NOCIÓN INTUITIVA DE LÍMITE<br />Sea la siguiente función:<br />               <br />Vemos que no está definida para x = 2....
Bloque IV límite y continuidad
Bloque IV límite y continuidad
Bloque IV límite y continuidad
Bloque IV límite y continuidad
Bloque IV límite y continuidad
Bloque IV límite y continuidad
Bloque IV límite y continuidad
Bloque IV límite y continuidad
Bloque IV límite y continuidad
Bloque IV límite y continuidad
Bloque IV límite y continuidad
Próxima SlideShare
Cargando en…5
×

Bloque IV límite y continuidad

3.248 visualizaciones

Publicado el

Publicado en: Educación
0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
3.248
En SlideShare
0
De insertados
0
Número de insertados
5
Acciones
Compartido
0
Descargas
67
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Bloque IV límite y continuidad

  1. 1. NOCIÓN INTUITIVA DE LÍMITE<br />Sea la siguiente función:<br /> <br />Vemos que no está definida para x = 2.<br />¿Qué sucede a cuando x se aproxima a 2? Es decir, ¿se aproxima a algún número específico cuando x tiende a 2?<br />Para responder esta pregunta hacemos dos cosas: calcular algunos valores de para x próxima a 2 y realizar una gráfica aproximada de <br />Luego llegamos a la siguiente conclusión: tiende a 4 cuando x tiende a 2.<br />En símbolos es: = 4 “el límite cuando x tiende a 2 de es 4”<br />Si se hace arbitrariamente próximo a un único número , cuando se aproxima hacia por ambos lados decimos que el límite de cuando tiende a , es , y escribimos:<br /> = <br />Sobreentenderemos dos cosas: que existe el límite y que el límite es .<br />LÍMITES LATERALES<br />De la tabla anterior podemos observar que:<br />- cuando x se aproxima a 2 por derecha los valores de la función tienden a 4: = 4 (límite por derecha)<br />- cuando x se aproxima a 2 por izquierda los valores de la función tienden a 4: = 4 (límite por izquierda)<br />Llamamos límite lateral por derecha si x se aproxima hacia por valores mayores que el propio : = <br /> Llamamos límite lateral por izquierda si x se aproxima hacia por valores menores que el propio : = <br />Es imposible determinar si los límites laterales no coinciden.<br />El límite de una función si existe, es único.<br />EXISTENCIA DE LÍMITES<br />Si es una función y y son números reales, entonces:<br /> = y = <br />El límite existe si y solo si los límites laterales son iguales.<br />Ejemplo 1: Veamos si existe el siendo <br />Vemos que los límites laterales son distintos:<br />no existe <br /> <br />Ejemplo 2: Analicemos ahora la función <br /> <br />Calculemos el <br />Desde la gráfica podemos decir:<br />- cuando x se acerca a 0 por la derecha o por la izquierda, crece indefinidamente<br />- como no se aproxima a un número real cuando x tiende a 0, entonces no existe el límite<br />Los dos últimos ejemplos nos dicen que existen dos razones por las cuales no existe el límite de una función en un número real :<br />- tiende a números distintos según nos acerquemos a por la derecha o por la izquierda<br />- crece o decrece indefinidamente cuando x tiende a <br />CÁLCULO DE LÍMITES<br />Sea un número entero positivo, una constante, y y funciones con límites en . Entonces:<br />1. <br />2. <br />3. <br />4. <br />5. <br />6. <br />7. con <br />8. <br />9. con cuando es par<br />- Vimos que la existencia o no de en no afecta la existencia del límite de cuando x tiende a c<br />- Si el límite es precisamente el límite se puede calcular sustituyendo directamente. Es decir: <br />Ejemplo 3: Encuentra <br /> = = <br />LÍMITES INFINITOS<br />Ejemplo 4: Halla <br />Al hacer la sustitución directa en el numerador, el límite es 11, cuando x tiene a 1. Pero el límite del denominador es 0.<br />Al dividir 11 en 0 en el límite el resultado es un número positivo grande. Decimos entonces que el límite es <br />Es decir: <br /> = <br />El límite de la función cuando tiende a es “más finito”, es decir ; cuando al tomar valores de muy cercanos a , pero distintos de , los valores de son muy grandes y positivos, de manera que supera a cualquier número prefijado , es decir a cualquier cota.<br />Ejemplo 5: = <br />Ejemplo 6: Puede suceder que una función tienda al límite “menos infinito”<br /> = <br />Ejemplo 7: Analicemos <br /> <br /> y <br />LÍMITES EN EL INFINITO<br />Consideremos la función = <br />Límite finito cuando <br />123...100...1000...0-0,75-0,88......-0,9999......-0,99999999...<br />A medida que crece, se aproxima más a –1. Es decir: = -1<br /> Se dice que el límite de una función cuando tiende a “ más infinito” es el número y se expresa simbólicamente : = , cuando al hacerse muy grande la variable , el valor de se aproxima a , de manera que puede ser tan pequeña como se quiera, con tal de tomar suficientemente grande.<br />Límite finito cuando <br />Veremos el comportamiento cuando toma valores negativos de valor absoluto muy grande.<br />-1-2-3...-100...-1000...0-0,75-0,88......-0,9999......-0,99999999...<br />A medida que crece en valor absoluto, siendo negativa, se aproxima más a –1. Es decir: = -1<br />Límite infinito cuando <br />Sea la función <br /> <br />A medida que crece (tiende a “más infinito”) la función crece indefinidamente, al “más infinito”.<br />Es decir: = <br />Se dice que el límite de una función cuando tiende a “más infinito” es “más infinito” y se expresa simbólicamente = , cuando al crecer mucho la variable , la imagen se hace tan grande como se quiera, con tal de tomar suficientemente grande.<br />Análoga la definición para = , en este caso se hace negativa pero muy grande en valor absoluto.<br /> Existen funciones que no tienen límite, ni finito, ni infinito cuando :<br /> <br />LÍMITES INDETERMINADOS<br />Caso <br />Ejemplo 8: = = <br />En este caso, en que se trata del límite de una función racional de variable x, y dicha variable no tiende a cero, se factorea el numerador y el denominador, se simplifica y se calcula el límite de la función resultante.<br /> = = ( x + 2 ) = 4<br />Ejemplo 9: = <br />En este caso factoreamos el numerador aplicando Ruffini, ya que sabemos que –1 es una de sus raíces.<br />2-1-3-1-232-30<br /> = = ( 2 x – 3 ) = -5<br />Caso <br />bEste caso se trata del límite de una función racional en el cual la variable tiende a infinito, se divide al numerador y al denominador por la variable elevada al grado del numerador o del denominador<br />Ejemplo 10: = <br />Dividamos por la menor potencia , es decir por la variable del numerador:<br /> = = = 0<br />Dividamos por la mayor potencia , es decir por la variable del denominador:<br /> = = = 0<br />Llegamos al mismo resultado.<br />Ejemplo 11: = <br /> = = = <br />Ejemplo 12: = <br /> = = <br />CONTINUIDAD: CONCEPTO INTUITIVO<br />Podemos acercarnos al concepto intuitivo de continuidad de una función, usando la noción de “continuo” del lenguaje cotidiano.<br /> <br />La gráfica puede trazarse sin levantar el lápiz del papel.<br /> <br />Cuando la curva se “rompe”, para x = a, ocurre alguno de los casos siguientes, pero ¿es continua en a?<br /> <br />En los primeros casos no es realmente ni continua ni discontinua en , pues a Dom.<br />En x = , simplemente, la función “no existe”. Pero es frecuente, por comodidad y abusando del lenguaje, llamarlas discontinuas en .<br />El último caso presenta una genuina discontinuidad en : está definida en y la curva se rompe.<br />Decir que una función es continua en x = significa que su gráfica no presenta interrupciones en , la curva no se “rompe”, no tiene “saltos” o “huecos”.<br />Ejemplo 13: Si un banco no paga los intereses hasta que se termine el año, la gráfica del capital final es la siguiente:<br />Como el banco no paga los intereses hasta el fin de año, el capital durante todo el año es el mismo. Pero, al empezar un año nuevo, hay un “salto” en el capital debido a los intereses que se añaden.<br />Veamos cuando una función es continua en un punto o en un intervalo determinado:<br /> es continua en x = si:<br />a) existe <br />b) existe <br />c) = <br />Si falla cualquiera de estas condiciones será discontinua en <br /> Una función es continua en un intervalo abierto si los es en cada punto perteneciente a éste.<br />Ejemplo 14: Analicemos la continuidad de <br />En este caso el punto de discontinuidad es x = 1<br />a) p. q. existe <br /> = ( x + 1 ) = 2<br /> = = 1<br />Luego el no existe ya que los límites laterales no son iguales.<br />b) p. q. existe <br /> = 2<br />Luego sí existe <br /> c) No se verifica ya que la condición a) no se cumplió.<br />Por lo tanto no es continua en x = 1.<br />CLASIFICACIÓN DE LAS DISCONTINUIDADES<br />Discontinuidades evitables: <br />Existe el límite y no está definida la función en el punto<br />Existen el límite y está definida la función, pero ambos valores NO COINCIDEN<br />Discontinuidades no evitables:<br />La función está definida, pero no existe el límite (los límites laterales son distintos)<br />La función no está definida, ni existe el límite de la función en el punto (o el límite es infinito)<br />APLICACIONES DEL LÍMITE<br />ASÍNTOTAS HORIZONTALES Y VERTICALES<br /> <br />Cuando la variable x tiende a cierto valor , la función tiende a o a . Esto hace que su gráfica se aproxime indefinidamente a la recta de ecuación x = , a la que llamaremos asíntota vertical de la función dada.<br />Para las funciones gráficas anteriores tendremos:<br />x = 1asíntota vertical de x = -2asíntota vertical de x = 2asíntota vertical de x = -1asíntota vertical de <br />Al analizar los límites en el infinito de algunas funciones a medida que x tiende a menos infinito o x tiende a más infinito, sus gráficas se aproximan indefinidamente a una recta paralela al eje x ( ) que es su asíntota horizontal.<br />y = 1asíntota horizontal de y = -1asíntota horizontal de <br /> Una función tiene una asíntota vertical en x = si: <br /> = o = o = <br />Una función tiene una asíntota horizontal en y = si:<br /> = o = o = <br />Ejemplo 15: Halla si existen las asíntotas de <br />Buscamos los puntos de discontinuidad, esta función por ser racional presenta discontinuidad cuando el denominador es cero.<br /> x = 2 y x = -2 son puntos de discontinuidad<br />Hallemos si existen asíntotas verticales:<br /> = = x = 2 es asíntota vertical<br /> = = x = - 2 es asíntota vertical<br />Veamos si existe asíntota horizontal:<br /> = = 0 y = 0 es asíntota horizontal<br />

×