SlideShare una empresa de Scribd logo
1 de 9
Yasmira Gómez C.I 19.572.988 Prof.: Nancy Barbosa PUENTE DE MEDICIÓN
PUENTES DE WHEATSTONE Las mediciones más precisas de la resistencia se obtienen con circuito  llamado Puente de Wheatstone . Este circuito consiste en tres resistencias conocidas y una resistencia desconocida, conectadas entre sí en forma de diamante. Se aplica una corriente continua a través de dos puntos opuestos del diamante y se conecta un galvanómetro a los otros dos puntos. Cuando todas las resistencias se nivelan, las corrientes que fluyen por los dos brazos del circuito se igualan, lo que elimina el flujo de corriente por el galvanómetro. Variando el valor de una de las resistencias conocidas, el puente puede ajustarse a cualquier valor de la resistencia desconocida, que se calcula a partir los valores de las otras resistencias. Se utilizan puentes de este tipo para medir la inductancia y la capacitancia de los componentes de circuitos. Para ello se sustituyen las resistencias por inductancias y capacitancias conocidas. Los puentes de este tipo suelen denominarse puentes de corriente alterna, porque se utilizan fuentes de corriente alterna en lugar de corriente continua. A menudo los puentes se nivelan con un timbre en lugar de un galvanómetro, que cuando el puente no está nivelado, emite un sonido que corresponde a la frecuencia de la fuente de corriente alterna; cuando se ha nivelado no se escucha ningún tono.  El puente de Wheatstone tiene cuatro ramas resistivas, una fuente de f.e.m (una batería) y un detector de cero (el galvanómetro). Para determinar la incógnita, el puente debe estar balanceado y ello se logra haciendo que el galvanómetro mida 0 V, de forma que no haya paso de corriente por él.  Deducción de la formula para un puente de wheatstone.  La figura 1-14  ilustra un  puente de Wheatstone , que se emplea para la medición precisa de una resistencia desconocida  R x , en términos de las resistencias conocidas  R a , R b  y R s .
PUENTES DE WHEATSTONE La corriente del puente ( I g ) se mide con el galvanómetro ( G ) de resistencia interna  R g . Las resistencias conocidas se ajustan para una corriente cero en el galvanómetro, condición para la cual se dice que el puente está equilibrado. Usando las leyes de Kirchhoff, determinar (a) una expresión general para la corriente ( Ig ) a través del galvanómetro cuando el puente está desequilibrado, y (b) las condiciones requeridas para el equilibrio del puente. (Las caídas de voltaje  I g R g  e  I s R s  son -, debido a la dirección en que circulan por la malla FBCF). Tenemos ahora cinco ecuaciones con cinco corrientes desconocidas ( Ia,   I b ,   I x ,  I s  e  I g ) . Para resolver para  I g , debemos reducir cuatro ecuaciones para eliminar simultáneamente cuatro corrientes desconocidas.
PUENTES DE WHEATSTONE Tenemos ahora una sola ecuación para la corriente desconocida  I g  . Para eliminar las fracciones, multiplicamos la ecuación (9) por  Cuando se sustituye por valores específicos, la corriente del galvanómetro puede ser calculada fácilmente por medio de esta expresión. (b) Para el equilibrio del puente, la corriente del galvanómetro debe ser igual a cero (por definición). El numerador de la expresión para  I g  también deberá ser cero. Entonces para  I g  = 0: Esto indica que la relación de la resistencia desconocida  R x  a una resistencia patrón  R s , es igual a la relación de las resistencias de las ramas del puente  R a / R b . La resistencia desconocida puede resolverse en términos de las resistencias conocidas:  R x  =  (R a /  R b  )  R s
Asignación Nro.  3 En la figura, R 1  y R 3,  el puente está equilibrado cuando R 2  se ajusta a 125 Ω .Determine la resistencia desconocida R X.  Nota: El valor de R 1  y R 3  son el tercer digito y el cuarto digito de su cedula de identidad. Solución: Datos:  R1=tercer digito de la cedula=5 Ω, R3=cuarto digito de la cedula=7 Ω,  R2=Rs=cuando esta en equilibrio=125 Ω, Ig=0 Como el puente esta equilibrado entonces se sabe que Ig=0 además que R2=Rs=125 Ω, R1=Rb=5 Ω y  R3=Ra=7 Ω por lo tanto la ecuación a utilizar es:  R x  =  (R a /  R b )  R s Rx=(7/5)*125 = 175 Ω
Asignación Nro.  3 Nota. El valor de la resistencia faltante es el quinto digito de su n ú mero de cedula. Solución: Datos: E=220v, Rg=40 Ω, Rb=3KΩ, Ra=400 Ω, Rs=el quinto digito de la cédula=2Ω,  Rx =600 Ω,  Ig =? Como el puente esta desequilibrado se usa la siguiente ecuación para calcular la corriente del galvanómetro (Ig=?): El circuito de la figura representa un puente desequilibrado. Si el galvanómetro tiene una resistencia de 40 Ω, halle la corriente que fluye por él.
PUENTE DE MAXWELL Dado un inductor real, el cual puede representarse mediante una inductancia ideal con una resistencia en serie (Lx, Rx), la configuración del puente de Maxwell permite determinar el valor de dichos parámetros a partir de un conjunto de resistencias y un condensador, ubicados de la forma mostrada en la Figura 1. Fig. 1.- Puente de Maxwell para medir los par á metros de un inductor. El hecho de utilizar un capacitor como elemento patrón en lugar de un inductor tiene ciertas ventajas, ya que el primero es más compacto, su campo eléctrico externo es muy reducido y es mucho  más fácil de blindar para protegerlo de otros campos electromagnéticos La relación existente entre los componentes cuando el puente está balanceado es la siguiente: Z1ZX = Z2Z3 (1) Z1ZX = R2R3 (2) Zx = R2R3Y1 (3) Y1 =1/R1+ jwc1 (4) Zx = R2R3 (1/R1+ jwc1) (5) Rx + jwLx = R2R3 (1/R1+ jwc1) (6) Rx =R2R3/R1 (7) Lx = R2R3C1 (8) Q =wR2R3C1/R2R3/R1= wR1C1 (9) En primer lugar, podemos observar que los valores de Lx y Rx no dependen de la frecuencia de operación, sino que están relacionados únicamente con los valores de C1 y R1, R2 Y R3. Por otra parte, existe una interacción entre las resistencias de ajuste, ya que tanto R1 como R3 intervienen en la ecuación de Rx, mientras que en la de Lx solo interviene R3. De acuerdo con esto, es necesario realizar varios ajustes sucesivos de las dos resistencias variables hasta obtener la condición de cero en el detector. Por lo tanto, el balance de este tipo de puente resulta mucho más complejo y laborioso que el de un puente de Wheatstone de corriente continua.
Asignación Nro.  3 Un puente de Maxwell con una fuente de ca, de 10 kHz se utiliza para determinar la inductancia en serie con una resistencia  de un inductor. En equilibrio, los brazos del puente son AB con 2 µF en paralelo con una resistencia de R, BC con 300Ω, CD con el inductor, y DA con 400Ω. ¿Cuál es la inductancia, la resistencia en serie y el factor Q del inductor? R= 4to digito de su numero de su cedula Solución: Datos:  F=10KHz, AB=(C=2  µF y R1=cuarto digito de la cedula=7 Ω) BC=R3=300Ω, CD= (Lx=?, Rx=?), DA=R2=400Ω, Q=?  Como el puente de Maxwell esta en equilibrio se usa la ecuación : Rx =R2R3/R1  Rx=  (400*300)/7 = 17,14K Ω Ahora para calcular Lx se usa la ecuación : Lx = R2R3C1  Lx =400*300*2 µF= 0,24H Q =wR2R3C1/R2R3/R1= wR1C1  Q =wR1C1 = 2*(3.14)10000*7* 2  µF= 0,879
GRACIAS POR SU ATENCIÓN

Más contenido relacionado

La actualidad más candente

Circuitos rlc
Circuitos rlcCircuitos rlc
Circuitos rlckfreile2
 
Informe 4-leyes-de-kirchhoff
Informe 4-leyes-de-kirchhoffInforme 4-leyes-de-kirchhoff
Informe 4-leyes-de-kirchhoffOkabe Makise
 
Teorema de Thevenin y Norton
Teorema de Thevenin y NortonTeorema de Thevenin y Norton
Teorema de Thevenin y NortonJesu Nuñez
 
Fuentes Reales y Teorema de Superposicion
Fuentes Reales y Teorema de SuperposicionFuentes Reales y Teorema de Superposicion
Fuentes Reales y Teorema de SuperposicionJesu Nuñez
 
análisis de circuitos eléctricos en estado estable y transciente.pdf
análisis de circuitos eléctricos en estado estable y transciente.pdfanálisis de circuitos eléctricos en estado estable y transciente.pdf
análisis de circuitos eléctricos en estado estable y transciente.pdfssuser64d38e
 
Problemas resueltos cortocircuito trifasico
Problemas resueltos cortocircuito trifasicoProblemas resueltos cortocircuito trifasico
Problemas resueltos cortocircuito trifasicopaulelrapido
 
Problemas Resuelto De Corriente Continua.1
Problemas Resuelto De Corriente Continua.1Problemas Resuelto De Corriente Continua.1
Problemas Resuelto De Corriente Continua.1julio ulacio
 
Calculo de cortocircuito_65pag
Calculo de cortocircuito_65pagCalculo de cortocircuito_65pag
Calculo de cortocircuito_65pagVon Pereira
 
Teorema de máxima transferencia de potencia practica
Teorema de máxima transferencia de potencia practicaTeorema de máxima transferencia de potencia practica
Teorema de máxima transferencia de potencia practicaMiguel Angel Peña
 
ejercicios con circuitos en serie
ejercicios con circuitos en serieejercicios con circuitos en serie
ejercicios con circuitos en serieJudith Román
 
Solucionario de màquinas de richarson
Solucionario de màquinas de richarsonSolucionario de màquinas de richarson
Solucionario de màquinas de richarsonJosé Alfredo Delmar
 

La actualidad más candente (20)

Campos Electromagneticos - Tema 5
Campos Electromagneticos - Tema 5Campos Electromagneticos - Tema 5
Campos Electromagneticos - Tema 5
 
Circuitos rlc
Circuitos rlcCircuitos rlc
Circuitos rlc
 
1 ra practic alab.medidas
1 ra practic alab.medidas1 ra practic alab.medidas
1 ra practic alab.medidas
 
Informe 4-leyes-de-kirchhoff
Informe 4-leyes-de-kirchhoffInforme 4-leyes-de-kirchhoff
Informe 4-leyes-de-kirchhoff
 
Sobretensiones Internas
Sobretensiones InternasSobretensiones Internas
Sobretensiones Internas
 
Practica3
Practica3Practica3
Practica3
 
Teorema de Thevenin y Norton
Teorema de Thevenin y NortonTeorema de Thevenin y Norton
Teorema de Thevenin y Norton
 
Fuentes Reales y Teorema de Superposicion
Fuentes Reales y Teorema de SuperposicionFuentes Reales y Teorema de Superposicion
Fuentes Reales y Teorema de Superposicion
 
análisis de circuitos eléctricos en estado estable y transciente.pdf
análisis de circuitos eléctricos en estado estable y transciente.pdfanálisis de circuitos eléctricos en estado estable y transciente.pdf
análisis de circuitos eléctricos en estado estable y transciente.pdf
 
Problemas resueltos cortocircuito trifasico
Problemas resueltos cortocircuito trifasicoProblemas resueltos cortocircuito trifasico
Problemas resueltos cortocircuito trifasico
 
Circuitos trifasicos
Circuitos trifasicosCircuitos trifasicos
Circuitos trifasicos
 
Reactancia capacitiva
Reactancia capacitivaReactancia capacitiva
Reactancia capacitiva
 
Coordinacion de-aislamiento
Coordinacion de-aislamientoCoordinacion de-aislamiento
Coordinacion de-aislamiento
 
Problemas Resuelto De Corriente Continua.1
Problemas Resuelto De Corriente Continua.1Problemas Resuelto De Corriente Continua.1
Problemas Resuelto De Corriente Continua.1
 
Calculo de cortocircuito_65pag
Calculo de cortocircuito_65pagCalculo de cortocircuito_65pag
Calculo de cortocircuito_65pag
 
INDUCTANCIA
INDUCTANCIAINDUCTANCIA
INDUCTANCIA
 
Practica # 2
Practica # 2Practica # 2
Practica # 2
 
Teorema de máxima transferencia de potencia practica
Teorema de máxima transferencia de potencia practicaTeorema de máxima transferencia de potencia practica
Teorema de máxima transferencia de potencia practica
 
ejercicios con circuitos en serie
ejercicios con circuitos en serieejercicios con circuitos en serie
ejercicios con circuitos en serie
 
Solucionario de màquinas de richarson
Solucionario de màquinas de richarsonSolucionario de màquinas de richarson
Solucionario de màquinas de richarson
 

Destacado

Destacado (19)

Puentes de medición
Puentes de mediciónPuentes de medición
Puentes de medición
 
Puentes de medicion
Puentes de medicionPuentes de medicion
Puentes de medicion
 
Puentes de medición
Puentes de mediciónPuentes de medición
Puentes de medición
 
Diapositivas instrumentacion corregidas
Diapositivas instrumentacion corregidasDiapositivas instrumentacion corregidas
Diapositivas instrumentacion corregidas
 
Puentes de medicion
Puentes de medicionPuentes de medicion
Puentes de medicion
 
Puentes ac y dc
Puentes ac y dcPuentes ac y dc
Puentes ac y dc
 
Puente de wheatstone1
Puente de wheatstone1Puente de wheatstone1
Puente de wheatstone1
 
Puentes de medición
Puentes de mediciónPuentes de medición
Puentes de medición
 
Fisica 3.4
Fisica 3.4Fisica 3.4
Fisica 3.4
 
Puentes
PuentesPuentes
Puentes
 
EJERCICIOS DE CIMENTACIÓN
EJERCICIOS DE CIMENTACIÓNEJERCICIOS DE CIMENTACIÓN
EJERCICIOS DE CIMENTACIÓN
 
Inductancia, transformadores y circuitos de corriente alterna
Inductancia, transformadores y circuitos de corriente alternaInductancia, transformadores y circuitos de corriente alterna
Inductancia, transformadores y circuitos de corriente alterna
 
Medicion de Potencia y Energia Electrica
Medicion de Potencia y Energia ElectricaMedicion de Potencia y Energia Electrica
Medicion de Potencia y Energia Electrica
 
IMPEDANCIA Y REACTANCIA
IMPEDANCIA Y REACTANCIAIMPEDANCIA Y REACTANCIA
IMPEDANCIA Y REACTANCIA
 
Problemas de circuitos electricos
Problemas de circuitos electricosProblemas de circuitos electricos
Problemas de circuitos electricos
 
INSTRUMENTOS DE MEDICION
INSTRUMENTOS DE MEDICIONINSTRUMENTOS DE MEDICION
INSTRUMENTOS DE MEDICION
 
CIRCUITOS DE CORRIENTE CONTINUA
CIRCUITOS DE CORRIENTE CONTINUACIRCUITOS DE CORRIENTE CONTINUA
CIRCUITOS DE CORRIENTE CONTINUA
 
Problemas resueltos-cap-28-fisica-serway
Problemas resueltos-cap-28-fisica-serwayProblemas resueltos-cap-28-fisica-serway
Problemas resueltos-cap-28-fisica-serway
 
Modelo para informe en ieee
Modelo para informe en ieeeModelo para informe en ieee
Modelo para informe en ieee
 

Similar a Puente de Medición

2009 puente de_wheaststone
2009 puente de_wheaststone2009 puente de_wheaststone
2009 puente de_wheaststoneWillyy' Medel
 
Puentes de medicion
Puentes de medicionPuentes de medicion
Puentes de medicionOskar Lopez
 
Puente unifil iar-de-wheatstone-4-laboratorio
Puente unifil iar-de-wheatstone-4-laboratorioPuente unifil iar-de-wheatstone-4-laboratorio
Puente unifil iar-de-wheatstone-4-laboratorioKevin Quispe Bautista
 
Mediciones presentacion
Mediciones presentacionMediciones presentacion
Mediciones presentacionLuis Caballero
 
Puentes, resistencias, inductancias, capacitancias
Puentes, resistencias, inductancias, capacitanciasPuentes, resistencias, inductancias, capacitancias
Puentes, resistencias, inductancias, capacitanciasGalo Candela
 
6.0 Circuitos de corriente directa..pptx
6.0 Circuitos de corriente directa..pptx6.0 Circuitos de corriente directa..pptx
6.0 Circuitos de corriente directa..pptxNiccoleMeja
 
PRESENTACION TEMA 4 medidas electricas.pptx
PRESENTACION TEMA 4 medidas electricas.pptxPRESENTACION TEMA 4 medidas electricas.pptx
PRESENTACION TEMA 4 medidas electricas.pptxFernandoLVargas
 
trabajo de teoria de sistema
trabajo de teoria de sistematrabajo de teoria de sistema
trabajo de teoria de sistemayedison marquez
 
Asignacion nro3.carloslinárez
Asignacion nro3.carloslinárezAsignacion nro3.carloslinárez
Asignacion nro3.carloslinárezCarlosLinarez
 
la función de excitación compleja
la función de excitación complejala función de excitación compleja
la función de excitación complejasaulaguilar33
 
Mediciones Eléctricas
Mediciones Eléctricas Mediciones Eléctricas
Mediciones Eléctricas Aroldo9426
 

Similar a Puente de Medición (20)

Puentes de medición
Puentes de mediciónPuentes de medición
Puentes de medición
 
2009 puente de_wheaststone
2009 puente de_wheaststone2009 puente de_wheaststone
2009 puente de_wheaststone
 
2009 puente de_wheaststone
2009 puente de_wheaststone2009 puente de_wheaststone
2009 puente de_wheaststone
 
Lab ctos3yd
Lab ctos3ydLab ctos3yd
Lab ctos3yd
 
Puentes de medicion
Puentes de medicionPuentes de medicion
Puentes de medicion
 
Puente unifil iar-de-wheatstone-4-laboratorio
Puente unifil iar-de-wheatstone-4-laboratorioPuente unifil iar-de-wheatstone-4-laboratorio
Puente unifil iar-de-wheatstone-4-laboratorio
 
Mediciones presentacion
Mediciones presentacionMediciones presentacion
Mediciones presentacion
 
Puentes, resistencias, inductancias, capacitancias
Puentes, resistencias, inductancias, capacitanciasPuentes, resistencias, inductancias, capacitancias
Puentes, resistencias, inductancias, capacitancias
 
Puente de Wheatstone
Puente de WheatstonePuente de Wheatstone
Puente de Wheatstone
 
S6C1
S6C1S6C1
S6C1
 
Puentes de medicion
Puentes de medicionPuentes de medicion
Puentes de medicion
 
6.0 Circuitos de corriente directa..pptx
6.0 Circuitos de corriente directa..pptx6.0 Circuitos de corriente directa..pptx
6.0 Circuitos de corriente directa..pptx
 
PRESENTACION TEMA 4 medidas electricas.pptx
PRESENTACION TEMA 4 medidas electricas.pptxPRESENTACION TEMA 4 medidas electricas.pptx
PRESENTACION TEMA 4 medidas electricas.pptx
 
Unidad 5 electricidad
Unidad 5 electricidad Unidad 5 electricidad
Unidad 5 electricidad
 
trabajo de teoria de sistema
trabajo de teoria de sistematrabajo de teoria de sistema
trabajo de teoria de sistema
 
circuitos en rc fisica 3
circuitos en rc fisica 3 circuitos en rc fisica 3
circuitos en rc fisica 3
 
Campos Electromagneticos - Tema 11
Campos Electromagneticos - Tema 11Campos Electromagneticos - Tema 11
Campos Electromagneticos - Tema 11
 
Asignacion nro3.carloslinárez
Asignacion nro3.carloslinárezAsignacion nro3.carloslinárez
Asignacion nro3.carloslinárez
 
la función de excitación compleja
la función de excitación complejala función de excitación compleja
la función de excitación compleja
 
Mediciones Eléctricas
Mediciones Eléctricas Mediciones Eléctricas
Mediciones Eléctricas
 

Más de YasmiraG

Antiguedad
AntiguedadAntiguedad
AntiguedadYasmiraG
 
Antiguedad
AntiguedadAntiguedad
AntiguedadYasmiraG
 
Estudio de caso
Estudio de casoEstudio de caso
Estudio de casoYasmiraG
 
Estudio de caso
Estudio de casoEstudio de caso
Estudio de casoYasmiraG
 
Mediciones electricas
Mediciones electricasMediciones electricas
Mediciones electricasYasmiraG
 

Más de YasmiraG (6)

Antenas
AntenasAntenas
Antenas
 
Antiguedad
AntiguedadAntiguedad
Antiguedad
 
Antiguedad
AntiguedadAntiguedad
Antiguedad
 
Estudio de caso
Estudio de casoEstudio de caso
Estudio de caso
 
Estudio de caso
Estudio de casoEstudio de caso
Estudio de caso
 
Mediciones electricas
Mediciones electricasMediciones electricas
Mediciones electricas
 

Último

plan de capacitacion docente AIP 2024 clllll.pdf
plan de capacitacion docente  AIP 2024          clllll.pdfplan de capacitacion docente  AIP 2024          clllll.pdf
plan de capacitacion docente AIP 2024 clllll.pdfenelcielosiempre
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.amayarogel
 
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICABIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICAÁngel Encinas
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfNancyLoaa
 
plande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdfplande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdfenelcielosiempre
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAEl Fortí
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfAngélica Soledad Vega Ramírez
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfMaritzaRetamozoVera
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfFrancisco158360
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxzulyvero07
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dstEphaniiie
 
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA IIAFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA IIIsauraImbrondone
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Carlos Muñoz
 
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática4    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática4    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADauxsoporte
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioELIASAURELIOCHAVEZCA1
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Lourdes Feria
 

Último (20)

plan de capacitacion docente AIP 2024 clllll.pdf
plan de capacitacion docente  AIP 2024          clllll.pdfplan de capacitacion docente  AIP 2024          clllll.pdf
plan de capacitacion docente AIP 2024 clllll.pdf
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.
 
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICABIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdf
 
plande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdfplande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdf
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes d
 
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA IIAFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdfTema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
 
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática4    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática4    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 
Power Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptxPower Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptx
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literario
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...
 

Puente de Medición

  • 1. Yasmira Gómez C.I 19.572.988 Prof.: Nancy Barbosa PUENTE DE MEDICIÓN
  • 2. PUENTES DE WHEATSTONE Las mediciones más precisas de la resistencia se obtienen con circuito llamado Puente de Wheatstone . Este circuito consiste en tres resistencias conocidas y una resistencia desconocida, conectadas entre sí en forma de diamante. Se aplica una corriente continua a través de dos puntos opuestos del diamante y se conecta un galvanómetro a los otros dos puntos. Cuando todas las resistencias se nivelan, las corrientes que fluyen por los dos brazos del circuito se igualan, lo que elimina el flujo de corriente por el galvanómetro. Variando el valor de una de las resistencias conocidas, el puente puede ajustarse a cualquier valor de la resistencia desconocida, que se calcula a partir los valores de las otras resistencias. Se utilizan puentes de este tipo para medir la inductancia y la capacitancia de los componentes de circuitos. Para ello se sustituyen las resistencias por inductancias y capacitancias conocidas. Los puentes de este tipo suelen denominarse puentes de corriente alterna, porque se utilizan fuentes de corriente alterna en lugar de corriente continua. A menudo los puentes se nivelan con un timbre en lugar de un galvanómetro, que cuando el puente no está nivelado, emite un sonido que corresponde a la frecuencia de la fuente de corriente alterna; cuando se ha nivelado no se escucha ningún tono. El puente de Wheatstone tiene cuatro ramas resistivas, una fuente de f.e.m (una batería) y un detector de cero (el galvanómetro). Para determinar la incógnita, el puente debe estar balanceado y ello se logra haciendo que el galvanómetro mida 0 V, de forma que no haya paso de corriente por él. Deducción de la formula para un puente de wheatstone. La figura 1-14 ilustra un puente de Wheatstone , que se emplea para la medición precisa de una resistencia desconocida R x , en términos de las resistencias conocidas R a , R b y R s .
  • 3. PUENTES DE WHEATSTONE La corriente del puente ( I g ) se mide con el galvanómetro ( G ) de resistencia interna R g . Las resistencias conocidas se ajustan para una corriente cero en el galvanómetro, condición para la cual se dice que el puente está equilibrado. Usando las leyes de Kirchhoff, determinar (a) una expresión general para la corriente ( Ig ) a través del galvanómetro cuando el puente está desequilibrado, y (b) las condiciones requeridas para el equilibrio del puente. (Las caídas de voltaje I g R g e I s R s son -, debido a la dirección en que circulan por la malla FBCF). Tenemos ahora cinco ecuaciones con cinco corrientes desconocidas ( Ia, I b , I x , I s e I g ) . Para resolver para I g , debemos reducir cuatro ecuaciones para eliminar simultáneamente cuatro corrientes desconocidas.
  • 4. PUENTES DE WHEATSTONE Tenemos ahora una sola ecuación para la corriente desconocida I g . Para eliminar las fracciones, multiplicamos la ecuación (9) por Cuando se sustituye por valores específicos, la corriente del galvanómetro puede ser calculada fácilmente por medio de esta expresión. (b) Para el equilibrio del puente, la corriente del galvanómetro debe ser igual a cero (por definición). El numerador de la expresión para I g también deberá ser cero. Entonces para I g = 0: Esto indica que la relación de la resistencia desconocida R x a una resistencia patrón R s , es igual a la relación de las resistencias de las ramas del puente R a / R b . La resistencia desconocida puede resolverse en términos de las resistencias conocidas: R x = (R a / R b ) R s
  • 5. Asignación Nro. 3 En la figura, R 1 y R 3, el puente está equilibrado cuando R 2 se ajusta a 125 Ω .Determine la resistencia desconocida R X. Nota: El valor de R 1 y R 3 son el tercer digito y el cuarto digito de su cedula de identidad. Solución: Datos: R1=tercer digito de la cedula=5 Ω, R3=cuarto digito de la cedula=7 Ω, R2=Rs=cuando esta en equilibrio=125 Ω, Ig=0 Como el puente esta equilibrado entonces se sabe que Ig=0 además que R2=Rs=125 Ω, R1=Rb=5 Ω y R3=Ra=7 Ω por lo tanto la ecuación a utilizar es: R x = (R a / R b ) R s Rx=(7/5)*125 = 175 Ω
  • 6. Asignación Nro. 3 Nota. El valor de la resistencia faltante es el quinto digito de su n ú mero de cedula. Solución: Datos: E=220v, Rg=40 Ω, Rb=3KΩ, Ra=400 Ω, Rs=el quinto digito de la cédula=2Ω, Rx =600 Ω, Ig =? Como el puente esta desequilibrado se usa la siguiente ecuación para calcular la corriente del galvanómetro (Ig=?): El circuito de la figura representa un puente desequilibrado. Si el galvanómetro tiene una resistencia de 40 Ω, halle la corriente que fluye por él.
  • 7. PUENTE DE MAXWELL Dado un inductor real, el cual puede representarse mediante una inductancia ideal con una resistencia en serie (Lx, Rx), la configuración del puente de Maxwell permite determinar el valor de dichos parámetros a partir de un conjunto de resistencias y un condensador, ubicados de la forma mostrada en la Figura 1. Fig. 1.- Puente de Maxwell para medir los par á metros de un inductor. El hecho de utilizar un capacitor como elemento patrón en lugar de un inductor tiene ciertas ventajas, ya que el primero es más compacto, su campo eléctrico externo es muy reducido y es mucho más fácil de blindar para protegerlo de otros campos electromagnéticos La relación existente entre los componentes cuando el puente está balanceado es la siguiente: Z1ZX = Z2Z3 (1) Z1ZX = R2R3 (2) Zx = R2R3Y1 (3) Y1 =1/R1+ jwc1 (4) Zx = R2R3 (1/R1+ jwc1) (5) Rx + jwLx = R2R3 (1/R1+ jwc1) (6) Rx =R2R3/R1 (7) Lx = R2R3C1 (8) Q =wR2R3C1/R2R3/R1= wR1C1 (9) En primer lugar, podemos observar que los valores de Lx y Rx no dependen de la frecuencia de operación, sino que están relacionados únicamente con los valores de C1 y R1, R2 Y R3. Por otra parte, existe una interacción entre las resistencias de ajuste, ya que tanto R1 como R3 intervienen en la ecuación de Rx, mientras que en la de Lx solo interviene R3. De acuerdo con esto, es necesario realizar varios ajustes sucesivos de las dos resistencias variables hasta obtener la condición de cero en el detector. Por lo tanto, el balance de este tipo de puente resulta mucho más complejo y laborioso que el de un puente de Wheatstone de corriente continua.
  • 8. Asignación Nro. 3 Un puente de Maxwell con una fuente de ca, de 10 kHz se utiliza para determinar la inductancia en serie con una resistencia de un inductor. En equilibrio, los brazos del puente son AB con 2 µF en paralelo con una resistencia de R, BC con 300Ω, CD con el inductor, y DA con 400Ω. ¿Cuál es la inductancia, la resistencia en serie y el factor Q del inductor? R= 4to digito de su numero de su cedula Solución: Datos: F=10KHz, AB=(C=2 µF y R1=cuarto digito de la cedula=7 Ω) BC=R3=300Ω, CD= (Lx=?, Rx=?), DA=R2=400Ω, Q=? Como el puente de Maxwell esta en equilibrio se usa la ecuación : Rx =R2R3/R1 Rx= (400*300)/7 = 17,14K Ω Ahora para calcular Lx se usa la ecuación : Lx = R2R3C1 Lx =400*300*2 µF= 0,24H Q =wR2R3C1/R2R3/R1= wR1C1 Q =wR1C1 = 2*(3.14)10000*7* 2 µF= 0,879
  • 9. GRACIAS POR SU ATENCIÓN