SlideShare una empresa de Scribd logo
1 de 71
Descargar para leer sin conexión
CONCEPTOS GENERALES DEL
ANÁLISIS ESTRUCTURAL
Prof. Carlos Navarro
Departamento de Mecánica de Medios Continuos
y Teoría de Estructuras
LAS CONDICIONES DE SUSTENTACIÓN
DE UNA ESTRUCTURA
LIBERACIÓN DE ESFUERZOS Y
DE REACCIONES
DOS CONCEPTOS BÁSICOS EN EL CÁLCULO DE ESTRUCTURAS:
1.- Liberación de esfuerzos
P
q
S
P
q
S1 S2
NQ
M
N
Q
M=
+
Desplazamientos horizontales de S1 y S2 iguales
Desplazamientos verticales de S1 y S2 iguales
Giros de S1 y S2 iguales
P
q
=
+ Giros de S1 y S2 iguales
P
q
S1
S2
M
M
M
M
S2
S1
Momento flector
P
q
S
=
+ Giros de S1 y S2 iguales
P
q
S1
S2
M
M
S1
S2
M
M
Momento flector
P
q
=
+ Desplazamientos, perpendiculares
a la directriz, de S1 y S2 iguales
P
q
S1
S2
Q
Q
S1
S2
Q Q
Esfuerzo cortante
S
P
q
S
=
+ Desplazamientos, en la dirección
de la directriz, de S1 y S2 iguales
P
q
Esfuerzo axil
S1
S2
N
N
S1
S2
N
N
2.- Liberación de coacciones externas
=P
q
A
B
∑
∑
∑
=
=
=
0
0
0
M
F
F
y
x
x
y P
q
A
B
VVAA
HHAA
MMAA
VVBB
HHBB
x
y
En Resistencia de Materiales y en Cálculo de Estructuras es muy común
representar las ligaduras estructurales y las reacciones juntas:
P
q
A
B
VVAA
HHAA
MMAA
VVBB
HHBB
x
y
Este proceder no es conceptualmente correcto (aunque haremos así frecuentemente)
porque las reacciones son consecuencia de las ligaduras y debieran dibujarse
cuando no se representan aquéllas.
P
q
A
B
VVAA
HHAA
MMAA
VVBB
HHBB
= P
q
A
B
VVAA
HHAA
MMAA
VVBB
HHBB
P
q
A
B
= P
q
A
B HHBB
Liberación de una reacción horizontal
+ Desplazamiento horizontal de B nulo
P
q
A
B
=
Liberación de una reacción vertical
+Desplazamiento vertical de B nulo
P
q
A
B
VVBB
P
q
A
B
=
Liberación de un momento de empotramiento
P
q
A
B
MMAA
MMAA
+Giro de la sección A nulo
P
q
A
B
Liberación de una reacción horizontal
= P
q
A
B
HHAA
+Desplazamiento horizontal de A nulo
ISOSTATISMO E HIPERESTATISMO EN
ESTRUCTURAS DE BARRAS
Cualquiera de las estructuras que, como ejemplo, se esquematizan en la figura:
pueden considerarse como cuerpos rígidos de 3 g.d.l. con tres coacciones externas
y ser calificadas, en consecuencia, como isostáticas externas.
Con sólo las tres ecuaciones de la estática, correspondientes al caso plano, se pueden
Determinar las “reacciones externas”:
∑∑∑ === 000 zyx MFF
x
y
“Visión externa “ del sistema del sistema estructural
Se define como “visión externa” de la estructura o sistema de barras, su visión
como cuerpo rígido cuyos 3 grados de libertad (en el plano) están restringidos
por los apoyos o coacciones externos.
Se define como Grado de Hiperestatismo Externo (G.H.E.) la diferencia entre
el número de coacciones externas (C.E.) y el número de grados de libertad
externos (G.D.L.E. (=3))
CE=3
GDLE=3
GHE=0 (estructura isostática externa)
CE=4
GDLE=3
GHE=1 (estructura hiprestática externa)
“Visión interna “ del sistema del sistema estructural
Cuando los enlaces internos son los estrictamente necesarios para impedir los
movimientos relativos entre los cuerpos (barras), que producirían las cargas
actuantes sobre el sistema estrutural, se pueden determinar las reacciones
internas mediante las ecuaciones de equilibrio aplicadas a los nudos. El sistema
se dice, entonces, que es internamente isostático.
F
Si hay más enlaces internos que los necesarios, el sistema se dice que es
internamente hiperestático:
Si hay menos enlaces internos que los necesarios el sistema se dice que es
internamente deformable o mecanismo:
Grados de libertad internos.- Los grados de libertad internos están asociados
al número de barras que constituyen la estructura; si éstas estuviesen sueltas, el
número total de grados de libertad internos sería 3n; dado que, al estar unidas,
constituyen un sólido rígido con 3 grados de libertad (ya considerados como
externos), el número de grados de libertad internos es, pues, 3n-3.
gdl’s como sólido rígido
3n (barras)
3
3n-3 GDLI
Coacciones internas
Las coacciones internas (o impedimentos a ejercitar los grados de libertad internos)
están asociados con las ligaduras existentes entre las barras entre sí en los nudos.
Para el análisis de estas coacciones en cada nudo se han de considerar dos
parámetros: el número de barras que confluyen en el nudo y el sistema de unión
barra- nudo (rótulas o empotramiento).
Caso de dos barras articuladas entre sí:
Posición inicial Posición final
Giro como sólido rígido
de las dos barras
Giro relativo de una barra
respecto de la otra
La articulación le “quita” a cada barra 2 traslaciones (total 2n); pero el eje de la
articulación conserva esos dos grados de libertad con lo que las coacciones son
2n-2= 2(n-1); en este caso de dos barras, el número de coacciones es 2(2-1)=2
Caso de tres barras articuladas entre sí
Posición inicial Posición final
Giro como sólido rígido
de las tres barras
Giro relativo de la segunda y
tercera barras (como sólido
rígido) respecto de la primera
1ª
2ª
3ª
Giro relativo de la tercera barra
respecto de la segunda
Con el mismo razonamiento que el utilizado en el caso anterior, se llega a que el
número de coacciones es 2n-2= 2(n-1); en este ejemplo de tres barras, el número
de coacciones resulta 2(3-1)=4
Caso de dos vigas empotradas entre sí
El empotramiento le “quita” a cada barra los tres g.d.l. (total 3n); pero el eje del
empotramiento conserva esos tres g. d. l. Con lo que las coacciones son 3n-3=
3(n-1); en este caso de dos barras, el número de coacciones es 3(2-1)=3
Se define como Grado de Hiperestatismo Interno la diferencia entre el
número CI de coacciones internas y el número G.D.L.I. de grados de libertad
internos
“ Visión global “ del sistema
Grado de hiperestatismo
Se define como Grado de Hiperestatismo la diferencia entre el número C de
coacciones tanto internas como externas y el número G.D.L. de grados de
libertad tanto internos como externos
Si el grado de hiperestatismo así calculado es:
> 0 la estructura es hiperestática
< 0 la estructura es un mecanismo
Si el grado de hiperestatismo es cero, no puede afirmarse que la estructura sea
isostática pues podrían existir vínculos externos superabundantes y ser
internamente deformable o viceversa.
G.D.L.E. = 3 C.E. = 4
G.D.L.I. = 3*(2-1) =3 C.I. = 2*2*(1-1)+1*2*(2-1) = 2
Estructura isostática
G.D.L.E. = 3 C.E.=4
G.D.L.I. = 3*(2-1) =3 C.I.=2*2*(1-1)+1*3*(2-1) = 3
Estructura hiperestática de grado 1
G.D.L.E. = 3 C.E. =4
G.D.L.I. = 3*(3-1) =6 C.I. = 2*2*(1-1)+1*2*(2-1) +1*3*(2-1) = 5
Estructura isostática
Barra 1 Barra 2
G.D.L.E. = 3 C.E. =6
G.D.L.I. = 3*(7-1) = 18 C.I. = 2*2*(2-1)+2*3*(2-1) +1*3*(3-1) = 16
Estructura hiperestática de grado 1
G.D.L.E. = 3 C.E. =5
G.D.L.I. = 3*(6-1) = 15 C.I. = 2*3*(2-1)+2*3*(3-1) = 18
Estructura hiperestática de grado 5
G.D.L.E. = 3 C.E. =10
G.D.L.I. = 3*(8-1) = 21 C.I. = 1*2*(2-1)+3*2*(3-1) = 14
Estructura isostática
G.D.L.E. = 3 C.E. =3
G.D.L.I. = 3*(10-1) = 27 C.I. = 4*2*(2-1)+4*2*(3-1) = 24
Mecanismo con un grado de hiperestatismo 3
G.D.L.E. = 3 C.E. =8
G.D.L.I. = 3*(4-1) = 9 C.I. = 1*2*(4-1) = 6
Estructura hiperestática de grado 2
SIMETRÍA Y ANTIMETRÍA EN
ESTRUCTURAS DE BARRAS
ESTRUCTURAS SIMÉTRICAS DE FORMA
RESPECTO DE UN EJE
CASO 1: ESTRUCTURA SIMÉTRICA RESPECTO DE UN EJE
CON SIMETRÍA DE CARGAS RESPECTO DE ESE EJE
q
Eje de simetría
q
Eje de simetría
=
N
Q
M
q
N
Q
M
ESTUDIO DE ESFUERZOS
q
N
Q
M
q
N
Q
M
q
N
Q
M
Parte derecha girada 180º
alrededor de la barra vertical
q
N
Q
M
q
N
Q
M
Parte derecha girada 180º
alrededor de la barra vertical
Parte izquierda
2Qq
ESTUDIO DE MOVIMIENTOS
q
Eje de simetría
=
u
v
θ
qq
u
θ
v
u
v
θ
q q
u
θ
v q
u
θ
v
Parte derecha girada 180º
alrededor de la barra vertical
u
v
θ
q q
u
θ
v
Parte derecha girada 180º
alrededor de la barra vertical
Parte izquierda
2u
2θ
2u
2θ
2Q
Q=0 u=0 θ=0
La sección de corte de la estructura con el eje de simetría no sufre esfuerzo cortante
y sus desplazamientos horizontal y giro son nulos.
Hemos llegado a una estructura en ménsula, sometida a una carga 2Q que no sufre
ningún desplazamiento vertical, por lo que:
q
Eje de simetría
q
¿Cómo se puede simplificar estructuralmente una estructura simétrica de forma y de cargas?
P
Eje de simetría
¿Es siempre nulo el esfuerzo cortante en la sección de corte con el eje de simetría?
=
N
P/2
M
N
P/2
M
P/2P
Eje de simetría
q
Eje de simetría
q
EA/2
EI/2
¿Qué ocurre si existe una barra coincidente con el eje de simetría?
q
Eje de simetría
¿Qué ocurre con las leyes de esfuerzos?
Ley de Mf : simétrica
Ley de N : simétrica Ley de Q : antimétrica
q
Eje de simetría
¿Qué ocurre con las reacciones?
Reacciones horizontales: iguales y opuestas
Reacciones verticales: iguales
Momentos: iguales y opuestos
q
Eje de simetría
¿Qué ocurre con los movimientos?
Desplazamientos horizontales: iguales y opuestos
Desplazamientos verticales: iguales
Giros: iguales y opuestos
Estructura con dos ejes de simetría
A B
C
D
P
P
P/2
C
A
CASO 2: ESTRUCTURA SIMÉTRICA RESPECTO DE UN EJE
CON ANTIMETRÍA DE CARGAS RESPECTO DE ESE EJE
q
Eje de simetría de forma
y de antimetría de cargas
q
Eje de antimetría
=
N
Q
M
q
N
Q
M
ESTUDIO DE ESFUERZOS
q
N
Q
M
q
N
Q
M
q
N
Q
M
Parte derecha girada 180º
alrededor de la barra vertical
q
N
Q
M
q
N
Q
M
Parte derecha girada 180º
alrededor de la barra vertical
Parte izquierda
q
2N
2M
ESTUDIO DE MOVIMIENTOS
q
Eje de simetría
=
u
v
θ
qq
u
θ
v
u
v
θ
q q
u
θ
v q
u
θ
v
Parte derecha girada 180º
alrededor de la barra vertical
u
v
θ
q q
u
θ
v
Parte derecha girada 180º
alrededor de la barra vertical
Parte izquierda
2v
2v
M=0 N=0 v=0
La sección de corte de la estructura con el eje de antimetría no sufre esfuerzo axil
ni momento flector y su desplazamientos vertical es nulo.
2N
2M
Hemos llegado a una estructura en ménsula, sometida a una carga horizontal de 2N
y a un momento 2M que no sufre ningún desplazamiento horizontal ni giro, por lo que:
q
Eje de antimetría
q
P
Eje de antimetría
¿Es siempre nulo el esfuerzo axil y el momento flector en la sección de corte
con el eje de antimetría?
=
P/2
Q
M/2
P/2
Q
M/2M
Eje de antimetría
PM P/2M/2
q
Eje de antimetría
q
EA/2
EI/2
Caso de que exista una barra coincidente con el eje de antimetría
Eje de antimetría
¿Qué ocurre con las leyes de esfuerzos?
Ley de Mf : antimétrica
Ley de N : antimétrica Ley de Q : simétrica
q
Eje de antimetría
¿Qué ocurre con las reacciones?
Reacciones horizontales: iguales
Reacciones verticales: iguales y opuestas
Momentos: iguales
q
Eje de antimetría
¿Qué ocurre con los movimientos?
Desplazamientos horizontales: iguales
Desplazamientos verticales: iguales y opuestos
Giros: iguales
12
3
4
5
q
q
q
q
EA
EI
Estructura con dos ejes de antimetría
12
3
q’
q’
X
Y q’=q/2
EA/2
EI/2
DESCOMPOSICIÓN DE UNA ESTRUCTURA SIMÉTRICA DE FORMA
EN DOS CASOS: SIMÉTRICO Y ANTIMÉTRICO
Eje de simetría
de forma
q
P
∆T1∆T2
q/2
P/2
∆T1/2∆T2/2
q/2
P/2 ∆T1∆T2
P/2 P/2
∆T2/2 −∆T2/2 ∆T2/2 ∆T1/2−∆T1/2∆T1/2
ESTADO SIMÉTRICO ESTADO ANTIMÉTRICO

Más contenido relacionado

La actualidad más candente

Pórticos dúctiles de hormigón armado diseño de vigas. redistribución de esf...
Pórticos dúctiles de hormigón armado   diseño de vigas. redistribución de esf...Pórticos dúctiles de hormigón armado   diseño de vigas. redistribución de esf...
Pórticos dúctiles de hormigón armado diseño de vigas. redistribución de esf...GOBIERNO REGIONAL DE TACNA
 
Problemas de energía de deformación
Problemas de energía de deformaciónProblemas de energía de deformación
Problemas de energía de deformaciónJorge Cruz
 
Ejercicios resueltos de vigas indeterminadas por el método de pendiente - def...
Ejercicios resueltos de vigas indeterminadas por el método de pendiente - def...Ejercicios resueltos de vigas indeterminadas por el método de pendiente - def...
Ejercicios resueltos de vigas indeterminadas por el método de pendiente - def...Jean Paul Zurita
 
Civ 245 practica nº 2
Civ 245 practica nº 2Civ 245 practica nº 2
Civ 245 practica nº 2Cladimir Paco
 
Análisis estructural de una armadura simple
Análisis estructural de una armadura simpleAnálisis estructural de una armadura simple
Análisis estructural de una armadura simpleWilder Barzola
 
ANALISIS ESTRUCTURAL METODOS ENERGETICOS.pdf
ANALISIS ESTRUCTURAL METODOS ENERGETICOS.pdfANALISIS ESTRUCTURAL METODOS ENERGETICOS.pdf
ANALISIS ESTRUCTURAL METODOS ENERGETICOS.pdfShinaYupanqui
 
Fundamentos de flujo en tuberías
Fundamentos de flujo en tuberíasFundamentos de flujo en tuberías
Fundamentos de flujo en tuberíasmanuel vernal
 
Calculo de rigidez por el método de wilbur
Calculo de rigidez por el método de wilburCalculo de rigidez por el método de wilbur
Calculo de rigidez por el método de wilburlucasojeda05
 
Viga a flexion y corte ansi aisc 360 10
Viga a flexion y corte ansi aisc 360 10Viga a flexion y corte ansi aisc 360 10
Viga a flexion y corte ansi aisc 360 10nicolandt
 
Ecuacion de-tres-momentos
Ecuacion de-tres-momentosEcuacion de-tres-momentos
Ecuacion de-tres-momentosaraujo_ing
 
Método lrfd publicado por luis quispe apaza
Método lrfd  publicado por luis quispe apazaMétodo lrfd  publicado por luis quispe apaza
Método lrfd publicado por luis quispe apazaluis41977826
 
Diseño de Viga ACI 318-2014
Diseño de Viga ACI 318-2014Diseño de Viga ACI 318-2014
Diseño de Viga ACI 318-2014Jimmy De La Cruz
 
Diseño de columnas conceto 1
Diseño de columnas  conceto 1Diseño de columnas  conceto 1
Diseño de columnas conceto 1Julian Fernandez
 
Trazado de vias ejemplo
Trazado de vias ejemploTrazado de vias ejemplo
Trazado de vias ejemploHino Timoteo
 
Metodo de rigidez directa
Metodo de rigidez directaMetodo de rigidez directa
Metodo de rigidez directaDennys Carrillo
 

La actualidad más candente (20)

Método de Trabajo Virtual
Método de Trabajo VirtualMétodo de Trabajo Virtual
Método de Trabajo Virtual
 
Pórticos dúctiles de hormigón armado diseño de vigas. redistribución de esf...
Pórticos dúctiles de hormigón armado   diseño de vigas. redistribución de esf...Pórticos dúctiles de hormigón armado   diseño de vigas. redistribución de esf...
Pórticos dúctiles de hormigón armado diseño de vigas. redistribución de esf...
 
Resistencia de materiales_aplicada
Resistencia de materiales_aplicadaResistencia de materiales_aplicada
Resistencia de materiales_aplicada
 
Problemas de energía de deformación
Problemas de energía de deformaciónProblemas de energía de deformación
Problemas de energía de deformación
 
Problemas resueltos tema 6
Problemas resueltos tema 6Problemas resueltos tema 6
Problemas resueltos tema 6
 
Ejercicios resueltos de vigas indeterminadas por el método de pendiente - def...
Ejercicios resueltos de vigas indeterminadas por el método de pendiente - def...Ejercicios resueltos de vigas indeterminadas por el método de pendiente - def...
Ejercicios resueltos de vigas indeterminadas por el método de pendiente - def...
 
Clase 04 teorema de castigliano
Clase 04   teorema de castiglianoClase 04   teorema de castigliano
Clase 04 teorema de castigliano
 
Civ 245 practica nº 2
Civ 245 practica nº 2Civ 245 practica nº 2
Civ 245 practica nº 2
 
Curso sap2000
Curso sap2000Curso sap2000
Curso sap2000
 
Análisis estructural de una armadura simple
Análisis estructural de una armadura simpleAnálisis estructural de una armadura simple
Análisis estructural de una armadura simple
 
ANALISIS ESTRUCTURAL METODOS ENERGETICOS.pdf
ANALISIS ESTRUCTURAL METODOS ENERGETICOS.pdfANALISIS ESTRUCTURAL METODOS ENERGETICOS.pdf
ANALISIS ESTRUCTURAL METODOS ENERGETICOS.pdf
 
Fundamentos de flujo en tuberías
Fundamentos de flujo en tuberíasFundamentos de flujo en tuberías
Fundamentos de flujo en tuberías
 
Calculo de rigidez por el método de wilbur
Calculo de rigidez por el método de wilburCalculo de rigidez por el método de wilbur
Calculo de rigidez por el método de wilbur
 
Viga a flexion y corte ansi aisc 360 10
Viga a flexion y corte ansi aisc 360 10Viga a flexion y corte ansi aisc 360 10
Viga a flexion y corte ansi aisc 360 10
 
Ecuacion de-tres-momentos
Ecuacion de-tres-momentosEcuacion de-tres-momentos
Ecuacion de-tres-momentos
 
Método lrfd publicado por luis quispe apaza
Método lrfd  publicado por luis quispe apazaMétodo lrfd  publicado por luis quispe apaza
Método lrfd publicado por luis quispe apaza
 
Diseño de Viga ACI 318-2014
Diseño de Viga ACI 318-2014Diseño de Viga ACI 318-2014
Diseño de Viga ACI 318-2014
 
Diseño de columnas conceto 1
Diseño de columnas  conceto 1Diseño de columnas  conceto 1
Diseño de columnas conceto 1
 
Trazado de vias ejemplo
Trazado de vias ejemploTrazado de vias ejemplo
Trazado de vias ejemplo
 
Metodo de rigidez directa
Metodo de rigidez directaMetodo de rigidez directa
Metodo de rigidez directa
 

Similar a Analisis estructural 2

No 2 introduccion al analisis matricial de estructuras
No 2 introduccion al analisis matricial de estructurasNo 2 introduccion al analisis matricial de estructuras
No 2 introduccion al analisis matricial de estructurasSistemadeEstudiosMed
 
Clase N° 3 - TP N° 3 - Sistemas Vinculados (Ejercicios de Aplicación).pptx
Clase N° 3 - TP N° 3 - Sistemas Vinculados (Ejercicios de Aplicación).pptxClase N° 3 - TP N° 3 - Sistemas Vinculados (Ejercicios de Aplicación).pptx
Clase N° 3 - TP N° 3 - Sistemas Vinculados (Ejercicios de Aplicación).pptxgabrielpujol59
 
Apéndices de Analisis matematico 1
Apéndices de Analisis matematico 1 Apéndices de Analisis matematico 1
Apéndices de Analisis matematico 1 EdgarSantos637918
 
Clase N° 6 - TP N° 5 - Sistemas Planos Mixtos.pptx
Clase N° 6 - TP N° 5 - Sistemas Planos Mixtos.pptxClase N° 6 - TP N° 5 - Sistemas Planos Mixtos.pptx
Clase N° 6 - TP N° 5 - Sistemas Planos Mixtos.pptxgabrielpujol59
 
Hiperestáticos - Método de las Deformaciones - Resolución Ejercicio N° 8.pptx
Hiperestáticos - Método de las Deformaciones - Resolución Ejercicio N° 8.pptxHiperestáticos - Método de las Deformaciones - Resolución Ejercicio N° 8.pptx
Hiperestáticos - Método de las Deformaciones - Resolución Ejercicio N° 8.pptxgabrielpujol59
 
Clase N° 4 - TP N° 4 - Reticulados Planos.pptx
Clase N° 4 - TP N° 4 - Reticulados Planos.pptxClase N° 4 - TP N° 4 - Reticulados Planos.pptx
Clase N° 4 - TP N° 4 - Reticulados Planos.pptxgabrielpujol59
 
Resistencia de materiales trabajo doble integracion
Resistencia de materiales trabajo doble integracionResistencia de materiales trabajo doble integracion
Resistencia de materiales trabajo doble integracionLuigi Del Aguila Tapia
 
Segundo teorema de castigliano
Segundo teorema de castiglianoSegundo teorema de castigliano
Segundo teorema de castiglianoChrizthian Marcos
 
Esfuerzos en Flexion
Esfuerzos en FlexionEsfuerzos en Flexion
Esfuerzos en FlexionJlm Udal
 
18 análisis matricial-de-las-estructuras-por-el-método-de-la-rigidez
18 análisis matricial-de-las-estructuras-por-el-método-de-la-rigidez18 análisis matricial-de-las-estructuras-por-el-método-de-la-rigidez
18 análisis matricial-de-las-estructuras-por-el-método-de-la-rigidezAUSTRAL GROUP CONSULTORES CAS
 

Similar a Analisis estructural 2 (20)

No 2 introduccion al analisis matricial de estructuras
No 2 introduccion al analisis matricial de estructurasNo 2 introduccion al analisis matricial de estructuras
No 2 introduccion al analisis matricial de estructuras
 
5. matricial
5. matricial5. matricial
5. matricial
 
Unidad 2. Análisis estructural
Unidad 2. Análisis estructuralUnidad 2. Análisis estructural
Unidad 2. Análisis estructural
 
Análisis matricial
Análisis matricialAnálisis matricial
Análisis matricial
 
Análisis matricial
Análisis matricialAnálisis matricial
Análisis matricial
 
Analisis matricial javeriana
Analisis matricial javerianaAnalisis matricial javeriana
Analisis matricial javeriana
 
Clase N° 3 - TP N° 3 - Sistemas Vinculados (Ejercicios de Aplicación).pptx
Clase N° 3 - TP N° 3 - Sistemas Vinculados (Ejercicios de Aplicación).pptxClase N° 3 - TP N° 3 - Sistemas Vinculados (Ejercicios de Aplicación).pptx
Clase N° 3 - TP N° 3 - Sistemas Vinculados (Ejercicios de Aplicación).pptx
 
Apéndices de Analisis matematico 1
Apéndices de Analisis matematico 1 Apéndices de Analisis matematico 1
Apéndices de Analisis matematico 1
 
Pórticos Inclinados.pdf
Pórticos Inclinados.pdfPórticos Inclinados.pdf
Pórticos Inclinados.pdf
 
Clase N° 6 - TP N° 5 - Sistemas Planos Mixtos.pptx
Clase N° 6 - TP N° 5 - Sistemas Planos Mixtos.pptxClase N° 6 - TP N° 5 - Sistemas Planos Mixtos.pptx
Clase N° 6 - TP N° 5 - Sistemas Planos Mixtos.pptx
 
Hiperestáticos - Método de las Deformaciones - Resolución Ejercicio N° 8.pptx
Hiperestáticos - Método de las Deformaciones - Resolución Ejercicio N° 8.pptxHiperestáticos - Método de las Deformaciones - Resolución Ejercicio N° 8.pptx
Hiperestáticos - Método de las Deformaciones - Resolución Ejercicio N° 8.pptx
 
Clase N° 4 - TP N° 4 - Reticulados Planos.pptx
Clase N° 4 - TP N° 4 - Reticulados Planos.pptxClase N° 4 - TP N° 4 - Reticulados Planos.pptx
Clase N° 4 - TP N° 4 - Reticulados Planos.pptx
 
Resistencia de materiales trabajo doble integracion
Resistencia de materiales trabajo doble integracionResistencia de materiales trabajo doble integracion
Resistencia de materiales trabajo doble integracion
 
Manual de practicas
Manual de practicasManual de practicas
Manual de practicas
 
Segundo teorema de castigliano
Segundo teorema de castiglianoSegundo teorema de castigliano
Segundo teorema de castigliano
 
Esfuerzos en Flexion
Esfuerzos en FlexionEsfuerzos en Flexion
Esfuerzos en Flexion
 
E3 cap4
E3 cap4E3 cap4
E3 cap4
 
18 análisis matricial-de-las-estructuras-por-el-método-de-la-rigidez
18 análisis matricial-de-las-estructuras-por-el-método-de-la-rigidez18 análisis matricial-de-las-estructuras-por-el-método-de-la-rigidez
18 análisis matricial-de-las-estructuras-por-el-método-de-la-rigidez
 
Método de los desplazamientos
Método de los desplazamientosMétodo de los desplazamientos
Método de los desplazamientos
 
Estructuras articuladas
Estructuras articuladasEstructuras articuladas
Estructuras articuladas
 

Último

Conservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaConservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaANDECE
 
Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCANDECE
 
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBR
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBRQUIMICA ORGANICA I ENOLES Y ENAMINAS LIBR
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBRyanimarca23
 
Fe_C_Tratamientos termicos_uap _3_.ppt
Fe_C_Tratamientos termicos_uap   _3_.pptFe_C_Tratamientos termicos_uap   _3_.ppt
Fe_C_Tratamientos termicos_uap _3_.pptVitobailon
 
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Francisco Javier Mora Serrano
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPJosLuisFrancoCaldern
 
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfCONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfErikNivor
 
CFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric ProjectCFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric ProjectCarlos Delgado
 
Revista estudiantil, trabajo final Materia ingeniería de Proyectos
Revista estudiantil, trabajo final Materia ingeniería de ProyectosRevista estudiantil, trabajo final Materia ingeniería de Proyectos
Revista estudiantil, trabajo final Materia ingeniería de ProyectosJeanCarlosLorenzo1
 
trabajos en altura 2024, sistemas de contencion anticaidas
trabajos en altura 2024, sistemas de contencion anticaidastrabajos en altura 2024, sistemas de contencion anticaidas
trabajos en altura 2024, sistemas de contencion anticaidasNelsonQuispeQuispitu
 
Electricidad y electronica industrial unidad 1
Electricidad y electronica industrial unidad 1Electricidad y electronica industrial unidad 1
Electricidad y electronica industrial unidad 1victorrodrigues972054
 
Edificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaEdificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaANDECE
 
4.3 Subestaciones eléctricas componentes principales .pptx
4.3 Subestaciones eléctricas componentes principales .pptx4.3 Subestaciones eléctricas componentes principales .pptx
4.3 Subestaciones eléctricas componentes principales .pptxEfrain Yungan
 
Espontaneidad de las reacciones y procesos espontáneos
Espontaneidad de las reacciones y procesos espontáneosEspontaneidad de las reacciones y procesos espontáneos
Espontaneidad de las reacciones y procesos espontáneosOscarGonzalez231938
 
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptxNayeliZarzosa1
 
Descubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundialDescubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundialyajhairatapia
 
lean manufacturing and its definition for industries
lean manufacturing and its definition for industrieslean manufacturing and its definition for industries
lean manufacturing and its definition for industriesbarom
 
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...Arquitecto Alejandro Gomez cornejo muñoz
 
POBLACIONES CICLICAS Y NO CICLICAS ......
POBLACIONES CICLICAS Y NO CICLICAS ......POBLACIONES CICLICAS Y NO CICLICAS ......
POBLACIONES CICLICAS Y NO CICLICAS ......dianamontserratmayor
 

Último (20)

Conservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaConservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de Almería
 
Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRC
 
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBR
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBRQUIMICA ORGANICA I ENOLES Y ENAMINAS LIBR
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBR
 
Fe_C_Tratamientos termicos_uap _3_.ppt
Fe_C_Tratamientos termicos_uap   _3_.pptFe_C_Tratamientos termicos_uap   _3_.ppt
Fe_C_Tratamientos termicos_uap _3_.ppt
 
presentación manipulación manual de cargas sunafil
presentación manipulación manual de cargas sunafilpresentación manipulación manual de cargas sunafil
presentación manipulación manual de cargas sunafil
 
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
 
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfCONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
 
CFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric ProjectCFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric Project
 
Revista estudiantil, trabajo final Materia ingeniería de Proyectos
Revista estudiantil, trabajo final Materia ingeniería de ProyectosRevista estudiantil, trabajo final Materia ingeniería de Proyectos
Revista estudiantil, trabajo final Materia ingeniería de Proyectos
 
trabajos en altura 2024, sistemas de contencion anticaidas
trabajos en altura 2024, sistemas de contencion anticaidastrabajos en altura 2024, sistemas de contencion anticaidas
trabajos en altura 2024, sistemas de contencion anticaidas
 
Electricidad y electronica industrial unidad 1
Electricidad y electronica industrial unidad 1Electricidad y electronica industrial unidad 1
Electricidad y electronica industrial unidad 1
 
Edificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaEdificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes Granada
 
4.3 Subestaciones eléctricas componentes principales .pptx
4.3 Subestaciones eléctricas componentes principales .pptx4.3 Subestaciones eléctricas componentes principales .pptx
4.3 Subestaciones eléctricas componentes principales .pptx
 
Espontaneidad de las reacciones y procesos espontáneos
Espontaneidad de las reacciones y procesos espontáneosEspontaneidad de las reacciones y procesos espontáneos
Espontaneidad de las reacciones y procesos espontáneos
 
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
 
Descubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundialDescubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundial
 
lean manufacturing and its definition for industries
lean manufacturing and its definition for industrieslean manufacturing and its definition for industries
lean manufacturing and its definition for industries
 
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
 
POBLACIONES CICLICAS Y NO CICLICAS ......
POBLACIONES CICLICAS Y NO CICLICAS ......POBLACIONES CICLICAS Y NO CICLICAS ......
POBLACIONES CICLICAS Y NO CICLICAS ......
 

Analisis estructural 2

  • 1. CONCEPTOS GENERALES DEL ANÁLISIS ESTRUCTURAL Prof. Carlos Navarro Departamento de Mecánica de Medios Continuos y Teoría de Estructuras
  • 2. LAS CONDICIONES DE SUSTENTACIÓN DE UNA ESTRUCTURA
  • 3. LIBERACIÓN DE ESFUERZOS Y DE REACCIONES
  • 4. DOS CONCEPTOS BÁSICOS EN EL CÁLCULO DE ESTRUCTURAS: 1.- Liberación de esfuerzos P q S P q S1 S2 NQ M N Q M= + Desplazamientos horizontales de S1 y S2 iguales Desplazamientos verticales de S1 y S2 iguales Giros de S1 y S2 iguales
  • 5. P q = + Giros de S1 y S2 iguales P q S1 S2 M M M M S2 S1 Momento flector
  • 6. P q S = + Giros de S1 y S2 iguales P q S1 S2 M M S1 S2 M M Momento flector
  • 7. P q = + Desplazamientos, perpendiculares a la directriz, de S1 y S2 iguales P q S1 S2 Q Q S1 S2 Q Q Esfuerzo cortante S
  • 8. P q S = + Desplazamientos, en la dirección de la directriz, de S1 y S2 iguales P q Esfuerzo axil S1 S2 N N S1 S2 N N
  • 9. 2.- Liberación de coacciones externas =P q A B ∑ ∑ ∑ = = = 0 0 0 M F F y x x y P q A B VVAA HHAA MMAA VVBB HHBB x y
  • 10. En Resistencia de Materiales y en Cálculo de Estructuras es muy común representar las ligaduras estructurales y las reacciones juntas: P q A B VVAA HHAA MMAA VVBB HHBB x y Este proceder no es conceptualmente correcto (aunque haremos así frecuentemente) porque las reacciones son consecuencia de las ligaduras y debieran dibujarse cuando no se representan aquéllas.
  • 12. P q A B = P q A B HHBB Liberación de una reacción horizontal + Desplazamiento horizontal de B nulo
  • 13. P q A B = Liberación de una reacción vertical +Desplazamiento vertical de B nulo P q A B VVBB
  • 14. P q A B = Liberación de un momento de empotramiento P q A B MMAA MMAA +Giro de la sección A nulo
  • 15. P q A B Liberación de una reacción horizontal = P q A B HHAA +Desplazamiento horizontal de A nulo
  • 16. ISOSTATISMO E HIPERESTATISMO EN ESTRUCTURAS DE BARRAS
  • 17. Cualquiera de las estructuras que, como ejemplo, se esquematizan en la figura: pueden considerarse como cuerpos rígidos de 3 g.d.l. con tres coacciones externas y ser calificadas, en consecuencia, como isostáticas externas. Con sólo las tres ecuaciones de la estática, correspondientes al caso plano, se pueden Determinar las “reacciones externas”: ∑∑∑ === 000 zyx MFF x y “Visión externa “ del sistema del sistema estructural Se define como “visión externa” de la estructura o sistema de barras, su visión como cuerpo rígido cuyos 3 grados de libertad (en el plano) están restringidos por los apoyos o coacciones externos.
  • 18. Se define como Grado de Hiperestatismo Externo (G.H.E.) la diferencia entre el número de coacciones externas (C.E.) y el número de grados de libertad externos (G.D.L.E. (=3)) CE=3 GDLE=3 GHE=0 (estructura isostática externa) CE=4 GDLE=3 GHE=1 (estructura hiprestática externa)
  • 19. “Visión interna “ del sistema del sistema estructural Cuando los enlaces internos son los estrictamente necesarios para impedir los movimientos relativos entre los cuerpos (barras), que producirían las cargas actuantes sobre el sistema estrutural, se pueden determinar las reacciones internas mediante las ecuaciones de equilibrio aplicadas a los nudos. El sistema se dice, entonces, que es internamente isostático. F Si hay más enlaces internos que los necesarios, el sistema se dice que es internamente hiperestático:
  • 20. Si hay menos enlaces internos que los necesarios el sistema se dice que es internamente deformable o mecanismo:
  • 21. Grados de libertad internos.- Los grados de libertad internos están asociados al número de barras que constituyen la estructura; si éstas estuviesen sueltas, el número total de grados de libertad internos sería 3n; dado que, al estar unidas, constituyen un sólido rígido con 3 grados de libertad (ya considerados como externos), el número de grados de libertad internos es, pues, 3n-3. gdl’s como sólido rígido 3n (barras) 3 3n-3 GDLI
  • 22. Coacciones internas Las coacciones internas (o impedimentos a ejercitar los grados de libertad internos) están asociados con las ligaduras existentes entre las barras entre sí en los nudos. Para el análisis de estas coacciones en cada nudo se han de considerar dos parámetros: el número de barras que confluyen en el nudo y el sistema de unión barra- nudo (rótulas o empotramiento).
  • 23. Caso de dos barras articuladas entre sí: Posición inicial Posición final Giro como sólido rígido de las dos barras Giro relativo de una barra respecto de la otra La articulación le “quita” a cada barra 2 traslaciones (total 2n); pero el eje de la articulación conserva esos dos grados de libertad con lo que las coacciones son 2n-2= 2(n-1); en este caso de dos barras, el número de coacciones es 2(2-1)=2
  • 24. Caso de tres barras articuladas entre sí Posición inicial Posición final Giro como sólido rígido de las tres barras Giro relativo de la segunda y tercera barras (como sólido rígido) respecto de la primera 1ª 2ª 3ª Giro relativo de la tercera barra respecto de la segunda Con el mismo razonamiento que el utilizado en el caso anterior, se llega a que el número de coacciones es 2n-2= 2(n-1); en este ejemplo de tres barras, el número de coacciones resulta 2(3-1)=4
  • 25. Caso de dos vigas empotradas entre sí El empotramiento le “quita” a cada barra los tres g.d.l. (total 3n); pero el eje del empotramiento conserva esos tres g. d. l. Con lo que las coacciones son 3n-3= 3(n-1); en este caso de dos barras, el número de coacciones es 3(2-1)=3 Se define como Grado de Hiperestatismo Interno la diferencia entre el número CI de coacciones internas y el número G.D.L.I. de grados de libertad internos
  • 26. “ Visión global “ del sistema
  • 27. Grado de hiperestatismo Se define como Grado de Hiperestatismo la diferencia entre el número C de coacciones tanto internas como externas y el número G.D.L. de grados de libertad tanto internos como externos Si el grado de hiperestatismo así calculado es: > 0 la estructura es hiperestática < 0 la estructura es un mecanismo Si el grado de hiperestatismo es cero, no puede afirmarse que la estructura sea isostática pues podrían existir vínculos externos superabundantes y ser internamente deformable o viceversa.
  • 28. G.D.L.E. = 3 C.E. = 4 G.D.L.I. = 3*(2-1) =3 C.I. = 2*2*(1-1)+1*2*(2-1) = 2 Estructura isostática
  • 29. G.D.L.E. = 3 C.E.=4 G.D.L.I. = 3*(2-1) =3 C.I.=2*2*(1-1)+1*3*(2-1) = 3 Estructura hiperestática de grado 1
  • 30. G.D.L.E. = 3 C.E. =4 G.D.L.I. = 3*(3-1) =6 C.I. = 2*2*(1-1)+1*2*(2-1) +1*3*(2-1) = 5 Estructura isostática Barra 1 Barra 2
  • 31. G.D.L.E. = 3 C.E. =6 G.D.L.I. = 3*(7-1) = 18 C.I. = 2*2*(2-1)+2*3*(2-1) +1*3*(3-1) = 16 Estructura hiperestática de grado 1
  • 32. G.D.L.E. = 3 C.E. =5 G.D.L.I. = 3*(6-1) = 15 C.I. = 2*3*(2-1)+2*3*(3-1) = 18 Estructura hiperestática de grado 5
  • 33. G.D.L.E. = 3 C.E. =10 G.D.L.I. = 3*(8-1) = 21 C.I. = 1*2*(2-1)+3*2*(3-1) = 14 Estructura isostática
  • 34. G.D.L.E. = 3 C.E. =3 G.D.L.I. = 3*(10-1) = 27 C.I. = 4*2*(2-1)+4*2*(3-1) = 24 Mecanismo con un grado de hiperestatismo 3
  • 35. G.D.L.E. = 3 C.E. =8 G.D.L.I. = 3*(4-1) = 9 C.I. = 1*2*(4-1) = 6 Estructura hiperestática de grado 2
  • 36. SIMETRÍA Y ANTIMETRÍA EN ESTRUCTURAS DE BARRAS
  • 37. ESTRUCTURAS SIMÉTRICAS DE FORMA RESPECTO DE UN EJE
  • 38. CASO 1: ESTRUCTURA SIMÉTRICA RESPECTO DE UN EJE CON SIMETRÍA DE CARGAS RESPECTO DE ESE EJE q Eje de simetría
  • 40. N Q M q N Q M q N Q M Parte derecha girada 180º alrededor de la barra vertical q
  • 41. N Q M q N Q M Parte derecha girada 180º alrededor de la barra vertical Parte izquierda 2Qq
  • 42. ESTUDIO DE MOVIMIENTOS q Eje de simetría = u v θ qq u θ v
  • 43. u v θ q q u θ v q u θ v Parte derecha girada 180º alrededor de la barra vertical
  • 44. u v θ q q u θ v Parte derecha girada 180º alrededor de la barra vertical Parte izquierda 2u 2θ
  • 45. 2u 2θ 2Q Q=0 u=0 θ=0 La sección de corte de la estructura con el eje de simetría no sufre esfuerzo cortante y sus desplazamientos horizontal y giro son nulos. Hemos llegado a una estructura en ménsula, sometida a una carga 2Q que no sufre ningún desplazamiento vertical, por lo que:
  • 46. q Eje de simetría q ¿Cómo se puede simplificar estructuralmente una estructura simétrica de forma y de cargas?
  • 47. P Eje de simetría ¿Es siempre nulo el esfuerzo cortante en la sección de corte con el eje de simetría? = N P/2 M N P/2 M
  • 49. q Eje de simetría q EA/2 EI/2 ¿Qué ocurre si existe una barra coincidente con el eje de simetría?
  • 50. q Eje de simetría ¿Qué ocurre con las leyes de esfuerzos? Ley de Mf : simétrica Ley de N : simétrica Ley de Q : antimétrica
  • 51. q Eje de simetría ¿Qué ocurre con las reacciones? Reacciones horizontales: iguales y opuestas Reacciones verticales: iguales Momentos: iguales y opuestos
  • 52. q Eje de simetría ¿Qué ocurre con los movimientos? Desplazamientos horizontales: iguales y opuestos Desplazamientos verticales: iguales Giros: iguales y opuestos
  • 53. Estructura con dos ejes de simetría A B C D P P P/2 C A
  • 54. CASO 2: ESTRUCTURA SIMÉTRICA RESPECTO DE UN EJE CON ANTIMETRÍA DE CARGAS RESPECTO DE ESE EJE q Eje de simetría de forma y de antimetría de cargas
  • 56. N Q M q N Q M q N Q M Parte derecha girada 180º alrededor de la barra vertical q
  • 57. N Q M q N Q M Parte derecha girada 180º alrededor de la barra vertical Parte izquierda q 2N 2M
  • 58. ESTUDIO DE MOVIMIENTOS q Eje de simetría = u v θ qq u θ v
  • 59. u v θ q q u θ v q u θ v Parte derecha girada 180º alrededor de la barra vertical
  • 60. u v θ q q u θ v Parte derecha girada 180º alrededor de la barra vertical Parte izquierda 2v
  • 61. 2v M=0 N=0 v=0 La sección de corte de la estructura con el eje de antimetría no sufre esfuerzo axil ni momento flector y su desplazamientos vertical es nulo. 2N 2M Hemos llegado a una estructura en ménsula, sometida a una carga horizontal de 2N y a un momento 2M que no sufre ningún desplazamiento horizontal ni giro, por lo que:
  • 63. P Eje de antimetría ¿Es siempre nulo el esfuerzo axil y el momento flector en la sección de corte con el eje de antimetría? = P/2 Q M/2 P/2 Q M/2M
  • 65. q Eje de antimetría q EA/2 EI/2 Caso de que exista una barra coincidente con el eje de antimetría
  • 66. Eje de antimetría ¿Qué ocurre con las leyes de esfuerzos? Ley de Mf : antimétrica Ley de N : antimétrica Ley de Q : simétrica
  • 67. q Eje de antimetría ¿Qué ocurre con las reacciones? Reacciones horizontales: iguales Reacciones verticales: iguales y opuestas Momentos: iguales
  • 68. q Eje de antimetría ¿Qué ocurre con los movimientos? Desplazamientos horizontales: iguales Desplazamientos verticales: iguales y opuestos Giros: iguales
  • 71. DESCOMPOSICIÓN DE UNA ESTRUCTURA SIMÉTRICA DE FORMA EN DOS CASOS: SIMÉTRICO Y ANTIMÉTRICO Eje de simetría de forma q P ∆T1∆T2 q/2 P/2 ∆T1/2∆T2/2 q/2 P/2 ∆T1∆T2 P/2 P/2 ∆T2/2 −∆T2/2 ∆T2/2 ∆T1/2−∆T1/2∆T1/2 ESTADO SIMÉTRICO ESTADO ANTIMÉTRICO