia a si Mismo-Norman Doidge.pdf
El Cerebro se Cambia a si Mismo-Norman Doidge.pdfEl Cerebro se Cambia a si Mismo-Norman Doidge.pdf
El Cerebro se Cambia a si Mismo-Norman Doidge.pdf
 
Docentes y el uso de chatGPT en el Aula Ccesa007.pdf
Docentes y el uso de chatGPT   en el Aula Ccesa007.pdfDocentes y el uso de chatGPT   en el Aula Ccesa007.pdf
Docentes y el uso de chatGPT en el Aula Ccesa007.pdf
 
Lecciones 10 Esc. Sabática. El espiritismo desenmascarado docx
Lecciones 10 Esc. Sabática. El espiritismo desenmascarado docxLecciones 10 Esc. Sabática. El espiritismo desenmascarado docx
Lecciones 10 Esc. Sabática. El espiritismo desenmascarado docx
 
Respuesta del icfes pre saber verificadas
Respuesta del icfes pre saber verificadasRespuesta del icfes pre saber verificadas
Respuesta del icfes pre saber verificadas
 
SEMIOLOGIA DE HEMORRAGIAS DIGESTIVAS.pptx
SEMIOLOGIA DE HEMORRAGIAS DIGESTIVAS.pptxSEMIOLOGIA DE HEMORRAGIAS DIGESTIVAS.pptx
SEMIOLOGIA DE HEMORRAGIAS DIGESTIVAS.pptx
 
Manual de procedimiento para gráficos HC
Manual de procedimiento para gráficos HCManual de procedimiento para gráficos HC
Manual de procedimiento para gráficos HC
 
PPT_Servicio de Bandeja a Paciente Hospitalizado.pptx
PPT_Servicio de Bandeja a Paciente Hospitalizado.pptxPPT_Servicio de Bandeja a Paciente Hospitalizado.pptx
PPT_Servicio de Bandeja a Paciente Hospitalizado.pptx
 
200. Efemerides junio para trabajar en periodico mural
200. Efemerides junio para trabajar en periodico mural200. Efemerides junio para trabajar en periodico mural
200. Efemerides junio para trabajar en periodico mural
 
Planificación Ejemplo con la metodología TPACK
Planificación Ejemplo con la metodología  TPACKPlanificación Ejemplo con la metodología  TPACK
Planificación Ejemplo con la metodología TPACK
 
Evaluacion del tercer trimestre del 2023-2024
Evaluacion del tercer trimestre del 2023-2024Evaluacion del tercer trimestre del 2023-2024
Evaluacion del tercer trimestre del 2023-2024
 
tema 7. Los siglos XVI y XVII ( resumen)
tema 7. Los siglos XVI y XVII ( resumen)tema 7. Los siglos XVI y XVII ( resumen)
tema 7. Los siglos XVI y XVII ( resumen)
 
Camus, Albert - El Extranjero.pdf
Camus, Albert -        El Extranjero.pdfCamus, Albert -        El Extranjero.pdf
Camus, Albert - El Extranjero.pdf
 
Power Point: El espiritismo desenmascarado
Power Point: El espiritismo desenmascaradoPower Point: El espiritismo desenmascarado
Power Point: El espiritismo desenmascarado
 
RETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docx
RETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docxRETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docx
RETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docx
 
CONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIA
CONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIACONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIA
CONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIA
 
Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...
Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...
Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...
 

Trabajo final programación lineal

  • 1.
  • 3. INTRODUCCION La programación lineal es un procedimiento o algoritmo matemático mediante el cual se resuelve un problema indeterminado, formulado a través de un sistema de inecuaciones lineales, optimizando la función objetivo, también lineal Consiste en optimizar (minimizar o maximizar) una función lineal, denominada función objetivo, de tal forma que las variables de dicha función estén sujetas a una serie de restricciones que expresamos mediante un sistema de inecuaciones lineales Es un enfoque de solución de problemas elaborado para ayudar a tomar decisiones. Es un modelo matemático con una función objetivo lineal, un conjunto de restricciones lineales variables no negativas. En el ambiente de negocios actual, pueden encontrarse gran cantidad de aplicaciones. La función objetivo define la cantidad que se va a maximizar o minimizar en un modelo de programación lineal. Las restricciones limitan o reducen el grado en que puede perseguirse el objetivo. Las variables son las entradas controlables en el problema.
  • 4. 1. Entender el problema a fondo. 2. Describir el objetivo. 3. Describir cada restricción. 4. Definir las variables de decisión. 5. Escribir el objetivo en función de las variables de decisión. 6. Escribir las restricciones en función de las variables de decisión. 7. Agregar las restricciones de no negatividad.
  • 5. Representación de un problema donde el objetivo y todas las condiciones de restricción se describen con expresiones matemáticas. Conjunto de restricciones que requiere que todas las variables sean no negativas. Solución que satisface simultáneamente todas las restricciones. Conjunto de todas las soluciones factibles. Variable agregada al lado izquierdo de una restricción de "menos o igual que" para convertir la restricción en una igualdad. El valor de esta variable comúnmente puede interpretarse como la cantidad de recurso no usado. Programación lineal en el que todas las restricciones están escritas como igualdades. La solución óptima de la forma estándar de un programa lineal es la misma que la solución óptima de la formulación original del programa lineal. Desde el punto de vista gráfico, los puntos extremos son los puntos de solución factible que ocurren en los vértices o "esquinas" de la región factible. Con problemas de dos variables, los puntos extremos están determinados por la intersección de las líneas de restricción. Variable restada del lado izquierdo de una restricción de "mayor o igual que" para convertir dicha restricción en una igualdad. Generalmente el valor de esta variable puede interpretarse como la cantidad por encima de algún nivel mínimo requerido
  • 6. La programaciónlineal estudialassituacionesenlasque se exige maximizarominimizarfunciones que se encuentransujetasadeterminadas limitaciones,que llamaremosrestricciones. Funciónobjetivo La programaciónlineal consiste enoptimizar(maximizarominimizar) unafunciónobjetivo,que es una funciónlinealde variasvariables: Función objetivo Restricciones Maximizarominimizar Condicionesque satisfacen el sistema de igualdad y desigualdad >o<
  • 7.
  • 8. Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante dispone para la confección de 750 m de tejido de algodón y 1000 m de tejido de poliéster. Cada pantalón precisa 1 m de algodón y 2 m de poliéster. Para cada chaqueta se necesitan 1.5 m de algodón y 1 m de poliéster. El precio del pantalón se fija en 50 € y el de la chaqueta en 40 €. ¿Qué número de pantalones y chaquetas debe suministrar el fabricante a los almacenes para que estos consigan una venta máxima? Resolución x = número de pantalones y = número de chaquetas Función objetivo f(x,y)= 50x + 40y 3 Restricciones Para escribir las restricciones vamos a ayudarnos de una tabla: Pantalones chaquetas disponibles Algodón 1 1.5 750 Poliéster 2 1 1000 x + 1.5y ≤ 750 2x+3y≤1500 2x + y ≤ 1000 Como el número de pantalones y chaquetas son números naturales, tendremos dos restricciones más: x ≥ 0 y ≥ 0 Ejercicios 1
  • 9. 4 Hallar el conjunto de soluciones factibles Tenemos que representar gráficamente las restricciones. Al ser x ≥ 0 e y ≥ 0, trabajaremos en el primer cuadrante. Representamos las rectas, a partir de sus puntos de corte con los ejes. Resolvemos gráficamente la inecuación: 2x + 3y ≤ 1500, para ello tomamos un punto del plano, por ejemplo el (0,0). 2·0 + 3·0 ≤ 1 500 Como 0 ≤ 1 500 entonces el punto (0,0) se encuentra en el semiplano donde se cumple la desigualdad. De modo análogo resolvemos 2x + y ≤ 1000. 2·0 + 0 ≤ 1 00
  • 10. La zona de intersección de las soluciones de las inecuaciones sería la solución al sistema de inecuaciones, que constituye el conjunto de las soluciones factibles. 5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles. La solución óptima, si es única, se encuentra en un vértice del recinto. estos son las soluciones a los sistemas: 2x + 3y = 1500; x = 0 (0, 500) 2x + y = 1000; y = 0 (500, 0) 2x + 3y =1500; 2x + y = 1000 (375, 250) 6 Calcular el valor de la función objetivo En la función objetivo sustituimos cada uno de los vértices. f(x, y) = 50x + 40y f(0, 500) = 50 · 0 + 40 · 500 = 20000 € f(500, 0) = 50 · 500 + 40 · 0 = 25000 € f(375, 250) = 50 · 375 + 40 · 250 = 28750 € Máximo La solución óptima es fabricar 375 pantalones y 250 chaquetas para obtener un beneficio de 28750 €
  • 11. Una empresa de transportes tiene dos tipos de camiones, los del tipo A con un espacio refrigerado de 20 m3 y un espacio no refrigerado de 40 m3. Los del tipo B, con igual cubicaje total, al 50% de refrigerado y no refrigerado. La contratan para el transporte de 3 000 m3 de producto que necesita refrigeración y 4 000 m3 de otro que no la necesita. El coste por kilómetro de un camión del tipo A es de 30 € y el B de 40 €. ¿Cuántos camiones de cada tipo ha de utilizar para que el coste total sea mínimo? 1 Elección de las incógnitas. x = camiones de tipo A y = camiones de tipo B 2 Función objetivo f(x,y) = 30x + 40y 3 Restricciones A B TOTAL Refrigeradora 20 30 3000 No refrigeradora 40 30 4000 20x + 30y ≥ 3 000 40x + 30y ≥ 4 000 x ≥ 0 y ≥ 0 EEJERCICIO 2 2ERCICIO2
  • 12. 4 Hallar el conjunto de soluciones factibles .- 5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles. 6 Calcular el valor de la función objetivo f(0, 400/3) = 30 · 0 + 40 · 400/3 = 5 333.332 f(150, 0) = 30 · 150 + 40 · 0 = 4 500 Como x e y han de ser números naturales redondeamos el valor de y. f(50, 67) = 30 · 50 + 40 · 67 = 4180 Mínimo El coste mínimo son 4 180 € para A = 50 yz B = 67.
  • 13. Con el comienzo del curso se va a lanzar unas ofertas de material escolar. Unos almacenes quieren ofrecer 600 cuadernos, 500 carpetas y 400 bolígrafos para la oferta, empaquetándolo de dos formas distintas; en el primer bloque pondrá 2 cuadernos, 1 carpeta y 2 bolígrafos; en el segundo, pondrán 3 cuadernos, 1 carpeta y 1 bolígrafo. Los precios de cada paquete serán 6.5 y 7 €, respectivamente. ¿Cuántos paquetes le conviene poner de cada tipo para obtener el máximo beneficio? 1 Elección de las incógnitas. x = P1 y = P2 2 Función objetivo f(x, y) = 6.5x + 7y 3 Restricciones P1 P2 DISPONIBLE CUADERNOS 2 3 600 CARPETAS 1 1 500 BOLIGRAFOS 2 1 400 2x + 3y ≤ 600 x + y ≤ 500 2x + y ≤ 400 x ≥ 0 y ≥ 0 EJERCICIO 3
  • 14. 4 Hallar el conjunto de soluciones factibles 5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles. 6 Calcular el valor de la función objetivo f(x,y) = 6.5 · 200 + 7 · 0 = 1300 € f(x,y)= 6.5 · 0 + 7 · 200 = 1 400 € f(x,y)= 6.5 · 150 + 7 · 100 = 1 675 € Máximo La solución óptima son 150 P1 y 100 P2 con la que se obtienen 1 675 €
  • 15. Unos grandes almacenes desean liquidar 200 camisas y 100 pantalones de la temporada anterior. Para ello lanzan, dos ofertas, A y B. La oferta A consiste en un lote de una camisa y un pantalón, que se venden a 30 €; la oferta B consiste en un lote de tres camisas y un pantalón, que se vende a 50 €. No se desea ofrecer menos de 20 lotes de la oferta A ni menos de 10 de la B. ¿Cuántos lotes ha de vender de cada tipo para maximizar la ganancia? 1 Elección de las incógnitas. x = nº de lotes de A y = nº de lotes de B 2 Función objetivo f(x, y) = 30x + 50y 3 Restricciones A B MINIMO CAMISAS 1 3 200 PANTALONES 1 1 100 x + 3y ≤ 200 x + y ≤ 100 x ≥ 20 y ≥ 10 Ejercicio 4
  • 16. 4 Hallar el conjunto de soluciones factibles 5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles. 6 Calcular el valor de la función objetivo f(x, y) = 30 · 20 + 50 · 10 = 1100 € f(x, y) = 30 · 90 + 50 · 10 = 3200 € f(x, y) = 30 · 20 + 50 · 60 = 3600 € f(x, y) = 30 · 50 + 50 · 50 = 4000 € Máximo Con 50 lotes de cada tipo se obtiene una ganancia máxima de 4000 €.
  • 17. Se dispone de 600 g de un determinado fármaco para elaborar pastillas grandes y pequeñas. Las grandes pesan 40 g y las pequeñas 30 g. Se necesitan al menos tres pastillas grandes, y al menos el doble de pequeñas que de las grandes. Cada pastilla grande proporciona un beneficio de 2 € y la pequeña de 1 €. ¿Cuántas pastillas se han de elaborar de cada clase para que el beneficio sea máximo? 1 Elección de las incógnitas. x = Pastillas grandes y = Pastillas pequeñas 2 Función objetivo f(x, y) = 2x + y 3 Restricciones 40x + 30y ≤ 600 x ≥ 3 y ≥ 2x x ≥ 0 y ≥ 0 4 Hallar el conjunto de soluciones factibles Ejercicio 5
  • 18. 5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles. 6 Calcular el valor de la función objetivo f(x, y) = 2 · 3 + 16 = 22 € f(x, y) = 2 · 3 + 6 = 12 € f(x, y) = 2 · 6 + 12 = 24 € Máximo El máximo beneficio es de 24 €, y se obtiene fabricando 6 pastillas grandes y 12 pequeñas.
  • 19. Se dispone de 600 g de un determinado fármaco para elaborar pastillas grandes y pequeñas. Las grandes pesan 40 g y las pequeñas 30 g. Se necesitan al menos tres pastillas grandes, y al menos el doble de pequeñas que de las grandes. Cada pastilla grande proporciona un beneficio de 2 € y la pequeña de 1 €. ¿Cuántas pastillas se han de elaborar de cada clase para que el beneficio sea máximo? 1 Elección de las incógnitas. x = Pastillas grandes y = Pastillas pequeñas 2 Función objetivo f(x, y) = 2x + y 3 Restricciones 40x + 30y ≤ 600 x ≥ 3 y ≥ 2x x ≥ 0 y ≥ 0 4 Hallar el conjunto de soluciones factibles 5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles. Ejercicio 6
  • 20. 6 Calcular el valor de la función objetivo f(x, y) = 2 · 3 + 16 = 22 € f(x, y) = 2 · 3 + 6 = 12 € f(x, y) = 2 · 6 + 12 = 24 € Máximo El máximo beneficio es de 24 €, y se obtiene fabricando 6 pastillas grandes y 12 pequeñas.
  • 21. Una compañía fabrica y venden dos modelos de lámpara L1 y L2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L1 y de 30 minutos para el L2; y un trabajo de máquina para L1 y de 10 minutos para L2. Se dispone para el trabajo manual de 100 horas al mes y para la máquina 80 horas al mes. Sabiendo que el beneficio por unidad es de 15 y 10 euros para L1 y L2, respectivamente, planificar la producción para obtener el máximo beneficio. 1 Elección de las incógnitas. x = nº de lámparas L1 y = nº de lámparas L2 2 Función objetivo f(x, y) = 15x + 10y 3 Restricciones Pasamos los tiempos a horas 20 min = 1/3 h 30 min = 1/2 h 10 min = 1/6 h Para escribir las restricciones vamos a ayudarnos de una tabla: L1 L2 TIEMPO MANUAL 1/3 1/2 100 MAQUINA 1/3 1/2 80 1/3x + 1/2y ≤ 100 1/3x + 1/6y ≤ 80 Como el número de lámparas son números naturales, tendremos dos restricciones más: x ≥ 0 y ≥ 0 EJERCICIO 7
  • 22. 4 Hallar el conjunto de soluciones factibles Tenemos que representar gráficamente las restricciones. Al ser x ≥ 0 e y ≥ 0, trabajaremos en el primer cuadrante. Representamos las rectas, a partir de sus puntos de corte con los ejes. Resolvemos gráficamente la inecuación: 1/3 x + 1/2 y ≤ 100; para ello tomamos un punto del plano, por ejemplo el (0,0). 1/3·0 + 1/2·0 ≤ 100 1/3·0 + 1/6·0 ≤ 80 La zona de intersección de las soluciones de las inecuaciones sería la solución al sistema de inecuaciones, que constituye el conjunto de las soluciones factibles. 5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles. La solución óptima si es única se encuentra en un vértice del recinto. estos son las soluciones a los sistemas: 1/3x + 1/2y = 100; x = 0 (0, 200) 1/3x + 1/6y = 80; y = 0(240, 0) 1/3x + 1/2y = 100; 1/3x + 1/6y = 80(210, 60)
  • 23. 6 Calcular el valor de la función objetivo En la función objetivo sustituimos cada uno de los vértices. f(x, y) = 15x + 10y f(0, 200) = 15·0 + 10·200 = 2 000 € f(240, 0 ) = 15·240 + 10·0 = 3 600 € f(210, 60) = 15·210 + 10·60 = 3 750 € Máximo La solución óptima es fabricar 210 del modelo L1 y 60 del modelo L1 para obtener un beneficio de 3 750 €
  • 24. En una granja de pollos se da una dieta, para engordar, con una composición mínima de 15 unidades de una sustancia A y otras 15 de una sustancia B. En el mercado sólo se encuentra dos clases de compuestos: el tipo X con una composición de una unidad de A y 5 de B, y el otro tipo, Y, con una composición de cinco unidades de A y una de B. El precio del tipo X es de 10 euros y del tipo Y es de 30 €. ¿Qué cantidades se han de comprar de cada tipo para cubrir las necesidades con un coste mínimo? 1 Elección de las incógnitas. x = X y = Y 2 Función objetivo f(x,y) = 10x + 30y 3 Restricciones X Y Mínimo A 1 5 15 B 5 1 15 x + 5y ≥ 15 5x + y ≥ 15 x ≥ 0 y ≥ 0 EJERCICIO 8
  • 25. 4 Hallar el conjunto de soluciones factibles 5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.
  • 26. 6 Calcular el valor de la función objetivo f(0, 15) = 10 · 0 + 30 · 15 = 450 f(15, 0) = 10 · 15 + 30 · 0 = 150 f(5/2, 5/2) = 10 · 5/2 + 30 · 5/2 = 100 Mínimo El coste mínimo son 100 € para X = 5/2 e Y = 5/2.