• Guardar

Cargando...

Se necesita Flash Player 9 (o superior) para ver las presentaciones.
Detectamos que no está instalado en su equipo. Para instalarlo, entre aquí.

¿Le gusta esta presentación? ¡Compártala!

Funciones

on

  • 1,603 reproducciones

NOCIONES BASICAS DE FUNCIONES

NOCIONES BASICAS DE FUNCIONES
POR WILDERD CABANILLAS CAMPOS

Estadísticas

reproducciones

reproducciones totales
1,603
reproducciones en SlideShare
1,603
reproducciones incrustadas
0

Actions

Me gusta
0
Descargas
0
Comentarios
0

0 insertados 0

No embeds

Accesibilidad

Detalles de carga

Uploaded via as Microsoft PowerPoint

Derechos de uso

© Todos los derechos reservados

Report content

Marcada como inapropiada Marcar como inapropiada
Marcar como inapropiada

Seleccione la razón para marcar esta presentación como inapropiada.

Cancelar
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Tu mensaje aparecerá aquí
    Processing...
Publicar comentario
Edite su comentario
  • FUNCIONES
  • FUNCIONES
  • FUNCIONES
  • FUNCIONES
  • FUNCIONES
  • FUNCIONES
  • FUNCIONES
  • FUNCIONES
  • FUNCIONES
  • FUNCIONES
  • FUNCIONES
  • FUNCIONES

Funciones Funciones Presentation Transcript

  • 1. Coordenadas en el plano 2. Ejes de coordenadas. Cuadrantes 3. Relación dada por tablas 4. Relación dada por gráficas 5. Relaciones dada por fórmulas 6. Idea de función 7. Representación gráfica de funciones 8. La función lineal o de proporcionalidad directa 9. Funciones afines 10. Funciones cuadráticas CONTENIDOS DEL TEMA 11. Funciones de proporcionalidad inversa 12. Resolución de problemas
  • 1. Coordenadas en el plano Observa : – La catedral está en el punto (1, 3). – El ayuntamiento en el punto (4, 1). Para situar un punto en el plano se necesitan dos rectas perpendiculares que se llaman ejes de coordenadas . El punto de corte de los ejes se llama origen .
    • La primera se mide sobre el eje horizontal o de abscisas; se llama abscisa del punto.
    • La segunda se mide sobre el eje vertical o de ordenadas; se llama ordenada del punto.
    – El jardín botánico en el punto (7, 2). Este plano es el de una ciudad. Cualquier punto tiene dos coordenadas . O Eje de ordenadas Eje de abscisas Origen
  • Eje de abscisas Eje de ordenadas I cuadrante IV cuadrante III cuadrante II cuadrante O Origen Tomamos una cuadrícula y trazamos los ejes de coordenadas. Se tendrá: 2. Los ejes de coordenadas: cuadrantes (I)
  • 2. Los ejes de coordenadas: cuadrantes (II) Primer cuadrante Cuarto cuadrante Tercer cuadrante Segundo cuadrante O Los ejes de coordenadas dividen el plano en cuatro cuadrantes. (+, +) (– , +) (– , – ) (+, – )
    • Los puntos del primer cuadrante tienen abscisa y ordenada positivas.
    • Los del segundo cuadrante tienen abscisa negativa y ordenada positiva.
    • Los del tercer cuadrante tienen abscisa y ordenada negativas.
    • Los del cuarto cuadrante tienen abscisa positiva y ordenada negativa.
    X Y
  • Cada punto del plano se designa por un par ordenado de números que se llaman coordenadas del punto. Así: A (4, 1); B (-2, 1); C (0, 5); D (-3, -4); E (5, -5) El primer número se llama abscisa ; el segundo, ordenada. Las abscisas positivas están a la derecha del origen. Las negativas, a la izquierda . Las ordenadas positivas están por encima del origen. Las negativas, por debajo. A(4, 1) B(-2, 1) C(0, 5) D(-3, -4) E(5, -5) 2. Los ejes de coordenadas: cuadrantes (III) O
  • Una función puede darse mediante una tabla. Ejemplo : en la tabla siguiente se da la medida de un feto (en cm) dependiendo del tiempo de gestación (en meses). A cada mes de gestación le corresponde una longitud determinada. (2, 4) significa que cuando el feto tiene 2 meses, mide 4 cm. (6, 29) indica que a los 6 meses el feto mide 29 cm . La longitud del feto está en función de su tiempo de gestación. 3. Relaciones dadas por tablas (I)
  • 3. Relaciones dadas por tablas (II) El nivel de agua que se alcanza en un recipiente depende del tiempo que el grifo esté goteando. Esta dependencia o relación se expresa en la siguiente tabla: A la variable tiempo se le llama variable independiente , y a la variable nivel de agua, variable dependiente . La dependencia entre dos variables puede expresarse mediante una tabla.
  • 4. Relaciones dadas por gráficas (I) En una etapa de la vuelta ciclista, a cada distancia del punto de salida le corresponde una determinada altitud. Esta dependencia o relación se expresa por la siguiente gráfica: A la variable kilómetros recorridos se le llama variable independiente , y a la variable altura en metros, variable dependiente . La dependencia entre dos variables puede expresarse mediante una gráfica. Cuando llevan 100 km recorridos es cuando están a mayor altitud.
  • Una función puede darse mediante una gráfica. Ejemplo : En la gráfica siguiente se da el consumo de gasolina de un automóvil según la velocidad a la que circula. Si el automóvil va a 130 km/h, consume, aproximadamente, 8 litros cada 100 km El consumo mínimo se consigue a 60 km/h: punto (60, 4) El consumo de gasolina depende (o está en función ) de la velocidad del automóvil. 4. Relaciones dadas por gráficas (II)
  • Si conoces el lado de un cuadrado puedes hallar su área. A cada valor del lado le corresponde un área. El área es función del lado: S = l 2 Lado Área S = l 2 A la variable lado l se le llama variable independiente , y a la variable área, variable dependiente . 5. Relaciones dadas por fórmulas 1 cm 2 cm 3 cm l cm 1 cm 2 4 cm 2 9 cm 2 l 2 cm 2
  • Consideremos otra relación dada por una fórmula: y = 2 x +1 Si x vale -2, y = 2·(-2) +1 = -3. Par (-2, -3) Si x vale -1, y = 2·(-1) +1 = -1. Par (-1, -1) Si x vale 2, y = 2·2 +1 = 5. Par (2, 5) Observa que a cada número x le corresponde un único número y . El número y depende del valor dado a x . O también: y está en función de x . A x se le llama variable independiente . En este caso puede tomar cualquier valor A y se le llama variable dependiente . Toma valores que dependen de la x : y = 2 x +1 Las relaciones de este tipo se llaman funciones. En una función, la correspondencia entre las variables debe ser única 6. Idea de función (I)
  • 6. Idea de función (II)
    • Función: es una relación o correspondencia entre dos magnitudes, de manera que a cada valor de la primera le corresponde un único valor de la segunda, que llamamos imagen o transformado .
    • Variable independiente : la que se fija previamente.
    • Variable dependiente : la que se deduce de la variable independiente.
    La fórmula f(x) = 3x 2 + 1 define una función. f(x) = 3x 2 + 1 Fijada la variable independiente, por ejemplo x = 5 , el valor que toma la variable dependiente es f(5) = 3 · 5 2 + 1 = 76 . ( La imagen de 5 es 76; y es única , pues la operación 3 · 5 2 + 1 es única.) Si x = 0, f(0) = 1. Si x = 1, f(1) = 4. Si x = –2, f(–2) = 13. En toda función a cada valor de la variable independiente le corresponde un solo valor de la variable dependiente. x es la variable independiente f(x) es la variable dependiente
  • La fórmula que expresa el área de un cuadrado en función de su lado es S = l 2 Para representarla gráficamente : Primero : formamos la tabla de valores Segundo : representamos los pares asociados, uniendo los puntos. Ejemplo: (2, 4) (3, 9) (4, 16) 7. Representación gráfica de funciones (I)
  • El precio del revelado de 36 fotos es de 1,50 soles y por cada foto cobran 0,35 soles Representa la gráfica de esta función. Primero : formamos la tabla de valores Segundo : representamos los pares asociados. Ejemplo: (En este caso no tiene sentido unir los puntos: no se revelan fracciones de fotos.) Variable dependiente Variable independiente 7. Representación gráfica de funciones (II)
  • 7. Representación gráfica de funciones (III) Una planta ha ido creciendo con el tiempo según se indica en la tabla: Para representarla gráficamente: representamos los pares de valores sobre unos ejes de coordenadas y obtenemos distintos puntos de la gráfica. (2, 11) (6, 26) Uniendo los puntos se obtiene la gráfica de la función.
  • 7. Representación gráfica de funciones (IV) Consideremos la función f que asigna a cada número entero el doble más 1. Para representarla gráficamente: En este caso no se pueden unir los puntos ya que la función está definida únicamente para los números enteros. Es decir, f(x) = 2x + 1. 1. Formamos la tabla de valores. 2. Representamos los pares de valores sobre unos ejes de coordenadas (2, 5) O (–3, –5)
  • Ejemplo: Si el precio de un kilo de naranjas es de 1,2 soles: (a) forma una tabla que relacione peso con precio. (b) representa la gráfica de la función asociada. Multiplicando por 1,2 el número de kilos, se tiene: Trazando los pares (1, 1,2), (2, 2,4), … (7, 8,4), se tiene: La fórmula de esta función es : y = 1,2 x Las funciones cuyas gráficas son rectas que pasan por el origen se llaman funciones lineales o de proporcionalidad directa 8. Función lineal o de proporcionalidad directa (I)
  • Vamos a representar gráficamente otras funciones lineales. 5 1 y = 5x – 5 – 1 2 1 y = 2x 4 2 – 4 4 y = – x 3 – 3 0 0 y = 0,2x 1 5 8. Función lineal o de proporcionalidad directa (II) Representa las siguientes funciones: a) y = x; b) y = –5x; c) y = 2x ; d) y = –x x y x y x y x y
  • 8. Función lineal o de proporcionalidad directa (III) Al comprar en el supermercado un trozo de queso nos hemos fijado en la etiqueta del paquete que reproducimos: 0,820 5,12 4,20 Las magnitudes precio y peso son directamente proporcionales. Si x es el peso en kg, e y el precio, la expresión que da el precio en soles es y = 5,12x . Calculamos valores, representamos y unimos los puntos. Las funciones se la forma y = mx se llaman funciones lineales . Son rectas que pasan por el origen. · m es la pendiente o inclinación de la recta. y = 5,12x Peso (kg) Soles Peso en kg Precio por kg en S/. Total en S/. 0,5 1 1,5 7 6 5 4 3 2 1
  • 9. Funciones afines (I). Representa las siguientes funciones: a) y = x +1 ; b) y = x – 3; c) y = 2x +3; d) y = 2x – 4 – 3 0 y = x – 3 1 4 – 4 0 y = 2x – 4 2 3 1 0 y = x + 1 4 3 3 0 y = 2x + 3 – 3 – 3 x y x y x y x y
  • 9. Funciones afines (II) Cuando un espeleólogo se adentra hacia el interior de la tierra, la temperatura aumenta con arreglo a la siguiente fórmula: Formamos la tabla de valores: Representamos gráficamente la función: t = 0,01 d + 15, (t es la temperatura en ºC; d, la profundidad en m) Temperatura (ºC) Profundidad (m) t = 0,01d + 15 Las funciones de la forma y = mx + n (n  0) se llaman funciones afines . Son rectas que no pasan por el origen. · m es la pendiente o inclinación de la recta. · n es la ordenada para x = 0, y se llama ordenada en el origen. 400 800 1200 18 12 6 O 24
  • 10. Funciones cuadráticas (I) Con una cuerda de 40 cm se pueden formar distintos rectángulos. ¿Cuánto valdrá su área? Representamos los pares obtenidos: Formamos la tabla de valores: (al área le llamamos y) 2x + 2h = 40 x h x + h = 20 A = xh = x(20 – x) A = 20x – x 2 Perímetro: Área: h = 20 – x Unimos los puntos y se obtiene la gráfica. 0 5 10 15 20
  • 10. Funciones cuadráticas (II) La gráfica de las funciones cuadráticas se llama parábola. Las funciones y = 20x – x 2 , vista anteriormente, se llama función cuadrática . Las funciones cuadráticas son de la forma y = ax 2 + bx + c con a  0. Si a > 0 la parábola está abierta hacia arriba. Si a < 0 la parábola está abierta hacia abajo. y = x 2 y = x 2 – 4x y = –x 2 + 2 y = –x 2 y = –x 2 – 3 a > 0 a < 0
  • 11. Función de proporcionalidad inversa (I) Si el producto de dos números es 24, ¿qué valores pueden tomar esos números? Representamos los pares obtenidos y unimos los puntos: Formamos la tabla de valores: x · y = 24
  • 11. Función de proporcionalidad inversa (II) Si el producto de los valores correspondientes de dos magnitudes x e y es constante, se dice que las magnitudes son inversamente proporcionales. La gráfica de las funciones de proporcionalidad inversa se llama hipérbola. x · y = k o bien Las funciones de la forma se llaman funciones de proporcionalidad inversa.
  • Problema : Un caracol se desliza por el borde de una piscina a razón de 5 cm por minuto. (a) Encuentra la ecuación asociada a las magnitudes espacio recorrido y tiempo. (b) representa esta función. 3º. La fórmula de esta función es : y = 5 x (c) ¿cuánto tiempo tardará en recorrer 23 cm? 1º. Hacemos la tabla 2º. Observamos que las magnitudes son directamente proporcionales: 5 1 10 2 5 x x 1 por 5 2 por 5 x por 5 y = 5 x es una función de proporcionalidad directa . 12. Resolución de problemas (I) Tiempo (min): 1 2 3 4 5 6 … Espacio (cm): 5 10 15 20 25 30 …
  • tiempo espacio (2, 10) (1, 5) 23 4,6 4ª Representamos los puntos: (1, 5), (2, 10)... 5º. En recorrer 23 cm tardará 23 : 5 = 4,6 min Si y = 23, entonces 23 = 5 x, luego x = 23 : 5 Observa que las escalas de los ejes son distintas Problema : Un caracol se desliza por el borde de una piscina a razón de 5 cm por minuto. (a) Encuentra la ecuación asociada a las magnitudes espacio recorrido y tiempo. (b) representa esta función. (c) ¿cuánto tiempo tardará en recorrer 23 cm? Ya hemos visto que la función asociada es y = 5x 12. Resolución de problemas (II)